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ABSTRACT

Text-based games provide valuable environments for language-based autonomous
agents. However, planning-then-learning paradigms, such as those combining
Monte Carlo Tree Search (MCTS) and reinforcement learning (RL), are notably
time-consuming due to extensive iterations. Additionally, these algorithms per-
form uncertainty-driven exploration but lack language understanding and reason-
ing abilities. In this paper, we introduce the Monte Carlo planning with Dynamic
Memory-guided Large language model (MC-DML) algorithm. MC-DML lever-
ages the language understanding and reasoning capabilities of Large Language
Models (LLMs) alongside the exploratory advantages of tree search algorithms.
Specifically, we enhance LLMs with in-trial and cross-trial memory mechanisms,
enabling them to learn from past experiences and dynamically adjust action eval-
uations during planning. We conduct experiments on a series of text-based games
from the Jericho benchmark. Our results demonstrate that the MC-DML algorithm
significantly enhances performance across various games at the initial planning
phase, outperforming strong contemporary methods that require multiple itera-
tions. This demonstrates the effectiveness of our algorithm, paving the way for
more efficient language-grounded planning in complex environments.

1 INTRODUCTION

Text-based games serve as valuable environments for studying various natural language processing
(NLP) and sequential decision-making problems (Narasimhan et al., 2015; Xu et al., 2020). In these
games, agents navigate environments using textual commands and deal with limited observability.
Unlike simple synthetic games (Côté et al., 2019), human-designed adventure games feature dy-
namic state spaces and sparse rewards, presenting significant challenges (Hausknecht et al., 2020).
Existing game agents are typically based on reinforcement learning (RL) and employ ϵ-greedy or
softmax policies for action exploration. However, they lack long-term planning abilities (Osborne
et al., 2022; Shi et al., 2023).

Planning for text-based games presents unique challenges, as each language action is treated as
a discrete token, making uncertainty-driven exploration without understanding the potential future
impacts or the natural language described game state. Previous works that integrate Monte Carlo
Tree Search (MCTS) with learning models have shown remarkable proficiency in classical games
such as Go and Atari (Browne et al., 2012; Świechowski et al., 2023). These methods are based
on the architectures pioneered by AlphaGo and AlphaGo Zero, which utilize policy and value net-
works to evaluate and prioritize potential moves, thereby significantly enhancing gameplay (Silver
et al., 2016; 2017). However, MCTS still faces challenges in real-world scenarios. Learning models
typically need a substantial warm-up period to learn effectively. Their performance relies on data
obtained from MCTS planning, which is confined by the practical limitations of tree size and depth.
Specifically, in text-based games, MCTS lacks the necessary language understanding and reasoning
abilities. In response, Jang et al. (2020) suggested guiding exploration in MCTS planning through
the evaluation of action’s semantic similarity. This approach assumes that an action may possess
value if its similar actions taken previously have high Q values. While effective in certain games,
this assumption may be less reliable in more dynamic settings.

The recent emergence of Large Language Models (LLMs) have shown remarkable capabilities in
quickly generating viable initial plans for decision-making tasks, even with minimal or no prior
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examples. Some research explores various prompting techniques, such as Reflection (Shinn et al.,
2024) and Tree-of-Thought (Yao et al., 2024), which further enhance LLM reasoning for interactive
tasks. Despite achieving near-saturated performance in simpler environments such as ALFworld
(Shridhar et al., 2020), they continue to face significant challenges in more complex settings. A
primary challenge lies in translating the plans generated by LLMs into executable actions. Further-
more, LLMs often struggle to balance exploration and exploitation, which hinders their ability to
navigate extensive state spaces efficiently.

In this study, we explore the potential of LLMs to enhance MCTS planning in complex interactive
tasks. We aim to answer two questions: (1) Can LLMs, with their encoded knowledge, enhance
action exploration within MCTS planning, thereby improving sample efficiency and task perfor-
mance? (2) Can LLMs, with their few-shot learning capabilities, dynamically adapt action guidance
based on past experiences during planning? To address these questions, we introduce the Monte
Carlo planning with Dynamic Memory-guided Large language model (MC-DML). This algorithm
leverages the language understanding and commonsense reasoning capabilities of LLMs and the ex-
ploration benefits of tree-search approaches. By integrating both in-trial and cross-trial memory into
LLMs, MC-DML enables dynamic adjustments of action evaluation during the MCTS planning.

We conduct experiments using a series of text-based games from the Jericho benchmark (Hausknecht
et al., 2020). These games are characterized by numerous branching paths and sparse rewards.
The agent, operating under limited observability, must extensively explore the environment to solve
complex puzzles. Our results demonstrate that the MC-DML algorithm significantly enhances per-
formance across various games at the initial planning phase, outperforming strong contemporary
methods that require multiple iterations for policy optimization. Additionally, we perform ablation
studies to highlight the role of the memory mechanism in LLM policy.

Our main contributions are summarized as follows: First, we propose an MCTS-based algorithm
that integrates an LLM to enhance action exploration in complex textual interactive tasks. Second,
we develop an LLM agent equipped with both in-trial and cross-trial memory, enabling dynamic
language action value estimation in tree-search planning phrase. Third, our experiments on a series
of text-based games demonstrate that the proposed algorithm significantly improves performance
across multiple games at the initial planning phase, outperforming strong contemporary methods
that require multiple iterations.

2 PRELIMINARY

2.1 MONTE-CARLO TREE SEARCH

Upper Confidence bound for Trees (UCT) MCTS (Kocsis & Szepesvári, 2006; Coulom, 2006)
operates by iteratively developing a decision tree through four key phases: selection, expansion,
simulation, and backpropagation. Within the search tree, the standard MCTS method uses UCT to
choose action a∗ at each node, balancing exploitation based on the Q-value with exploration driven
by uncertainty. The formula for UCT is as follows:

a∗ = arg max
a∈A(s)

[
Q(s, a) + Cuct ·

√
lnN(s)

N(s, a)

]
(1)

where Q(s, a) is the average reward for action a in state s, N(s, a) is the number of times action a
is chosen in state s, N(s) is the visit count to state s, Cuct is a constant that balances exploration
and exploitation.

Predictor UCT (PUCT) One limitation of UCT is its dependence on Monte Carlo averages to
estimate state values, which can result in significant search inefficiencies, especially in text-based
games with high branching factors. PUCT partially overcomes these challenges by incorporating
PUCB, which utilizes a prior action distribution π(·|s) to estimate action values under state s and
prioritize exploration (Silver et al., 2017; 2018). The formula for PUCT is as follows:

a∗ = arg max
a∈A(s)

[
Q(s, a) + Cpuct · π(a|s) ·

√
N(s)

1 +N(s, a)

]
(2)
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Here, π(·|s) is usually a neural network that trained via behavioral cloning using (s, a∗) samples
from previous tree search results. However, PUCT still faces several challenges. Firstly, the training
data for policy network is sourced from MCTS planning. In practice, due to limitations in tree size
and depth, the training data may not be optimal. To achieve effective learning, it often requires
multiple iterations using a planning-then-learning paradigm, which is time-consuming. Addition-
ally, this training data is specific to certain environments, limiting the ability of the policy network
to generalize across various games. Furthermore, the nature of its supervised learning approach
restricts its strategic depth and impairs its long-term planning capabilities.

2.2 TEXT-BASED GAMES AS POMDPS

The text-based game can be modeled as a Partially Observable Markov Decision Process (POMDP)
(Narasimhan et al., 2015), represented by (S, T,A,O, R, γ). At each time t, the agent cannot
directly observe the environmental state st from S. Instead, it infers the state through a textual
observation ot fromO. When the agent performs an action at fromA, the environment transitions to
the next state according to the hidden transition function T . Meanwhile, the agent receives a reward
rt = R(st, at) and the subsequent observation ot+1 from the game environment. The agent’s goal is
to optimize actions to maximize the expected total discounted rewards Rt = E[

∑∞
t=0 γ

trt], where
γ ranges from 0 to 1, indicating the discount factor.

3 METHOD

In this study, we focus on human-designed text adventure games, which present two significant
challenges. First, these games feature a vast combinatorial action space. To manage this complexity,
benchmarks such as Jericho provide a predefined set of valid actions at each step by filtering out
inadmissible commands. However, this still results in a dynamic action space that varies with the
game state, leading to numerous game branches. Moreover, these games are characterized by sparse
rewards and multiple bottleneck states. Figure 1 illustrates an example of a bottleneck state in
the game Zork1. Based on the current observation, the agent selects from the available actions,
leading to different game branches. An agent optimized for cumulative rewards might choose open
trapdoor, resulting in a significant immediate reward but also leading to subsequent death. To
progress in the game, the agent must explore necessary actions without receiving any immediate
reward signals. This requires the agent to combine semantic reasoning with long-term planning
capabilities.

Obs:  You ar e i n t he 
l i v i ng r oom. . .  t her e 
i s a c l osed t r ap door  
at  your  f eet      

Obs:  I t  i s  pi t ch bl ack,  
you ar e l i kel y t o be 
eat en by a gr ue . . .    
You have di ed!

open 
trapdoor

down

open 
trapdoor down

take 
lantern

turn on 
lantern Reward +25

Reward + 25

Obs:  You ar e i n a dar k 
and damp cel l ar  wi t h a 
nar r ow passageway 
l eadi ng nor t h. . .

Figure 1: An example bottleneck state from the game Zork1.

To address these challenges and the limitations of current MCTS-based algorithms, we introduce the
MC-DML algorithm. We provide a comprehensive introduction to MC-DML in Section 3.1, outline
the algorithm during a single planning process in Section 3.2, and discuss the innovative aspects of
MC-DML in Section 3.3.

3.1 MONTE CARLO PLANNING WITH DYNAMIC MEMORY-GUIDED LLMS (MC-DML)

MC-DML consists of four stages: selection, expansion, simulation, and backpropagation, and finally
predicts an action based on the simulations. During the action selection phase, MC-DML employs an
LLM as the prior policy within the PUCT algorithm. Based on the current tree state, the LLM assigns
non-uniform search priorities to each optional action. After an action is selected, the expansion
phase adds a new node to the search tree. In the simulation phase, MC-DML conducts multiple
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PUCT in MCTS

Simulation 
Data (s, a*)

Prior Policy 
?(a|s)

? Utilizes prior information
× Time-consuming with multiple iterations

× Policy performance depends on simulated data

......

MC with Dynamic Memory Guided LLM (MC-DML)

Living 
Room

open trapdoortake latern

You ar e pl ayi ng a game.
Your  cur r ent  obser vat i on 
i s:  { I N- TRAI L MEMORY}
Your  memor y about  t hi s game 
i s:  { CROSS- TRI AL MEMORY} .  
Based on your  obser vat i on,  
pl ease sel ect  one act i on 
f r om { VALI D ACTI ONS}  t o 
expl or e.

Thi s i s a l og of  
unsuccessf ul  gamepl ay:
{ TRAJECTORY}
Pl ease i dent i f y t he 
r easons f or  f ai l ur e and 
suggest  i mpr ovement s f or  
t he next  r ound.

Living 
Room

Movi ng down i nt o t he dar k 
pl ace wi t hout  a l i ght  
sour ce or  any ot her  i t ems 
t o hel p navi gat e. . .

LLM (a | s) = 0.25LLM (a | s) = 0.2

× GAME
FAILS!

......

open trapdoor
LLM (a | s) = ?

take latern
LLM (a | s) = ?

t ake l at er n    -  pr ob:  0. 3 
open t r apdoor   -  pr ob:  0. 2
          . . . . . .

? Easy to implement
? Good initial policy and ability to improve it during planning

Update Cross-Tiral Memory Action Selection

Figure 2: A comparison of the PUCT and MC-DML algorithms. PUCT trains its policy through
imitation learning from self-play data. In contrast, MC-DML uses a LLM as the initial policy.
During planning, the LLM learns from past failure trajectories and adjusts the action value estimates.
This approach more closely aligns with the human thought process.

rollouts from this new node to evaluate the potential outcomes of the chosen action. The simulation
results are then backpropagated to update the Q-value estimates and visit counts of the relevant
nodes. In text-based games, the current state is not fully observable. Therefore, we equip the LLM
with a dynamic memory mechanism, utilizing in-trial memoryMi and cross-trial memoryMc.Mi

contains the current trajectory history, representing the game state, whileMc includes experiences
from previous failure trajectories, used to dynamically adjust the action value estimation.

Learning from In-Trial Memory The in-trial memoryMi includes a sequence of past observa-
tions and actions. Using this memory, we prompt the LLM to generate a probability distribution
of valid actions π(·|s) grounded in commonsense. The probability of an action a is calculated by
accumulating the conditional probabilities of its tokens. We use the GPT-3.5 model, which provides
log probabilities for the top potential answers. These probabilities are then normalized using the
softmax function. For APIs where token probabilities are unavailable, this can be achieved through
self-consistency (Wang et al., 2022) and verbalized methods (Lin et al., 2022) 1.

Reflection on Cross-Trial Memory In-trial memory is a form of short-term memory that relies
on the LLM’s commonsense but lacks flexibility. Inspired by Shinn et al. (2024), we develop cross-
trial memory Mc, an interpretable and enduring form of episodic memory that allows agents to
learn from past failures. In MCTS, the agent repeatedly simulates from the root node to explore
various paths. This restart mechanism allows agent to reflection on the segment of trajectory and
resume play from that save point. Figure 2 illustrates the process of updating and utilizing cross-
trial memory in MC-DML. During the tree search, when the agent encounters a terminal state due to
game failure, the LLM analyzes this trajectory and generates a reflection. In subsequent simulations
under the same root node, we combine in-trial memory and cross-trial memory to adjust the LLM’s
action estimations. The formula for action selection in MC-DML is as follows:

a∗ = argmax
a∈A

[
Q(s, a) + Cpuct · LLM(a|Mi,Mc, p) ·

√
N(s)

1 +N(s, a)

]
(3)

1Self-consistency methods estimate the probability of an answer by sampling multiple responses from the
LLM. Verbalized methods leverage a well-designed prompt to instruct the LLM to output the most likely
answers along with their corresponding probabilities.
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where LLM(a|Mi,Mc, p) is the action probability distribution generated by the LLM policy, p is
the given prompt consisting of an instruction and optional actions A, Q(o, a) is the average reward
for action a in tree state s.

3.2 ALGORITHM

We now describe the operation of MC-DML in a single planning episode, as outlined in Algorithm
1. For each simulation, MC-DML initializes the root node s0 and new trajectory h0 to construct the
state (lines 2-3). An action a∗ is chosen based on the Q value, visit counts, and the LLM policy (lines
34-35). The LLM policy determines the action probability distribution using the in-trial memoryMi

and the cross-trial memoryMc. The in-trial memoryMi is a portion of the trajectory h (line 33),
while the cross-trial memoryMc consists of reflections generated from previous failed trajectories
(lines 10-13, 44-47). MC-DML iteratively selects actions to execute and updates the visit counts and
estimated Q values (line 26-29). When encountering leaf nodes, it expands the tree and performs
a rollout, using a uniform policy to sample actions and returning the discounted reward. Upon
completion of the search process, the agent will execute an final action based on the estimated Q
value and receive a new observation.

Algorithm 1 Monte Carlo Planning with Dynamic Memory-Guided LLM (MC-DML)

1: procedure SEARCH(s0)
2: s0 ← O(s0)
3: h0 ← o0
4: repeat
5: SIMULATE(s0, h0, 0)
6: until MaxDepthReached()
7: return argmax

a∈A
Q(h0, a)

8: end procedure
9: procedure SIMULATE(s, h, t)

10: if GAMEFAIL(s) then
11: reflection← LLM(h, preflection)
12: Mc ←Mc + reflection
13: return 0
14: end if
15: if t = planning horizon H then
16: return 0
17: end if
18: [a, rollout]← SELECTACTION(h)
19: [r, s′, o′]← T (s, a)
20: h′ ← h+ a+ o′

21: if rollout then
22: R′ ← ROLLOUT(s′, h′, t+ 1)
23: else
24: R′ ← SIMULATE(s′, h′, t+ 1)
25: end if
26: R← r + γ ·R′

27: N(h)← N(h) + 1
28: N(h, a)← N(h, a) + 1

29: Q(h, a)← Q(h, a) + R−Q(h,a)
N(h,a)

30: return R
31: end procedure

32: procedure SELECTACTION(h)
33: Mi ← LASTPART(h)
34: π(a|s)← LLM(Mi,Mc, paction probs)

35:

a∗ ← argmax
a∈A

[Q(s, a)+

cpuctπ(a|s)

√
N(s)

N(s, a) + 1

36: if N(s, a) = 0 then
37: rollout← true
38: else
39: rollout← false
40: end if
41: return [a∗, rollout]
42: end procedure
43: procedure ROLLOUT(h, s, t)
44: if GAMEFAIL(s) then
45: reflection← LLM(h, preflection)
46: Mc ←Mc + reflection
47: return 0
48: end if
49: if t = planning horizon H then
50: return 0
51: end if
52: o← O(s)
53: a ∼ Uniform(A)
54: [r, s′, o′]← T (s, a)
55: return r + γ· ROLLOUT(s′, t+ 1)
56: end procedure

3.3 NOVELTY IN COMPARISON TO PRIOR ALGORITHMS

We now more explicitly discuss comparisons to a few other approaches. The approach most related
to ours is LLM-MCTS, which uses an LLM as a prior policy in MCTS (Zhao et al., 2024). While
the LLM can serve as a good initial policy, it lacks flexibility and cannot improve the policy based
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on past experience and external feedback. This makes LLM-MCTS well-suited for commonsense
planning tasks, such as object rearrangement in household environments (Zhao et al., 2024), but less
effective in uncertain environments like text-based games.

For text-based games, MC-LAVE-RL is one of the SOTA methods that combines MCTS with RL
while considering the semantic sharing between actions (Lee et al., 2020). During MCTS planning,
an exploration reward is added to each action a, estimated through the Q-values of its semantically
similar actions. This approach addressed the bottleneck state in the game Zork1 (see Figure 1).
Actions such as collecting items typically have high value in games, resulting in the action take
lantern being assigned a higher exploration bonus than the action open trapdoor. However,
its performance beyond games remains to be validated. In this study, rather than relying on item col-
lection within LLM prompts, we focus on developing a more general solution. MC-DML simulates
human gameplay by combining in-trial and cross-trial memory, mimicking how humans retain both
recent detailed information and significant past experiences. We avoid introducing any prior game
knowledge or human-designed hints in the LLM prompts.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Environments We conduct experiments on 9 text-based games provided by the Jericho bench-
mark (Hausknecht et al., 2020). These games provide a variety of challenges such as darkness,
nonstandard actions, inventory management, and dialog Among them, Zork1, Deephome, and
Ludicorp are categorized as difficult games, as their optimal completion paths require over 300
steps, with an average of more than 14 available actions per step. The remaining games are catego-
rized as possible games (Hausknecht et al., 2020). At each step t, the observation from the Jericho
game engine includes a description of the state. This is augmented with location and inventory in-
formation by issuing the “look” and “inventory” commands, forming ot. Additionally, we utilize the
valid action handicap provided by Jericho. For further analysis of these games, refer to Appendix A.

Implementation Details For the LLM policy, we use gpt-3.5-turbo-0125 as the backend
model with a sampling temperature set to 0. We query the LLM for the index of the optimal action
and retrieve the log probabilities for the top 20 tokens at that index. For absent actions, we assign a
log probability of -10. These log probabilities are then normalized using softmax with a temperature
of 5. We allow each root node to store up to k reflections. If the number of reflections exceeds k,
cross-memory collection is terminated early due to the sufficient experiences. The in-trial memory
is defined as (ot−1, at−1, ot), and the size of the cross-trial memory k is set to 3

For the tree search component, we adopt a dynamic pruning strategy; the search depth is dynami-
cally adjusted between a minimum depth dmin and a maximum depth dmax. The algorithm begins
with dmin. If the highest Q-value of the selected action node is 0, the depth is increased by ∆d and
the search is repeated, up to dmax. This setting takes into account the uneven distribution of steps
with rewards in the game. We provide a statistical analysis of the game’s step distribution in Ap-
pendix A and an ablation study of this setting in Section 4.3. Further details about the experimental
implementation can be found in Appendix B.

Evaluation We first evaluate the performance of MC-DML in comparison with baseline methods
on a series of text-based games. Next, we compare MC-DML with the intermediate scores of MCTS-
based baselines during multiple iterations in the game Zork1. Then, we conduct ablation studies
on a subset of games to evaluate the importance of different memory mechanisms in MC-DML.
Finally, we provide further qualitative analysis, including how MC-DML addresses bottleneck states
in the game Zork1, and conduct failure analyses to explore ways to further enhance MC-DML’s
performance in certain games.

Baseline We consider 7 baselines, including RL-based agents, LLM-based agents, and MCTS-
based agents. All these baselines except MC!Q*BERT assume access to valid actions from the
Jericho benchmark. Among these, PUCT-RL and MC-LAVE-RL algorithms serve as direct com-
parators to MC-DML. (1) DRRN (He et al., 2015) : The Deep Reinforcement Relevance Network
(DRRN) is an RL-based agent that utilizes a Q-based softmax policy. This policy is parameterized

6
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Games
Algorithms DRRN KG-A2C-Hard MC!Q*BERT LLM Reflection PUCT-RL MC-LAVE-RL MC-DML

RL-based LLM-based MCTS-based Ours

Zork1 32.6 40.2 ± 0.4 41.6 0 5 38.2 ± 0.8 45.2 ± 1.2 48.66 ± 1.89
Deephome 1 20 ± 2.1 8 1 1 28.6 ± 2.9 35 ± 0.6 67 ± 1.41
Ludicorp 13.8 19.8 ± 1.0 22.8 4 4 18 ± 0.0 22.8 ± 0.2 19.67 ± 1.7

Pentari 27.2 44 ± 0.9 58 5 5 64 68 70 ± 0.0
Detective 197.8 338 ± 3.4 330 30 30 322 ± 2.0 330 ± 0.0 346.67 ± 9.43
Library 17 17 ± 0.0 19 6 6 19 ± 0.0 19 ± 0.0 21 ± 0.0

Balances 10 10 ± 0.0 10 10 10 10 ± 0.0 10 ± 0.0 10 ± 0.0
Temple 7.4 8 ± 0.0 8 8 8 8 ± 0.0 8 ± 0.0 8 ± 0.0

Ztuu 21.6 5 ± 0.0 11.8 0 5 5 ± 0.0 7 ± 2.7 23.67 ± 1.9

Table 1: Experimental results of MC-DML and baselines on text-based games from Jericho bench-
mark. PUCT-RL and MC-LAVE-RL indicate averages over 5 independent runs. MC-DML indicate
averages over 3 independent runs.

with GRU encoders and decoders and is trained using the Temporal-Difference (TD) loss. (2) KG-
A2C-Hard (Ammanabrolu & Hausknecht, 2020): An actor-critic method using a knowledge graph
for state representation, with a hard valid action constraint. (3) MC!Q*BERT (Ammanabrolu et al.,
2020): An extension of KG-A2C that leverages BERT for knowledge graph construction and in-
cludes knowledge-graph-based intrinsic rewards. (4) LLM agent: We employ the LLM directly as
the policy to interact with the environment, aiming to assess potential data contamination within the
LLM. In this setting, the LLM selects actions from the valid action set based on the current trajectory
history to interact with the environment. We set the temperature of the LLM to 0 and select the action
with the highest output probability. (5) Reflection agent (Shinn et al., 2024): We allow the LLM
to perform reflection, which is then used to guide its interactions with the environment in the next
round. More details can be found in the Appendix B. (6) PUCT-RL (Jang et al., 2020): PUCT-RL
uses PUCT as a policy improvement operator for DRRN, alternating between PUCT planning and
supervised learning of self-generated actions. (7) MC-LAVE-RL (Jang et al., 2020): MC-LAVE is
one of the SOTA models on the Jericho benchmark that combines MCTS with RL while considering
the semantic sharing between actions.

4.2 MAIN RESULTS

Table 1 reports the performance of MC-DML and baselines across a series of games. We observe
the following key findings. First, MC-DML outperforms or matches all other baselines in 8 out of
9 games. Secondly, in challenging games like Deephome, MC-DML overcomes multiple bottle-
necks, achieving nearly double the performance of MC-LAVE-RL. In possible games like Pentari
and Detective, MC-DML even completes the games fully. In other possible games, such as
Library and Temple, it also approaches the best possible score within the given number of
steps. Finally, the LLM policy performs poorly, likely due to its inability to balance exploration
and exploitation. This also indicates that LLM does not have knowledge of the game’s walkthrough
under the current prompting setting.

Table 2 shows the results of MC-DML alongside the intermediate scores of the MCTS-based base-
lines during multiple iterations on the game Zork1. We would like to emphasize that for the PUCT-
RL and MC-LAVE-RL algorithms, the final result is computed based on the policy and Q-function
obtained after 4 iterations, which is when convergence is reached. In each iteration, these algorithms
conducted 25 independent planning sessions to collect trajectories and experience replay for policy
learning. Unlike these approaches, MC-DML does not require a planning-then-learning paradigm.
It can adjust the initial policy and estimated action values guided by dynamic memory.

4.3 ABLATION STUDIES

To evaluate the importance of the memory mechanisms and dynamic pruning strategy in MC-DML,
we conduct several ablation studies on a subset of games. We compare the performance of MC-
DML without dynamic pruning (DP), withoutMc and DP, and without DP,Mc, andMi. When
disregarding the DP, we follow the experimental setup of Jang et al. (2020), using a fixed search
depth for each game. WithoutMc, the LLM’s action estimates are based on the current historical
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PUCT-RL‡ MC-LAVE-RL‡ MC-DML
Tree Search RL Tree Search RL Tree Search

Iteration 1 31.9 ± 1.4 36.6 ± 1.0 30.4 ± 2.0 36.6 ± 1.0 48.66 ± 1.89
Iteration 2 35.8 ± 0.0 37.4 ± 1.0 36.1 ± 0.1 38.2 ± 0.8 N/A
Iteration 3 35.3 ± 0.2 39.0 ± 0.0 41.2 ± 0.5 43.0 ± 1.0 N/A
Iteration 4 35.2 ± 0.4 38.2 ± 0.8 43.8 ± 0.1 45.2 ± 1.2 N/A

Table 2: Experimental results of MC-DML with the intermediate scores of the MCTS-based baseline
during multiple iterations on the game Zork1. Our MC-DML achieves superior results with its
initial planning.

MC-DML w.o. DP w.o. Mc, DP w.o. Mc, Mi, DP

Zork1 48.66 ± 1.89 48 ± 2.45 38 ± 5.2 31.67 ± 4.7
Deephome 67 ± 1.41 67.4 ± 0.8 64.33 ± 0.94 51 ± 14.9
Detective 346.67 ± 9.43 334 ± 4.9 323.33 ± 4.7 320 ± 0.0

Ztuu 23.67 ± 1.9 7.8 ± 0.56 7 ± 0.81 6.33 ± 0.94

Table 3: Ablation results on a subset of games. For the ablation models, we report the average score
over 3 independent runs. Overall, both theMc andMi are crucial to our MC-DML.

trajectory. Without bothMc andMi, the LLM’s action estimates at time t rely only on the current
state node ot. The results show that using DP significantly improves performance in the game
Zutt, but has little effect on other games. RemovingMc reduces game scores, and removing both
Mc andMi results in an even larger drop in scores, highlighting the importance of these memory
mechanisms.

4.4 ANALYSIS

Qualitative Analysis Table 4 presents an illustrative example of search results for MC-DML and
MC-DML w.o. Mc on a bottleneck state in the game Zork1. Without the reflection moduleMc,
the LLM assigns a high value to the action open trap due to its semantic alignment with the cur-
rent state, which also provides an immediate reward. Although this action eventually leads to failure,
the agent, lacking the ability to reflect on its mistakes, continues to explore it, resulting in both a
high Q-value and N(s, a). Consequently, the agent ends up selecting this action during the final exe-
cution step, which explains why it gets stuck in a bottleneck state. However, in MC-DML, the LLM
generates a reflection based on failed trajectories and store it in the memory. The reflection might
be, “Ensure you have a light source before entering dark areas,” altering the action probability dis-
tribution in subsequent simulations. After sufficient exploration, the agent obtains an accurate value
estimation and ultimately selects the take lantern action at the current state. Ultimately, the
agent selects the optimal action take lantern, even though it does not provide any immediate
reward. Similar bottleneck states are also addressed in the game Deephome. Additional trajectory
examples of MC-DML playing Deephome are provided in the Appendix D.

MC-DML open trap open case take sword take lantern take all east turn on lantern

Q(s, a) 4.41 11.41 9.31 14.26 0.00 -8.12 -1.42
LLM(a|Mc,Mi, p) 0.16 0.13 0.10 0.22 0.10 0.08 0.17

N(s, a) 21 39 27 252 6 2 3

w.o. Mc open trap open case take sword take lantern take all east turn on lantern

Q(s, a) 13.02 9.92 8.38 12.66 3.17 -1.85 4.73
LLM(a|Mi, p) 0.24 0.20 0.21 0.10 0.10 0.05 0.06

N(s, a) 176 36 72 34 17 5 10

Table 4: An illustrative example of search results for MC-DML and MC-DML w.o. Mc on a
bottleneck state in the game Zork1. Regarding the differing scales between LLM value and Q(s, a),
during simulations, the LLM value is multiplied by a scale factor cPUCT .
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5 RELATED WORK

Action Selection in MCTS MCTS-based algorithms thrives in large search spaces by selectively
sampling promising actions (Osborne et al., 2022). The prevalent PUCT algorithm enhances this
process by predicting action values using prior knowledge, typically obtained from historical data
through imitation learning (Silver et al., 2017; 2018). Current research on MCTS is directed to-
wards developing contextual action value estimators to further refine action exploration (Lee et al.,
2020; Sztyglic et al., 2021). Specifically, in language-ground settings, Branavan et al. (2012) utilizes
a multi-layer neural network to extract relevant text segments from game documents. This text is
then integrated into the Monte-Carlo search framework to facilitate linguistically-informed decision-
making. Jang et al. (2020) introduced MC-LAVE-RL for solving text-based games, a method that
incorporates value sharing among actions during the search process. Specifically, an action is en-
couraged for exploration if similar actions taken previously have high Q-values. While effective in
certain games, this assumption may be less reliable in more dynamic settings.

Interactive Planning with LLM It is important to underscore our research focus. While recent
studies have introduced search-based prompting approaches to enhance LLMs’ reasoning capabili-
ties by exploring generated thoughts (Yao et al., 2024; Ding et al., 2023), our study takes a distinct
direction, emphasizing the large-scale planning under limited observability. In this domain, some
studies utilize large LLMs as direct policies for interactive tasks, which yield interesting results but
also exhibit certain limitations (Huang et al., 2022; Zhu et al., 2023; Fang et al., 2024). One such
limitation is the difficulty in translating the plans created by LLMs into executable actions. Another
is the inability of LLMs to balance exploration with exploitation. To address these issues, some
research efforts use LLMs to formulate high-level plans and guide RL agents in performing spe-
cific actions (Shukla et al., 2023; Liu et al., 2024; Dalal et al., 2024; Zhang et al., 2024). However,
these RL agents often struggle to conduct long-term planning. The study most closely aligned with
ours is Zhao et al. (2024), which employs an LLM as a fixed prior policy within MCTS to address
common sense tasks. Whereas these tasks are more intuitive and can be effectively addressed by
leveraging the world prior knowledge of LLMs, text-based games present greater uncertainty, thus
posing significant challenges.

Text-based Game Playing Agent Recent research has explored RL agents with varying archi-
tectures for solving text-based games (He et al., 2015; Narasimhan et al., 2015; Ammanabrolu &
Hausknecht, 2020; Xu et al., 2021; Ryu et al., 2022; Tuyls et al., 2022). Innovations in this field
address the problem of combinatorial action spaces (Zahavy et al., 2018; Yao et al., 2020), mod-
eling state space utilising knowledge graphs (Ammanabrolu & Hausknecht, 2020; Adhikari et al.,
2020; Xu et al., 2020), integrating question-answering and reading comprehension modules (Am-
manabrolu et al., 2020; Xu et al., 2022; Dambekodi et al., 2020). These agents rely on ϵ-greedy or
softmax policies, which restrict their capacity for long-term planning. To overcome this limitation,
Jang et al. (2020) proposed MC-LAVE-RL, which integrated MCTS with RL to solve text-based
games, while also considering semantic sharing of actions between nodes. Following this line, our
study aims to extend the capabilities of these agents by combining MCTS with LLM, enhancing
their strategic depth and adaptability in complex scenarios.

6 CONCLUSION

In this study, we propose the MC-DML algorithm. MC-DML leverages the prior knowledge em-
bedded in LLM to guide action exploration during MCTS planning. The LLM is equipped with a
dynamic memory mechanism to adjust action value estimation based on historical experience. MC-
DML simulates human gameplay by mimicking how humans retain both recent detailed information
and significant past experiences. Our results demonstrated that the MC-DML enhances performance
across various games.

Limitation We utilise an LLM for value estimation during MCTS planning that combines in-trial
memory and cross-memory. However, for simplicity in our current setup, we define in-trial memory
as the trajectory within a shorter time window. In these games, some puzzles may relate to clues
encountered much earlier, such as a spell or an item seen long ago. This places demands on the
LLM’s “Needle In a Haystack” ability. Future work could explore more efficient in-trial memory
storage and retrieval mechanisms.
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Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler, and Will Hamilton. Learning dy-
namic belief graphs to generalize on text-based games. Advances in Neural Information Process-
ing Systems, 33:3045–3057, 2020.

Prithviraj Ammanabrolu and Matthew Hausknecht. Graph constrained reinforcement learning for
natural language action spaces. arXiv preprint arXiv:2001.08837, 2020.

Prithviraj Ammanabrolu, Ethan Tien, Matthew Hausknecht, and Mark O Riedl. How to avoid
being eaten by a grue: Structured exploration strategies for textual worlds. arXiv preprint
arXiv:2006.07409, 2020.

SRK Branavan, David Silver, and Regina Barzilay. Learning to win by reading manuals in a monte-
carlo framework. Journal of Artificial Intelligence Research, 43:661–704, 2012.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.
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A GAME STATISTICS

We conduct experiments upon 9 games provided by the Jericho Game Suite (Hausknecht et al.,
2020). Different from those generated through pre-defined simple rules (Côté et al., 2019), the
games we use are more complex, making them even challenging for the human players. These
games have diverse themes and genres. For example, in the game “Ludicorp”, the player appears to
be a modern citizen being located in an office building. In another game “Zork1”, the player is put
into a fantasy world that she/he has to find the treasure in the mazes while escaping from the troll.
Some games contain nonstandard actions (e.g., the spells), which are unlikely to be understood by
the language model pre-trained with commonsense knowledge.

Table A shows the game statistics calculated from the walkthrough of each game. The Avg Actions
per Step refers to the average number of valid actions available at each step of the game. The Walk-
through Length represents the minimum number of steps required to complete the game optimally,
showing the shortest possible solution. The Avg Steps per Reward measures the average distance
between two reward-triggering steps, reflecting how frequently rewards are distributed throughout
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Avg Actions
per Step

Walkthrough
Length

Avg Step
per Reward

Max Step
per Reward

Max
Game Score

Zork1 15.96 396 9.12 51 350
Deephome 19.47 327 5.90 53 300
Ludicorp 14.52 364 3.69 45 150
Pentari 5.16 49 6.43 16 70

Detective 7.16 51 1.96 5 360
Library 7.73 52 3.67 6 30

Balances 23.18 122 13.44 54 50
Temple 15.25 182 21.38 46 35

Ztuu 33.96 84 4.53 14 100

Table 5: Game statistics on text-based games from Jericho benchmark.

the game. The Max Steps per Reward indicates the maximum number of steps a player might take
between two rewards, highlighting the sparsest distribution of rewards. Finally, the Max Score rep-
resents the highest possible score an agent can achieve in the game.

B IMPLEMENTATION DETAILS

MC-DML. We set the discount factor to 0.95 and the number of simulations to 50 multiplied by
len(A). We set Cpuct to 50. Specifically, it is set to 20 for the games Deephome and Library, and
to 200 for the game Detective. The above configuration follows the work of Jang et al. (2020).
We set dmin to 10, dmax to 30, and the step increment ∆d to 20. This configuration allows the
algorithm to start with a conservative search depth and expand progressively when necessary. The
LLM policy uses gpt-3.5-turbo-0125 as the backend model with a sampling temperature set
to 0. We query the LLM for the index of the optimal action and retrieve the log probabilities for
the top 20 tokens at that index. For absent actions, we assign a log probability of -10. These log
probabilities are then normalized using softmax with a temperature of 5. The in-trial memory is set
to (ot−1, at−1, ot). The size of the cross-trial memory K is set to 3.

LLM agent. For the LLM agent baseline, we use gpt-3.5-turbo-0125 with a sampling
temperature of 0.1. The agent selects actions based on the highest probability from the model’s
output. However, we observe that the agent often enters loops due to ineffective exploration. To
address this, if the agent repeats the same action in the same state five consecutive times, it switches
to a random action.

Reflection agent. For the Reflection agent baseline, we use the same settings as the LLM agent
baseline but equip it with a cross-memory module, allowing the agent to learn through reflection and
trial-and-error. Specifically, the LLM plays multiple rounds of the game, generating reflections at
the end of each round, which are then used as input for the next round. In our experiments, we limit
the number of reflections to 3.

C LLM PROMPTS

In this section, we provide the prompts used for action value estimation by the LLM, as well as the
prompts used for reflection.

C.1 PROMPTS FOR ACTION VALUE ESTIMATES

You are a player in a text-based adventure game. Your task is to
evaluate and select actions that are promising based on the given
context.

Your memory of playing this game previously is: {CORSS_TRIAL_MEMORY}
You are now facing the following state:
{IN_TRIAL_MEMORY}
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Considering the current state and previous memories, please select the
action most worth exploring from the following list:

{VALID_ACTIONS}
Respond by providing the index of the action only. Your response should

be a single integer, without any extra formatting, spaces,
punctuation, or text.

C.2 PROMPTS FOR REFLECTION

You will receive a log of unsuccessful gameplay:
{TRAJECTORY}

Please briefly identify the reasons for failure and provide a suggestion
for improvement in the next round. Do not summarize the gameplay
trajectory; respond with your suggestion in a single sentence.

D TRAJECTORY EXAMPLE

[OBS] mining center This is the main center of all of the mining that
takes place in Deephome. To the east are coal mines, rarely used
because of the nature of the generator, and to the south are the ore
mines, used for simultaneously mining all kinds of metal ores from
the deeps of the mountains. To the north is the main street. [LOOK]
This is the main center of all of the mining that takes place in
Deephome. To the east are coal mines, rarely used because of the
nature of the generator, and to the south are the ore mines, used
for simultaneously mining all kinds of metal ores from the deeps of
the mountains. To the north is the main street. [INV] You are
carrying: - king’s order - a warning note - a lantern (providing
light)

[ACTION] east
[REWARD] 1
[GAME SCORE] 15

[OBS] coal mines The coal mines are rather stark, for by the time the
dwarves moved into Deephome, they had already developed the
technology to use the world’s core for energy, what they called
geothermal power. The rock on the wall looks like it has been dug in
some, however. The mine opens up to the mining center to the west.
[LOOK] coal mines The coal mines are rather stark, for by the time
the dwarves moved into Deephome, they had already developed the
technology to use the world’s core for energy, what they called
geothermal power. The rock on the wall looks like it has been dug in
some, however. The mine opens up to the mining center to the west.
[INV] You are carrying: - king’s order - a warning note - a lantern
(providing light)

[ACTION] push coal to warning
[REWARD] 10
[GAME SCORE] 25

[OBS] You open the generator furnace. [LOOK] city generator Here is a
large wonder of technology and ingenuity. The generator runs on the
natural heat of the world, having pipes that lead all the way to
near the core of the world. However, it requires a small fire to
start the process of activating the power. The generator itself is
large and black, having a small furnace in the very front. A doorway
leads to the west, out into the street. [INV] You are carrying: -
king’s order - a warning note - a lantern (providing light)

[ACTION] turn lever on
[REWARD] 30
[GAME SCORE] 56
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[OBS] extreme south main street [LOOK] extreme south main street Only
people working for the city actually ever come down here, unless
they are on a tour. A few mining operations lie to the south of this
road, and to the east is the main generator for the city. To the
southwest, there is a doorway leading to the city water works. The
street ends here but continues to the north. [INV] You are carrying:
- king’s order - a warning note - a lantern (providing light)

[ACTION] get in southwest
[REWARD] 1
[GAME SCORE] 57

[OBS] water works This room is filled with scores and scores of pipes,
leading this way and that, all connecting with the walls at one
point or another. A large wheel sticks out of a rather significant
pipe and there is a sign above it. To the northeast is the main
road. [LOOK] water works This room is filled with scores and scores
of pipes, leading this way and that, all connecting with the walls
at one point or another. A large wheel sticks out of a rather
significant pipe and there is a sign above it. To the northeast is
the main road. [INV] You are carrying: - king’s order - a warning
note - a lantern (providing light)

[ACTION] get in northeast
[REWARD] 0
[GAME SCORE] 57

[OBS] extreme south main street [LOOK] extreme south main street Only
people working for the city actually ever come down here, unless
they are on a tour. A few mining operations lie to the south of this
road, and to the east is the main generator for the city. To the
southwest, there is a doorway leading to the city water works. The
street ends here, but continues to the north. [INV] You are
carrying: - king’s order - a warning note - a lantern (providing
light)

[ACTION] north
[REWARD] 0
[GAME SCORE] 57

[OBS] intersection [LOOK] intersection Here meet the two major roads of
the city proper: Main Street, which runs north and south, and the
Royal Road which runs west from here. To the east is a guard post
with a sign next to it. [INV] You are carrying: - king’s order - a
warning note - a lantern (providing light)

[ACTION] west
[REWARD] 1
[GAME SCORE] 58

[OBS] east royal road This road leads east to an intersection and west
toward the castle of the regional lord. It is lined with high walls
and gates that open to lesser nobles’ palaces. There is a gate open
to the south. [LOOK] east royal road This road leads east to an
intersection and west toward the castle of the regional lord. It is
lined with high walls and gates that open to lesser nobles’ palaces.
There is a gate open to the south. [INV] You are carrying: - king’s
order - a warning note - a lantern (providing light)

[ACTION] west
[REWARD] 1
[GAME SCORE] 59

[OBS] west royal road This road is quite beautiful, decorated on its
sides with fluorescent mosses that feed on the minerals in the
stones that line the sides of the roads. Somehow, the mosses do not
leave their designated stones. High walls on both sides make the
street feel more like a hall than an open passageway, and gates
leading to palaces break up the monotony of the stone. A single gate
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is open to the north. The road continues east and to the west is the
outer court of the lord’s palace. [LOOK] west royal road This road
is quite beautiful, decorated on its sides with fluorescent mosses
that feed on the minerals in the stones that line the sides of the
roads. Somehow, the mosses do not leave their designated stones.
High walls on both sides make the street feel more like a hall than
an open passageway, and gates leading to palaces break up the
monotony of the stone. A single gate is open to the north. The road
continues east and to the west is the outer court of the lord’s
palace. [INV] You are carrying: - king’s order - a warning note - a
lantern (providing light)

[ACTION] west
[REWARD] 1
[GAME SCORE] 60

[OBS] outer court High walls surround this court, and a long pathway
leads from the gates to the east to the throne room to the west.
Most of the palace is locked securely, but the courtyard is still
open, for the very reason of allowing a dwarven reclaimer to have
access to the throne room. [LOOK] outer court High walls surround
this court, and a long pathway leads from the gates to the east to
the throne room to the west. Most of the palace is locked securely,
but the courtyard is still open, for the very reason of allowing a
dwarven reclaimer to have access to the throne room. [INV] You are
carrying: - king’s order - a warning note - a lantern (providing
light)

[ACTION] west
[REWARD] 1
[GAME SCORE] 61

[OBS] throne room The throne room is much more simple and quaint than
you might expect. A large tapestry hangs behind the throne itself
and a long red carpet leads from the great doorway to the east, and
except for the throne itself, there is little here. You can see a
luminous spirit here. [LOOK] throne room The throne room is much
more simple and quaint than you might expect. A large tapestry hangs
behind the throne itself and a long red carpet leads from the great
doorway to the east, and except for the throne itself, there is
little here. You can see a luminous spirit here. [INV] You are
carrying: - king’s order - a warning note - a lantern (providing
light)

[ACTION] east
[REWARD] 0
[GAME SCORE] 61

[OBS] outer court [LOOK] outer court High walls surround this court, and
a long pathway leads from the gates to the east to the throne room
to the west. Most of the palace is locked securely, but the
courtyard is still open, for the very reason of allowing a dwarven
reclaimer to have access to the throne room. [INV] You are carrying:
- king’s order - a warning note - a lantern (providing light)

[ACTION] east
[REWARD] 0
[GAME SCORE] 61

[OBS] west royal road [LOOK] west royal road This road is quite
beautiful, decorated on its sides with fluorescent mosses that feed
on the minerals in the stones that line the sides of the roads.
Somehow, the mosses do not leave their designated stones. High walls
on both sides make the street feel more like a hall than an open
passageway, and gates leading to palaces break up the monotony of
the stone. A single gate is open to the north. The road continues
east and to the west is the outer court of the lord’s palace. [INV]
You are carrying: - king’s order - a warning note - a lantern
(providing light)
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[ACTION] north
[REWARD] 1
[GAME SCORE] 62

[OBS] greater noble’s palace This palace rises high, probably consisting
of ten or twelve floors, all carved out of the mountain. The walls
are covered with beautiful murals and tapestries, the floors are
mosaics with fountains and baths interrupting them. Many gold and
silver objects sit here gleaming in the light. It is clearly a
wealthy abode. To the south is the gate that leads to the main
street. [LOOK] greater noble’s palace This palace rises high,
probably consisting of ten or twelve floors, all carved out of the
mountain. The walls are covered with beautiful murals and
tapestries, the floors are mosaics with fountains and baths
interrupting them. Many gold and silver objects sit here gleaming in
the light. It is clearly a wealthy abode. To the south is the gate
that leads to the main street. [INV] You are carrying: - king’s
order - a warning note - a lantern (providing light)

[ACTION] south
[REWARD] 0
[GAME SCORE] 62

[OBS] west royal road [LOOK] west royal road This road is quite
beautiful, decorated on its sides with fluorescent mosses that feed
on the minerals in the stones that line the sides of the roads.
Somehow, the mosses do not leave their designated stones. High walls
on both sides make the street feel more like a hall than an open
passageway, and gates leading to palaces break up the monotony of
the stone. A single gate is open to the north. The road continues
east and to the west is the outer court of the lord’s palace. [INV]
You are carrying: - king’s order - a warning note - a lantern
(providing light)

[ACTION] east
[REWARD] 0
[GAME SCORE] 62

[OBS] east royal road [LOOK] east royal road This road leads east to an
intersection and west toward the castle of the regional lord. It is
lined with high walls and gates that open to lesser nobles’ palaces.
There is a gate open to the south. [INV] You are carrying: - king’s
order - a warning note - a lantern (providing light)

[ACTION] south
[REWARD] 1
[GAME SCORE] 63

[OBS] lesser noble’s palace This palace is quite beautiful, with many
mosaics on the floors and several tapestries hanging on the walls.
The columns that support the building are etched with pictures from
dwarven lore and are exquisitely done. However, despite the
attention to beauty, there is little of anything of extreme cost
here, for dwarven craftsmanship is always ornate and admirable. The
gates to the wall lead north to the royal road. [LOOK] lesser
noble’s palace This palace is quite beautiful, with many mosaics on
the floors and several tapestries hanging on the walls. The columns
that support the building are etched with pictures from dwarven lore
and are exquisitely done. However, despite the attention to beauty,
there is little of anything of extreme cost here, for dwarven
craftsmanship is always ornate and admirable. The gates to the wall
lead north to the royal road. [INV] You are carrying: - king’s order
- a warning note - a lantern (providing light)

[ACTION] north
[REWARD] 0
[GAME SCORE] 63
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[OBS] east royal road [LOOK] east royal road This road leads east to an
intersection and west toward the castle of the regional lord. It is
lined with high walls and gates that open to lesser nobles’ palaces.
There is a gate open to the south. [INV] You are carrying: - king’s
order - a warning note - a lantern (providing light)

[ACTION] east
[REWARD] 0
[GAME SCORE] 63

[OBS] intersection [LOOK] intersection Here meet the two major roads of
the city proper: Main Street, which runs north and south, and the
Royal Road which runs west from here. To the east is a guard post
with a sign next to it. [INV] You are carrying: - king’s order - a
warning note - a lantern (providing light)

[ACTION] north
[REWARD] 0
[GAME SCORE] 63

[OBS] s. main street [LOOK] s. main street This section of the main
street is dedicated to quieter pursuits. To the east is the library,
and to the west is the great temple. Main Street runs north and
south from here. [INV] You are carrying: - king’s order - a warning
note - a lantern (providing light)

[ACTION] east
[REWARD] 1
[GAME SCORE] 64

[OBS] dwarven library The library is quite large: floor after floor of
books rises before you, clinging to the walls of this circular room.
Stairs lead up the middle, spiraling along and pausing at landings
at each floor. At the very center of the building you can look
straight up and see the roof, and on it a mural. The exit is to the
west. You can see Fresto’s Exorcisms and Tasty Hors d’Oeuvres and
Leshosh’s Encyclopedia here. [LOOK] dwarven library The library is
quite large: floor after floor of books rises before you, clinging
to the walls of this circular room. Stairs lead up the middle,
spiraling along and pausing at landings at each floor. At the very
center of the building you can look straight up and see the roof,
and on it a mural. The exit is to the west. You can see Fresto’s
Exorcisms and Tasty Hors d’Oeuvres and Leshosh’s Encyclopedia here.
[INV] You are carrying: - king’s order - a warning note - a lantern
(providing light)

[ACTION] west
[REWARD] 0
[GAME SCORE] 64

[OBS] s. main street [LOOK] s. main street This section of the main
street is dedicated to quieter pursuits. To the east is the library,
and to the west is the great temple. Main Street runs north and
south from here. [INV] You are carrying: - king’s order - a warning
note - a lantern (providing light)

[ACTION] west
[REWARD] 1
[GAME SCORE] 65

[OBS] great temple of Kraxis The once great and shining temple of the
one god, Kraxis, has been desecrated. Animal dung has been smeared
on the beautiful wall murals, many of the tiles of the floor have
been ripped up and thrown across the room, and the altar, a single
large rock, unhewn by hands, has the statue of a pig-headed god on
top of it. The large main doors lie to the east. You can see a dark
spirit here. [LOOK] great temple of Kraxis The once great and
shining temple of the one god, Kraxis, has been desecrated. Animal
dung has been smeared on the beautiful wall murals, many of the
tiles of the floor have been ripped up and thrown across the room,
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and the altar, a single large rock, unhewn by hands, has the statue
of a pig-headed god on top of it. The large main doors lie to the
east. You can see a dark spirit here. [INV] You are carrying: -
king’s order - a warning note - a lantern (providing light)

[ACTION] east
[REWARD] 0
[GAME SCORE] 65

[OBS] s. main street [LOOK] s. main street This section of the main
street is dedicated to quieter pursuits. To the east is the library,
and to the west is the great temple. Main Street runs north and
south from here. [INV] You are carrying: - king’s order - a warning
note - a lantern (providing light)

[ACTION] north
[REWARD] 0
[GAME SCORE] 65

[OBS] n. main street [LOOK] n. main street This was once a bustling
trading center with shops lining the sides of the streets, and
smaller, less affluent merchants’ booths sitting outside of the
doorways, offering items of lower quality at a substantially lower
rate. At this particular point in the street you see a clothier to
the northeast, a bakery to the east, and a scrivener’s to the west.
To the north is the main hall, and the street runs further south.
[INV] You are carrying: - king’s order - a warning note - a lantern
(providing light)

[ACTION] get in northeast
[REWARD] 1
[GAME SCORE] 66

[OBS] clothier In this room you see the tools of a clothier’s trade,
generally dwarven-shaped wooden mannequins, a table for cutting, and
other tools scattered about. The exit is to the southwest. [LOOK]
clothier In this room you see the tools of a clothier’s trade,
generally dwarven-shaped wooden mannequins, a table for cutting, and
other tools scattered about. The exit is to the southwest. [INV] You
are carrying: - king’s order - a warning note - a lantern (providing
light)

[ACTION] get in southwest
[REWARD] 0
[GAME SCORE] 66

[OBS] n. main street [LOOK] n. main street This was once a bustling
trading center with shops lining the sides of the streets, and
smaller, less affluent merchants’ booths sitting outside of the
doorways, offering items of lower quality at a substantially lower
rate. At this particular point in the street you see a clothier to
the northeast, a bakery to the east, and a scrivener’s to the west.
To the north is the main hall, and the street runs further south.
[INV] You are carrying: - king’s order - a warning note - a lantern
(providing light)

[ACTION] west
[REWARD] 1
[GAME SCORE] 67

[OBS] scrivener’s This room is very plain and has half a dozen desks and
chairs where the scriveners would sit and write documents for those
who could not read. The exit is to the east. [LOOK] scrivener’s This
room is very plain and has half a dozen desks and chairs where the
scriveners would sit and write documents for those who could not
read. The exit is to the east. [INV] You are carrying: - king’s
order - a warning note - a lantern (providing light)

[ACTION] east
[REWARD] 0
[GAME SCORE] 67
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[OBS] n. main street [LOOK] n. main street This was once a bustling
trading center with shops lining the sides of the streets, and
smaller, less affluent merchants’ booths sitting outside of the
doorways, offering items of lower quality at a substantially lower
rate. At this particular point in the street you see a clothier to
the northeast, a bakery to the east, and a scrivener’s to the west.
To the north is the main hall, and the street runs further south.
[INV] You are carrying: - king’s order - a warning note - a lantern
(providing light)

[ACTION] east
[REWARD] 1
[GAME SCORE] 68
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