
Value Improved Actor Critic Algorithms

Anonymous Author(s)
Affiliation
Address
email

Abstract
To learn approximately optimal acting policies for decision problems, modern1

Actor Critic algorithms rely on deep Neural Networks (DNNs) to parameterize2

the acting policy and greedification operators to iteratively improve it. The re-3

liance on DNNs suggests an improvement that is gradient based, which is per4

step much less greedy than the improvement possible by greedier operators such5

as the greedy update used by Q-learning algorithms. On the other hand, slow6

changes to the policy can also be beneficial for the stability of the learning process,7

resulting in a tradeoff between greedification and stability. To better address this8

tradeoff, we propose to decouple the acting policy from the policy evaluated by the9

critic. This allows the agent to separately improve the critic’s policy (e.g. value10

improvement) with greedier updates while maintaining the slow gradient-based11

improvement to the parameterized acting policy. We investigate the convergence12

of this approach using the popular analysis scheme of generalized Policy Iteration13

in the finite-horizon domain. Empirically, incorporating value-improvement into14

the popular off-policy actor-critic algorithms TD3 and SAC significantly improves15

or matches performance over their respective baselines, across different environ-16

ments from the DeepMind continuous control domain, with negligible compute17

and implementation cost.18

1 Introduction19

The objective of Reinforcement Learning (RL) is to learn acting policies π, a probability distribution20

over actions, that, when executed, maximize the expected return (i.e. value) in a given task. Modern21

RL methods of the Actor-Critic (AC) family (e.g. Schulman et al., 2017; Fujimoto et al., 2018;22

Haarnoja et al., 2018b; Abdolmaleki et al., 2018) use deep neural networks to parameterize the acting23

policy, which is iteratively improved using variations of policy improvement operators based in24

stochastic gradient-descent (SGD), e.g. the policy gradient (Sutton et al., 1999). These methods rely25

on a specific type of policy improvement operators called greedification operators, which produce26

a new policy π′ that increases the current evaluation Qπ (see Definition 2 for more detail). In27

gradient-based optimization the magnitude of the update to the policy - the amount of greedification28

- is governed by the learning rate, which cannot be tuned independently to induce the maximum29

greedification possible at every step, the greedy update π(s) = argmaxaQ
π(s, a) (which we define30

generally as any policy π that has support only on maximizing actions). Similarly, executing N31

repeating gradient steps with respect to the same batch will encourage the parameters to over-fit to32

the batch (as well as being computationally intensive) and is thus does not address the problem of33

limited greedification of gradient based operators. For these reasons, the greedification of DNN-based34

policies is typically slow compared to, for instance, the argmax greedification used in Policy Iteration35

(Sutton & Barto, 2018) and Q-learning (Mnih et al., 2013). While limited greedification can slow36

down learning, previous work has shown that too much greedification can cause instability in the37

learning process through overestimation bias (see van Hasselt et al., 2016; Fujimoto et al., 2018),38

which can be addressed through softer, less-greedy updates (Fox et al., 2016). This leads to a direct39

tradeoff between greedification and learning stability.40

Submitted to the 18th European Workshop on Reinforcement Learning (EWRL 2025). Do not distribute.



Previous work partially addresses this tradeoff by decoupling the policy improvement into two steps.41

First, an improved policy with controllable greediness is explicitly produced by a greedification42

operator as a target. Second, the acting policy is regressed against this target using supervised learning43

loss, such as cross-entropy. The target policy is usually not a DNN, and can be for instance a Monte44

Carlo Tree Search-based policy, a variational parametric distribution, or a nonparametric model (see45

Haarnoja et al., 2018b; Abdolmaleki et al., 2018; Grill et al., 2020; Hessel et al., 2021; Danihelka46

et al., 2022). Unfortunately, this approach does not address the tradeoff fully: The parameterized47

acting policy is still improved with gradient-based optimization which imposes similar limitations on48

the rate of change to the acting policy.49

To better address this tradeoff, we propose to explicitly decouple the acting policy from the evaluated50

policy (the policy evaluated by the critic), and apply greedification independently to both. This allows51

for (i) the evaluation of policies that need not be parameterized and can be arbitrarily greedy, while52

(ii) maintaining the slower policy improvement to the acting policy that is suitable for DNNs and53

facilitates learning stability. We refer to an update step which evaluates an independently-improved54

policy as a value improvement step and to this approach as Value-Improved Actor Critic (VIAC).55

Since this framework diverges from the assumption made by the majority of RL methods (evaluated56

policy ≡ acting policy) it is unclear whether this approach converges and for which improvement57

operators. Our first result is that policy improvement is not a sufficient condition for convergence58

to the optimal policy of even exact Policy Iteration algorithms because it allows for infinitesimal59

improvement. To classify improvement operators that guarantee convergence, we identify necessary60

and sufficient conditions for operators to guarantee convergence to an optimal policy for a family of61

generalized Policy Iteration algorithms, a popular setup for underlying-convergence analysis of AC62

algorithms (Tsitsiklis, 2002; Smirnova & Dohmatob, 2019).63

We prove convergence for this class of operators in both generalized Policy Iteration and Value-64

Improved generalized Policy Iteration algorithms in finite-horizon MDPs. Prior work has shown that65

the generalized Policy Iteration setup converges for specific operators, as well as for all operators66

that induce deterministic policies (see Williams & Baird III, 1993; Tsitsiklis, 2002; Bertsekas, 2011;67

Smirnova & Dohmatob, 2019). Our results complement prior work by extending convergence to68

stochastic policies and a large class of practical operators, such as the operator developed for the69

Gumbel MuZero algorithm (Danihelka et al., 2022), as well as the Value-Improved extension to70

the algorithm. We demonstrate that incorporating value-improvement into practical algorithms can71

be beneficial with experiments in Deep Mind’s control suite (Tassa et al., 2018) with the popular72

off-policy AC algorithms TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018b), where in all73

environments tested VI-TD3/SAC significantly outperform or match their respective baselines.74

2 Background75

The reinforcement learning problem is formulated as an agent interacting with a Markov Decision76

Process (MDP)M(S,A, P,R, ρ,H), where S a state space,A an action space, P : S ×A →P(S)77

is a conditional probability measure over the state space that defines the transition probability P (s, a).78

The immediate reward R(s, a) is a state-action dependent bounded random variable. Initial states79

are sampled from the start-state distribution ρ. In finite horizon MDPs, H specifies the length of a80

trajectory in the environment. Many RL setups and algorithms consider the infinite horizion case,81

where H →∞, but for simplicity’s sake our theoretical analysis in Section 3 remains restricted to82

finite horizons, discrete state spaces and finite (and thus discrete) action spaces |A| <∞. Note that83

in finite horizon MDP the policy is not stationary, as the same state can have different optimal actions84

at different timesteps t of an episode. We model this without loss of generality still as a stationary85

policy problem by augmenting the state with the decision time t, which casts an underlying state that86

is visited twice in an episode as two different states, which preserves stationarity of the policy in the87

augmented state space. The resulting state and transitions of the MDP then become a directed acyclic88

graph (DAG). Throughout the paper, we will assume all states in the MDP contain the timestep as89

part of the representation. The objective of the agent is to find a policy π : S →P(A), a distribution90

over actions at each state, that maximizes the objective J , the expected return from the starting state91

distribution ρ. We denote the set of all possible policies with Π. This quantity can also be written as92

the expected state value V π with respect to starting states s0:93

J(π) = E
[
V π(s0)

∣∣ s0∼ρ ] = E
[H−1∑
t=0

γtrt

∣∣∣ s0∼ρ, st+1∼P (st,at)
at∼π(st), rt∼R(st,at)

]
.

2



The discount factor 0 < γ ≤ 1 is traditionally set to 1 in finite horizon MDPs. The state value V π94

can also be used to define a state-action Q-value and vice versa, i.e. ∀s ∈ S,∀a ∈ A:95

Qπ(s, a) = E
[
r + γV π(s′)

∣∣∣ r∼R(s,a)
s′∼P (s,a)

]
, V π(s) = E

[
Qπ(s, a)

∣∣ a∼π(s) ] .
We refer to the optimal policy π∗ = argmaxπ V

π and its value as V ∗ and Q∗ respectively.96

Policy Improvement To find π∗, many RL and Dynamic Programming (DP) approaches based in97

approximate or exact Policy Iteration (Sutton & Barto, 2018) can be cast as iterative processes that98

aim to produce a sequence of policies πn that improve over iterations such that the exact values V πn99

or approximate values vπn ≈ V πn satisfy V πn+1 > V πn (or in the approximate case vπn+1 ⪆ vπn)100

using policy improvement operators:101

Definition 1 (Policy Improvement Operator). If an operator I : Π→ Π satisfies:102

∀π ∈ Π,∀s ∈ S : V I(π)(s) ≥ V π(s), ∀π ∈ Π,∃s ∈ S : V I(π)(s) > V π(s) (1)

(i.e. policy improvement), as long as π is not yet an optimal policy V π ̸= V ∗, we call I a policy103

improvement operator.104

Greedification The policy improvement theorem (Sutton & Barto, 2018) is a fundamental result105

in RL and DP theory, which connects the policy improvement optimization process to a specific106

maximization problem referred to in literature as greedification (see Chan et al., 2022). Greedification107

is the process of finding a policy π′ which increases another policy, π’s, evaluation Qπ (Equation 2):108

Theorem 1 (Policy Improvement). Let π and π′ be two policies such that ∀s ∈ S:109 ∑
a∈A

Qπ(s, a)π′(a|s) ≥
∑
a∈A

Qπ(s, a)π(a|s) := V π(s). (2)

Then: V π′
(s) ≥ V π(s). (3)

In addition, if there is strict inequality of Equation 2 at any state, then there must be strict inequality110

of Equation 3 at at least one state.111

See Sutton & Barto (2018) for proof. Theorem 1 proves that when the evaluation Qπ is exact,112

greedification with respect to π,Qπ produces an improved policy π′. If the inequality in Equation113

2 is strict > we call π′ greedier than π and any policy π′ such that
∑
a∈A Qπ(s, a)π′(a|s) =114

maxa∈A Qπ(s, a) a greedy policy with respect to Qπ .115

Greedification Operators The policy improvement theorem and greedification give rise to the116

most popular class of policy improvement operators, greedification operators, which produce policy117

improvement (Equation 3) specifically by greedification:118

Definition 2 (Greedification Operator). If an operator I : Π×Q → Π satisfies:119 ∑
a∈A
I(π, q)(a|s)q(s, a) ≥

∑
a∈A

π(a|s)q(s, a), ∀π ∈ Π, ∀q ∈ Q, ∀s ∈ S, (4)

as well as ∃s ∈ S such that:120 ∑
a∈A
I(π, q)(a|s)q(s, a) >

∑
a∈A

π(a|s)q(s, a), ∀π ∈ Π, ∀q ∈ Q, (5)

unless π is already greedy with respect to q:
∑
a∈A π(a|s)q(s, a) = maxa q(s, a),∀s ∈ S, we call121

I a greedification operator.122

The set Q denotes all bounded functions q : S ×A → R. Since practical operators are not generally123

designed to distinguish between exact Qπ and approximated q ≈ Qπ, we formulate the definition124

more generally in terms of q ∈ Q. Greedification operators are policy improvement operators for125

q = Qπ (i.e. Theorem 1). Although most of the analysis in this paper will focus on greedification126

operators, the problem we point to in our first theoretical result is not unique to greedification and127

applies to policy improvement operators in general, which motivates us to explicitly distinguish128

between the two. We provide an example of a policy improvement operator that is not a greedification129

operator in Appendix A.2, to demonstrate that greedification operators are a strict subset of policy130

improvement operators (when q = Qπ).131

3



Perhaps the most famous greedification operator is the greedy operator Iargmax(π, q)(s) =132

argmaxa q(s, a), which drives foundational algorithms such as Value Iteration, Policy Iteration133

and Q-learning (Sutton & Barto, 2018). Many modern RL methods on the other hand are based in134

the actor critic (AC) framework, which we generally refer to as the iteration of (approximate) policy135

improvement (improving the actor), (approximate) policy evaluation (evaluating the actor, the critic) -136

rely on variations of the policy gradient operator (Sutton et al., 1999), which is well suited for the137

greedification of parameterized policies. Other popular greedification operators are deterministic138

greedification operators Idet (Williams & Baird III, 1993) which produce policies that are greedier139

(Equation 2) and deterministic, and the regularized-policy improvement operator (see Grill et al., 2020)140

used by Gumbel MuZero (Danihelka et al., 2022) Igmz(π, q)(s) = softmax(σ(q(s, ·)) + log π(s))141

(for σ a monotonically increasing transformation).142

Implicit policy improvement and greedification operators Recently, Kostrikov et al. (2022)143

proposed that it is also possible to produce implicit greedification, by training a critic to approximate144

the value of a greedier policy directly, without that policy being explicitly defined. The authors145

demonstrate that by training a critic vψ with the asymmetric expectile loss Lτ2 on a data set D drawn146

with policy π,147

L(θ) = E
[
Lτ2

(
vψ(s), Q

π(s, a)
)∣∣s, a ∼ D] , Lτ2(x, y) = |τ − 1y−x<0| (y − x)2 , (6)

for τ > 1
2 the critic vψ(s) directly estimates the value of a policy than is greedier than π, with τ → 1148

corresponding to the value of an argmax policy. This operator is then used to drive their Implicit149

Q-learning (IQL) algorithm for offline-RL, where the Lτ2 enables the critic to approximate the value150

of an optimal policy without the bootstrapping of actions that are out of the training distribution.151

Generalized policy iteration A popular algorithmic setup for the analysis of convergence to the152

optimal policy of RL and DP algorithms is a generalized Policy Iteration algorithm (sometimes153

called specifically Optimistic or Modified Policy Iteration, see Bertsekas (2011)), which we include154

in Algorithm 1. This setup is generalized both in the greedification operator I (Value and Policy155

Iteration algorithms usually rely specifically on Iargmax) as well as the update of the value, which is156

a finite-number of Bellman updates k ≥ 1.157

Algorithm 1 Generalized Policy Iteration

1: For starting functions q ∈ Q, π ∈ Π greedification operator I, k ≥ 1 and ϵ > 0
2: while |

∑
a∈A

(
π(a|s)q(s, a)

)
−maxb q(s, b)| > 0,∀s ∈ S and |q(s, a)− T ∗q(s, a)| > 0 do

3: q(s, a)← (T π)kq(s, a), ∀(s, a) ∈ S ×A
4: π(s)← I(π, q)(s), ∀s ∈ S

The update q(s, a) ← (T π)kq(s, a), ∀(s, a) ∈ S × A denotes k repeating Bellman updates158

qi+1(s, a) = T πqi(s, a) = E[R(s, a)] + γEs′∼P [
∑
a′∈A π(a′|s′)qi(s′, a′)], i = 1, . . . , k. When159

k > H,H <∞ the evaluation is exact and the algorithm reduces to Policy Iteration. T ∗ denotes the160

Bellman optimality operator, T ∗qi(s, a) = E[R(s, a)] + γEs′∼P [maxa′∈A q(s′, a′)].161

3 Value Improved Generalized Policy Iteration Algorithms162

To analyze the convergence of a process underlying VIAC we begin by formulating a DP framework163

that decouples the improvement of the acting policy from that of the evaluated policy in Algorithm 2,164

which we call Value-Improved Generalized Policy Iteration. Modifications to the original algorithm165

in blue. Since the acting and evaluated policies are improved with different operators I1 and I2, it is166

not apparent whether π of Algorithm 2 converges to the optimal policy, i.e. whether decoupling the167

policies is sound. Therefore, our aim is to establish general pairs of operators for which this process168

converges.169

A fundamental result in RL is that policy iteration algorithms converge to the optimal policy for170

any policy improvement operator (Definition 1 and by extension, all greedification operators) that171

produces deterministic policies. This holds because a finite MDP has only a finite number of172

deterministic policies through which the policy iteration process iterates (Sutton & Barto, 2018). This173

result however does not generalize to operators that produce stochastic policies, which are used by174

many practical RL algorithms such as PPO (Schulman et al., 2017), MPO (Abdolmaleki et al., 2018),175

SAC (Haarnoja et al., 2018b), and Gumbel MuZero (Danihelka et al., 2022). Our first theoretical176

4



Algorithm 2 Value-Improved Generalized Policy Iteration

1: For starting vectors q ∈ Q, π ∈ Π, policy improvement operators I1, I2, k ≥ 1
2: while |

∑
a∈A

(
π(a|s)q(s, a)

)
−maxb q(s, b)| > 0,∀s ∈ S and |q(s, a)− T ∗q(s, a)| > 0 do

3: q(s, a)← (T I2(π,q))kq, ∀(s, a) ∈ S ×A
4: π(s)← I1(π, q)(s), ∀s ∈ S

result is that for stochastic policies, the policy improvement property (whether satisfied through177

greedification or not) is not sufficient to guarantee convergence, even in the limiting case of Policy178

Iteration with exact evaluation.179

Theorem 2 (Improvement is not enough). Policy improvement is not a sufficient condition for the180

convergence of Policy Iteration algorithms (Algorithm 1 with exact evaluation) to the optimal policy181

for all starting policies π0 ∈ Π in all finite-state MDPs.182

Proof sketch. With stochastic policies, an infinitesimal policy improvement is possible, which183

can satisfy the policy improvement condition at every step and yet converge in the limit to policies184

that are not argmax policies. Since every optimal policy is an argmax policy (note that we define185

argmax policies as policies with support only on maximizing actions, not necessarily as deterministic186

policies), Policy Iteration with such operators cannot be guaranteed to converge to the optimal policy.187

For a complete proof see Appendix A.1.188

Why is this a problem? Many algorithms (for example, GumbelMZ Danihelka et al. (2022)) are189

motivated by policy improvement through demonstrating greedification. Theorem 2 demonstrates190

that this is not sufficient to establish that the resulting policy improvement will lead to an optimal191

policy. For that reason, convergence for these algorithms must generally proven individually for192

each new operator (e.g., see MPO and GreedyAC Chan et al. (2022)), which is often an arduous and193

nontrivial process.194

Furthermore, Theorem 2 and its underlying intuition highlight a critical gap: we currently lack195

guiding principles for designing novel greedification operators in the form of necessary and sufficient196

conditions for convergence to the optimal policy. To illustrate that this can lead to problems in197

practice, we show in Appendices A.5 and A.6 that choices of the σ used by the greedification operator198

Igmz can render this operator either sufficient or insufficient. To address this problem, we identify a199

necessary condition and two independent sufficient conditions for greedification operators, such that200

they induce convergence of Algorithm 1.201

Definition 3 (Necessary Greedification). In the limit of n applications of a greedification operator I202

on a value estimate q ∈ Q and a starting policy π0 ∈ Π, the policy πn converges to a greedy policy203

with respect to q, ∀s ∈ S:204

lim
n→∞

∑
a∈A

q(s, a)πn(a|s) = max
a

q(s, a), where πn+1(s) = I(πn, q)(s). (7)

Intuition. Since every optimal policy is an argmax policy (has support only on actions that205

maximize Q∗), if a greedification operator cannot converge to an argmax policy even in the limit206

and for a fixed q then this operator cannot converge to an optimal policy in general. See Appendix207

A.1 for a concrete example where such a condition is necessary for convergence of a Policy Iteration208

algorithm. It is possible to formulate the same condition more specifically for the set of all Q209

functions {Qπ | ∀π ∈ Π}. However, since we are interested in algorithms that may not have access210

to exact values Qπ, it seems more prudent to define it more generally ∀q ∈ Q. Since practical211

operators are not generally designed to distinguish between exact Qπ and approximated q ≈ Qπ , we212

formulate the definition more generally in terms of q ∈ Q. Unfortunately, the necessary greedification213

condition is not sufficient, even in the case of exact evaluation. This is due to the fact that assuming214

convergence to a greedy policy in the limit for a fixed q function does not necessarily imply the215

same when the q function changes between iterations. There exist settings where the ordering of216

actions a, a′, q(s, a) < q(s, a′) can oscillate between iterations, preventing the convergence to greedy217

policies (See Appendix A.3 for a concrete example). Below, we identify two additional conditions218

which are each sufficient for convergence in finite horizon and finite action spaces. The first condition219

resolves the issue by lower-bounding the rate of improvement, which guarantees that the oscillation220

does not continue infinitely. The second simply augments the necessary greedification condition to221

require convergence for any sequence of Q functions.222

5



Definition 4 (Lower Bounded Greedification). We call an operator I a lower-bounded greedification
operator if I is a greedification operator (Definition 2) and for every q ∈ Q, ∃ϵ > 0, such that
∀s ∈ S and ∀π ∈ Π: ∑

a∈A
I(π, q)(a|s)q(s, a)−

∑
a∈A

π(a|s)q(s, a) > ϵ,

unless
∑
a∈A I(π, q)(a|s)q(s, a) = maxa q(s, a), ∀s ∈ S.223

Intuition. Since the lower bound ϵ is constant with respect to a stationary q, it eliminates the224

possibility of infinitesimal improvements and guarantees convergence to an argmax policy in finite225

iterations with respect to the stationary q (See Lemma 8 and Appendix A.12 for proof). We note226

that this definition does not guarantee convergence to an optimal policy nor an argmax policy with227

respect to a non-stationary qn.228

Definition 5 (Limit-Sufficient Greedification). Let q0, q1, · · · ∈ Q be a sequence of functions229

such that limn→∞ qn = q for some q ∈ Q. Let π0, π1, . . . be a sequence of policies where230

πn+1 = I(πn, qn+1) for some operator I . We call an operator I a Sufficient greedification operator231

if I is a greedification operator (Definition 2) and in the limit n → ∞ the improved policy πn+1232

converges to a greedy policy with respect to the limiting value q, ∀s ∈ S:233

lim
n→∞

∑
a∈A

πn(a|s)qn(s, a) = max
a

q(s, a). (8)

Intuition. Even in the presence of infinitesimal improvement and non-stationary estimates qn,234

a limit sufficient greedification operator is guaranteed to converge to a greedy policy in the limit235

n→∞, as long as there exists a limiting value on the sequence of value estimates limn→∞ qn = q.236

Practical operators that are sufficient operators Lower bounded greedification is used to establish237

convergence for MPO (see Appendix A.2, Proposition 3 of (Abdolmaleki et al., 2018)). Similarly,238

deterministic operators Idet are also lower bounded greedification operators (see Appendix A.4239

for proof). Lower bounded greedification operators however cannot contain operators that induce240

convergence to the greedy policy only in the limit, because the convergence they induce is in finite241

steps. Igmz on the other hand induces convergence only in the limit, and in fact is more generally a242

limit-sufficient greedification operator (see Appendix A.5 for proof). The deterministic greedification243

operator on the other hand does not converge with respect to arbitrary non-stationary sequences244

limn→∞ qn (see Appendix A.7), which leads us to conclude that both sets are useful in that they both245

contain practical operators and neither set contain the other. The greedy operator on the other hand is246

a member of both sets, demonstrating that the sets are not also not disjoint (see Appendix A.8 for247

proof).248

Equipped with Definitions 4 and 5 we establish our main theoretical result, convergence for both249

Algorithms 1 and 2 for operators in either set.250

Theorem 3 (Convergence of Algorithms 1 and 2). Generalized Policy Iteration algorithms and their251

Value Improved extension (Algorithms 1 and 2 respectively) converge for sufficient greedification252

operators, in finite iterations (for operators defined in Definition 4) or in the limit (for operators253

defined in Definition 5), in finite-horizon MDPs.254

Proof sketch: Using induction from terminal states, the proof builds on the immediate convergence255

of values of terminal states sH , convergence of policies at states sH−1 and finally on showing that256

given that q, π converge for all states st+1, they also converge for all states st (in finite iterations or257

in the limit, respectively). The evaluation of a greedier policy (line 3 in Algorithm 2) is accepted by258

the induction that underlies the convergence of Algorithm 1 which allows us to build on the same259

induction to establish convergence for Algorithm 2. The full proof is provided in the Appendix.260

In A.9 for Algorithm 1 with limit sufficient operators and k = 1, extended to k ≥ 1 in A.10, to261

Value-Improved algorithms in A.11, and to lower-bounded operators in A.12.262

A corollary of Igmz being a limit-sufficient greedification operator along with Theorem 3 is the263

convergence of a process underlying the Gumbel MuZero algorithm.264

Corollary 1. The Generalized Policy Iteration process underlying the Gumbel MuZero algorithm265

family converges to the optimal policy for finite horizon MDPs, for all π0 ∈ Π such that log π(a|s) is266

defined ∀s ∈ S, a ∈ A.267

6



In Algorithm 2, the acting policy is decoupled from the evaluated policy. An interesting question268

is what conditions the operator I2 used to produce the evaluated policy must satisfy in terms of our269

definitions so far. The following corollary establishes that I2 does not need to be a sufficient or even270

a necessary greedification operator for convergence to the optimal policy.271

Corollary 2. Algorithm 2 converges to the optimal policy for any non-detriment operator I2 (e.g.272

operators that satisfy the non-strict inequality of Equation 4), as long as I1 is itself sufficient.273

For proof see Appendix A.11. Motivated that the Generalized Policy Iteration process underlying274

VIAC algorithms converges, we proceed to evaluate practical VIAC algorithms.275

4 Value Improved Actor Critic Algorithms276

Value-improvement can be incorporated into existing AC algorithms in one of two ways: (i) Incor-277

porating an additional explicit greedification operator to produce a greedier evaluation policy, and278

use the greedier policy to bootstrap actions from which to generate value targets. (ii) Incorporating279

an implicit greedification operator, for example by replacing the value loss with an asymmetric loss280

(Algorithms 3 and 4 respectively in Appendix C and implementation details in Appendix D). We281

investigate two research questions: 1) Can the explicit greedification of the evaluated policy be282

tuned to accelerate learning?, and 2) Can the incorporation of value improvement into existing AC283

algorithms provide performance gains in classic domains that justify the additional compute cost?284

We begin by testing the hypothesis that additional greedification of the evaluation policy (e.g. value285

improvement) can directly lead to faster learning in Figure 1. We extend TD3 (Fujimoto et al., 2018)286

with value improvement (VI-TD3, Algorithm 3). We choose the same improvement operator already287

used by TD3 I2 = I1, the deterministic policy gradient, as a value improvement operator, in order to288

decouple possible effects stemming from the combination of different operators. In order to compare289

different degrees of greedification, a different number pg = n of repeating gradient steps with respect290

to the same batch are applied to the evaluated policy, which is then discarded after each use. We291

evaluate the performance of the agents in classic control environments from the DeepMind continuous292

control benchmark (Tassa et al., 2018). Performance increases with greedification in this domain293

(Figure 1, left). As expected, greedier targets are larger targets (Figure 1, center), that is the difference294

between the value bootstrap that uses the greedier policy π′ and the baseline bootstrap increases with295

greedification. An interaction with over-estimation bias (which we compute in the same manner as296

Chen et al. (2021)) exists in some environments like hopper-stand, but cannot explain the improved297

performance exclusively, as shown in the hopper-hop environment (Figure 1, right).298

0.0 0.5 1.0 1.5 2.0
1e6

0

200

400

600

800

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

0.0 0.5 1.0 1.5 2.0
1e6

0.00

0.01

0.02

0.03

0.04

0.05

Va
lu

e 
im

pr
ov

em
en

t g
ap

0.0 0.5 1.0 1.5 2.0
1e6

5

0

5

10

15

20

25

Va
lu

e 
es

tim
at

io
n 

bi
as

hopper-stand

0.0 0.5 1.0 1.5 2.0
Environment steps 1e6

0

50

100

150

200

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

0.0 0.5 1.0 1.5 2.0
Environment steps 1e6

0.000

0.002

0.004

0.006

0.008

0.010

Va
lu

e 
im

pr
ov

em
en

t g
ap

0.0 0.5 1.0 1.5 2.0
Environment steps 1e6

1

0

1

2

3

Va
lu

e 
es

tim
at

io
n 

bi
as

td3
vi_td3 (pg=1)
vi_td3 (pg=5)
vi_td3 (pg=10)
vi_td3 (pg=20)

hopper-hop

Figure 1: Mean and one standard error in the shaded area across 10 seeds for VI-TD3 with I2 the
deterministic policy gradient and increasing number of n gradient steps (pg=n), with baseline (i.e.
pg=0) TD3 for reference.

Repeating gradient steps are very computationally expensive however, and unlikely to be the most299

efficient approach to control for greedification of the evaluated policy. Implicit policy improvement300

7



on the other hand provides improvement for negligible compute cost and minimal implementation301

cost. In addition, the greedification amount can be chosen with the greedification parameter τ directly.302

In Figure 2 we evaluate VI-TD3 with implicit value improvement (Algorithm 4) based in the expectile303

loss operator of IQL and increasing values of the greedification-parameter τ . In these domains, the304

increased greedification monotonically improves performance up to a point, from which performance305

monotonically degrades, suggesting that greedification of the evaluated policy can be tuned as a306

hyperparameter. This supports the hypothesis of previous literature that there is a tradeoff between307

stability and greedification, and suggests that this tradeoff can be at least partially addressed with308

value improvement.309

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps 1e6

0

200

400

600

800

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

hopper-stand

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps 1e6

0

100

200

300

400

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

hopper-hop
td3 ( = 0.5)
vi_td3 ( = 0.6)
vi_td3 ( = 0.7)
vi_td3 ( = 0.75)
vi_td3 ( = 0.8)
vi_td3 ( = 0.9)
vi_td3 ( = 0.95)

Figure 2: Mean and one standard error across 10 seeds for VI-TD3 with expectile loss with different
values of the expectile parameter τ . Performance increases up to τ = 0.8 and then decays.

In Figure 3 we compare TD3 and SAC (Haarnoja et al., 2018b) to VI-TD3 and VI-SAC with310

implicit value improvement (τ = 0.75) across a larger number of control environments. Across all311

environments, the VI variation significantly outperforms or matches its baseline while introducing312

negligible additional compute and implementation cost. We include additional results in Appendix313

B. In Figure 4 we investigate the interaction between implicit improvement and over estimation314

bias, and find that the performance improvement is not generally coupled to overestimation bias. In315

Figure 5 we include results for the recent algorithm TD7 (Fujimoto et al., 2023), which shows similar316

increases to sample efficiency with value improvement.317

0 1 2 3
1e6

0

250

500

750

1000

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn hopper-stand

0 1 2 3
1e6

0

100

200

300

400
hopper-hop

0 1 2 3
1e6

0

200

400

600

humanoid-stand

0 1 2 3
1e6

0

200

400

600
humanoid-walk

0 1 2 3
1e6

0

50

100

150

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn humanoid-run

0 1 2 3
1e6

200

400

600

800
fish-swim

0 1 2 3
1e6

0

100

200

300

acrobot-swingup

0 1 2 3
1e6

200

400

600

800

1000
quadruped-walk

0 1 2 3
Environment steps 1e6

200

400

600

800

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn quadruped-run

0 1 2 3
Environment steps 1e6

400

600

800

1000
walker-walk

0 1 2 3
Environment steps 1e6

200

400

600

800
walker-run

0 1 2 3
Environment steps 1e6

200

400

600

800

cheetah-run

td3
vi_td3 (expectile)
sac
vi_sac (expectile)

Figure 3: VI-TD3 and VI-SAC (ours) with expectile loss as a value improvement operator vs. TD3
and SAC respectively, on 12 DeepMind continuous control environments. Mean and two standard
errors in the shaded area of evaluation curves across 20 seeds.

In Figure 6 we demonstrate that increasing the greediness of the update to a parameterized acting318

policy by repeating gradient steps on the same batch does not effectively increase sample efficiency319

8



as discussed in Section 1. In Figure 7 we investigate the tradeoff between using additional gradient320

steps for value improvement vs. to increase the replay ratio. In line with similar findings in literature321

(Chen et al., 2021), replay ratio provides a strong performance gain for small ratios. However, as the322

ratio increases, performance degrades, a result which the literature generally attributes to instability.323

The VI agent on the other hand does not degrade with the same increase to compute.324

5 Related Work325

VIAC generalizes the underlying learning scheme of several recent methods. XQL (Garg et al.,326

2023), SQL, and EQL (Xu et al., 2023) build on the implicit policy improvement setup of IQL to327

design algorithms that iterate a value improvement→ policy extraction loop, rather than the policy328

improvement→ policy evaluation loop of standard AC methods. When the policy extraction step329

(learning a policy given a value function) can be interpreted as a policy improvement operator, these330

algorithms become members of the VIAC family with specific instantiations of operators. BEE (Ji331

et al., 2024) is another recent method that explicitly considers a value target that includes its own332

maximization operator, albeit from the perspective of mixing targets that take into account exploration333

/ exploitation tradeoffs in the environment. Similarly, OBAC Luo et al. (2024) learns a pair of value334

functions, one for the acting policy and one using implicit policy improvement over data from the335

replay buffer and uses both pairs of value functions to train the acting policy.336

In model-based RL, it is popular to employ improvement operators for action selection and policy337

improvement, and sometimes even to generate value targets (e.g. value improvement, for example see338

Moerland et al., 2023). The more common setup employs the same operator for action selection and339

policy improvement (for example, AlphaZero (Silver et al., 2018)). MuZero Reanalyze (Schrittwieser340

et al., 2021) is an example of an algorithm that considers using the same operator (tree search in this341

case) to produce value targets as well, and thus can be thought of as belonging to the setup of VIAC.342

These algorithms however are traditionally motivated from the perspective that the acting policy,343

target policy and evaluated policy all coincide as they are all produced by the same operator.344

TD3 can be thought of as an example of an agent which acts, improves, and evaluates three different345

policies: The acting policy is improved using the deterministic policy gradient, during action selection346

the acting policy is modified with noise in order to induce exploration, and finally the evaluated347

policy is regularized with a differently-parameterized noise in order to improve learning stability.348

Although only one policy improvement operator is used, TD3 can be thought of as an algorithm349

which decouples the acting policy from the evaluated policy. GreedyAC (Neumann et al., 2023)350

inspired a family of algorithms (see Lingwei Zhu, 2025) which share similarities with the VIAC351

framework in that they explicitly maintain two different policies, although both policies are used for352

policy improvement, as opposed to value improvement.353

6 Conclusions354

In order to better control the tradeoff between greedification and stability in AC algorithms we355

propose to decouple the evaluated policy from the acting policy and apply a policy improvement step356

additionally to the evaluated policy. Since this improvement is retained only in the value function357

we refer to this approach as Value-Improved AC (VIAC). We identify sets of operators for which a358

DP process underlying this approach, Value-Improved Generalized Policy Iteration, converges to the359

optimal policy in the finite horizon domain. VIAC provides a unified perspective on recent online and360

offline RL algorithms which combine different improvement operators (Garg et al., 2023; Xu et al.,361

2023; Ji et al., 2024). We demonstrate that policy improvement itself is not a sufficient condition362

for convergence of DP algorithms with stochastic policies. We identify necessary and sufficient363

conditions for convergence of such algorithms, and prove that Generalized Policy Iteration algorithms364

converge to the optimal policy for such sufficient greedification operators in the finite horizon domain.365

We prove that the greedification operator used by the Gumbel MuZero algorithm is an example of a366

sufficient greedification operator. As a corollary, this establishes that a Generalized Policy Iteration367

process underlying the Gumbel MuZero algorithm family similarly converges. Empirically, VI-TD3368

and VI-SAC significantly improve upon or match the performance of their respective baselines in369

all DeepMind control environments tested with negligible increase in compute and implementation370

costs. We hope that our work will act as motivation to design future AC algorithms with multiple371

improvement operators in mind, as well as extend existing algorithms with value-improvement.372

9



References373

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Rémi Munos, Nicolas Heess, and374

Martin A. Riedmiller. Maximum a posteriori policy optimisation. In 6th International Conference375

on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,376

Conference Track Proceedings. OpenReview.net, 2018.377

Dimitri P Bertsekas. Approximate policy iteration: A survey and some new methods. Journal of378

Control Theory and Applications, 9(3):310–335, 2011.379

D.P. Bertsekas. Approximate dynamic programming. In Dynamic Programming and Optimal Control,380

number v. 2 in Athena Scientific optimization and computation series, chapter 6. Athena Scientific,381

3 edition, 2007. ISBN 9781886529304.382

David Blackwell. Discounted dynamic programming. The Annals of Mathematical Statistics, 36(1):383

226–235, 1965.384

Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A. Rupam Mahmood, and Martha White.385

Greedification operators for policy optimization: Investigating forward and reverse KL divergences.386

J. Mach. Learn. Res., 23:253:1–253:79, 2022.387

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double Q-learning:388

Learning fast without a model. In 9th International Conference on Learning Representations,389

ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.390

Mark Collier, Basil Mustafa, Efi Kokiopoulou, Rodolphe Jenatton, and Jesse Berent. A simple391

probabilistic method for deep classification under input-dependent label noise. arXiv preprint392

arXiv:2003.06778, 2020.393

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning394

with gumbel. In The Tenth International Conference on Learning Representations, ICLR 2022,395

Virtual Event, April 25-29, 2022. OpenReview.net, 2022.396

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft updates.397

In Alexander Ihler and Dominik Janzing (eds.), Proceedings of the Thirty-Second Conference on398

Uncertainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York City, NY, USA. AUAI399

Press, 2016. URL http://auai.org/uai2016/proceedings/papers/219.pdf.400

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-401

critic methods. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International402

Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,403

2018, volume 80, pp. 1582–1591. PMLR, 2018.404

Scott Fujimoto, Wei-Di Chang, Edward J. Smith, Shixiang Gu, Doina Precup, and David Meger. For405

SALE: state-action representation learning for deep reinforcement learning. In Alice Oh, Tristan406

Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in407

Neural Information Processing Systems 36: Annual Conference on Neural Information Processing408

Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.409

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme Q-learning: Maxent RL410

without entropy. In The Eleventh International Conference on Learning Representations, ICLR411

2023, Kigali, Rwanda, May 1-5, 2023, 2023. URL https://openreview.net/forum?id=412

SJ0Lde3tRL.413

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis Antonoglou,414

and Rémi Munos. Monte-carlo tree search as regularized policy optimization. In Proceedings of415

the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual416

Event, volume 119 of Proceedings of Machine Learning Research, pp. 3769–3778. PMLR, 2020.417

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy418

maximum entropy deep reinforcement learning with a stochastic actor. In International conference419

on machine learning, pp. 1861–1870. PMLR, 2018a.420

10

http://auai.org/uai2016/proceedings/papers/219.pdf
https://openreview.net/forum?id=SJ0Lde3tRL
https://openreview.net/forum?id=SJ0Lde3tRL
https://openreview.net/forum?id=SJ0Lde3tRL


Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash421

Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and422

applications. arXiv preprint arXiv:1812.05905, 2018b.423

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane424

Weber, David Silver, and Hado van Hasselt. Muesli: Combining improvements in policy optimiza-425

tion. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on426

Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of427

Machine Learning Research, pp. 4214–4226. PMLR, 2021.428

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-429

nal Mehta, and João G. M. Araújo. Cleanrl: High-quality single-file implementations of deep430

reinforcement learning algorithms. J. Mach. Learn. Res., 23:274:1–274:18, 2022.431

Tianying Ji, Yu Luo, Fuchun Sun, Xianyuan Zhan, Jianwei Zhang, and Huazhe Xu. Seizing serendip-432

ity: Exploiting the value of past success in off-policy actor-critic. In Forty-first International433

Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,434

2024.435

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-436

learning. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual437

Event, April 25-29, 2022. OpenReview.net, 2022.438

Yukie Nagai Lingwei Zhu, Han Wang. Fat-to-thin policy optimization: Offline reinforcement learning439

with sparse policies. In The Thireenth International Conference on Learning Representations,440

ICLR 2025, Singapore, April 24-28, 2025, 2025.441

Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, and Xianyuan Zhan. Offline-boosted442

actor-critic: Adaptively blending optimal historical behaviors in deep off-policy RL. In Forty-first443

International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.444

OpenReview.net, 2024.445

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan446

Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,447

abs/1312.5602, 2013.448

Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Model-based re-449

inforcement learning: A survey. Found. Trends Mach. Learn., 16(1):1–118, 2023. DOI:450

10.1561/2200000086.451

Samuel Neumann, Sungsu Lim, Ajin George Joseph, Yangchen Pan, Adam White, and Martha White.452

Greedy actor-critic: A new conditional cross-entropy method for policy improvement. In The453

Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May454

1-5, 2023. OpenReview.net, 2023.455

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis456

Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a457

learned model. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and458

Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual459

Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,460

virtual, pp. 27580–27591, 2021.461

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy462

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.463

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Arthur Guez, Marc Lanctot,464

Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis465

Hassabis. A general reinforcement learning algorithm that masters Chess, Shogi, and Go through466

self-play. Science, 362(6419):1140–1144, 2018.467

Elena Smirnova and Elvis Dohmatob. On the convergence of approximate and regularized policy468

iteration schemes. CoRR, abs/1909.09621, 2019.469

11



Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.470

Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy gradient471

methods for reinforcement learning with function approximation. In Sara A. Solla, Todd K. Leen,472

and Klaus-Robert Müller (eds.), Advances in Neural Information Processing Systems 12, [NIPS473

Conference, Denver, Colorado, USA, November 29 - December 4, 1999], pp. 1057–1063. The MIT474

Press, 1999.475

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,476

Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.477

Deepmind control suite. CoRR, abs/1801.00690, 2018.478

John N. Tsitsiklis. On the convergence of optimistic policy iteration. J. Mach. Learn. Res., 3:59–72,479

2002.480

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-481

learning. In Dale Schuurmans and Michael P. Wellman (eds.), Proceedings of the Thirtieth482

AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pp.483

2094–2100. AAAI Press, 2016. DOI: 10.1609/AAAI.V30I1.10295.484

Ronald J Williams and Leemon C Baird III. Analysis of some incremental variants of policy iteration:485

First steps toward understanding actor-critic learning systems. Technical report, Citeseer, 1993.486

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Wai Kin Victor Chan, and Xianyuan487

Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regularization. In The488

Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May489

1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=ueYYgo2pSSU.490

A Proofs491

A.1 Theorem 2: policy improvement is not enough492

Theorem 2 states: Policy improvement is not a sufficient condition for the convergence of Policy493

Iteration algorithms (Algorithm 1 with exact evaluation) to the optimal policy for all starting policies494

π0 ∈ Π in all finite-state MDPs.495

Proof sketch: We will construct a simple MDP where the Qπ values remain the same for all policies π,496

and show that even in this simple example, it is possible for a Policy Iteration algorithm to converge497

to non-optimal policies, with policy improvement operators that allow for stochastic policies. In498

addition, while adjacent to the narrative of this paper, we demonstrate that the same problem persists499

with deterministic policies in continuous action spaces in Appendix A.1.1.500

Proof. Consider a very simple deterministic MDP with starting state s0 and two actions a1, a2501

that lead respectively to two terminal states s1, s2. The reward function R(s0, a1) = 1 and502

R(s0, a2) = 2 and transition function P (s1|s0, a1) = 1, P (s2|s0, a2) = 1 and zero otherwise.503

We have Qπ(s0, a1) = 1 and Qπ(s0, a2) = 2 for all policies π ∈ Π. The optimal policy is therefor504

π∗(s0) = a2, that is π∗(a1|s0) = 0 and π∗(a2|s0) = 1.505

Consider the very simple policy improvement operator Iinadequate. When
∑
a∈A π(a|s)Qπ(s, a) <506 ∑

a∈A softmax(Qπ(s, ·))(a|s)Qπ(s, a), the operator is defined as follows: Iinadequate(π)(s) =507

απ(s) + (1 − α)softmax(Qπ(s, ·))(s). Otherwise, when the policy is already greedier than the508

softmax policy, the operator is defined as follows: Iinadequate(π)(s) = argmaxaQ
π(s, a).509

In natural language: when the policy is less greedy than the softmax policy, the operator produces510

a mix between the current policy and the softmax policy. This is always greedier than the current511

policy, and thus will act as a greedification operator for policies such policies. When the policy is as512

greedy or greedier than the softmax, the operator produces directly a greedy policy.513

The policy improvement theorem proves that this operator is a Policy Improvement operator, because514

for every policy π it greedifies the policy with respect to Qπ (that is, the policy’s evaluation is strictly515

larger unless the policy is already greedy).516

We now apply this operator in the Policy Iteration scheme to the simple example MDP speci-517

fied above, with a starting uniform policy π(a1|s0) = π(a2|s0). Since this operator produces518

12

https://openreview.net/forum?id=ueYYgo2pSSU


a mixture of the current and softmax policy, in the limit it will converge to the softmax policy519

limn→∞ πn = softmax(Q(s, ·)) ̸= argmaxaQ(s, a), i.e. to a sub-optimal policy, despite being520

a policy improvement operator. This proves that policy improvement operators cannot in general521

guarantee convergence to the optimal policy even in the limiting setting of Policy Iteration, and thus522

also not in more general setting such as Approximate Policy Iteration.523

In this example, since Qπ does not change across different iterations n of a Policy Iteration algo-
rithm, we can identify the following: For convergence to the optimal policy, it is necessary that a
greedification operator πn+1 = I(πn, q) will converge to a greedy policy, with respect to the same
stationary q = Qπ:

lim
n→∞

∑
a∈A

πn(a|s)q(s, a) = max
a

q(s, a), ∀s ∈ S.

More generally, this example shows that we can construct general operators I that produce arbitrary se-524

quences of policies πn+1 = I(πn), n ≥ 0 with values V πn+1 such that V πn+1(s) ≥ V πn(s),∀s ∈ S ,525

with a strict > in at least one state. Since this is the only condition required by policy improve-526

ment, operators I are policy improvement operators. However, since the improvement need not527

be bounded it is possible to construct sequences that converge to arbitrary values in the interval528

(V π0(s), V ∗(s)],∀s ∈ S. I.e., because the improvement property allows for infinitesimal improve-529

ments, it does not guarantee convergence to the optimal policy.530

A.1.1 Policy improvement in continuous action spaces531

A similar problem applies to continuous action spaces. Imagine a similar MDP as above with a532

continuous action spaces A = (0, 1), reward function R(s0, a) = a,∀a ∈ A and zero otherwise and533

every transition is terminal. Now imagine an operator that produces a deterministic action I(π, q)(s),534

such that
∫
Qπ(s, a)I(π,Qπ)(a|s)ds >

∫
Qπ(s, a)π(a|s)ds unless the policy is already optimal. I535

is an improvement operator and satisfies the greedification property.536

Let us again choose π0 the uniform policy across actions. At the first step, I can produce just-above537

the middle action a1 > 0.5. At each step, I can produce a new action I(π1, Q
∗)(s0) = π2(s0) =538

a2 > a1. However, since the space (0, 1) is the continuum and non-countable, there are more actions539

to select that any iterative process will ever have to go through. Therefor, even in the limit n→ inf ,540

the operator will never have to choose I(πn, Q∗) = 1.541

A.2 Policy Improvement operators that are not Greedification operators542

Lemma 1. There exist operators I : Π × Q → Π that are Policy Improvement operators, and543

therefore fulfill Equation 3, but are not Greedification operators according to Definition 2.544

Proof sketch: We will prove that a random-search operator that mutates the policy π randomly into a545

new policy π′, evaluates π′ and keeps it if V π > V π′
, is not a greedification operator, even though it546

is a policy improvement operator by definition. We do this by constructing an MDP and choosing547

a specific initial policy π0. Greedification with respect to the initial policy, at state s0, results in548

π1(s0) = a1. However, the optimal policy in this state actually chooses action a0, because the549

optimal policy can take better actions in the future than policy π1. Such an example proves that it550

is possible to construct policy improvement while violating greedification, demonstrating that the551

condition only goes one way: every greedification operator is policy improvement operator, not vice552

versa.553

Proof. Consider the following finite-horizon MDP: State space S = {s1, . . . , s10}. Action space554

A = a1, a2, a3. States {s5, . . . , s10} are terminal states. Transition function: f(s1, a1) = s2,555

f(s1, a2) = s3, f(s1, a3) = s4, f(s2, a1) = s5, f(s2, a2) = s6, f(s3, a1) = s7, f(s3, a2) = s8,556

f(s4, a1) = s9, f(s4, a2) = s10.557

Rewards: R(s2, s5) = 2, R(s2, s6) = −1, R(s3, s7) = 1, R(s3, s8) = 0, R(s4, s9) = 3,558

R(s4, s10) = −2.559

Actions that are not specified lead directly to a terminal state with zero reward.560

Let us begin by identifying the optimal policy in this MDP, in states s1 and s4: π∗(s1) = a3 and561

π∗(s4) = a1, with a value of 3 without a discount factor.562

Let us construct a starting policy π0:563

13



π0(s1) = a1, π0(s2) = a2, π0(s3) = a2, π0(s4) = a2. The other states are terminal and there are564

no actions to take, and therefor no policy.565

Consider the following Policy Improvement operator IE : Π × Q → Π, which this example will566

demonstrate is not a greedification operator. IE takes a policy π, and mutates it with a random567

process to π′. IE proceeds to conduct exact evaluation of π′, to find V π′
. If V π′

(s) ≥ V π(s) on all568

states, and V π′
(s) > V π(s) in at least one state, IE outputs π′. Otherwise, the process repeats. This569

process guarentees policy improvement. However, this process may directly produce the optimal570

policy in this MDP, which in states s1, s3 is π∗(s1) = a3 and π∗(s4) = a1.571

Note however, that the optimal policy is not a greedier policy with respect to the value of π0. For π0,572

we have: Qπ0(s1, a1) = −1, Qπ0(s1, a2) = 0, Qπ0(s1, a3) = −2. A greedier policy with respect to573

these values cannot deterministically choose action a3, which is the action chosen by the optimal574

policy in this state.575

Therefor, this example demonstrates that it is possible for a policy to be improved (higher value in576

at least one state, and greater or equal on all states), without being greedier with respect to some577

original policy’s value. In turn, this demonstrates that there exist Policy Improvement operators that578

are not Greedification operators.579

A.3 Necessary greedification operators may not be sufficient580

Lemma 2. Greedification operators (Definition 2) which have the necessary greedification property581

(Definition 3) may not be sufficient for Policy Iteration algorithms to converge to the optimal policy.582

Proof sketch: First, we demonstrate the problem: certain operators with the necessary property, such583

as the deterministic greedification operators, may not converge to a greedy policy with respect to584

non-stationary Qπn . Second, we will show that in Policy Iteration it is possible to experience non585

stationary evaluations Qπn that will prevent a necessary-greedification algorithm from converging586

to a greedy policy. We will show this by constructing an operator that performs deterministic587

greedification in some states, and greedification that converges only in the limit in other states (both588

necessary-greedification operators), and show that the problem can persist in practical MDPs. This589

operator is a necessary-greedification operator in all states. That is, with respect a stationary q, it590

will converge to greedy policies. However, since in Policy Iteration algorithm the evaluation q is not591

necessarily stationary, it is possible that a Policy Iteration algorithm based in this operator will not592

converge to the optimal policy.593

Proof. LetA = {a1, a2, a3} and a sequence qn(a1) = (−1)n/2n+q(a1), qn(a2) = (−1)n+1/2n+594

q(a2), and qn(a3) = q(a3), with a limiting value q = [1, 1, 2]. We omit the dependency of q on a595

state as it is unnecessary in this example. In this case, the optimal policy with respect to any qn is596

π = a3.597

Take the least-greedifynig deterministic greedification operator Imin_det(q, π) =598

minq(a)>q(π),a ̸=π q(a). This operator produces the worst action, with respect to q, that is599

better than the current action selected by the policy, and as such, is a greedification operator by600

definition, with respect to deterministic policies. Since there are finitely many deterministic policies601

on a finite action space |A| <∞, this operator will converge to limn→∞ πn = argmaxa q(a) with602

respect to a stationary q.603

Take π0 = a2. Using the operator Imin_det we have πn = Imin_det(qn, πn−1). When n is odd,604

πn = a1, and when n is even, πn = a2, without ever converging to the optimal policy π = a3.605

Next we will construct an example MDP and improvement operators in which this situation can606

happen in practice. Consider a finite-state, finite horizon MDP with states s1, . . . , sn. We are607

interested in the behavior at state s0 specifically, which similarly has actions a1, a2, a3, with re-608

wards R(s1, a3) = 3, R(s1, a1) = R(s1, a2) = 0. The transition f(s1, a3) = s0 is terminal and609

f(s1, a1) = s2, f(s1, a2) = s3.610

Consider the following improvement operator: On state s1, this operator is Imindet. However, on611

all other states, this is a necessary greedification operator, which converges only in the limit, and612

in a non-constant rate. It is possible to construct the rest of the MDP and starting policies π0 such613

that the sequence alternates 1 > Qπn(s1, a1) > Qπn(s1, a2) when n is odd, and 1 > Qπn(s1, a2) >614

Qπn(s1, a1) when n is even, while both are smaller than Qπn(s1, a3) = Q∗(s1, a3) = 3. This is615

possible because the policies πn(s2), πn(s3) can be soft, and it is possible to construct an MDP616

which produces arbitrary values bounded between 0, 1 by setting R(s2, a1) = 1, R(s2, a2) =617

14



0, R(s2, a3) = 0 and R(s3, a1) = 1, R(s3, a2) = 0, R(s3, a3) = 0. In such MDP, limn→∞ πn(s1)618

will never converge to a3, the optimal policy in this state.619

A.4 Deterministic greedification operators are lower-bounded greedification operators620

Lemma 3. Deterministic greedification operators Idet, i.e. greedification operators (Definition 2)621

that produce deterministic policies are lower-bounded greedification operators 4 in MDPs with finite622

action spaces.623

Proof. Take ϵ = mins∈S,a,a′∈A,q(s,a)̸=q(s,a′) |q(s, a) − q(s, a′)|, that is, the minimum difference624

across two actions that do not have the same value (i.e. the minimum greater than zero difference).625

If there is no greater than zero difference, then all actions are optimal and every policy is already626

optimal. Otherwise, the greedification imposed by choosing at least one better action in at least one627

state has to be greater than the minimum difference between two actions.628

A.5 The operator Igmz is a Limit-Sufficient Greedification operator629

The operator proposed by Danihelka et al. (2022) is defined as follows:630

Igmz(π, q)(a|s) = softmax(σ(q(s, a)) + log π(a|s)) = exp(log π(a|s)+σ(q(s,a)))∑
a′∈A exp(log π(a′|s)+σ(q(s,a′))) (9)

Lemma 4 (Igmz with a stationary σ is a Limit-Sufficient Greedification Operator). For any starting
policy π0 ∈ Π such that log π0(a|s) is defined and sequences q1, . . . , qn such that limn→∞ qn =
q ∈ Q, iterative applications πn+1 = Igmz(πn, qn) converge to a greedy policy with respect to the
limiting value q.
That is,

lim
n→∞

∑
a∈A

πn(a|s)qn(s, a) = max
b

q(s, b), ∀s ∈ S.

Proof sketch: We will prove that n repeated applications of the Igmz operator converge to a softmax
policy of the form

πn(a|s) ∝ exp(log π0(a|s) + nσ(qn(s, a))),

which itself converges to an argmax policy as limn→∞. For simplicity, we will first prove for a631

stationary q, and then repeat the same steps for a non-stationary qn, limn→∞ = q for some limiting632

value q.633

Proof. We will show that the Gumbel MuZero operator Igmz with σ a monotonically increasing634

transformation, is a Limit-Sufficient Greedification operator.635

Danihelka et al. (2022) have shown that this operator is a Greedification operator (Section 4 and
Appendix C of (Danihelka et al., 2022)). It remains for us to demonstrate that the sequence πn
converges for Igmz , such that

lim
n→∞

∑
a∈A

πn(a|s)q(s, a) = max
b

q(s, a),

for any π0 and ∀s ∈ S.636

Step 1: Convergence with stationary q For a stationary q, at any iteration n, the policy πn can be637

formulated as:638

πn(a) =
1

zn
exp(σ(q(s, a)) + log πn−1(a|s)), zn =

∑
a′∈A

exp(σ(q(s, a′)) + log πn−1(a
′|s))

(10)

15



Where zn is the normalizer of the softmax operator. We can expand πn backwards as follows:639

πn(a) =
1

zn
exp(σ(q(s, a)) + log πn−1(a|s)) (11)

=
1

zn
exp

(
σ(q(s, a)) + log

σ(q(s, a)) + πn−1(a|s)
zn−1

)
(12)

=
1

zn
exp

(
σ(q(s, a)) + σ(q(s, a)) + log πn−2(a|s)− log zn−1

)
(13)

=
1

znzn−1
exp

(
2σ(q(s, a)) + log πn−2(a|s)

)
(14)

= . . . (15)

= (Πni=1

1

zi
) exp

(
nσ(q(s, a)) + log π0(a|s)

)
(16)

As πn is a softmax policy, i.e.
∑
a∈A πn(a|s) = 1, the product Πni=1

1
zi

must act as a normalizer:640

Πni=1

1

zi
=

∑
a∈A

exp
(
nσ(q(s, a)) + log π0(a|s)

)
(17)

We can now directly take the limit limn→∞ πn:641

lim
n→∞

πn(a) = lim
n→∞

(Πni=1

1

zi
) exp

(
nσ(q(s, a)) + log π0(a|s)

)
(18)

It is well established that as the temperature 1/n goes to zero, the softmax converges to an argmax642

(Collier et al., 2020). With non-stationary qn we get a slightly more involved sequence, and the643

formulated proof that the softmax converges to an argmax will serve us to demonstrate convergence644

with qn. We include the proof that the softmax converges to an argmax below in step 1.5.645

Step 1.5: Convergence of the softmax to an argmax Define σmax = maxa σ(q(s, a)). Let us646

now multiply by exp(−nσmax)
exp(−nσmax)

. We have:647

πn(a|s) = (Πni=1

1

zi
) exp

(
nσ(q(s, a) + log π0(a|s))

)exp(−nσmax)
exp(−nσmax)

(19)

=
π0(a|s)

exp(−nσmax)
(Πni=1

1

zi
) exp

(
n
(
σ(q(s, a))− σmax

))
(20)

We now note that σ(q(s, a)) − σmax < 0 if σ(q(s, a)) ̸= maxa σ(q(s, a)) = σmax and otherwise648

σ(q(s, a))− σmax = 0 if σ(q(s, a)) = maxa σ(q(s, a)) = σmax. In that case, exp
(
n(σ(q(s, a))−649

σmax)
)
= exp

(
0
)
= 1. We substitute that into the limit:650

lim
n→∞

πn(a|s) =

{
limn→∞

π0(a|s)
exp(−nσmax)

(Πni=1
1
zi
) exp

(
n
(
σ(q(s, a))− σmax

))
= 0, if σ(q(s, a)) ̸= σmax

limn→∞
π0(a|s)

exp(−nσmax)
(Πni=1

1
zi
)1, if σ(q(s, a)) = σmax

(21)

Note that:651

1. The numerator where σ(q(s, a)) = σmax converges to e0 = 1652

2. The numerator where σ(q(s, a)) ̸= σmax converges to limn→∞ e−δn = 0, δ > 0.653

3. The denominator always normalizes the policy such that
∑
a∈A πn(a|s) = 1,∀s ∈ S, due654

to the definition of the softmax.655

As a result, we have:656

lim
n→∞

πn(a|s) =
{

0
z , if σ(q(s, a)) ̸= σmax
1
z , if σ(q(s, a)) = σmax

(22)

For some normalization constant z. I.e. the policy limn→∞ πn is an argmax policy with respect to657

q, that is, the policy has probability mass only over actions that maximize σ(q).658

16



Step 2: Convergence with non-stationary qn We will now extend the proof to a non-stationary659

qn that is assumed to have a limiting value, limn→∞ qn = q, in line with definition of Sufficient660

Greedification.661

First, we have:662

πn(a) =
1

zn
exp(σ(qn(s, a)) + log πn−1(a|s)) (23)

=
1

zn
exp

(
σ(qn(s, a)) + log

σ(qn−1(s, a)) + πn−1(a|s)
zn−1

)
(24)

=
1

znzn−1
exp

(
σ(qn(s, a)) + σ(qn−1(s, a)) + log πn−2(a|s)

)
(25)

= (Πni=1

1

zi
) exp

(( n∑
i=1

σ(qi(s, a))
)
+ log π0(a|s)

)
(26)

Based on the same expansion of the sequence as above. Multiplying by −nσmax

−nσmax
and formulating the663

limit in a similar manner to above, we then have:664

lim
n→∞

πn(a|s) = lim
n→∞

π0(a|s)
−nσmax

exp(Πni=1

1

zi
)
( n∑
i=1

(σ(qi(s, a))− σmax)
)

(27)

Let us look at the term
∑n
i=1(σ(qi(s, a))− σmax). First, where σ(q(s, a)) ̸= σmax, we have665

lim
n→∞

n∑
i=1

(σ(qi(s, a))− σmax) = lim
n→∞

n∑
i=1

(σ(qi(s, a))− σ(q(s, a))− (σmax − σ(q(s, a))) (28)

= lim
n→∞

−n(σmax − σ(q(s, a))) +

n∑
i=1

(σ(qi(s, a))− σ(q(s, a)) (29)

As the term σ(qn(s, a)) − σ(q(s, a) goes to zero due to the definition of qn, the term666 ∑n
i=1(σ(qi(s, a)) − σ(q(s, a)) goes to a constant, and the term −n(σmax − σ(q(s, a))) goes to667

−∞ due to the definition of σmax. Therefor, the limit:668

lim
n→∞

n∑
i=1

(σ(qi(s, a))− σmax) = −∞ ⇒ lim
n→∞

exp
( n∑
i=1

(σ(qi(s, a))− σmax)
)
= 0 (30)

Let us look at the second case, where σ(q(s, a)) = σmax, the sequence converges:669

lim
n→∞

n∑
i=1

(σ(qi(s, a))− σmax) = α(s, a) (31)

For some constant α(s, a), as limn→∞ σ(qn(s, a)) = σmax. Thus, we have again:670

lim
n→∞

πn(a|s) =

{
0
z , if σ(q(s, a)) ̸= σmax
α(s,a)
z , if σ(q(s, a)) = σmax

(32)

Demonstrating that πn converges to an argmax policy with respect to σ(q). Since σ is monotonically671

increasing, q(s, a) and σ(q(s, a)) are maximized for the same action a, thus πn is also an argmax672

policy with respect to q. Therefor, Igmz is a Limit-Sufficient Greedification operator.673

A.6 Igmz can be formulated as an insufficient-greedification operator674

Lemma 5. The Igmz greedification operator with a non-stationary σ transformation can be formu-675

lated as an insufficient greedification operator.676

Proof sketch: We construct a variation of the Igmz operator with an increasing transformation σn,677

which is different at each iteration. Because the transformation is not constant, it converges to some678

softmax policy rather than an argmax policy.679

17



Proof. The function σ used by Igmz is only required to be an increasing transformation (see680

Danihelka et al. (2022), Section 3.3). That is if q(s, a) > q(s, a′) then we must have that681

σ(q(s, a)) > σ(q(s, a′)). In practice, the function proposed by Danihelka et al. (2022) is of the form682

σ(q(s, a)) = β(N)q(s, a), where β is a function of the planning budget N of the MCTS algorithm.683

A practitioner might be interested in running the algorithm with a decreasing planning budget over684

iterations (perhaps the value estimates become increasingly more accurate, and therefor there is685

less reason to dedicate much compute into planning with MCTS). In that case, we can formulate686

σn(qn(s, a)) = α
βn qn(s, a). This transformation is always increasing in q(s, a), adhering to the687

requirements from σ. Nonetheless, the sequence πn will not converge to an argmax policy for this688

choice of σ:689

lim
n→∞

πn = lim
n→∞

(Πni=1

1

zi
) exp

(∑
i≤n

[
σn(qn(s, a))

]
+ log π0(a|s)

)
(33)

= lim
n→∞

(Πni=1

1

zi
) exp

( α

βn

∑
i≤n

[
qn(s, a)

]
+ log π0(a|s)

)
(34)

Which will converge to some softmax policy as the following limit converges to a constant:690

limn→∞
α
βn

∑
i≤n

[
qn(s, a)

]
= c(s, a), and thus the policy remains a softmax policy πn(a|s) =691

softmax(c(s, a) + log π0(a|s)).692

A.7 Lower Bounded Greedification operators ̸⊂ Limit-Sufficient Greedification operators693

Lemma 6. The set of all lower-bounded greedification operators (Definition 4) is not a subset of the694

set of all limit-sufficient greedification operators (Definition 5). That is, there exists a lower-bounded695

greedification operator which is not a limit-sufficient greedification operator.696

Proof sketch: Convergence with respect to arbitrary sequences limn→∞ qn = q is a strong property,697

and it is possible to come up with sequences for which specific lower-bounded greedification operator698

do not result in convergence. By constructing such a sequence and choosing such an operator,699

we will show that there are lower-bounded greedification operators which are not Limit-Sufficient700

Greedification operators, demonstrating that lower-bounded greedification operators ̸⊂ limit-sufficient701

greedification operators.702

Proof. LetA = {a1, a2, a3} and a sequence qn(a1) = (−1)n/2n+q(a1), qn(a2) = (−1)n+1/2n+703

q(a2), and qn(a3) = q(a3), with a limiting value q = [1, 1, 2].704

Let π0 = a1. The minimal deterministic Greedification operator Idet(π, q)(s) = argmina q(s, a) >705 ∑
a′∈A π(a′|s)q(s, a′), that is, the deterministic Greedification operator which chooses the least-706

greedifying action at each step will not converge to the optimal policy on this sequence. At each707

iteration, Idet(q, πn) = a1,2 (as in, a1 or a2), because qn alternates qn(a1) > qn(a2) for even n,708

and qn(a1) < qn(a2) for odd n. Since this operator is a lower-bounded greedification operator (see709

Appendix A.4), this demonstrates that lower-bounded greedification operators ̸⊂ limit-sufficient710

greedification operators.711

A.8 The greedy operator is both a limit-sufficient as well as a lower-bounded greedification712

operator713

Lemma 7. The greedy operator Iargmax is both a lower-bounded greedification operator (Definition714

4) as well as a limit-sufficient greedification operator (Definition 5).715

Proof. The greedy operator is a greedification operator by definition. We will show that it can have716

both the lower-bounded greedification property as well as the limit sufficient greedification property.717

Step 1): We will show that the greedy operator is a lower-bounded greedification operator (Definition718

4).719

The greedy operator produces the maximum greedification in any state by definition. Therefor:∑
a∈A
Iargmax(π, q)(a|s)q(s, a) ≥ Idet(π, q)(a|s)q(s, a),

where Idet is the deterministic greedification operator, ∀s ∈ S, a ∈ A. Since the de-720

terministic greedification operator is itself bounded by an ϵ (see Appendix A.4), we have721

|
∑
a∈A Iargmax(π, q)(a|s)q(s, a)−

∑
a∈A π(a|s)q(s, a)| > ϵ.722

18



Step 2): We will show that the greedy operator is a limit-sufficient greedification operator (Definition723

5).724

We will prove that the sequence (πn, qn) defined for Iargmax as above converges, such that725

limn→∞ |
∑
a∈A πn(a|s)qn(s, a)−maxb q(s, b)| = 0, for any π0. That is, the policy converges to726

an argmax policy with respect to the limiting value q.727

For any qn in the sequence, we have by definition of the operator728 ∑
a∈A Iargmax(qn, πn−1)(a|s)qn(s, a) = maxa qnk(s, a). We can substitute that into the729

limit:730

lim
n→∞

|
∑
a∈A

πn(a|s)qn(s, a)−max
b

q(s, b)| (35)

= lim
n→∞

|max
a

qn(s, a)−max
b

q(s, b)| (36)

≤ lim
n→∞

max
a
|qn(s, a)− q(s, a)| (37)

= max
a

lim
n→∞

|qn(s, a)− q(s, a)| (38)

= max
a
| lim
n→∞

qn(s, a)− q(s, a)| = 0 (39)

The first step holds by substitutions. The inequality is a well known property used to prove that the731

greedy operator is a contraction, see (Blackwell, 1965). In Equation 38 the limit and max operators732

can be exchanged because the action space is finite, and finally the limit and absolute value can be733

exchanged because the absolute value is a continuous function.734

735

A.9 Proof for Theorem 3 for k = 1 and I2 the identity operator736

We will prove Theorem 3, first for k = 1 for improved readability, and in the following Appendix737

A.10 we will extend the proof for k ≥ 1. In Appendix A.11 we will further extend the proof for738

value-improvement.739

A.9.1 Notation740

We use R to denote the mean-reward vector R ∈ R|S||A|, where Rs,a = E[R|s, a]. We use741

Pπ ∈ R|S||A|×|S||A| to denote the matrix of transition probabilities multiplied by a policy, indexed742

as follows: Pπs,a,s′,a′ = P (s′|s, a)π(a′|s′). We denote the state-action value q and the policy π as743

vectors in the state-action space s.t. q, π ∈ R|S||A|. The set Π ⊂ R|S||A| contains all admissible744

policies that define a probability distribution over the action space for every state. For convenience,745

we denote q(s, a) as a specific entry in the vector indexed by s, a and q(s), π(s) as the appropriate746

|A| dimensional vectors for index s. In this notation, we can write expectations as the dot product747

q(s) · π(s) = Ea∼π(s)[q(s, a)] = v(s). With slight abuse of notation, we use q · π = v, v ∈ R|S|748

to denote the vector with entries v(s). We use maxa q ∈ R|S| to denote the vector with entries749

maxa q(s) = maxa q(s, a).750

We let st denote a state (·, t) ∈ S , that is, a state in the environment arrived at after t transitions. The751

states sH are terminal states, and the indexing begins from s0. We let qm, πm denote the vectors at752

iteration m of Algorithm 1. We let qmt , πmt denote the sub-vectors of all entries in qm, πm associated753

with states st. In this notation q1H−1 is the q vector for all terminal transitions (sH−1, ·) after the one754

iteration of the algorithm.755

Proof sketch Our proof follows induction from terminal states. For all terminal states sH , the value756

V π(sH) = 0 for all policies π. Similarly, q(sH−1, a) = Qπ(sH−1, a) = r(s, a) for all policies π.757

That is, the Q values converge after one update, and from then on remain stationary. Given that758

the q(sH−1, a) remains stationary for all states sH−1, limit sufficient greedification guarantees that759

policy π(sH−1) at state sH−1 converges to an argmax policy, which guarantees that the state-value760

estimates v(sH−1) :=
∑
a∈A π(a|sH−1)q(sH−1, a) converge. Finally, as the state-value estimates761

converge, this process repeats backwards from states sH−1 all the way to states s0, at which point the762

value q and policy π converge to the value of the optimal policy and an optimal policy respectively,763

for all states in the MDP.764

A.9.2 Complete proof765

Proof. Convergence for Generalized Policy Iteration with k = 1766

19



We will prove by backwards induction from the terminal states that the sequence limm→∞(πm, qm)767

induced by Algorithm 1 converges for any q0, π0, sufficient greedification operator I and k ≥ 1.768

That is, for every ϵ > 0 there exists a Mϵ such that ∥qm − q∗∥ ≤ ϵ and ∥πm · qm −maxa q
∗∥ < ϵ769

for all m ≥Mϵ, q0 ∈ R|S||A| and π0 ∈ Π.770

Induction Hypothesis: For every ϵ > 0 there exist M ϵ
t+1 such that for all m ≥ M ϵ

t+1 we have771

∥qmt+1 − q∗t+1∥ ≤ ϵ, and ∥πmt+1 · qmt+1 −maxa q
∗
t+1∥ ≤ ϵ.772

Base Case t = H − 1: Let ϵ > 0. Since states sH are terminal, and have therefore value 0, we have773

qmH−1 = RH−1 = q∗H−1 and therefore ∥qmH−1 − q∗H−1∥ ≤ ϵ trivially holds for all m ≥ 1.774

By the Sufficiency condition of the sufficient greedification operator which induces convergence of775

πm to an argmax policy with respect to q there exists M ϵ
H−1 such that:776

∥πmH−1 · qmH−1 −max
a

q∗H−1∥ = ∥πmH−1 · q∗H−1 −max
a

q∗H−1∥ ≤ ϵ

for all m ≥M ϵ
H−1. Thus the Induction Hypothesis holds at the base case.777

Case t < H − 1: We will show that if the Induction Hypothesis holds for all states t+1, it also holds778

for states t.779

Step 1: Let ϵ > 0. Assume the Induction Hypothesis holds for states t+ 1. Then there exists M ϵ
t+1780

such that ∥qmt+1 − q∗t+1∥ ≤ ϵ and ∥πmt+1 · qmt+1 −maxa q
∗
t+1∥ ≤ ϵ for all m ≥M ϵ

t+1.781

Let us define the transition matrix P ∈ R|S||A|×|S| with Ps,a,s′ = P (s′|s, a).782

First, for all m ≥M ϵ
t+1 we have:783

∥qm+1
t − q∗t ∥ = ∥R+ γP(πm+1

t+1 · qmt+1)−R− γPmax
a

q∗t+1∥ (40)

= γ∥P(πm+1
t+1 · qmt+1)− Pmax

a
q∗t+1∥ (41)

≤ ∥P∥∥πm+1
t+1 · qmt+1 −max

a
q∗t+1∥ (42)

≤ ∥πm+1
t+1 · qmt+1 −max

a
q∗t+1∥ (43)

≤ ϵ (44)

(40) is by substitution based on step 4 in Algorithm 1 for k = 1. (42) is by the definition of the784

operator norm ∥P∥. (43) is by the fact that the operator norm in sup-norm of all transition matrices is785

1 (Bertsekas, 2007). (44) is slightly more involved, and follows from the Induction Hypothesis and786

the limit-sufficient greedification.787

Let us show that (44), i.e. ∥πm+1
t+1 · qmt+1 − maxa q

∗
t+1∥ ≤ ϵ holds. Under the infinity norm holds788

point-wise for each state s ∈ S:789

−ϵ ≤ [πmt+1 · qmt+1](s)−max
a

q∗t+1(s, a) (45)

≤ [πm+1
t+1 · qm

t+1](s)−max
a

q∗
t+1(s, a) (46)

≤ max
a′

qmt+1(s, a
′)−max

a
q∗t+1(s, a) (47)

≤ max
a′

(
qmt+1(s, a

′)− q∗t+1(s, a
′)
)

(48)

≤ ϵ . (49)

(45) is the induction hypothesis ∥πmt+1 · qmt+1 −maxa q
∗
t+1∥ ≤ ϵ, which holds under the infinity norm790

point wise, (46) uses the sufficient greedification operatorproperty [πmt+1 ·qmt+1](s) ≤ [πm+1
t+1 ·qmt+1](s),791

(47) the inequality [πm+1
t+1 · qmt+1](s) ≤ maxa′ q

m
t+1(s, a

′), (48) the inequality −maxa q
∗
t+1(s, a) ≤792

−q∗t+1(s, a
′),∀a′ ∈ A, and (49) the induction hypothesis ∥q∗t+1 − qmt+1∥ ≤ ϵ.793

Step 2: Pick M ϵ
t ≥M ϵ

t+1 such that for all m ≥M ϵ
t we have ∥πmt · qmt −maxa q

∗
t ∥ ≤ ϵ. Such an M ϵ

t794

must exist because of the following: In Step 1, we proved that the first part of the inductive step holds.795

That is, that qmt has ϵ-converged to the value of the optimal policy. Such qmt satisfies the conditions796

of the q sequence of the limit-sufficient greedification operator. For that reason, the policy πmt must797

converge (that is ∥πmt · qmt −maxa q
∗
t ∥ ≤ ϵ), and M ϵ

t must exist.798

Thus, the Induction Hypothesis holds for all states t if it holds for states t+ 1.799

Finally, let ϵ > 0. By backwards induction, for each t = 0, . . . ,H − 1 there exists M t
ϵ such that800

for all m ≥ M t
ϵ we have ∥qmt − q∗t ∥ ≤ ϵ, and ∥πmt · qmt −maxa q

∗
t ∥ ≤ ϵ. Therefore, we can pick801

20



Nϵ = maxt=0,...,H−1 M
t
ϵ such that ∥qmt − q∗t ∥ ≤ ϵ, and ∥πmt · qmt −maxa q

∗
t ∥ ≤ ϵ for all m ≥ Nϵ802

and t = 0, . . . ,H − 1, proving that Algorithm 1 converges to an optimal policy and optimal q-values803

for any π0 ∈ Π, q0 ∈ R|S||A|, k = 1 and sufficient greedification operatorI.804

We proceed to extend the proof for k ≥ 1 below.805

A.10 Extension of the Proof for Theorem 3 to k ≥ 1 and I2 the identity operator806

In this section we will extend the proof of Theorem 3 from Appendix A.9 to k ≥ 1. Much of the proof807

need not be modified. In order to extend the proof to k ≥ 1, we only need to show the following:808

For all k ≥ 1 and every ϵ > 0 such that the Induction Hypothesis holds, there exists an M t
ϵ such that809

∥qm+1
t − q∗t ∥ ≤ ϵ.810

Proof. We will first extend the notation: let qm,it denote the vector q at states t after m algorithm811

iterations and i ≥ 1 Bellman updates, such that qm,it = (T π1qm,i−1)t, q
m,0
t = qmt and finally812

qm+1
t = qm,kt .813

Second, we will extend the Induction Hypothesis:814

Extended Induction Hypothesis: For every ϵ > 0 there exist M ϵ
t+1 such that for all m ≥M ϵ

t+1 and815

i ≥ 0 we have ∥qm,it+1 − q∗t+1∥ ≤ ϵ, and ∥πmt+1 · q
m,i
t+1 −maxa q

∗
t+1∥ ≤ ϵ.816

The Base Case does not change, so we will proceed to Step 1 in the Inductive Step. We need to show817

that there exists an M ϵ
t such that ∥qm,it − q∗t ∥ ≤ ϵ for all i ≥ 0 and m ≥M ϵ

t .818

Let ϵ > 0 and m ≥M ϵ
t ≥M ϵ

t+1.819

First, for any i ≥ 1:820

∥qm,it − q∗t ∥ = ∥R+ γP(πm+1
t+1 · q

m,i−1
t+1 )− q∗t ∥

≤ ∥P∥∥πm+1
t+1 · q

m,i−1
t+1 −max

a
q∗t+1∥

≤ ϵ

The first equality is the application of the Bellman Operator in line 4 in Algorithm 1 the ith time. The821

rest follows from Proof A.9 and the extended Induction Hypothesis.822

Second, we need to show that this holds for i = 0 as well:823

∥qm,0t − q∗t ∥ = ∥q
m−1,k
t − q∗t ∥ ≤ ∥πmt+1 · q

m−1,k−1
t+1 −max

a
q∗t+1∥ ≤ ϵ

The first equality is by definition, and the the first and second inequalities are by the same argumenta-824

tion as above.825

The rest of the proof need not be modified.826

A.11 Extension for I2 a general improvement operator827

We extend the proof from the above section for all non-detriment operators (that is, non-strict828

greedification operators) I2 used for value improvement.829

Proof. Similarly to the proof of Theorem 3 from Appendix A.9 (and A.10) we will prove by830

backwards induction from the terminal states sH that the sequence limm→∞(πm, qm) induced by831

Algorithm 2 converges for any q0, π0, sufficient greedification operator I1, greedification operator832

I2 and k ≥ 1. That is, for every ϵ > 0 there exists a Mϵ such that ∥qm − q∗∥ ≤ ϵ and ∥πm ·833

qm −maxa q
∗∥ < ϵ for all m ≥ Mϵ, q0 ∈ R|S||A| and π0 ∈ Π. The proof follows directly from834

the proof in Appendix A.9. The base case is not modified - the qs converge immediately and the835

policy convergence is not influenced by the introduction of I2. The Induction Hypothesis need not be836

modified. In the inductive step, Step 1 follows directly from the Induction Hypothesis, and Step 2837

need not be modified for the same reason the base case need not be modified.838

A.12 Convergence of Algorithm 2 with lower bounded greedification operators839

We extend the proof from Appendices A.9 and A.10 to bounded greedification operators.840

21



Proof sketch The proof is almost identical to that of limit-sufficient greedification, with one major841

difference. Lower-bounded greedification allows for convergence to a greedy policy in finite iterations842

(see Lemma 8 below) with respect to any stationary q. For that reason, the values at states sH−1843

become exact in finite iterations (unlike limit-sufficient, where they converge only in the limit). As844

they become exact, they also become fully stationary, and as they become stationary, lower-bounded845

greedification guarantees that the values (and policy) at states sH−2 become exact and stationary in846

finite iterations, and the process repeats by induction all the way back to states s0.847

Below we first prove Lemma 8 and then use Lemma 8 to complete the induction proof.848

A.12.1 Lower bounded greedification converges to an argmax policy in finite steps849

We will begin by proving that operators with the Bounded Greedification property:

|
∑
a∈A
I(π, q)(a|s)q(s, a)−

∑
a∈A

π(a|s)q(s, a)| > ϵ,

unless
∑
a∈A I(π, q)(a|s)q(s, a) = maxa q(s, a) are guaranteed to convergence to an argmax850

policy with respect to any q ∈ Q, in a finite number of steps.851

Lemma 8. Let I be a bounded greedification operator and let a sequence πn+1 = I(q, πn). For
any starting π0 ∈ Π, q ∈ Q, there exists an M for which:∑

a∈A
πn(a|s)q(s, a) = max

a
q(s, a), ∀n > M.

That is, the policy πn converges to a greedy policy with respect to q in a finite number of steps852

n > M .853

Proof. Let I be a Bounded Greedification operator. At each iteration, the sequence854 ∑
a∈A πn(a|s)q(s, a) must increase, i.e.

∑
a∈A πn(a|s)q(s, a) >

∑
a∈A πn−1(a|s)q(s, a), n > 0,855

for at least one state s ∈ S. The same sequence is monotonically non-decreasing, by definition of856

greedification, for all other states. Therefore, the sequence
∑
s∈S

∑
a∈A πn(a|s)q(s, a) is monotoni-857

cally increasing (for each state
∑
a∈A πn(a|s)q(s, a) is at least as large as in the past step, and in at858

least one state it is distinctly higher), unless
∑
a∈A πn(a|s)q(s, a) = maxa q(s, a).859

Due to the Bounded Greedification property, the minimum increase is bounded by ϵ, that is:

min
πn

|
∑
s∈S

∑
a∈A

πn(a|s)q(s, a)−
∑
s∈S

∑
a∈A

πn−1(a|s)q(s, a)| > ϵ, n > 0.

The sequence
∑
s∈S

∑
a∈A πn(a|s)q(s, a) is bounded by

∑
s∈S maxa q(s, a) from above, and by860 ∑

s∈S mina q(s, a) from below. The increases between any two iterations is bounded from below by861

ϵ by definition unless the policy is already greedy, as I is a lower-bounded greedification operator.862

Since the sequence is bounded from below and above and the increase is bounded a constant amount863

ϵ > 0, it must converge in a finite n <∞ to the maximum of the sequence
∑
a∈A πn(a|s)q(s, a) =864

maxa q(s, a). That is, πn converges to a greedy policy with respect to q in a finite number of iterations865

n.866

A.12.2 Modified Induction for Bounded Greedification867

We modify the induction of the proof of Theorem 3 with finite-sufficient greedification operators,868

that converge to an argmax policy in a finite number of iterations.869

Proof. Modified Induction Hypothesis: There exist Mt+1 such that for all m ≥ Mt+1 we have870

qmt+1 = q∗t+1, and πmt+1 · qmt+1 = maxa q
∗
t+1.871

Modified Base Case: Because the convergence to the argmax is in finite time (Lemma 8) there872

exists MH−1 such that:873

πmH−1 · qmH−1 = max
a

q∗H−1

for all m ≥MH−1. Thus the Modified Induction Hypothesis holds at the base case.874

22



Modified Case t < H − 1 Step (1): Similarly, for all m ≥Mt+1 we have:875

∥qm+1
t − q∗t ∥ = ∥R+ γP(πm+1

t+1 · qmt+1)−R− γPmax
a

q∗t+1∥ (50)

= γ∥P(πm+1
t+1 · qmt+1)− Pmax

a
q∗t+1∥ (51)

≤ ∥P∥∥πm+1
t+1 · qmt+1 −max

a
q∗t+1∥ (52)

= 0 (53)

Since also ∥qm+1
t − q∗t ∥ ≥ 0, we have ∥qm+1

t − q∗t ∥ = 0 and qm+1
t = q∗t .876

Step (2): Pick Mt ≥ Mt+1 such that for all m ≥ Mt we have ∥πmt · qmt − maxa q
∗
t ∥ = 0 which877

must exist due to convergence to the argmax in finite time of this operator class. Thus, the Modified878

Induction Hypothesis holds for all states t if it holds for states t+ 1.879

B Additional Results880

B.1 Value improvement and over estimation881

Since (explicit) value-improvement results in greedier evaluation policies, it should directly increase882

the value targets (demonstrated empirically in Figure 1 center). The same can be expected to883

happen implicitly when the value improvement relies on implicit improvement operators such as IQL.884

Any increase to the value targets can be expected to interact with (and more specifically, increase)885

value over estimation bias. It is well known that overestimation bias can induce pseudo optimistic886

exploration because it is more likely to overestimate the value of unvisited state-actions. For that887

reason, while it can be detrimental in certain environments (as demonstrated by Fujimoto et al., 2018),888

it can be beneficial in others. Although Figure 1 suggests that it is possible for value improvement to889

show performance benefits that are decoupled from increase in overestimation bias, the performance890

benefits observed for implicit improvement with τ = 0.75 are much larger. We investigate the891

interaction between implicit improvement and over estimation in Figure 4. On the left, we plot final892

averaged evaluation return after 3 million environment interactions vs. τ . On the right, we plot final893

over estimation bias after 3 million environment interactions vs. τ . Generally as τ increases over894

estimation bias increases (Figure 4, right). On the other hand, the majority of the performance gain895

(return ≈ 175 vs. ≈ 0 of the baseline) is observed for values of τ ≤ 0.6 (Figure 4, left), for which896

none to negligible over estimation bias is observed.897

0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

Fin
al

 e
va

lu
at

io
n 

re
tu

rn

Final evaluation return vs. greedification  on humanoid-run

0.5 0.6 0.7 0.8 0.9

0

5

10

15

20

25

30

Fin
al

 v
al

ue
 e

st
im

at
io

n 
bi

as

Final overestimation bias vs. greedification  on humanoid-run

Figure 4: Mean and one standard error across 10 seeds. Left: Final evaluation vs. greedification
parameter τ for VI-TD3 with implicit improvement after 3m environment interactions. τ = 0.5 is
baseline TD3. Right: Final overestimation bias vs. τ after 3m environment interactions. The majority
of the performance increases are independent from an increase in over estimation bias.

23



B.2 Value Improved TD7898

0 1 2 3
1e6

0

250

500

750

1000

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn hopper-stand

0 1 2 3
1e6

0

200

400

hopper-hop

0 1 2 3
1e6

0

250

500

750

humanoid-stand

0 1 2 3
1e6

0

200

400

600

humanoid-walk

0 1 2 3
1e6

0

100

200

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn humanoid-run

0 1 2 3
1e6

60

80

100

120

140
fish-swim

0 1 2 3
1e6

0

100

200

300

acrobot-swingup

0 1 2 3
1e6

200

400

600

800

1000
quadruped-walk

0 1 2 3
Environment steps 1e6

200

400

600

800

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn quadruped-run

0 1 2 3
Environment steps 1e6

400

600

800

1000
walker-walk

0 1 2 3
Environment steps 1e6

200

400

600

800

walker-run

0 1 2 3
Environment steps 1e6

400

600

800

cheetah-run

td7
vi_td7 (expectile)

Figure 5: Mean and two standard errors across 10 seeds of VI-TD7 with expectile loss vs. TD7 on
the same tasks as Figure 3. Similar performance gains are observed for VI-TD7 in this domain.

Increased greedification of the acting policy .899

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps 1e6

0

200

400

600

800

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

hopper-stand

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps 1e6

0

50

100

150

200

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

hopper-hop

td3 (baseline)
td3 (pi=20)
vi_td3 (pg=20)

Figure 6: Mean and one standard error across 10 seeds in evaluation of VI-TD3 with Policy Gradient
as the value improvement operator, vs. TD3 with 20 repeating policy gradient steps in each update, vs.
baseline TD3. Increasing the number of acting-policy updates on the same batch does not contribute
to performance.

B.3 Increased value improvement vs. increased replay ratio900

If one is able to spend additional compute on gradient updates, an increased replay ratio is an attractive901

alternative to value improvement. In Figure 7 we compare VI-TD3 with increasing number of gradient902

steps to TD3 with increasing replay ratio. In line with similar findings in literature (Chen et al.,903

2021), replay ratio provides a very strong performance gain for small ratios. As the ratio increases,904

performance degrades, a result which the literature generally attributes to instability. The VI agent on905

the other hand does not degrade with increased compute. This suggests a reduced interaction between906

greedification of the evaluated policy and instability compared to that of the acting policy.907

24



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps 1e6

0

200

400

600

800

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

hopper-stand

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps 1e6

0

25

50

75

100

125

150

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

hopper-hop
td3 (baseline)
td3 (rr=4)
td3 (rr=8)
td3 (rr=15)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps 1e6

0

200

400

600

800

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

hopper-stand

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps 1e6

0

50

100

150

200

Av
er

ag
e 

ev
al

ua
tio

n 
re

tu
rn

hopper-hop
td3
vi_td3 (pg=5)
vi_td3 (pg=10)
vi_td3 (pg=20)

Figure 7: Mean and one standard errors across 10 seeds in evaluation of VI-TD3 with policy-gradient
based value improvement vs. td3 with increased replay ratio. Number of gradient steps are equated
across rr / VI agent pairs as a pseudo metric for compute. The performance of TD3 generally degrades
with increased replay ratio, in line with the results of Chen et al. (2021). In contrast, the performance
of VI-TD3 increases with compute, without access to additional mechanisms to address instability.

C Explicit and implicit Value Improved Actor Critic algorithms908

In Algorithms 3 and 4 on Page 25, modifications to baseline off-policy Actor Critic are marked in909

blue.

Algorithm 3 Explicit Off-policy Value-Improved Actor Critic

1: Initialize policy network πθ, Q network qϕ, Greedification Operators I1 and I2, replay buffer B
2: for each episode do
3: for each environment interaction t do
4: Act at ∼ πθ(st)
5: Observe st+1, rt
6: Add the transition (st, at, rt, st+1) to the buffer B
7: Sample a batch b from B of transitions of the form (st, at, rt, st+1)
8: Update the policy πθ(st)← I1(πθ, qϕ)(st),∀st ∈ b
9: Further improve the policy π′(st+1)← I2(πθ, qϕ)(st+1),∀st+1 ∈ b

10: Sample an action from the improved policy a ∼ π′(st+1),∀st+1 ∈ b
11: Compute the value targets y(st, at)← rt + γqϕ(st+1, a),∀(st, at, rt, st+1) ∈ b
12: Update qϕ with gradient descent and MSE loss using targets y

910

D Experimental Details911

D.1 Gradient-Based VI-TD3912

Gradient-based VI-TD3 copies the existing policy used to compute value targets (the target policy, in913

TD3) πθ′ into a new policy π′
θ′ . The algorithm executes N repeating gradient steps on π′

θ′ with respect914

to states st+1 ∈ b with the same operator TD3 uses to improve the policy (the deterministic policy915

gradient) and with respect to the same batch b. The value-improved target y(st, at) is computed in the916

same manner to the original target of TD3 but with the fresh greedified target network π′
θ′ . In TD3,917

that summarizes to sampling an action from a clipped Gaussian distribution with mean π′
θ′(st+1),918

variance parameter σ and clipped between (−β, β):919

a′ ∼ N (π′
θ′(st+1), σ).clip(−β, β) (54)

25



Algorithm 4 Implicit Off-policy Value-Improved Actor Critic

1: Initialize policy network πθ, Q network qϕ, Greedification Operator I1, implicit greedification
parameter τ and replay buffer B

2: for each episode do
3: for each environment interaction t do
4: Act at ∼ πθ(st)
5: Observe st+1, rt
6: Add the transition (st, at, rt, st+1) to the buffer B
7: Sample a batch b from B of transitions of the form (st, at, rt, st+1)
8: Update the policy πθ(st)← I1(πθ, qϕ)(st),∀st ∈ b
9: Sample an action from the policy a ∼ π(st+1),∀st+1 ∈ b

10: Compute the value targets y(st, at)← rt + γqϕ(st+1, a),∀(st, at, rt, st+1) ∈ b
11: Update qϕ with gradient descent and Lτ2 loss using targets y, see Supplement D.3

And using the action a′ to compute the value target in the Sarsa manner:920

y(st, at) = rt + γ min
i∈{1,2}

qϕi
(st+1, a

′),∀(st, at, rt, st+1) ∈ b (55)

The policy used to compute the value targets πθ′ is then discarded.921

D.2 Sample-based argmax922

The sampling based argmax (approximate) greedification operator acts as follows: First, sample N923

actions from the evaluation policy a1, . . . , aN ∼ π. In TD3, we use the same policy used to compute924

value targets N (πθ′(st+1), σ).clip(−β, β), see Appendix D.1. Second, find the action with highest925

q value: amax = argmaximinϕj qϕj (st+1, ai). Finally, the improved policy used to compute the926

improved targets is N (amax, σ).clip(−β, β), in the manner of TD3. In our experiments, N = 128927

samples were used.928

D.3 Implicit Policy Improvement with Expectile Loss929

The expectile-loss Lτ2 proposed by Kostrikov et al. (2022) as an implicit policy improvement operator930

for continuous-domain Q-learning can be formulated as follows: when y(st, at) > q(st, at) (the931

target is greater than the prediction), the loss equals τ(y(st, at) − q(st, at))
2. When y(st, at) <932

q(st, at) (the target is smaller than the prediction) the loss equals (1− τ)(y(st, at)− q(st, at))
2. If933

τ = 0.5, this loss is equivalent to the baseline L2 loss. Intuitively, when τ > 0.5 the agent favors934

errors where the prediction should increase, over predictions where it should reduce. I.e. the agent935

favors targets where π′(st+1) (the implicit policy evaluated on the next state) chooses "better" actions936

than the current policy, directly approximating the value of an improved policy.937

By imposing this loss on the value network, in stochastic environments the network may learn938

to be risk-seeking, by implicitly favoring interactions st, at, rt, st+1 where the observed rt was939

large or the state st+1 was favorable. This is addressed by Kostrikov et al. (2022) by learning an940

additional vψ network that is trained with the expectile loss, while the q network is trained with941

SARSA targets rt + γvψ(st+1) and the regular L2 loss, while the vψ network is trained with targets942

y(st, at) = qϕ(st, at) and the expectile loss. In deterministic environments this is not necessary943

however, and in our experiments we have directly replaced the L2 loss on the value qϕ with the944

expectile loss.945

The value target y(st, at) remained the unmodified target used by TD3 / SAC respectively.946

D.4 Evaluation Method947

We plot the mean and standard error for evaluation curves across multiple seeds. Evaluation curves948

are computed as follows: after every n = 5000 interactions with the environment, m = 3 evaluation949

episodes are ran with the latest network of the agent (actor and critic). The score of the agent is the950

return averaged across the m episodes. The actions in evaluation are chosen deterministically for951

TD3, SAC and TD7 with the mean of the policy (the agents use Gaussian policies). The evaluation952

episodes are not included in the agent’s replay buffer or used for training, nor do they count towards953

the number of interactions.954

26



D.5 Compute955

The experiments were run on the internal [anonymized for review] cluster, using any of the following956

GPU architectures: NVIDIA Quadro K2200, Tesla P100, GeForce GTX 1080 Ti, GeForce RTX 2080957

Ti, Tesla V100S and Nvidia A-40. Each seed was ran on one GPU, and was given access to 6GB of958

RAM and 2 CPU cores. Total training wall-clock time averages were in the range of 0.5 to 2 hours959

per 106 environment steps, depending on GPU architecture, the baseline algorithm and VI variations.960

For example, baseline TD3 wall-clock time averages were roughly 1.25 hours per 106 environment961

steps on average. The total wall clock time over all experiments presented in this paper (main results,962

baselines and ablations) is estimated at ≈ 12000 wall-clock hours of the compute resources detailed963

above: ≈ 7320 for the results in the paper and ≈ 4300 for the ablations in the appendix. Additional964

experiments that are not included in the paper were run in the process of implementation and testing.965

D.6 Implementation & Hyperparemeter Tuning966

Our implementation of TD3 and SAC relies on the popular code base CleanRL (Huang et al., 2022).967

CleanRL consists of implementations of many popular RL algorithms which are carefully tuned to968

match or improve upon the performance reported in the original paper. The implementations of TD3969

and SAC use the same hyperparameters as used by the authors (Fujimoto et al. (2018) and Haarnoja970

et al. (2018a) respectively), with the exception of the different learning rates for the actor and the971

critic in SAC, which were tuned by CleanRL.972

For the TD7 agent, we use the original implementation by the authors (Fujimoto et al., 2023), adapting973

the action space to the DeepMind control’s in the same manner as CleanRL’s implementation of TD3.974

Additionally, a non-prioritized replay buffer has been used for TD7 which was used by the TD3 and975

SAC agents as well. The hyperparameters are the same as used by the author.976

The VI-variations of all algorithms use the same hyperparameters as the baseline algorithms without977

any additional tuning, with the exception of grid search for the greedification parameters τ presented978

in Figure 2.979

D.7 Network Architectures980

The experiments presented in this paper rely on standard architectures for every baseline. TD3 and981

SAC used the same architecture, with the exception that SAC’s policy network predicts a mean of a982

Gaussian distribution as well as standard deviation, while TD3 predicts only the mean. TD7 used the983

same architecture proposed and used by Fujimoto et al. (2023).984

TD3 and SAC:985

Actor: 3 layer MLP of width 256 per layer, with ReLU activations on the hidden layers. The final986

action prediction is passed through a tanh function.987

Critic: 3 layer MLP of width 256 per layer, with ReLU activations on the hidden layers and no988

activation on the output layer.989

TD7: Has a more complex architecture, which is specified in (Fujimoto et al., 2023).990

D.8 Hyperparemeters991

TD3 SAC TD7
exploration noise 0.1 exploration noise 0.1

Target policy noise 0.2 Target policy noise 0.2
Target smoothing 0.005 Target smoothing 0.005

noise clip 0.5 auto tuning of entropy True noise clip 0.5
Critic learning rate 1e-3 Critic learning rate 3e-4

Learning rate 3e-4 Policy learning rate 3e-4 Policy learning rate 3e-4
Policy update frequency 2 Policy update frequency 2 Policy update frequency 2

γ 0.99 γ 0.99 γ 0.99
Buffer size 106 Buffer size 106 Buffer size 106

Batch size 256 Batch size 256 Batch size 256
learning start 104 learning start 104 learning start 104

evaluation frequency 5000 evaluation frequency 5000 evaluation frequency 5000
Num. eval. episodes 3 Num. eval. episodes 3 Num. eval. episodes 3

27


	Introduction
	Background
	Value Improved Generalized Policy Iteration Algorithms
	Value Improved Actor Critic Algorithms
	Related Work
	Conclusions
	Proofs
	Theorem 2: policy improvement is not enough
	Policy improvement in continuous action spaces

	Policy Improvement operators that are not Greedification operators
	Necessary greedification operators may not be sufficient
	Deterministic greedification operators are lower-bounded greedification operators
	The operator Igmz is a Limit-Sufficient Greedification operator
	Igmz can be formulated as an insufficient-greedification operator
	Lower Bounded Greedification operators  Limit-Sufficient Greedification operators
	The greedy operator is both a limit-sufficient as well as a lower-bounded greedification operator
	Proof for Theorem 3 for k=1 and I2 the identity operator
	Notation
	Complete proof

	Extension of the Proof for Theorem 3 to k 1 and I2 the identity operator
	Extension for I2 a general improvement operator
	Convergence of Algorithm 2 with lower bounded greedification operators
	Lower bounded greedification converges to an `3́9`42`"̇613A``45`47`"603Aargmax policy in finite steps
	Modified Induction for Bounded Greedification


	Additional Results
	Value improvement and over estimation
	Value Improved TD7
	Increased value improvement vs. increased replay ratio

	Explicit and implicit Value Improved Actor Critic algorithms
	Experimental Details
	Gradient-Based VI-TD3
	Sample-based `3́9`42`"̇613A``45`47`"603Aargmax
	Implicit Policy Improvement with Expectile Loss
	Evaluation Method
	Compute
	Implementation & Hyperparemeter Tuning
	Network Architectures
	Hyperparemeters


