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Abstract

Neural Radiance Field (NeRF) has enabled novel view synthesis with high fidelity
given images and camera poses. Subsequent works even succeeded in eliminating
the necessity of pose priors by jointly optimizing NeRF and camera pose. How-
ever, these works are limited to relatively simple settings such as photometrically
consistent and occluder-free image collections or a sequence of images from a
video. So they have difficulty handling unconstrained images with varying illumi-
nation and transient occluders. In this paper, we propose UP-NeRF (Unconstrained
Pose-prior-free Neural Radiance Fields) to optimize NeRF with unconstrained
image collections without camera pose prior. We tackle these challenges with sur-
rogate tasks that optimize color-insensitive feature fields and a separate module for
transient occluders to block their influence on pose estimation. In addition, we in-
troduce a candidate head to enable more robust pose estimation and transient-aware
depth supervision to minimize the effect of incorrect prior. Our experiments verify
the superior performance of our method compared to the baselines including BARF
and its variants in a challenging internet photo collection, Phototourism dataset.
The code of UP-NeRF is available at https://github.com/mlvlab/UP-NeRF.

1 Introduction

Neural Radiance Fields (NeRF) [1]] opened up a new chapter in novel view synthesis by demonstrating
its capacity to generate high-quality novel view images given only a set of 2D images. Its powerful
performance has enabled many practical applications including virtual/augmented reality (VR/AR) [2}
3|, autonomous systems [4} 5], and robotics [6H8]. Various follow-up studies have developed NeRF
by addressing its limitations, such as the necessity of dense input views [9H11]] and long training
time [[12H17]. Also, there have been efforts [[18.|19] to deal with unconstrained images with varying
illuminations and transient occluders to relieve the burden of collecting clean images or establishing a
specialized setting to capture them. For instance, NeRF-W [18]] introduces an appearance embedding
to handle varying illumination and a transient head to filter transient occluders.

One of the popular research topics in NeRF is joint optimization for pose and neural scene repre-
sentation. Originally, NeRF requires accurate camera pose priors which are generally obtained with
classic methods like structure from motion (SfM) [20]. Although the poses obtained from such a
method are treated as ground truth in many works, it does not always give optimal results or even
fails to converge. Hence recent works [21H23]] have proposed a method so-called unposed-NeRF
that simultaneously trains camera poses and NeRF. This eliminates the necessity of pose priors and
burdensome preprocessing. While these methods have only succeeded in forward-facing scenes,
NoPe-NeRF [24] further improved the method to even outdoor scenes with continuous images from
videos. These previous works, however, are based on the photometric loss which is not reliable for
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Figure 1: Deep feature focuses on semantic information of objects rather than their colors, which
makes it an effective descriptor for images with photometric inconsistency.

unconstrained images, so they have difficulty in training with unconstrained images. In addition, the
unconstrained images have complex camera poses, which is hard to optimize if a prior like continuity
of images from a video is not available. Therefore, training unposed-NeRF with unconstrained
images causes contradiction: To estimate camera poses accurately, images must be photometrically
consistent without transient occluders; to treat unconstrained images without photometric consistency
and transient occluders, accurate camera poses are needed. Previous unposed-NeRFs in the literature
are not capable of learning in an unconstrained setting, leading to suboptimal pose estimation and
poor rendering quality.

To tackle the problem, we propose UP-NeRF (Unconstrained Pose-prior-free Neural Radiance
Field) that jointly optimizes pose and neural scene representations while minimizing the influence
of photometric inconsistency and transient occluders on pose estimation. Our contributions are as
follows: First, we introduce the novel architecture that enables robust pose optimization with images
of complex camera poses. Second, we propose feature-surrogate bundle adjustment by adopting
the deep feature as a descriptor. Third, we enable transient-free pose optimization with the isolated
network. Lastly, our transient-aware depth loss suggests an effective way to impose depth prior only
to the static objects. Consequently, our model enables successful training of unposed-NeRF with
unconstrained images, showing its effectiveness over a naive combination of current methods.

2 Related Work

Neural Radiance Fields (NeRF). With the advent of techniques adopting neural fields to recon-
struct 3D representations [25H29], Neural Radiance Field (NeRF) [1]] proposed by Mildenhall ez
al. showed a promising result without the requirement of exact 3D geometry of each object in the
scene. Compared to previous approaches which require a pre-defined representation of the scene
by meshes [30} 31]], voxels [25} 26], or point clouds [32]], NeRF only requires a set of densely
captured 2D images and corresponding camera parameters of each image. Despite its light require-
ments, it demonstrates quality reconstruction of the complex geometry of scenes. The key idea of
NeRF is that even though given are only 2D images, an implicit function represented by a multilayer
perceptron can be utilized to parameterize the color and density of each 3D point on a ray, which is
subsequently synthesized to decide the color of a pixel from which the ray was shot. Thanks to its
simple but effective architecture, many other researches [10}, 12114} 33H33] have followed the trail of
NeRF to ameliorate its weakness and improve performance.

Joint optimization of camera pose. Among a lot of interesting NeRF-based works, one major
group of following works deals with the requirement of accurate camera pose of each image. Accurate
camera pose including intrinsic and extrinsic parameters of a camera is indispensable for NeRF in
that sampling accurate 3D coordinates in the world space heavily depends on them. However, such
an accurate camera pose is not easily equipped unless the dataset is custom-made like a synthetic
dataset, so structure from motion (SfM) [36] has been a classical solution to obtain such parameters.
Although a lot of works have postulated camera poses from SfM to be ground truth, they can be
sub-optimal depending on properties of scenes like monotonous texture. To solve this problem, other
methods [221-24] propose joint optimization of a neural field and poses.

Expansion to unconstrained scenes. Several researches [18, [19]] dealt with unconstrained outdoor
images where color consistency is not guaranteed owing to various environments (sunshine, time,
weather, etc.) and so-called transient entities (pedestrian, cars, sundries, etc.) appear in images.



S-NeRF [41] and CF-NeRF [42]] proposed a Bayesian network and normalizing flow for measuring
the uncertainty of transient objects. D?NeRF [43]] and RobustNeRF [44] demonstrated that transient
objects can be sharply decoupled from static ones without blurry floaters. Some works [45] 46]
utilized mask supervision to jointly optimize camera pose with object-centric images of different
illumination. In contrast to previous works which require either color consistency or the absence
of transient objects to jointly optimize the pose, our method is capable of optimizing camera pose
without both requirements.

3 Method

We present a framework dubbed UP-NeRF to optimize unposed-NeRF under challenging conditions.
We first briefly summarize Neural Radiance Fields (NeRF) [1]] followed by joint optimization of
camera poses and NeRF. In Section 3.1, we propose a new architecture that handles different
convergence rates of camera poses, which can enable robust training of unposed-NeRF. Next, we
explain our methods in Section[3.2]and[3.3]that handle the difficulty of unconstrained image collections
like different light conditions (e.g., weather, time, etc.) and transient occluders. In addition, we will
discuss how monocular depth priors can be used to optimize unposed-NeRF with unconstrained
images in Section [3.4]

Neural Radiance Fields (NeRF). Given N images {I;}¥ ; and camera parameters, Neural Ra-
diance Field (NeRF) IIy learns a continuous volumetric radiance field which maps a 3D point
x = (x,y, z) and a viewing direction d = (d, dy, d) to volume density ¢ and color ¢ = (r, g, b).
The mapping functions parameterized by simple neural networks, e.g., multi-layer perceptrons
(MLPs), are defined as

[o(t), 2(t)] = g, (1 (x(1)),  e(t) = g, (2(t),7a(d)), ey

where v (+) is a positional encoding function for 3D coordinates of each sample point on the ray
r(t) = o + td, which is parameterized by the origin point o and the direction d. Color value c(t)
is encoded with an intermediate feature z(¢) and a positional encoding function for view directions

~va(+). The synthesized RGB value C(r) is calculated by volume rendering as

K
C(I‘) = T(ty)a(o(tr)or)c(tr),
o @)
k—1 k—1
where T'(ty) = H (1—a(ty)) =exp ( - Z a(tk/)cSk./),
k=1 k=1

where 6, = try1 — ti is the distance between adjacent points for approximated rendering via
quadrature on discrete points and a(tx) = 1 — exp(—o(tx)0x). To improve sampling efficiency,
NeRF employs coarse and fine models for hierarchical sampling. The coarse model is optimized
using stratified sampling, and then the fine model is optimized with samples biased toward the
relevant parts of the volume. The parameters are optimized by minimizing photometric loss L, =

ST IC(r) — C(r)||2 with given ground-truth color C(r). Note that even if it is not a color map, any
information that represents the scene can be used for training a neural field. In this paper, we exploit
deep feature map F as well as color map C for training, which have been studied by Kobayashi et al.
[47] to learn selectively editable neural fields.

NeRF with camera pose estimation. Some prior works optimize NeRF with a joint estimation of
camera pose. We parameterize the camera poses {p; } Y, as 6 degrees of freedom and assume that
the camera intrinsics are known as several prior works [23} 24,139, 48|]. Then, the problem can be
formulated as R

0*7p* = argneliglﬁrgb(cvls‘c)a (3)

where p is learnable camera pose. BARF [23] shows that a coarse-to-fine positional encoding
strategy facilitates more stable joint optimization of NeRF and camera pose. Following BARF, we
parameterize camera poses with the se(3) Lie algebra and use a coarse-to-fine strategy for pose
optimization.



3.1 Candidate head for robust pose optimization

Training unposed-NeRF is a joint optimization process with a chick-and-egg problem; estimation of
camera pose p requires accurate scene representation IIy and vice versa. During the initial phase of
joint training, we observed that inaccurate scene representation, which is represented by predicted
density o and color c in Eq. (I)), causes specific images to be optimized in the wrong poses. We
refer to these images as ‘hard-pose’ images, which may include images that capture the details of the
scene or have little overlap with other images like the image in Fig.[d] To mitigate this problem, we
introduce an additional MLP head called candidate head. 1t yields image-dependent (and tentative)
(e) ()

scene representations by density o, and color ¢, given candidate embeddings {EEC) MY as:

[o{(t), ¢\(t)] = Thg, (2(t), ££). )

?

Note that (-)(°) denotes that it is related to the candidate embeddings. The synthesized RGB value

CEC) is generated by a joint volumetric rendering of the shared representation (¢ and c) and the image
(e)

dependent representation (o; ~ and color cz(-c)):

K

Cir) = YT t) (a(o(tmk)c(tk) + a(oﬁ”(szak)c?)(m) ,
= - Q)
where T;(C)(tk) = exp < — Z (O'(tk/) + JEC)(tk/))&c/) .
k'=1

The intuition is to consider easy pieces first to complete a large jigsaw puzzle and handle hard
pieces later. In the initial stages of training, shared representation is predominantly learned by ‘easy-
pose’ images. Meanwhile, candidate representation is primarily trained by hard-pose images. This
remedy effectively prevents the shared representation from being distracted by the wrong supervision
introduced by hard-pose images.

As the shared representation becomes accurate enough to facilitate the pose estimation of hard-pose
images, the influence of the candidate head is gradually reduced so that hard-pose images can be
assimilated into the shared representation, and the final model uses only the shared representation, o
and c. To achieve that, we propose a loss scheduling given as:

L=y Legn(C]C) + (1 — wyy) Loy (C]C), (6)

where w,, ,, is defined as:

0 if l<u
1 — 3 — —

Wy () = cos(r (! 5 w/(v—u) ifu<l<wo (7
1 if [ > w.

Here [ € [0, 1] denotes training progress and u, v € [0, 1] are hyperparameters. Then, w,, ,, tunes the

)

influence of Cfc and C. Specifically, for learning during the initial stage of training (! < w), only

(AJEC) is utilized, whereas only Cis employed in the later stage (I > v). With the loss scheduling, a
high-quality final NeRF model can be trained. In our final training pipeline, we will use features
instead of colors, as shown in Fig. 2] which will be covered in Section[3.2]

The volume rendering method shown in Eq. (5) is similar to NeRF-W [18§] in that it has an additional
head for color and density. In our architecture, however, we do not have a regularization term
and uncertainty field that hinder the candidate head from handling hard-pose images. The size of

embedding ﬁgc) is adjusted by how challenging the poses of the given images are, which can be
viewed as adjusting the regularizers for ‘slack’ variables in the constrained optimization problem,
e.g., support vector machine (SVM). The quantitative analysis of the candidate embedding size is
provided in Table
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Figure 2: Overall training pipeline of our UP-NeRF (Il is based on Section . To learn the poses
robustly, image-dependent scene representation is learned by the candidate head Ilg, (Section[3.T).
The depth loss Lgepm provides transient-aware depth prior to the model (Section @) In the early
stages of training, the deep feature F is used for color-independent surrogate optimization (Sec-
tion[3.2). After the poses are roughly learned, the NeRF is optimized with a separated TransientNet
T, to prevent unnecessary gradient flowing the pose parameters (Section @)

3.2 Feature-surrogate bundle adjustment

The motivation of this section is shown in Fig. [T} Given images with diverse appearances due to
different weather and times, unposed-NeRF cannot be stably trained with a photometric loss since
RGB values of corresponding pixels between images are not guaranteed to be the same. We adopt the
deep features from ViT [49] as a surrogate, which are less sensitive to appearance changes, and we
train the neural field with these features to achieve better robustness under challenging conditions.

With a slight change in Eq. (I)), our feature field is defined as:

£(t) = o, (2(t)),

[£9(1), 017(0)] = T, (a(t), £7). N

Unlike the color c(t) encoding in Eq. (1)), the feature f(¢) encoding is performed without a viewing
direction because the features ought to be independent of viewing directions. Furthermore, FEC) (r)
is rendered similarly to Eq. (5) by volume rendering with f(¢), o(t), fi(c)(t) and aic)(t). It is then
optimized by minimizing Leeye(r) = || F4(r) —Fgc)(r) ||% with 2D deep feature F;(r) from a pretrained
model. We replace the loss Ergb((jgc) |C;) in Eq. (EI) with the loss Efeat(ﬁ‘z(-C) |F;) for the early training.
Meanwhile, the unconstrained images can have different colors even though they have the same
semantic object. As a result, the feature f(¢) can be used to encode image-dependent static color c§“>

along with viewing direction d; and appearance embedding {£§“) N | for each image as:
ei"(t) = My, (£(1), va(d). £”). ©)

Note that (.)(*) means it is related to the appearance embeddings. The predicted RGB value CZ@(r)
{)(¢) and o (). This static color C!*)(r) is optimized
jointly with the transient color CET)(r) that will be introduced in the next section, Section In
summary, through candidate scheduling Eq. (6), the feature field is trained only for the early stage
(I < w), Iy, is not involved in learning in the later stage of training (! > v), and the radiance field

starts training as feature field gradually stops training (v < [ < v). See Fig. 2] for the final NeRF
model Iy architecture.

is calculated by volume rendering Eq. (2)) with ¢



3.3 Isolated network for transient-free pose optimization

The next challenge is the occlusion of transient objects. To optimize the poses accurately, their
influence must be minimized in the training process as much as possible. The previous work NeRF-
W [18], which tackles this problem, models it in 3D space by adding a transient head. If we naively
adopt it in our model, it causes a noisy gradient flowing into the learnable pose parameters, with the
pose being learned in the wrong direction due to transient occluders. So we mitigate this problem by
handling transients occluders at the separated TransientNet T4 in 2D image level. It maps deep feature

F;(r) to opacity ™), which is intended to filter out the transient based on semantic information.
Then, along with transient embedding {K,ET) } |, it encodes image-dependent transient color C,ET)

and uncertainty Bi(T):
[0 (r), 27 (x)] = Ty, (Fi(r)),
(G0, B7(0)) = T (270), 7).

(10)

Note that (.)(") means it is related to the transient objects. The final predicted color C;(r) is obtained
by alpha blending with CE“)(r) from Section

Ci(r) = (1 - @) C!(r) + M) EMr). (11)
The RGB loss for ray r with given color C(r) is:
£ty = G = GO oz 57y?

reb €0 2
26,7 (r)?

where 87(r) = a((r)B(r) + Buin. As in NeRF-W, the uncertainty 3.")(r) is modeled as the

variance of an isotropic normal distribution with mean Ci(r), resulting the negative log-likelihood
loss of C;(r). It reduces the impact of transient occluders as noise when training static objects.
Bmin > 0 is a hyperparameter for ensuring a minimum importance. The last term suppresses (") as

possible to prevent TransientNet from rendering static objects with A, > 0. We set Spin to 0.1 and
Ao t0 1.0.

+ A (r), (12)

3.4 Transient-aware depth prior

This section is about incorporating geometric prior from monocular depth into NeRF, which is highly
inspired by NoPe-NeRF [24]. The mono-depth prior provides strong geometry cues for jointly
training pose and NeRF. Even though NoPe-NeRF proposes inter-frame loss to leverage a depth
prior, it can only be applied to the successive images from a video so we cannot adopt such loss for
the unconstrained images. So, we apply only the depth loss Eq. (T3). The predicted inverse depth
{D™}N is acquired from depth network DPT [50]. Since this is a monocular prediction, it is not
an absolute inverse depth value. Therefore learnable parameters {n;}}; and {¢&;}Y,, which denote
a scale and shift factor, were introduced for each mono-depth to learn undistorted depth map D} It

is optimized with rendered NeRF depth D;:

]A)z(l') = ZT(t}c)a(U(tk)ék)tk. (13)
k=1

1
Di(r) =
niD (r) + &
By optimizing the L1 108s Laepn(r) = [[D(r) — D;(r)|, NeRF learns a strong geometry prior.
However, since NeRF should exclude transient objects, we need to apply depth prior only to the
areas without transient objects. In Section [3.1] the uncertain parts are generated from the candidate
density a§c) of the candidate head, while certain parts are generated from the shared density o. This
implies that the portion of candidate density also filters the transient parts as in Fig.[5] Based on

this observation, we can measure transient confidence weight Wi®(r) € [0, 1] from the ratio of
to shared density o. In consequence, the depth loss is defined as follows:

candidate density o
Laepn(r) = (1= W) [|D; (r) — Di(x)],

i

K 14
where ermh(r) = Z T}C)(tk)a(az(c)(tk)%))- W
k=1



Table 1: Novel view synthesis results on PhotoTourism Dataset.

PSNR 1 SSIM 1 LPIPS |
ref. BARF BARF UP- ref. BARF BARF UP- ref. BARF BARF UP-
NeRF-W BARF -W  -WD NeRF Nerp-w BARF -W  -WD NeRF NeRF-W BARF -W  -WD NeRF

Brandenburg Gate 26.50 8.94 11.98 12.45 26.29 0.887 0.221 0.629 0.619 0.884 0.116 1.027 0.549 0.630 0.126
Trevi Fountain 22.26 11.59 14.34 16.10 22.17 0.706 0.152 0.442 0.576 0.691 0.211 1.096 0.746 0.487 0.235

Taj Mahal 25.15 7.73 14.13 12.90 24.87 0.858 0.124 0.633 0.624 0.834 0.165 1.053 0.677 0.659 0.209
Sacre Coeur 2233 8.25 1251 9.3321.59 0.827 0.229 0.679 0.651 0.791 0.123 1.027 0.571 0.453 0.157
Mean 24.06 9.13 13.24 12.70 23.73 0.820 0.182 0.596 0.618 0.800 0.154 1.051 0.636 0.557 0.182

Table 2: Camera pose estimation on PhotoTourism Dataset.

Rotation (°) | Translation |
BARF BARF-W BARF-WD UP-NeRF BARF BARF-W BARF-WD UP-NeRF
Brandenburg Gate  128.32 21.42 159.00 0.621 4.479 2.890 3.334 0.070
Trevi Fountain 114.63 33.09 23.08 1.590 6.627 4.763 4.292 0.105
Taj Mahal 94.06 143.30 51.28 0.549 6.054 5.252 3.875 0.120
Sacre Coeur 99.33 112.19 113.50 1.452 12.353 9.875 9.073 0.222
Mean 109.09 77.50 86.72 1.053 7.378 5.695 5.144 0.129

3.5 Training pipeline

The overall training pipeline is shown in Fig. 2] Integrating the depth loss into Eq. (6) modified from
Section [3.2]and Section the overall loss is as follows:

L= wu,vﬁrgb + (1 - wu,v)(ﬁfeal + Adﬁdepth)- (15)

The loss implies that depth loss Lgepn decays as the training progresses as feature loss Lgeq does.
This is because we exploit depth supervision only for initial pose estimation, and using it further can
degenerate the rendering quality in that the geometry prior we utilize is not a ground truth but like a
pseudo-label from a depth network. A hyperparameter \; for depth loss is set to 0.001.

We use a hierarchical sampling strategy, and there is a slight difference in the coarse model loss
with Eq. (I2). We optimize the TransientNet with the fine model alone, and the coarse model uses

detached (™) and CET)(r) to render Ci(r) in Eq. , and does not use uncertainty. Thus, the final
RGB loss for the coarse model is as follows.

1, -
= 5Ci(r) = Clr)I3- (16)

In addition, the way of composing a sample set for the fine model is slightly different from NeRF [[1]],
which only uses the density o of the coarse model. Along with o, we also need to use candidate
density ¢(°) until scheduling eliminates the effect of candidate head. Depending on the scheduling
factor w,, ., both density o and o(®) are used at the beginning, and only ¢ is used in the end.

4 Experiments

Datasets. To demonstrate our methods work well in the unconstrained images. We report results
on the Phototourism dataset. It consists of internet photo collections of famous landmarks and we
select 4 scenes, Brandenburg Gate, Sacre Coeur, Taj Mahal, and Trevi fountain, which are also used
in NeRF-W. We follow the split used by NeRF-W [18] and downsample each image by 2 times. All
the initial camera poses are set to the identity transformation.

Implementation details. All the models are trained for 600K iterations with randomly sampled
2048 pixel rays at each step with a learning rate of 5 x 10~* decaying to 5 x 10~° for NeRF and
transient network 7, and 2 x 103 decaying to 1 x 10~2 for pose p and two factors s; and t; of depth.
We use Adam optimizer [S1] across all the experiments except test-time appearance optimization,
where AdamW [52] is used instead. The number of sampling points in each ray for volumetric
rendering is set to 128 for both coarse and fine models. We use the default coarse-to-fine strategy
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Figure 3: Qualitative results of baselines and our model, where (*) denotes BARF-variant baselines
we implement. As shown in the figure (columns 2-4), a naive combination of BARF and other
methods failed to converge, resulting in poor synthesis quality. In contrast, our model achieves
comparable quality to reference NeRF with perfect camera poses.

of BARF which starts from training progress 0.1 to 0.5. We set the scheduling parameters « and
v to be 0.1 and 0.5, respectively, the same as the parameters of coarse-to-fine. Note that both play
the same role in helping robust pose estimation in the early stages. The transient confidence weight
Wwderth is manually detached to prevent those parameters from affecting NeRF directly. We extract
deep features from the DINO model [49] [53]], whose powerful 2D correspondence representation has
been proven in various works [53]), and monocular depth from DPT [30] offline. The detailed
process of extracting features follows Amir et al. [49]]. Full implementation details are provided in
the supplementary material.

Evaluation. We implement the evaluation process which consists of two stages, test-time pose
optimization, and appearance optimization. In NeRF-W, they do just appearance optimization since
it trains with given poses. But in our case, we need to optimize pose either to evaluate novel
view synthesis. Therefore, we optimize both pose and appearance on test images for pose test
time optimization and then initialize appearance again and optimize it with the optimized pose. In
conclusion, the results of novel view synthesis are evaluated using PSNR, SSIM [36]], and LPIPS [37].
The train camera poses are Procrustes-aligned for comparison with ground truth poses in the same
way as BARF [23].

4.1 Results

To verify the difficulty of our task, we compare our model with BARF and its two variants. First,
we implement BARF-W as a baseline by applying latent appearance modeling and the transient head
of NeRF-W to BARF. The other baseline is relevant to NoPe-NeRF [24]]. NoPe-NeRF succeeded in
training NeRF with no pose prior in the outdoor scene. But it uses a sequence of images which is
from video, so most of their principal components are using near-frame images. It is a strong prior
to estimate camera poses, but in-the-wild images do not have such a prior so only the mono-depth
loss is applicable to our setting. Therefore, we add the loss term Eq. without Wf P o BARF-W
(BARF-WD) to check whether the depth prior alone is enough to guide the model to robust pose
estimation with unconstrained photos.

Table [2] shows the quantitative result of camera pose estimation, and translation errors are scaled
by 10. As expected, BARF fails to estimate the poses due to the lack of photometric consistency in
the unconstrained image collection. BARF-W also fails to optimize, which means that it is a hard
problem that cannot be solved simply by adding appearance modeling and transient head. Although
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Figure 4: Visual comparison between our model with and without candidate head for a hard pose
image during the training process. The small patch images compare the ground-truth pose (black)
with the optimized poses (red).
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Table 3: Quantitative results of ablation study. All metrics are
an average of 4 scene results.
Pose Novel View Synthesis

Rot (°) | Trans|] PSNR 1 SSIM 1 LPIPS |

UP-NeRF 1.053 0.129 2373 0.800 0.182
W/O Lieat 1434 6.193 1301 0568 0.644
wlo T, 2329 0314 2251 0781 0.224
w/o Wit 1226 0.170 23.60 0.795 0215

wio W™ gl) 4972 1.042 2123 0.744 0.283

Figure 5: Visualization of tran-
sient confidence weight.

BARF-WD showed slightly better results, it can be seen that the depth prior alone is not enough to
solve the photometric inconsistency. In contrast, our model succeeds in pose estimation and shows a
quality result.

Table[T]and Fig. B|show the novel view synthesis results. As shown in the figure, baselines have poor
rendering quality, which must be rooted in a failure of pose estimation. Even though variants of BARF
(columns 3-4) show a slight improvement over BARF, its sub-optimal quality and pose estimation
gives strong evidence that a mere combination of current methods or imposing depth supervision is
not enough to resolve the problem. In contrast, our model shows comparable performance against
reference NeRF-W and a clear appearance that implies its accurate pose estimation.

4.2 Ablation study

In this section, we verify the efficacy of each component in pose estimation with wild photos and
provide a visualization of how these help the model optimize pose correctly.

Feature-surrogate bundle adjustment. In Section[3.2] we optimize the radiance field by minimiz-
ing Ly, for the early training since the unconstrained images are not guaranteed color consistency.
When training only with photometric loss L4, without feature-surrogate, it can be seen from Table
that it fails to find accurate camera poses and render the novel views. This result shows that the
feature-surrogate method is important for the early stage of training.

Transient-free pose optimization. We demonstrate the effect of separating the transient network
from NeRF by comparing our model with a baseline where the transient network remains the same
as NeRF-W, meaning that transient occluders are rendered from 3D space as static objects. Table[3]
(column 2) clearly shows that gradient flows of transient objects adversely affect both pose estimation
and NeRF optimization.



Table 4: Quantitative analysis on the ~ Table 5: Overall learning time comparison with NeRF-W.
candidate embedding size.

NeRF-W UP-NeRF
size of 61@ 0 8 16 32 Preprocessing . Preprocessing .
Training Training
Rotation (°) | 4.972 1.286 1.053 3.162 (COLMAP) (DINO&DPT)
Translation | 1.042 0.184 0.129 0.474 Brandenburg Gate ~ 29h29m  50h 34m Oh 16m  42h 02m
PSNR 1 21.23 23.54 23.73 23.11 Trevi Fountain 150h 06m  51h 24m Oh36m  42h 15m
SSIM 1 0.744 0.802 0.800 0.779 Taj Mahal 21h33m 4% 22m Oh20m  42h 13m
LPIPS | 0.283 0.184 0.182 0.201 Sacre Coeur 25h27m  50h 34m Oh 18m 42h 51m

Transient-aware depth prior. As shown in Fig.[5] confidence score filters transient occluders
while imposing depth prior to the static correctly as we intended. Even though the static (e.g., the
gate) is slightly masked, it is justifiable in that the figure is visualized at the early of the training,
meaning that the pose is not fully optimized and the model is still being trained to discern the static
from the transient.

Candidate head. The last row of Table[3|shows that candidate head plays a crucial role in optimizing
camera pose accurately. Additionally, we provide quantitative analysis on the candidate embedding
EEC) size in Table We observed that setting the candidate embedding to an appropriate size is of
great help to camera pose estimation, and eventually succeeded in synthesizing novel view images.

4.3 Analysis

Candidate head. Fig.[4|shows that candidate embedding facilitates appropriate pose estimation for
a hard pose image, inducing the model not to vainly struggle to overfit the scene without updating the
pose. In contrast to the baseline without the candidate head which is stuck in a local minima, our
model successfully estimates the pose. The figure implies that if the rendered scene at the early stage
is similar to the ground truth with an incorrect pose, the baseline tries to fit the scene by optimizing
NeREF, rather than pursuing accurate pose optimization. However, our model is more robust against
being trapped into pose local minima for the hard pose images.

Overall training time We compared overall learning time between NeRF-W [18]] and UP-NeRF
in Table 5] Before training NeRF-W, it is necessary to run COLMAP to get camera poses. The
time required for COLMAP depends on the number of images, and the execution time becomes
non-negligible as the number increases. For example, Trevi fountain with about 3200 images, takes
nearly 1 week to finish. However, UP-NeRF takes just 36 minutes to prepare training, which includes
extracting DINO feature and DPT depth maps. The training time of UP-NeRF is also faster than
NeRF-W because it renders transient objects directly from the feature maps without a volume
rendering process. UP-NeRF only requires about 30 minutes of preprocessing time, so we expect
using faster models such as Instant-NGP [58] to reduce the training time greatly.

5 Conclusion

We propose UP-NeREF, a robust unposed-NeRF that can learn with an unconstrained image collection
with variable illumination and transient occluders. Thanks to the color-insensitive feature field,
separated transient network, candidate head for robust pose optimization, and transient-aware depth
prior, our model has less difficulty in estimating poses even in such challenging conditions. The
experiment shows the promising results of our model compared to baselines, even comparable to the
reference model with accurate poses.

Acknowledgments and Disclosure of Funding

This work was partly supported by ICT Creative Consilience program (II'TP-2023-2020-0-01819)
supervised by the IITP, and the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (NRF-2023R1A2C2005373).

10



References

[1] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020.

[2] Nianchen Deng, Zhenyi He, Jiannan Ye, Praneeth Chakravarthula, Xubo Yang, and Qi Sun.
Foveated neural radiance fields for real-time and egocentric virtual reality. arXiv preprint
arXiv:2103.16365, 2021.

[3] Sixu Li, Chaojian Li, Wenbo Zhu, Boyang Yu, Yang Zhao, Cheng Wan, Haoran You, Huihong
Shi, and Yingyan Lin. Instant-3d: Instant neural radiance field training towards on-device ar/vr
3d reconstruction. In ISCA, 2023.

[4] Ziyang Xie, Junge Zhang, Wenye Li, Feihu Zhang, and Li Zhang. S-nerf: Neural radiance fields
for street views. In ICLR, 2023.

[5] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P
Srinivasan, Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In CVPR, 2022.

[6] Jeffrey Ichnowski, Yahav Avigal, Justin Kerr, and Ken Goldberg. Dex-nerf: Using a neural
radiance field to grasp transparent objects. In CoRL, 2021.

[7] Michal Adamkiewicz, Timothy Chen, Adam Caccavale, Rachel Gardner, Preston Culbertson,
Jeannette Bohg, and Mac Schwager. Vision-only robot navigation in a neural radiance world.
IEEE Robotics and Automation Letters, 2022.

[8] Kunlong Hong, Hongguang Wang, and Bingbing Yuan. Inspection-nerf: Rendering multi-type
local images for dam surface inspection task using climbing robot and neural radiance field.
Buildings, 2023.

[9] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelNeRF: Neural radiance fields
from one or few images. In CVPR, 2021.

[10] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf on a diet: Semantically consistent
few-shot view synthesis. In ICCV, 2021.

[11] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard Pons-Moll. Stereo radiance fields
(srf): Learning view synthesis from sparse views of novel scenes. In CVPR, 2021.

[12] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

[13] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees
for real-time rendering of neural radiance fields. In ICCV, 2021.

[14] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps. In ICCV, 2021.

[15] David B. Lindell, Julien N.P. Martel, and Gordon Wetzstein. Autoint: Automatic integration for
fast neural volume rendering. In CVPR, 2021.

[16] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin.
Fastnerf: High-fidelity neural rendering at 200fps. In ICCV, 2021.

[17] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast
convergence for radiance fields reconstruction. In CVPR, 2022.

[18] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Doso-
vitskiy, and Daniel Duckworth. NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections. In CVPR, 2021.

[19] Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng, Xuan Wang, and Jue Wang.
Hallucinated neural radiance fields in the wild. In CVPR, 2022.

11



[20] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In CVPR,
2016.

[21] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. NeRF——:
Neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064,
2021.

[22] Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Animashree Anandkumar, Minsu Cho, and
Jaesik Park. Self-calibrating neural radiance fields. In ICCV, 2021.

[23] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. Barf: Bundle-adjusting
neural radiance fields. In ICCV, 2021.

[24] Wenjing Bian, Zirui Wang, Kejie Li, Jia-Wang Bian, and Victor Adrian Prisacariu. Nope-nerf:
Optimising neural radiance field with no pose prior. In CVPR, 2023.

[25] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. Sdfdiff: Differentiable rendering
of signed distance fields for 3d shape optimization. In CVPR, 2020.

[26] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective transformer
nets: Learning single-view 3d object reconstruction without 3d supervision. In NeurIPS, 2016.

[27] Riccardo Roveri, A Cengiz Oztireli, Ioana Pandele, and Markus Gross. Pointpronets: Con-
solidation of point clouds with convolutional neural networks. Computer Graphics Forum,
2018.

[28] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. Learning to infer implicit surfaces
without 3d supervision. In NeurIPS, 2019.

[29] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable
volumetric rendering: Learning implicit 3d representations without 3d supervision. In CVPR,
2020.

[30] Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. Paparazzi: surface editing by way of
multi-view image processing. ACM Trans. Graph., 2018.

[31] Chia-Yin Tsai, Aswin C Sankaranarayanan, and Ioannis Gkioulekas. Beyond volumetric
albedo—a surface optimization framework for non-line-of-sight imaging. In CVPR, 2019.

[32] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised learning of shape and pose with
differentiable point clouds. In NeurIPS, 2018.

[33] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla,
and Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In ICCV, 2021.

[34] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.
Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In CVPR, 2022.

[35] Mijeong Kim, Seonguk Seo, and Bohyung Han. Infonerf: Ray entropy minimization for
few-shot neural volume rendering. In CVPR, 2022.

[36] Alex M Andrew. Multiple view geometry in computer vision. Kybernetes, 2001.

[37] Yitong Xia, Hao Tang, Radu Timofte, and Luc Van Gool. Sinerf: Sinusoidal neural radiance
fields for joint pose estimation and scene reconstruction. In BMVC, 2022.

[38] Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and Simon Lucey. Gaussian activated
neural radiance fields for high fidelity reconstruction and pose estimation. In ECCV, 2022.

[39] Prune Truong, Marie-Julie Rakotosaona, Fabian Manhardt, and Federico Tombari. Sparf: Neural
radiance fields from sparse and noisy poses. In CVPR, 2023.

[40] Quan Meng, Anpei Chen, Haimin Luo, Minye Wu, Hao Su, Lan Xu, Xuming He, and Jingyi Yu.
GNeRF: GAN-based Neural Radiance Field without Posed Camera. In ICCV, 2021.

12



[41] Jianxiong Shen, Adria Ruiz, Antonio Agudo, and Francesc Moreno-Noguer. Stochastic neural
radiance fields: Quantifying uncertainty in implicit 3d representations. In 3DV, 2021.

[42] Jianxiong Shen, Antonio Agudo, Francesc Moreno-Noguer, and Adria Ruiz. Conditional-flow
nerf: Accurate 3d modelling with reliable uncertainty quantification. In ECCV, 2022.

[43] Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, Forrester Cole, and Cengiz Oztireli. D
2 nerf: Self-supervised decoupling of dynamic and static objects from a monocular video. In
NeurlPS, 2022.

[44] Sara Sabour, Suhani Vora, Daniel Duckworth, Ivan Krasin, David J Fleet, and Andrea Tagliasac-
chi. Robustnerf: Ignoring distractors with robust losses. In CVPR, 2023.

[45] Mark Boss, Andreas Engelhardt, Abhishek Kar, Yuanzhen Li, Deqing Sun, Jonathan Barron,
Hendrik Lensch, and Varun Jampani. Samurai: Shape and material from unconstrained real-
world arbitrary image collections. In NeurIPS, 2022.

[46] Zhengfei Kuang, Kyle Olszewski, Menglei Chai, Zeng Huang, Panos Achlioptas, and Sergey
Tulyakov. Neroic: neural rendering of objects from online image collections. TOG, 2022.

[47] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
feature field distillation. In NeurIPS, 2022.

[48] Yue Chen, Xingyu Chen, Xuan Wang, Qi Zhang, Yu Guo, Ying Shan, and Fei Wang. Local-to-
global registration for bundle-adjusting neural radiance fields. In CVPR, 2023.

[49] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features as dense visual
descriptors. arXiv preprint arXiv:2112.05814, 2021.

[50] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
In ICCV, 2021.

[51] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR,
2014.

[52] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In /CLR, 2017.

[53] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In /CCV, 2021.

[54] Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Rubinstein, Ming-Hsuan Yang, and
Varun Jampani. LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3d part
discovery. In NeurIPS, 2022.

[55] Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. Magicpony:
Learning articulated 3d animals in the wild. In CVPR, 2023.

[56] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. 77P, 2004.

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreason-
able effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[58] Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Trans. Graph., 2022.

13



	Introduction
	Related Work
	Method
	Candidate head for robust pose optimization
	Feature-surrogate bundle adjustment
	Isolated network for transient-free pose optimization
	Transient-aware depth prior
	Training pipeline

	Experiments
	Results
	Ablation study
	Analysis

	Conclusion

