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Abstract

Monte Carlo Tree Search (MCTS) has showcased
its efficacy across a broad spectrum of decision-
making problems. However, its performance often
degrades under vast combinatorial action space, es-
pecially where an action is composed of multiple
sub-actions. In this work, we propose an action
abstraction based on the compositional structure
between a state and sub-actions for improving the
efficiency of MCTS under a factored action space.
Our method learns a latent dynamics model with
an auxiliary network that captures sub-actions rel-
evant to the transition on the current state, which
we call state-conditioned action abstraction. No-
tably, it infers such compositional relationships
from high-dimensional observations without the
known environment model. During the tree traver-
sal, our method constructs the state-conditioned ac-
tion abstraction for each node on-the-fly, reducing
the search space by discarding the exploration of re-
dundant sub-actions. Experimental results demon-
strate the superior sample efficiency of our method
compared to vanilla MuZero [Schrittwieser et al.,
2020], which suffers from expansive action space.

1 INTRODUCTION

Monte Carlo Tree Search (MCTS) gained prominence as a
decision-time planning algorithm, showcasing its capabil-
ity to solve complex sequential decision-making problems
[Silver et al., 2016, 2017]. The core principle involves build-
ing a search tree and performing randomized simulations
to assess actions, thereby guiding the selection process to-
wards more promising choices over time. By incorporating
the additional latent dynamics model into the tree search, it
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Figure 1: Normalized score of MuZero [Schrittwieser et al.,
2020] and our method in environments with a factored ac-
tion space. In contrast to MuZero which suffers from the
increasing number of available actions, our method with
state-conditioned action abstraction remains effective.

achieves remarkable performances even from pixels without
the known environment model [Schrittwieser et al., 2020].

However, it often leads to sub-optimal decision-making
when confronted with vast combinatorial action space. This
is because the branching factor of MCTS increases as the
number of available actions expands, making it challenging
to efficiently explore and exploit during tree search [Couë-
toux et al., 2011, Pinto and Fern, 2017, Sokota et al., 2021,
Xu et al., 2022, Veeriah et al., 2022, Hoerger et al., 2023].

This issue becomes more pronounced in the environments
where an action is composed of multiple sub-actions since
its cardinality grows exponentially with respect to the num-
ber of sub-actions, as illustrated in Fig. 1. Unfortunately,
such a factorized action structure is prevalent in many real-
world applications. For instance, in the context of recom-
mender systems, an action consists of multiple recommen-
dations on a single page. In healthcare, configurations of
various medications and treatments constitute an action.
Many classical domains also involve factored action space,
e.g., arcade games where the players manipulate multiple
controllers such as joysticks and buttons simultaneously.

Existing approaches to extend MCTS to environments with
factored action space often leveraged domain knowledge
such as transition structure [Balaji et al., 2020], hierarchies



of sub-actions [Geißer et al., 2020], and known environ-
ment model [Chitnis et al., 2021]. However, such prior in-
formation is often unavailable, and the true environment
model is inaccessible in many domains (e.g., healthcare).
Furthermore, it is unclear whether they can be extended to
high-dimensional observations (i.e., pixels).

Our motivation stems from the fact that only some of the
sub-actions determine the transition from the current state,
making others irrelevant in many cases. For example, certain
treatments often disable the influence of other medications
for some patients. In the context of MCTS, the exploration
of those sub-actions irrelevant to the transition would be
redundant. It is worth noting that the significance of each
sub-action may vary across different states, e.g., due to the
varying physiological mechanisms among patients.

In this work, we propose an action abstraction based on the
compositional structure between the state and sub-actions
that improves the efficiency of MCTS under the factored
action space. Our method identifies such relationships by
learning a masked latent dynamics model that employs only
sub-actions necessary for prediction, which we call state-
conditioned action abstraction. Importantly, it does not rely
on the true environment model and learns from raw observa-
tions. Furthermore, such compositional structure is learned
solely with the reconstruction loss, making it also practical
under sparse reward environments. During the tree traversal,
our method infers the relevant sub-actions on each node
on-the-fly, guiding the subsequent action abstraction.

We augment MuZero [Schrittwieser et al., 2020] and demon-
strate the improved sample efficiency of our method on
environments with expansive combinatorial action space.
Detailed analysis of our method shows the effectiveness of
state-conditioned action abstraction and illustrates that it
successfully captures compositional relationships between
the state and sub-actions.

Our contributions are summarized as follows:

• We devise a simple and effective method that learns
compositional structures among the state and actions
from pixels without a known environment model.

• We propose a state-conditioned action abstraction for
improving the efficiency of MCTS under the factored
action space that considers only the sub-actions rele-
vant to the transition from the current state.

• We demonstrate the superior sample efficiency of our
method compared to vanilla MuZero, which suffers
from the vast combinatorial action space.

2 PRELIMINARIES

A Markov Decision Process (MDP) [Bellman, 1957, Put-
erman, 2014] is defined by a tuple ⟨S,A, P,R, γ⟩, where
S is a state space, A is an action space, P : S × A → S

is a transition function, R : S → R is a reward function,
and γ ∈ [0, 1) is a discount factor. We consider a discrete
action space and deterministic transition. The goal is to find
a policy π : S × A → [0, 1] that maximizes the expected
cumulative reward. In this paper, we consider the factored
action space A = A1 × · · · × An where the action A is
composed of sub-actions Ai, i.e., A = [A1, · · · , An], and
each Ai takes values from a set Ai. We will sometimes de-
note sub-actions as action variables. Throughout the paper,
we use capital and small letters to represent the random
variables and their assignments, respectively.

2.1 MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) [Browne et al., 2012,
Coulom, 2006] incrementally builds a search tree to find the
best decision from a given state. The algorithm’s strength
lies in its balance between exploring previously underex-
plored actions and exploiting actions with high estimated re-
wards. Typically, MCTS iteratively repeats the simulations,
which consist of four main stages: selection, expansion, eval-
uation, and backup. Beginning at the root node of the search
tree, which represents the current state, MCTS traverses the
tree by successively selecting the most promising node until
a leaf node is reached.

In our work, we consider a variant of MCTS proposed in
MuZero [Schrittwieser et al., 2020], which incorporates
policy and value networks with a latent dynamics model
to guide tree search effectively when the true environment
model is unknown and the agent receives a high-dimensional
observation (i.e., pixels). We now briefly describe each
model component and the search procedure of MuZero.

Model components. The encoder f embeds each state st
into a latent space, i.e., zt = f(st). Here, the state could
be a high-dimensional observation, such as an image. The
latent dynamics model g maps the latent state zt and an
action at into a next latent state, i.e., ẑt+1 = g(zt, at). At
each time step t, it builds a search tree starting from zt as a
root node and recursively selects an action for each node.

Selection. At each node z, the action selection is:

â = argmax
a

[
Q(z, a) + c · πθ(z, a)

√∑
b N(z, b)

1 +N(z, a)

]
, (1)

where the estimated Q-value, policy prior, and visit count
are denoted as Q(z, a), πθ(z, a), and N(z, a), respectively.
Here, c = c1+log

(∑
b N(z,b)+c2+1

c2

)
is an exploration coef-

ficient where c1 and c2 are hyperparameters and
∑

b N(z, b)
represents the total number of visits for all actions from state
z. The learnable policy prior πθ(z, a) guides the search to-
wards promising actions.

Expansion. If there is no child node corresponding to the
selected action during the tree traversal, the latent dynamics



model predicts the subsequent latent state and adds it to the
search tree as a child node of the current node.

Evaluation. After expanding the search tree, it evaluates a
reward and a value from the expanded node. Also, a policy
prior is estimated for later use in the selection stage.

Backup. At the end of a simulation, it updates the visit
count and Q-value estimation of the selected nodes along
the path from the root to the expanded node. Each Q(z, a)
is updated based on the value of the expanded node and the
cumulative rewards along the path to the expanded node.

Training. The latent dynamics model, encoder, reward, pol-
icy, and value networks are jointly trained to predict the
policy, value, and reward targets. Specifically, it encodes the
state st into zt and unrolls the dynamics model, construct-
ing ẑt+1, · · · , ẑt+k. It then predicts the policy, value, and
rewards on each ẑt+i. They are supervised to estimate the
bootstrapped value, the reward, and the visit count distri-
bution which is the normalized number of visits for each
action from the MCTS over the states st+1, . . . , st+k.

2.2 CONTEXT-SPECIFIC INDEPENDENCE

Our main goal is to improve the efficiency of MCTS in envi-
ronments with a factored action space. The key motivation
is that some of the action variables do not influence the
transition in the current state. The notion of context-specific
independence (CSI) [Boutilier et al., 2013] provides a way
to understand such relationships.

Definition 2.1 (Context-Specific Independence). We say Y
is contextually independent of W given the context X = x
if p(y | x, v, w) = p(y | x, v) holds for all y ∈ Y and
(v, w) ∈ V ×W whenever p(x, v, w) > 0. This is denoted
by Y ⊥⊥ W | X = x, V .

We are concerned with CSI relationship between the current
state s and action variables A = [A1, · · ·An], written as:

S′ ⊥⊥ A \AM | S = s,AM ,

where M = {j1, · · · , jm} ⊆ [n], AM = [Aj1 , · · · , Ajm ].
Note that this only holds in the current state s and does not
generally hold. In other words, sub-actions that influence
the state transition may vary across different states.

Existing approaches to capture such compositional struc-
tures between the state and sub-actions often rely on true
environment model [Chitnis et al., 2021], e.g., using condi-
tional independence tests. However, it is impractical for a
high-dimensional observation, e.g., image, and more impor-
tantly, it is unavailable in many scenarios, e.g., healthcare.

3 METHOD

In this section, we describe each component of our method
in detail. Overall framework of our method is illustrated
in Fig. 2. We first describe a state-conditioned action ab-
straction, a set of sub-actions relevant to the transition on
the current state, and an auxiliary network that infers such
relationships (Sec. 3.1). We then describe the training of the
latent dynamics model with the auxiliary network (Sec. 3.2),
as depicted in Fig. 2(a). Finally, we combine MCTS with
state-conditioned action abstraction (Sec. 3.3), as depicted
in Fig. 2(b).

3.1 STATE-CONDITIONED ACTION
ABSTRACTION

As described earlier, our method learns compositional struc-
ture between the state and action variables so as to reduce
the search space of MCTS. For this, we devise a conditional
structure inference network that infers action variables irrel-
evant of the transition from the current state. Importantly, it
operates in the latent space to deal with high-dimensional
observations.

First, an encoder f maps the observation (i.e., image) to the
latent state representation, i.e., z = f(s). The conditional
structure inference network h then infers from z as:

h(z) = [p1z, · · · , pnz ] ∈ [0, 1]n, (2)

where each entry piz is the parameter of the Bernoulli distri-
bution. The mask is then sampled from h(z) as:

M(z) = [m1
z, · · · ,mn

z ] ∈ {0, 1}n, (3)

where mi
z ∼ Bernoulli(piz) for all i ∈ [n]. Here, the action

variable Ai is relevant for the state transition if mi
z = 1;

otherwise, it is irrelevant. Based on this, we construct a
state-conditioned action abstraction which is defined as:

ϕz(A) = {Ai | mi
z = 1} ⊆ A. (4)

It is worth keeping in mind that the abstraction depends on
the current state. This represents the CSI relationship as:

S′ ⊥⊥ ϕc
z(A) | S = s, ϕz(A), (5)

where ϕc
z(A) := A \ ϕz(A). For example, in the case of 3

action variables A = [A1, A2, A3] with the inferred mask
M(z) = [1, 1, 0], the inferred CSI is S′ ⊥⊥ A3 | S =
s, {A1, A2} and the abstract action is ϕz(A) = [A1, A2].
We denote ϕz(A) as the abstract action space, e.g., ϕz(A) =
A1 ×A2, and denote ϕz(a) as the value of ϕz(A), e.g., if
a = [a1, a2, a3], then ϕz(a) = [a1, a2] ∈ ϕz(A).

Such auxiliary network is utilized to uncover CSI relations
when true variables are fully observable in low-dimension
[Hwang et al., 2023]. However, it is unclear how to capture
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Figure 2: Overall framework. (a) Training latent dynamics model with conditional structure inference network. (b) The
proposed MCTS with state-conditioned action abstraction.

them from high-dimensional observation. We proceed to
describe how to learn the conditional structure inference net-
work h that induces the state-conditioned action abstraction
ϕz(A) which adheres to Eq. (5).

3.2 TRAINING LATENT DYNAMICS MODEL

A CSI relationship in Eq. (5) implies that the abstract action
ϕz(a) is sufficient for predicting the future state:

p(s′ | s, a) = p(s′ | s, ϕz(a)). (6)

Thus, we train the latent dynamics model g to use the ab-
straction action for prediction, i.e., ẑt+1 = g(zt, ϕzt(at)).
We employ K-step reconstruction loss to jointly train the
latent dynamics model and conditional structure inference
network as Fig. 2(a):

Lrecon(st) =
1

K

K∑
k=1

[
∥st+k − Dec(ẑt+k)∥22

+ λ∥M(ẑt+k−1)∥1
]
, (7)

where ẑt+k = g(ẑt+k−1, ϕẑt+k−1
(at+k−1)) and ẑt = zt =

f(st). λ is a sparsity coefficient, which is a hyperparameter.
Intuitively, the regularized reconstruction loss encourages
the models to accurately predict the future state by using
only necessary action variables, i.e., ϕz(a). This allows us
to learn the compositional relationships between the current
state and action variables from high-dimensional observa-
tions without knowing the true environment model.

Since M(z) = [m1
z, · · · ,mn

z ] is not differentiable with re-
spect to z due to the sampling mi

z ∼ Bernoulli(piz), we use
Straight-Through Gumbel-Softmax estimator [Maddison
et al., 2016, Jang et al., 2016]:

σ

(
1

β
(log piz − log(1− piz) + log u− log(1− u))

)
,

where σ is the sigmoid function, u ∼ Unif(0, 1), and β is
a temperature. Intuitively, h(z) = [p1z, · · · , pnz ] is trained to

assign a high probability to the sub-action that is necessary
for predicting the future state. This allows us to update the
conditional structure inference network h with the recon-
struction loss with regularization in Eq. (7).

3.3 COMPLETE METHOD: MCTS WITH
STATE-CONDITIONED ACTION
ABSTRACTION

We propose MCTS using abstract action ϕz(a) for each
node z, instead of a, reducing the search space exponentially
with respect to the number of sub-actions masked out. An
overall framework is illustrated in Fig. 2(b).

Deterministic abstraction. State-conditioned action ab-
straction (Eq. (4)) involves the sampling from a Bernoulli
distribution. For the inference, we use a deterministic ab-
straction with the threshold τ , which is a hyperparameter:

ϕz(A) = {Ai | piz > τ} ⊆ A. (8)

Selection. At each node z, an abstract action is selected as:

ϕ̂z(a) = argmax
ϕz(a)

[
Q(z, ϕz(a))+ (9)

c · πθ(z, ϕz(a))

√∑
b N(z, b)

1 +N(z, ϕz(a))

]
,

where the abstract action ϕz(a) is the key difference com-
pared to the vanilla action selection of MuZero in Eq. (1).
Here, the policy prior πθ(z, a) is marginalized over the ac-
tions a′ that are projected to the same abstract action ϕz(a):

πθ(z, ϕz(a)) =
∑

{b∈A|ϕz(b)=ϕz(a)}

πθ(z, b). (10)

For example, if A = [A1, A2, A3] where the action variables
are binary, ϕz(A) = [A1, A2], and ϕz(a) = (0, 0), then we
are marginalizing over the third dimension: πθ(z, ϕz(a)) =
πθ(z, (0, 0, 0))+ πθ(z, (0, 0, 1)). Note that the modeling of
the policy prior as πθ(z, a) instead of πθ(z, ϕz(a)) is the
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Figure 3: Sample images for each environment.

design choice for simplicity since the abstraction depends
on the current state, making the dimension of ϕz(a) varies
across different states.

Expansion and backup. If there is no child node corre-
sponding to the selected action ϕ̂z(a), the latent dynamics
model predicts the subsequent latent state z′ = g(z, ϕ̂z(a))
and adds it to the search tree as a child node of the current
node z. The rest of the procedures are identical to MuZero.

Final action selection at the root node. After the simula-
tions, the final action is selected based on the visit distri-
bution π̂(z, ϕz(a)), which is the normalized visit count for
each (abstract) action from the root node z. We unfold the
visit distribution to the original action space A as:

π̂(z, a) = π̂(z, ϕz(a))× u(ϕc
z(a)), (11)

where u(ϕc
z(a)) represents the uniform distribution over

action variables ϕc
z(a). This provides diverse state-action

samples for robust training of the auxiliary network.

Training. All components of our method are jointly trained
in an end-to-end fashion. The conditional structure infer-
ence network is trained only with the reconstruction loss to
faithfully represent the dynamics transition in Eq. (6). The
remaining components are trained with the combination of
policy, value, reward, and reconstruction losses, similar to
MuZero as described in Sec. 2.1.

4 EXPERIMENTS

In this section, we evaluate our method on environments
with expansive combinatorial action spaces. Our investi-
gation focuses on (1) whether the proposed MCTS with
state-conditioned action abstraction improves the sample
efficiency of vanilla MuZero (Figs. 4, 5 and 10), (2) whether
our method successfully captures compositional relation-
ships between the state and sub-actions (Figs. 6 to 8 and 12),
and (3) how much the action abstraction contributes to the
sample efficiency (Figs. 9 and 11 and table 1).1

1Our code is available at https://github.com/
yun-kwak/efficient-mcts.
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Figure 4: Comparison of aggregate metrics across all tasks.

4.1 EXPERIMENTAL SETUP

Following the implementation [Schrittwieser et al., 2020,
2021], we augment MuZero by incorporating the proposed
conditional structure inference network. We use vanilla
MuZero as a baseline throughout the experiments.

Implementation. We use the abstraction threshold τ = 0.01
for all experiments. For all environments, we train our
method and MuZero over 100k gradient steps and evalu-
ate the performance of each run for every 2000 steps with
32 seeds. All experiments were executed on an NVIDIA
RTX 3090 GPU, leveraging JAX and Haiku. We provide
implementation details in Appendix B. Additional experi-
mental results are provided in Appendix C.

4.1.1 Environments

DoorKey [Chevalier-Boisvert et al., 2018]. We modify the
MiniGrid DoorKey environment to introduce a factored ac-
tion space (Fig. 3(a)). The task is to obtain a key, open
a door, and ultimately reach a designated goal, follow-
ing the shortest path. The action space is factorized as
A = Aturn×Aforward×Apick×Aopen, where {Aturn,Aforward}
correspond to the movement of the agent. Apick and Aopen
correspond to the interaction with the key and door, respec-
tively. The agent receives a reward of −0.1 for each step
taken. The configuration of the door, key, wall, and the
initial position of the agent is randomly initialized at the
beginning of each episode. The attributes of the door and
the key are also randomly initialized in each episode. We
design three settings: EASY, NORMAL, and HARD, where
the number of the attributes is 2, 3, and 4, respectively. The
action cardinality for each setting is 54, 96, and 150. Details
of the DoorKey are provided in Appendix A.1.

Sokoban [Schrader, 2018]. It is a challenging environment
that requires long-horizon planning where the agent must
manipulate a box to a designated target location through
a series of actions (Fig. 3(b)). The map topology, goal lo-
cation, and box attribute are randomly initialized for each
episode. The agent receives a reward of −0.1 for each step
taken and a reward of 10 for successfully placing the box
on the target location. The action space is factorized as
A = Amove ×

∏
i A

(i)
box, where each A(i)

box represents the ma-
nipulation of the corresponding box. Similar to DoorKey, we
design three settings: EASY, NORMAL, and HARD, where
the number of the attributes of the box is 2, 3, and 4, respec-
tively. The action cardinality for each setting is 45, 135, and
405. Details of the Sokoban are provided in Appendix A.2.

https://github.com/yun-kwak/efficient-mcts
https://github.com/yun-kwak/efficient-mcts
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Figure 5: Learning curves. The average episodic return is depicted by lines, and the shaded areas represent the 95%
confidence intervals.

4.2 RESULTS

Sample efficiency (Fig. 5). We measure the episodic returns
of our method and MuZero in each environment. While
MuZero struggles with vast combinatorial action space, our
method achieves near-optimal performance in all environ-
ments. We observe that the gap between our method and
MuZero becomes more pronounced as it gets harder, i.e., as
the action cardinality increases. In particular, our method
successfully solves HARD settings, where the action cardi-
nality is 150 for DoorKey and 405 for Sokoban. Following
the suggestions from Agarwal et al. [2021], we also report
aggregate scores across all runs on DoorKey and Sokoban
environments in Fig. 4. The normalized scores for each en-
vironment are shown in Fig. 1, illustrating that our method
remains effective under the expansive action space.

Visualization of the state-conditioned action abstrac-
tion (Fig. 6). The conditional structure inference network h
learns CSI relationships between state and action variables.
We visualize the output h(z) = [p1z, · · · , pnz ] ∈ [0, 1]n

(Eq. (2)) on different states in DoorKey. We first recall that
the action is factorized as A = Aturn ×Aforward ×Apick ×
Aopen and the agent always turns first, advances, and then
either picks up a key or opens a door. Fig. 6-(a) shows that
the sub-actions corresponding to the key and the door are
assigned almost zero probability. This is because the agent
has already obtained a key and cannot interact with the door
at this moment. In Fig. 6-(b), the agent is able to pick up
the key, and thus, the probability close to 1 is assigned to
the sub-action corresponding to the key. Since it still cannot
interact with the door, our method accurately predicts the

Figure 6: Visualization of state-conditioned action abstrac-
tion. (Top) observations. (Bottom) the probability of depen-
dencies for each action variable.

corresponding probability close to 0. Similarly, Fig. 6-(c)
is also the case where the agent has already obtained a key
and opened the door, and consequently, the corresponding
sub-actions become irrelevant. Finally, in Fig. 6-(d), the
agent is able to interact with the door. Our model assigns
the probability of 0 and 1 to the sub-action corresponding
to the key and the door, respectively.

Evaluation of CSI discovery (Fig. 7). We evaluate the
performance of the conditional structure inference network
using the Structural Hamming Distance (SHD) [Acid and
de Campos, 2003, Ramsey et al., 2006], which measures
the difference between two directed graphs. A lower SHD
indicates that the two graphs are more similar in structure,
whereas an SHD of 0 means the graphs are identical. As
the environments in our main experiments (i.e., DoorKey
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Figure 7: Evaluation of CSI identification and learning
curves on contextual multi-armed bandit.

Figure 8: Prediction of the conditional structure inference
network for the sub-actions corresponding to the key (Apick)
and the door (Aopen) along the trajectory in DoorKey.

and Sokoban) do not provide the ground truth CSIs, we
designed the contextual multi-armed bandit scenario for the
evaluation with SHD. As shown in Fig. 7(a), our method suc-
cessfully identifies CSI relationships. Furthermore, Fig. 7(b)
illustrates that the performance of our method measured
with the episodic return becomes more improved as it be-
comes more accurately identifies CSIs. This demonstrates
the importance of capturing compositional structures and
state-conditioned action abstraction for our method. We
provide additional details in Appendix A.3.

Conditional structure inference network h (Fig. 8). We
further investigate the behavior of the conditional structure
inference network by examining how its inference on the
compositional relationships changes along the trajectory.
Interestingly, when the agent is close to the key but has
not picked it up yet (t = 2), our method (Eq. (2)) infers
ppick
z = 1 and popen

z = 0. This is because it cannot open
the door at the moment, and thus, the corresponding sub-
action Aopen is irrelevant. Then, it proceeds to obtain the
key and starts to move toward the door (t = 5). From this
moment, the prediction of the conditional structure inference
network begins to change. When the agent comes close to
the door (t = 7) and finally opens it (t = 10), our method
predicts ppick

z = 0 and popen
z = 1. This illustrates that our
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Figure 9: Ablations on action abstraction and reconstruction
loss in Sokoban-Normal.

method effectively captures the compositional relationships
between the current state and action variables that change
across different states and time-steps.

Ablation study (Fig. 9). It is clear that the reconstruction
loss is crucial for both our method and MuZero. In addition,
the performance improvement of using the state-conditioned
action abstraction illustrates that it significantly contributes
to the superior sample efficiency of our method. In fact,
our method without action abstraction performs similar to
MuZero, indicating that masked latent dynamics modeling
alone does not bring any performance gain.

Simulation budgets (Fig. 10). We compare our method
with MuZero in DoorKey across a varying number of simu-
lations. Our method consistently outperforms MuZero and
achieves near-optimal performance in all budgets. These re-
sults illustrate the effectiveness of state-conditioned action
abstraction guided by conditional structure inference net-
work, leading to superior sample efficiency and scalability.

Latent dynamics model (Table 1 and fig. 11). We exam-
ine the latent dynamics model to investigate whether the
superior sample efficiency of our method comes from the
dynamics model or state-conditioned action abstraction. As
shown in Table 1, the latent dynamics model of MuZero
achieves slightly better performance in terms of the recon-
struction loss. This is because our method imposes the dy-
namics model to use only some of the action variables for
prediction. This illustrates that the superior performance
of our method does not come from the latent dynamics
model but state-conditioned action abstraction. We further
investigate the reconstructed observations from MuZero and
ours. As shown in Fig. 11, both dynamics models perform
reasonably well, demonstrating the effectiveness of the state-
conditioned action abstraction.

GradCAM (Fig. 12). We visualize the learned conditional
structure inference network using GradCAM [Selvaraju
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Figure 11: Examples of the observation reconstructions.

et al., 2016] on DoorKey. We use the gradient of piz for the
sub-action Ai with respect to the last feature map. We ob-
serve that our method places attention on the related object
to decide whether the corresponding sub-action is relevant
or not. For example, in Fig. 12(a), the network focuses on
the placed key and the position of the agent to determine the
probability assigned to the sub-action Akey corresponding to
the key. Similarly, Fig. 12(b) shows that our model focuses
on the door to infer the state-conditioned dependency of the
sub-action Adoor corresponding to the door.

5 RELATED WORK

Improving the efficiency of MCTS under expansive ac-
tion space. There are numerous works on MCTS utiliz-
ing known environment models [Hostetler et al., 2014, Xu
et al., 2022, Silver et al., 2017, 2016, Couëtoux et al., 2011,
Kim et al., 2020]. MuZero [Schrittwieser et al., 2020] in-
corporates dynamics learning into MCTS, demonstrating
its capability to solve complex sequential decision making
tasks even when the true model is unavailable. There also
exist several variants of MuZero [Grill et al., 2020, Ozair
et al., 2021], e.g., which are further extended to handle
stochastic transition [Sokota et al., 2021]. As the number of
actions or potential outcomes for each action increases, the
branching factor expands, posing challenges when facing
vast combinatorial action space. Consequently, several stud-
ies [Hoerger et al., 2023, Chitnis et al., 2021] have focused
on reducing the branching factor in MCTS by employing

Table 1: Reconstruction Loss.

Models
DoorKey Sokoban

Easy Normal Hard Easy Normal Hard

MuZero 0.21±0.14 0.05±0.03 0.08±0.10 0.02±0.00 0.05±0.01 0.04±0.01

Ours 0.85±0.43 0.94±0.62 0.70±0.48 0.02±0.00 0.03±0.02 0.03±0.01

(a) Key (b) Door

Figure 12: GradCAM visualization.

state or action abstraction techniques. Similar to our work,
Chitnis et al. [2021] selects the most useful CSI relation-
ship for a given task and constructs state abstraction with
it. However, they do not modify the inside mechanism of
MCTS, which limits its applications since its abstraction
is fixed throughout the whole episode. Moreover, they re-
quire a known environment model to identify such relation-
ships, which is impractical in many scenarios involving an
unknown model and high-dimensional observations. In con-
trast, our method constructs action abstraction for each node
on-the-fly, leading to more efficient tree traversal through
flexible abstraction (Fig. 2(b)). Furthermore, the auxiliary
network identifies such relationships from pixels without a
known environment model, highlighting its practicality.

MCTS under factored action space. Broadly, several stud-
ies [Tang et al., 2022, Rebello et al., 2023, Tkachuk et al.,
2023, Mahajan et al., 2021] demonstrated the benefits of
utilizing the factorized structure in MDP. In the context of
MCTS, Geißer et al. [2020] leveraged factored action space
by building subtrees for each action variable. However, their
hierarchical order significantly influences the algorithm, and
thus, the prior information on the relationships among the
action variables is crucial. Balaji et al. [2020] proposed to
learn the dynamics model with the factored graphs repre-
senting the conditional independences between state and
action variables, which is assumed to be known. In contrast,
our method does not rely on such domain knowledge and
effectively extracts the compositional structure of the state
and action variables along with the training of the latent
dynamics model.

6 CONCLUSION

In this paper, we proposed a novel approach to extending
MCTS under factored action spaces that addresses the chal-



lenges posed by large combinatorial action spaces. The pro-
posed method identifies compositional structures between
the state and action variables from high-dimensional ob-
servations without the true environment model. Based on
this, our method constructs state-conditioned abstraction for
each node in an on-the-fly manner during the tree traversal.
Experimental results demonstrate that our approach signif-
icantly improves the sample efficiency of vanilla MCTS
under the factored action spaces.

One of the promising future directions to extend our ap-
proach is to combine it with state abstraction methods such
as bisimulation [Larsen and Skou, 1989, Ferns and Precup,
2014, Zhang et al., 2020]. Recall that our method is about
action abstraction for efficient MCTS, such approaches are
orthogonal to our work, and we expect that they can be
seamlessly integrated into our approach. For example, it
would be possible to apply MCTS with our proposed state-
conditioned action abstraction on the latent abstract state,
which we defer to future work.
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A ENVIRONMENTAL DETAILS

For the DoorKey and Sokoban environments, the top-down view of the map is given as the image observation to the agent.

A.1 DOORKEY

We modify the MiniGrid DoorKey environment [Chevalier-Boisvert et al., 2018] to incorporate a factored action
space. The task is first to obtain a key, open a door, and finally reach a goal position. At the initial state, the door
is locked, and the agent is positioned on the opposite side of the goal. A wall with a door embedded in it sepa-
rates the initial position and the goal. The action space is factorized as A = Aturn × Aforward × Apick × Aopen, where
Aturn = {no-op, turn left, turn right}, Aforward = {no-op,move forward}, Apick = {no-op, pick red key, pick blue key, . . .},
and Aopen = {no-op, open red door, open blue door, . . .}. The “no-op” action denotes a choice to perform no operation,
i.e., “do nothing”, for that particular action set. If the number of colors is 4, the cardinality of the action space is
|A| = 3 × 2 × 5 × 5 = 150. We introduce difficulty levels (EASY, NORMAL, HARD) corresponding to two, three,
and four colors, respectively. The action cardinality for each setting is 54, 96, and 150. The agent always turns first, then
progresses by advancing, and finally completes the action by retrieving a key and/or opening a door. The horizon H is 1440,
and the agent receives a reward of −0.1 for each step. The configurations of the door, key, wall, and the initial position of the
agent are randomly initialized at the beginning of each episode. We conducted experiments with a 12× 12 size for primary
results (Figs. 4 and 5) and an 8× 8 size for supplementary studies (Figs. 6, 10 and 12).

A.2 SOKOBAN

Sokoban [Chevalier-Boisvert et al., 2018] is a challenging environment that requires long-horizon planning. Here, the task is
to move a box to a designated target location through a series of actions. We modify the environment to incorporate a factored
action space and generate image observations using the tiny world rendering mode with a handful of visual complexity.
The influence exerted on the box is determined solely by a single box-action variable, which depends on the color of the
box. In addition, the map configuration, goal location, and box color attribute are randomly initialized at the beginning of
each episode. With a horizon of H = 150, the agent receives a reward of −0.1 for each step taken and a reward of +10 for
successfully placing the box on the target location. The action space is factorized as A = Amove ×Ared

box ×Ablue
box ×· · · , where

Amove = {no-op,move up,move down,move left,move right} and Ai
box = {no-op, push, pull} for all i ∈ {red, blue, . . .}.

If the number of colors is 4, the cardinality of the action space is |A| = 5× 34 = 405. We introduce difficulty levels (EASY,

*Equal contribution.
†Corresponding authors.
†Equal contribution.
‡Corresponding authors.



NORMAL, HARD) corresponding to two, three, and four colors, respectively. The action cardinality for each setting is 45,
135, and 405.

A.3 CONTEXTUAL MULTI-ARMED BANDIT

Our method aims to identify CSI relationships. To rigorously test its performance in capturing CSIs, we employ a Contextual
Multi-Armed Bandit (CMAB) environment. We quantify the similarity between the ground truth CSIs and identified CSIs
with the Structural Hamming Distance (SHD) [Acid and de Campos, 2003]. The CMAB problem introduces contextual
information to the classical Multi-Armed Bandit problem, allowing the agent to leverage state-specific cues for action
selection and maximize cumulative rewards over time. The synthetic environment features a combinatorial action space
[Chen et al., 2016, Qin et al., 2014, Chen et al., 2018], factorized as A = A1×A2×A3 where |Ai| = 7. The reward received
at each time step is equivalent to the current state rt = st. With a horizon of H = 25, state space N0, and s0 = 0, state
transitions are solely determined by a sub-action, which varies across states. The sub-action is identified by the ground truth
CSI Mt = {i}, where i = mod(⌊ st

6 ⌋, 3), and thus this variable is state-dependent. Formally, the transition is st+1 = st + ait
for even st, otherwise st+1 = st + (6− ait), where i indicates the index of relevant action variable for state st. Identifying
the relevant action variable for a given state is essential due to the large combinatorial action space (|A| = 73 = 343).

B IMPLEMENTATION DETAILS

B.1 EXPERIMENTAL DETAILS

We employed the Adam optimizer [Kingma and Ba, 2015] with decoupled weight decay [Loshchilov and Hutter, 2019]
for training. Each run spanned approximately 48 hours across both environments. Our method and MuZero were trained
over 100k gradient steps (5 runs for DoorKey, 3 for Sokoban). Results in Fig. 10 are averaged across 7 runs per simulation
budget. We use a uniform replay buffer and collect 32k transitions under a uniform random policy prior to training. Periodic
evaluations were conducted every 2000 update steps using 32 seeds. The confidence intervals of the reported performances
were estimated by the 95% percentile bootstrap. Scores are min-max normalized (-150 to 0 for DoorKey, -15 to 10.5 for
Sokoban) in Figs. 1 and 4, and average episodic return at 40k gradient steps is shown in Fig. 1. All experiments were
executed on an NVIDIA RTX 3090 GPU, leveraging JAX and Haiku. We perform no data augmentation of the state. The
96 × 96 × 3 state is scaled by s/255. The action is factorized and encoded as a one-hot vector per action variable, then
one-hot vectors are concatenated into a vector for the action. Adhering to Schrittwieser et al. [2020], the action is spatially
tiled and paired with the state for input into the dynamics network. For the CMAB environment, the state was encoded into a
96× 96× 3 representation through repetition of the normalized state, which is calculated as: s/((maxi |Ai| − 1)×H).
Here, maxi |Ai| equals 7 and H is set to 25.

B.2 IMPLEMENTATION OF MUZERO

We mostly follow the architectural design of MuZero from Schrittwieser et al. [2020, 2021]. Following Schrittwieser et al.
[2020], we incorporated categorical representations for the value and reward predictions. Dirichlet noise is added to the
policy prior as follows: (1−ρ)π(a|s)+ρND(ξ), where ρ = 0.25, the ND(ξ) is the Dirichlet noise distribution, and ξ = 0.0
during evaluations and for non-root nodes, otherwise the noise ratio is set to 0.3. Similar to Ye et al. [2021], we reduce the
number of residual blocks and channel dimensions due to the high computational cost of the original network architecture
used in MuZero. We use the kernel size 3×3 for all operations, unless otherwise specified. The architecture comprises four
components: the representation network, the dynamics network, the prediction network, and the reconstruction network.

The architecture of the representation network is as follows:

• 1 convolution with stride 2 and 32 output planes, output resolution 48x48. (LayerNorm + ReLU)

• 1 residual block with 32 planes.

• 1 residual downsample block with stride 2 and 64 output planes, output resolution 24x24.

• 1 residual block with 64 planes.

• Average pooling with stride 2, output resolution 12x12. (LayerNorm + ReLU)

• 1 residual block with 64 planes.



Table 2: Hyperparameters for MuZero and Ours

Models Parameters DoorKey Sokoban CMAB

MuZero Observation down-sampling 96×96 96×96 96×96
Frames stacked No No No

Frames skip No No No
Reward clipping No No No
Discount factor 0.997 0.997 0.997
Minibatch size 256 256 256

Optimizer Adam Adam Adam
Learning rate 0.001 0.001 0.001
Momentum 0.9 0.9 0.9

Weight decay 1e-4 1e-4 1e-4
Max gradient norm 100 5 100

Training steps 100K 100K 100K
Evaluation episodes 32 32 32

Min replay size for sampling 32K 32K 32K
Max replay size 1M 1M 1.6M

Target network updating interval 200 200 200
Unroll steps 5 5 5

TD steps 5 5 5
Policy loss coefficient 1 1 1
Value loss coefficient 0.25 0.25 0.25

Reconstruction loss coefficient 1 0.1 1
Dirichlet noise ratio 0.3 0.3 0.3

Number of simulations in MCTS 50 50 15
Reanalyzed policy ratio 1.0 1.0 1.0

Ours Sparsity coefficient 0.0 0.0 0.01
Gumbel sigmoid temperature 1.0 1.0 1.0

MCTS mask threshold 0.01 0.01 0.01

• Average pooling with stride 2, output resolution 6x6. (LayerNorm + ReLU)

• 1 residual block with 64 planes.

The architecture of the dynamics network is as follows:

• Concatenate the input states and input actions.

• 1 convolution with stride 2 and 64 output planes. (LayerNorm)

• A residual link: add up the output and the input states. (ReLU)

• 1 residual block with 64 planes.

The architecture of the prediction network for the reward prediction is as follows:

• 1 1x1 convolution with 16 output planes. (LayerNorm + ReLU)

• Flatten

• 1 fully connected layers and 32 output dimensions (LayerNorm + ReLU)

• 1 fully connected layers and 601 output dimensions.

The architecture of the prediction network for the policy and value prediction is as follows:

• 1 residual block with 64 planes.

• 1 1x1 convolution with 16 output planes. (LayerNorm + ReLU)

• Flatten

• 1 fully connected layers and 32 output dimensions. (LayerNorm + ReLU)



• 1 fully connected layers and D output dimensions,

where D = 601 in the value prediction network and D = |A| in the policy prediction network. The policy and value
prediction network shares the initial residual block.

The architecture of the reconstruction network is as follows:

• 1 residual block with transposed convolution, stride 1, and 64 output planes.

• 1 residual block with transposed convolution, stride 2, and 64 output planes.

• 1 residual block with transposed convolution, stride 1, and 64 output planes.

• 1 residual block with transposed convolution, stride 2, and 64 output planes.

• 1 residual block with transposed convolution, stride 1, and 64 output planes.

• 1 residual block with transposed convolution, stride 2, and 32 output planes.

• 1 residual block with transposed convolution, stride 1, and 32 output planes.

• 1 transposed convolution with stride 2 and 3 output dimensions. (LayerNorm + ReLU)

We use mostly the same hyperparameter setting as presented in Ye et al. [2021]. Details of the hyperparameters are provided
in Table 2.

B.3 IMPLEMENTATION OF OUR METHOD

We build our method on top of the implementation of MuZero. Our method introduces additional hyperparameters required
for action abstraction, i.e., the sparsity regularization coefficient λ, the Gumbel sigmoid temperature δ, and the abstraction
threshold τ . We use the abstraction threshold τ to induce on-the-fly action abstraction from the probabilities of state-
conditioned dependencies for each action variable. The sparsity coefficient is set to λ = 0 on the DoorKey and Sokoban
environments, and λ = 0.01 for the CMAB. We set the abstraction threshold and the Gumbel sigmoid temperature to
τ = 0.01 and δ = 1, respectively, for all experiments. For our conditional structure inference network, we use Gumbel-
Softmax reparametrization for backpropagation [Maddison et al., 2016, Jang et al., 2016], similar to Hwang et al. [2023].

The architecture of the auxiliary network for discovering CSIs is as follows:

• 1 residual block with 64 planes.

• 1 1x1 convolution with 16 output planes. (LayerNorm + ReLU)

• Flatten

• 1 fully connected layers and 32 output dimensions (LayerNorm + ReLU)

• 1 fully connected layers and D output dimensions,

where D is the number of action variables and the initial residual block is shared with the policy and value prediction
network.

C ADDITIONAL EXPERIMENTS

In this section, we present additional visualizations (Figs. 13 and 14) and ablation results (Fig. 15) to underscore the benefits
of our approach. Experiments in Fig. 15 used a more complex DoorKey environment (five colors, 216 actions vs. four
colors, 150 actions in HARD difficulty). Despite the vast combinatorial action space, our method demonstrates near-optimal
performance in Fig. 15, significantly outperforming vanilla MuZero. Ablations in Figs. 15(a) and 15(b) confirm that the
state-conditioned action abstraction is a vital part of our improvement.

We further investigate the effect of training the conditional structure inference network only with the reconstruction loss to
faithfully represent the dynamics transition, as described in Sec. 3.3. We train the conditional structure inference network
only with the gradients from the reconstruction loss to ensure that it learns the proper context-specific independence from the
transition dynamics. In other words, we freeze the parameters of the conditional structure inference network when learning
policy, value, and reward. Fig. 15(c) shows that updating the network with solely reconstruction loss (Frozen) enhances
stability compared to the conditional structure inference network jointly trained with all losses (Unfrozen).



Figure 13: Additional examples of the observation reconstructions.

Figure 14: Additional GradCAM visualization.
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(a) Reconstruction loss.
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(b) Action abstraction.
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network.

Figure 15: Additional results from the ablations. The average episodic return across 3 runs is depicted by lines, and the
shaded areas represent the 95% confidence intervals.

Sparsity coefficient λ. We report experimental results from an ablation analysis of the sparsity coefficient λ in Fig. 16.
We evaluated our method with λ values of {0.0, 0.01, 0.001} on the DoorKey-Easy environment, and the performance of
MuZero is also presented for comparison. The results demonstrate that our approach maintains a considerable degree of
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Figure 16: Ablation on the sparsity regularization coefficient λ.

Table 3: Search space reduction.

DoorKey Sokoban

Easy Normal Hard Easy Normal Hard

66.7% 75.0% 80.0% 46.7% 88.9% 95.2%

Table 4: Training time comparison.

Models 4h 8h 12h 16h 20h

Ours -116.39 -13.00 -3.89 -5.30 -2.19
MuZero -134.16 -114.96 -80.60 -52.21 -49.60

robustness to variations in λ. Interestingly, our method with a sparsity coefficient of λ = 0.0 seems to achieve implicit
sparsity. Consequently, we employed λ = 0.0 in all primary experiments on the DoorKey and Sokoban environments.

Search space reduction. We describe the extent to which the MCTS search space is reduced in Table 3. We measured the
action space reduction at the root node across Easy, Normal, and Hard difficulty levels within the DoorKey and Sokoban
environments after 100,000 gradient steps. Table 3 illustrate the percentage reduction in search space, thereby demonstrating
the efficacy of the proposed action abstraction method. Higher percentages indicate more substantial reductions.

Training time comparison. In addition to sample efficiency, it is crucial to assess a method under constrained computational
resources. Table 4 displays the episodic returns obtained by both methods on an NVIDIA RTX 3090 after various training
durations (4 hours, 8 hours, 12 hours, 16 hours, and 20 hours) in the DoorKey-Easy environment. For example, after 12
hours of training, our model achieved an episodic return of -3.89, compared to MuZero’s -80.60. The wall clock time
presented for training each method includes the evaluation time for completing 32 evaluation episodes every 2000 update
steps, as detailed in Appendix B.1. The result show that our method is not computationally intensive relative to the baseline.
Further discussion on the computational overhead of our method is provided in Appendix D.

D ADDITIONAL DISCUSSIONS

Challenges and approaches in identifying CSIs. Deriving CSIs from the dynamics model has been a challenging problem.
Even if we have access to the dynamics model, the context-specific independences inherent in a factored MDP remain
latent and challenging to discern. An approach to approximate these CSIs could be the sample-based testing algorithm
introduced in CAMPs [Chitnis et al., 2021]. However, it falls short in uncovering CSIs within a latent dynamics model
and struggles with scalability in larger state and action spaces. The algorithm’s time complexity further complicates its
application, especially in pixel-based environments. Additionally, identifying all independence beforehand is a formidable
task. In contrast, our method progressively learns CSIs as training advances.

Learning and leveraging the action mask. While querying the legal action might be possible if the underlying simulator is
provided, it is not feasible when we consider using the learned latent dynamics model during the search procedure. Our
approach involves learning and inferring an action mask for each state, applicable in the search procedure. This action mask
not only delineates illegal actions but also identifies redundant action variables.

Benefits of leveraging CSIs over policy network without action abstraction. Consider a CMAB environment characterized
by a factored action space A = A1 ×A2 with A1 and A2 having potential values of {0, 1}. In our CMAB environment, the
consequent state is exclusively dependent on an action variable. If we consider a state s1 where any action incorporating



A1 = 1 transitions into a rewarding state s2, whereas other actions revert to the same non-rewarding s1, actions with
(1, 0) and (1, 1) are equally optimal. Hence, the policy in standard MCTS methods like MuZero would select both actions,
resulting in fewer visitation and inaccurate statistics for each action.

Comparison to CAMPs. CAMPs [Chitnis et al., 2021] consider a goal as a context and introduce a context-specific
abstraction for each goal in preparation for planning. This approach cannot employ CSIs in each state. For instance, the
method proposed in CAMPs does not induce any action abstraction in DoorKey environments since all action variables are
required to reach the designated goal. Our work, on the other hand, is capable of inferring context-specific independence
on-the-fly, while additionally leveraging action abstraction at every individual state.

Computational overhead of training the auxiliary network. In terms of computational efficiency, our implementation
of the method demonstrates comparable performance to MuZero, with each gradient step requiring approximately the
same time. While it may be differ depending on the implementation, the proposed method for learning CSI relationships
end-to-end incorporates an conditional structure inference network coupled with a sparsity loss. We merely use a residual
block and fully connected layers, as detailed in Appendix B.3. Notably, the architecture parallels that of both the policy and
value prediction networks and the initial parts of the network are shared with the policy and value networks.
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