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ABSTRACT

The debate between self-interpretable models and post-hoc explanations for black-
box models is central to Explainable AI (XAI). Self-interpretable models, such
as concept-based networks, offer insights by connecting decisions to human-
understandable concepts but often struggle with performance and scalability. Con-
versely, post-hoc methods like Shapley values, while theoretically robust, are
computationally expensive and resource-intensive. To bridge the gap between
these two lines of research, we propose a novel method that combines their
strengths, providing theoretically guaranteed self-interpretability for black-box
models without compromising prediction accuracy. Specifically, we introduce a
parameter-efficient pipeline, AutoGnothi, which integrates a small side network
into the black-box model, allowing it to generate Shapley value explanations with-
out changing the original network parameters. This side-tuning approach signif-
icantly reduces memory, training, and inference costs, outperforming traditional
parameter-efficient methods, where full fine-tuning serves as the optimal baseline.
AutoGnothi enables the black-box model to predict and explain its predictions
with minimal overhead. Extensive experiments show that AutoGnothi offers ac-
curate explanations for both vision and language tasks, delivering superior com-
putational efficiency with comparable interpretability.
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Figure 1: Different paradigms towards XAI. (a) The ideal paradigm for XAI envisions using
white-box models for prediction, which are inherently self-interpretable by design but hard to
achieve. (b) The previous paradigm involves post-hoc explanations of black-box models by training
a separate, heavy-weight explainer. (c) We propose a novel parameter-efficient paradigm, AutoG-
nothi, which fine-tunes the black-box model to make it self-interpretable.

1 INTRODUCTION

Explainable AI (XAI) has gained increasing significance as AI systems are widely deployed in both
vision (Dosovitskiy, 2020; Radford et al., 2021; Kirillov et al., 2023) and language domains (Devlin
et al., 2019; Brown, 2020; Achiam et al., 2023). Ensuring interpretability in these systems is vital for
fostering trust, ensuring fairness, and adhering to legal standards, particularly for complex models
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such as transformers. As illustrated in Figure 1(a), the ideal paradigm for XAI involves designing
inherently transparent models that deliver superior performance. However, given the challenges
in achieving this, current XAI methodologies can be broadly classified into two main categories:
developing self-interpretable models and providing post-hoc explanations for black-box models.

Designing Self-Interpretable Models: Several notable efforts have focused on designing self-
interpretable models that are grounded in solid mathematical foundations or learned concepts.
Among these, concept-based networks have emerged as a representative approach linking model de-
cisions to predefined, human-understandable concepts (Kim et al., 2018; Koh et al., 2020; Alvarez-
Melis & Jaakkola, 2018). However, incorporating hand-crafted concepts often introduces a trade-off
between interpretability and performance, as these models typically compromise the performance
of the primary task. Moreover, such methods are often closely tied to specific architectures, which
limits their scalability and transferability to other tasks. Furthermore, the explanations generated
by concept-based models often lack a rigorous theoretical foundation, raising concerns about their
reliability and overall trustworthiness.

Model Method #Params FLOPs Memory

ViT-T
ViT-Shapley 6.72M 2.62G 103.05MB

AutoGnothi 0.15M 0.06G 24.02MB

ViT-S
ViT-Shapley 26.41M 10.36G 404.10MB

AutoGnothi 0.61M 0.23G 91.12MB

ViT-B
ViT-Shapley 104.72M 41.17G 1600.21MB

AutoGnothi 2.42M 0.91G 366.51MB

ViT-L
ViT-Shapley 336.92M 132.60G 5144.05MB

AutoGnothi 8.24M 3.24G 1285.87MB

T

S

B

L

T
S

B

L

Ours

Covert et al.

Figure 2: Explanation quality on the Ima-
geNette dataset using different ViTs. Our
AutoGnothi significantly reduces the number
of trainable parameters, computational costs
(FLOPs), and training GPU memory storage
without compromising explanation quality.

Explaining Black-Box Models: Given the chal-
lenges of designing self-interpretable models for
practical applications, post-hoc explanations for
black-box models have become a widely adopted al-
ternative. Among these, Shapley value-based meth-
ods (Shapley, 1953) are particularly valued for their
theoretical rigor and adherence to four principled
axioms (Young, 1985). However, calculating ex-
act Shapley values involves evaluating all possi-
ble feature combinations, which scales exponentially
with the number of features, making direct compu-
tation impractical for models with high-dimensional
inputs. To alleviate this, methods like Fast-
SHAP (Jethani et al., 2021) and ViT-Shapley (Covert
et al., 2022) employ proxy explainers that estimate
Shapley values during inference, significantly reduc-
ing the number of evaluations needed. While these
approaches reduce some computational costs, train-
ing a separate explainer remains resource-intensive.
For example, training a Vision Transformer (ViT) explainer requires more than twice the train-
ing GPU memory compared to the ViT classifier itself. Moreover, solely depending on post-hoc
explanations for black-box models is not ideal in high-stakes decision-making scenarios, where im-
mediate and reliable interpretability is required (Rudin, 2019).

To bridge the gap between existing methods and address the aforementioned challenges, the core ob-
jective of our research is to achieve theoretically guaranteed self-interpretability in advanced neu-
ral networks without sacrificing prediction performance, while minimizing training, memory, and
inference costs. To this end, we propose a novel paradigm, AutoGnothi, which leverages parameter-
efficient transfer learning (PETL) to substantially reduce the high training, memory, and inference
costs associated with obtaining explainers. As depicted in Figure 3(a), traditional model-specific
methods require two training stages: (i) fine-tuning a pre-trained model into a surrogate model, and
(ii) training an explainer using the surrogate model. During inference, the original model is used
for prediction, while a separate explainer network generates explanations, leading to two inference
passes and double the storage overhead. In contrast, AutoGnothi utilizes side-tuning to reduce both
training and memory costs, as shown in Figure 3(b). By incorporating an additive side branch paral-
lel to the pre-trained model, we efficiently obtain a surrogate side network through side-tuning. We
then apply the same strategy to develop the explainer side network, enabling simultaneous predic-
tion and explanation in a single inference step. An illustrative example comparing the efficiency of
AutoGnothi with previous methods is presented in Figure 2.

More importantly, AutoGnothi achieves self-interpretability without compromising prediction accu-
racy. Unlike a simple application of PETL, where full fine-tuning is considered the optimal baseline,
our approach goes further. Experimental results show that relying on full fine-tuning to achieve self-
interpretability often leads to degraded performance in either prediction or explanation tasks. In
contrast, AutoGnothi maintains prediction accuracy while achieving self-interpretability by lever-
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Figure 3: Overview of AutoGnothi compared to prior work. (a) ViT-Shapley (Covert et al., 2022)
fully fine-tunes the black-box model to create a surrogate model, then trains a separate explainer
based on the surrogate, which is resource-intensive. (b) We employ side-tuning to efficiently obtain
both the black-box model and explainer, significantly reducing training costs. AutoGnothi uses
a single model to simultaneously generate predictions and explanations, lowering inference costs
by leveraging shared features. In contrast, ViT-Shapley needs to load two models for prediction
and explanation, respectively, and infers two times. AutoGnothi enables self-interpretability for an
arbitrary black-box model. We ignore the positional encoding associated with the pipeline.

aging the intrinsic correlation between prediction and explanation. Beyond classical PETL, which
primarily focuses on training efficiency, AutoGnothi also enhances inference efficiency through self-
interpretation while keeping its faithfulness (see Section 4.2 for further discussion). Our key contri-
butions are as follows:

1. Efficient Explanation: We introduce a novel PETL pipeline, AutoGnothi, which enables any
black-box models, e.g., transformers, to become self-interpretable without affecting the original
task parameters. By integrating and fine-tuning an additive side network, suprisingly surpasses
previous methods in training, inference, and memory efficiency.

2. Self-interpretability: We achieve theoretically guaranteed self-interpretability for the black-box
model with the Shapley value, without any influence on the original model’s prediction accuracy.

3. Broad Applications on both Vision and Language Models: We conducted experiments on
the most widely used models, including ViT (Dosovitskiy, 2020) for image classification and
BERT (Devlin et al., 2019) for sentimental analysis, showing that our methods outperform well
on explanation quality. Specifically, for the ViT-base model pre-trained on ImageNette, our surro-
gates achieve a 97% reduction in trainable parameters and 72% reduction in training memory with
comparable accuracy. For explainers, we achieve a 98% reduction in trainable parameters, 77%
reduction in training memory. For generating explanation, AutoGnothi achieves 54% reduction in
inference computation, 44% reduction in inference time, and a total parameter reduction of 54%.

2 RELATED WORK

Explaining Black-Box Models with Shapley Values: Among post-hoc explanation methods, the
Shapley value (Shapley, 1953) is widely recognized as a faithful and theoretically sound metric for
feature attribution, uniquely satisfying four key axioms: efficiency, symmetry, linearity, and dummy.
However, computing Shapley values is computationally expensive, requiring O(2n) operations to
calculate a single Shapley value for one feature in a set of size n. To alleviate this computational
burden, various approaches have been proposed to expedite Shapley value computation, which can
be broadly divided into model-agnostic and model-specific methods (Chen et al., 2023a). Model-
agnostic techniques, such as KernelSHAP (Lundberg, 2017) and its enhancements (Covert & Lee,
2020), approximate Shapley values by sampling subsets of feature combinations. Nevertheless,
when the feature set is large, the sampling cost remains prohibitive, and reducing this cost compro-
mises the accuracy of the explanations, as fewer samples lead to less reliable estimates of feature
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importance. Conversely, model-specific methods, such as FastSHAP (Jethani et al., 2021) and ViT-
Shapley (Covert et al., 2022), employ a trained proxy explainer to accelerate the estimation during
inference, though these methods still involve significant training costs to develop the explainer.

Parameter Efficient Transfer Learning (PETL): PETL aims to achieve the performance of full
fine-tuning while significantly reducing training costs by updating only a small subset of parameters.
In this context, Adapters (Houlsby et al., 2019; Chen et al., 2023b) introduce trainable bottleneck
modules into transformer layers, enabling models to deliver competitive results with minimal pa-
rameter adjustments. Another widely adopted method, LoRA (Hu et al., 2021), applies low-rank
decomposition to the attention layer weights. Our work aligns more closely with side-tuning meth-
ods, where Side-Tuning (Zhang et al., 2020) integrates an auxiliary network that merges its repre-
sentations with the backbone at the final layer, demonstrating effectiveness across diverse tasks in
models like ResNet and BERT. LST (Sung et al., 2022) further improves this approach by reducing
memory consumption through a ladder side network design. However, none of these methods ex-
plore the transfer of interpretability from the main model to the side network, leaving this a largely
unexplored area in side-tuning and PETL research.

3 BACKGROUND

3.1 SHAPLEY VALUES

The Shapley value, originally introduced in game theory (Shapley, 1953), provides a method to
fairly distribute rewards among players in coalitional games. In this framework, a set function
assigns a value to any subset of players, corresponding to the reward earned by that subset. In
machine learning scenarios, input variables are typically regarded as players, and a deep neural
network (DNN) serves as the value function, assigning importance (saliency) to each input variable.

Let s ∈ {0, 1}d be an indicator vector representing a specific variable subset for a sample x =
[x1, x2, . . . , xd]

⊤ ∈ Rd. Specifically, xs denotes the variables indicated by s, while those not in s
are replaced by a masked value (e.g., a baseline value). Let ei ∈ Rd denote the vector with a one
in the i-th position and zeros elsewhere. For a game involving d players—or equivalently, a DNN
v : {0, 1}d → R with d input variables—the Shapley values are denoted by ϕv(x1), . . . , ϕv(xd).
Each ϕv(xi) ∈ R represents the value attributed to the i-th input variable xi in the sample x. The
Shapley value ϕv(xi) is computed as follows:

ϕv(xi) =
1

d

∑
s:si=0

(
d− 1

1⊤s

)
(v(xs+ei)− v(xs)) . (1)

Intuitively, Eq. (1) captures the average marginal contribution of the i-th player to the overall reward
by considering all possible subsets in which player i could be included. Shapley values satisfy four
key axioms: linearity, dummy player, symmetry, and efficiency (Young, 1985). These axioms ensure
a fair and consistent distribution of the total reward among all players.

3.2 MODEL-BASED ESTIMATION OF SHAPLEY VALUES

Calculating Shapley values to explain individual predictions presents substantial computational chal-
lenges (Chen et al., 2023a). To mitigate this burden, these values are typically approximated using
sampling-based estimators, such as those in (Lundberg, 2017; Covert & Lee, 2020), though the
sampling cost remains considerable. Recently, a more efficient model-based approach, introduced
in (Jethani et al., 2021), accelerates the approximation by training a proxy explainer to compute
Shapley values through a single model inference. However, this method has not been validated on
advanced neural architectures such as transformers.

Building on this, ViT Shapley (Covert et al., 2022) was introduced to train a ViT explainer that
interprets a pre-trained ViT model f . As shown in Figure 3(a), the learning process of the explainer
consists of two stages. In stage 1, a surrogate model gβ with parameters β is generated by fine-
tuning the pre-trained ViT classifier f to handle partial information, which is used for calculating
the masked variables in the Shapley value. This involves aligning the output distributions of the
surrogate model gβ with the classifier f . The surrogate is optimized with the following objective:

Lsurr(β) = E
x∼p(x),s∼U(0,d)

[DKL (f(x)∥gβ(xs))] , (2)

4
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Figure 4: Training performance of surrogate and explainer models. (a) Prediction accuracy
of masked inputs for the original classifier, the surrogate model trained with ViT Shapley (Covert
et al., 2022), and our AutoGnothi. AutoGnothi shows greater robustness as the number of masked
patches increases. For each mask size, we randomly sampled 100 images and generated 10 random
masks. The curve represents the average prediction probability. (b) Explanation quality, measured
by insertion and deletion metrics, for various explanation methods. We randomly sampled 1,000
images and averaged the prediction probabilities to assess insertion and deletion performance. All
experiments were conducted on the ImageNette dataset using the ViT-base model.

where U(0, d) is a uniform distribution for sampling s. Then, in stage 2, an explainer ϕθ with
parameters θ is trained to generate explanations of the predictions of the black-box ViT f , utilizing
the surrogate model gβ . This optimization method was first proposed by (Charnes et al., 1988) and
later applied in (Lundberg, 2017; Jethani et al., 2021; Covert et al., 2022). Let p(x) and p(x, y)
denote the distributions of input and input-label pairs, respectively. Specifically, the loss for training
the explainer is:

Lexp(θ) = E
(x,y)∼p(x,y),s∼q(s)

[(
gβ(xs|y)− gβ(x0|y)− s⊤ϕθ(x, y)

)2]
(3)

s.t. 1⊤ϕθ(x, y) = gβ(x1|y)− gβ(x0|y) ∀(x, y), (Efficiency)

where the constraint in the loss function is enforced to satisfy the efficiency axiom of the Shapley
value, and q(s) is defined with the Shapley kernel (Charnes et al., 1988) as follows:

q(s) ∝ d− 1(
d

1⊤s

)
(1⊤s)(d− 1⊤s)

∀s : 0 < 1⊤s < d, (Shapley Kernel)

In addition, the ViT explainer ϕθ has the same number of multi-head self-attention (MSA) layers as
the feature backbone, and includes three additional MSA layers and a fully-connected (FC) layer as
the explanation head. By learning the explainer ϕθ to estimate Shapley values, the computational
cost is reduced to a constant complexity of O(1).

4 METHOD

4.1 EFFICIENTLY TRAINING THE SHAPLEY VALUE EXPLAINER FOR BLACK-BOX MODELS

As discussed in Section 3.2, existing methods for approximating Shapley values require two stages.
First, the black-box model f is fully fine-tuned to obtain a surrogate model g with the same trainable
parameters and memory cost as f . Then, an explainer ϕ is fully trained using g. These stages at least
double the training, memory, and inference costs compared to using the black-box model f alone,
making these methods impractical for large models.

To improve training, memory, and inference efficiency, we propose a side-tuning pipeline called
AutoGnothi, as shown in Figure 3(b). Building on ideas from PETL, we adapt Ladder Side-
Tuning (LST) (Sung et al., 2022) by incorporating an additive side network. This side network
separates the trainable parameters from the backbone model f and adapts the model to a different
task. It is a lightweight version of f , with weights and hidden state dimensions scaled by a factor
of 1/r, where r is a reduction factor (e.g., r = 4 or 8). For instance, if the backbone f has a 768-
dimensional hidden state, then with r = 8, the side network has a hidden state dimension of 96.
By computing gradients solely for the side network, this design avoids a backward pass through the
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Table 1: Comparison of training and memory efficiency across different models. We evaluated
memory consumption and trainable parameters for previous methods (Covert et al., 2022) and Au-
toGnothi across a range of models and tasks. For surrogate models, we measured classification
accuracy, while for explainers, we assessed explanation quality using insertion and deletion met-
rics. It is important to note that prediction accuracy for the classifier is evaluated on normal inputs,
whereas for the surrogate model, accuracy is measured on masked inputs.

Dataset ImageNette MURA Pet Yelp

Model ViT-T ViT-S ViT-B ViT-L ViT-B ViT-B BERT-B

Classifier
to be explained

Memory (MB) 84.90 331.80 1311.61 4631.25 1311.50 1311.93 1676.59
#Params (M) 5.53 21.67 85.81 303.31 85.80 85.83 109.48
Accuracy (↑) 0.9791 0.9944 0.9944 0.9964 0.8186 0.9469 0.9010

Surrogate
(Covert et al.)

Memory (MB) 84.90 331.80 1311.61 4631.25 1311.50 1311.93 1676.59
#Params (M) 5.53 21.67 85.81 303.31 85.80 85.83 109.48
Accuracy (↑) 0.9822 0.9934 0.9939 0.9975 0.8233 0.9469 0.9490

Surrogate
(AutoGnothi)

Memory (MB) 23.83 (-72%) 92.38 (-72%) 363.64 (-72%) 1280.80 (-72%) 438.10 (-67%) 363.76 (-72%) 532.71 (-68%)
#Params (M) 0.14 (-97%) 0.56 (-97%) 2.23 (-97%) 7.91 (-97%) 7.11 (-92%) 2.23 (-97%) 7.15 (-93%)
Accuracy (↑) 0.9791 0.9939 0.9959 0.9959 0.8139 0.9422 0.9280

Explainer
(Covert et al.)

Memory (MB) 103.05 404.10 1600.21 5144.05 1599.79 1601.47 1955.87
#Params (M) 6.72 26.41 104.72 336.92 104.69 104.80 127.79
Insertion (↑) 0.9824 0.9828 0.9839 0.9843 0.9319 0.9422 0.9620
Deletion (↓) 0.5243 0.6865 0.8121 0.7646 0.4199 0.4958 0.1725

Explainer
(AutoGnothi)

Memory (MB) 24.02 (-77%) 93.12 (-77%) 366.51 (-77%) 1285.87 (-75%) 449.38 (-72%) 366.75 (-77%) 685.32 (-65%)
#Params (M) 0.15 (-98%) 0.61 (-98%) 2.42 (-98%) 8.24 (-98%) 7.85 (-93%) 2.43 (-98%) 17.15 (-87%)
Insertion (↑) 0.9802 0.9791 0.9874 0.9837 0.9292 0.9384 0.9588
Deletion (↓) 0.5097 0.6667 0.7954 0.6570 0.4116 0.4888 0.1004

main backbone, improving training and memory efficiency. The formulation combines the frozen
pre-trained backbone and the side-tuner with learnable parameters β as:

ymain = f︸︷︷︸
frozen

(x), ysurr = gβ︸︷︷︸
trainable

(xs), ϕexp = ϕθ︸︷︷︸
trainable

(x), (4)

where gβ is trained by minimizing the loss in Eq.(2), and ϕθ is trained by minimizing the loss in
Eq.(3), respectively.

4.1.1 OBTAINING THE SURROGATE

To obtain the surrogate model, AutoGnothi applies LST directly to the black-box model f , utilizing
the additive side branch g with parameters β to predict the masked inputs xs of sample x. Let f (i)

and g(i) denote the i-th MSA block of the main model f and the surrogate branch g, respectively.
Assume there are N MSA blocks in total. Let zmain

1 denote the output for masked input xs of the
first MSA layer f (1) of f , i.e., zmain

1 = f (1)(xs). The forward process of the frozen main model f
with the side-tuning branch g is:

zmain
i = f (i)(zmain

i−1 ), zsurr
i = g(i)(FC(i)(zmain

i )). (5)

After N MSA blocks, an FC head is applied to generate the prediction for the partial information,
i.e., ysurr = FChead(z

surr
N )). The convergence of the surrogate model is analyzed as follows:

Theorem 1 (Proof in Appendix B). Let the surrogate model be trained using gradient descent with
step size α for t iterations. The expected KL divergence between the original model’s predictions
f(x) and the surrogate model’s predictions gβ(xs) is upper-bounded by:

Ex∼p(x),s∼U(0,d) [DKL (f(x)∥gβ(xs))] ≤
1

2µ
(1− µα)t (Lsurr(β0)− L⋆

surr) , (6)

where β0 is the initial parameter value, L⋆
surr is the optimal value during optimization, and µ is the

minimal eigenvalue of the Hessian of Lsurr.

Theorem 1 establishes a theoretical guarantee that a side-tuned surrogate can achieve performance
comparable to that of a fully trained surrogate. The detailed proof is provided in Appendix B.

Figure 3(b) shows the pipeline of obtaining the surrogate in stage 1. An intuitive performance
comparison of prediction models is presented in Figure 4(a). AutoGnothi’s surrogate surpasses the
original classifier in terms of prediction accuracy and matches the performance of (Covert et al.,
2022) when handling partial information, but with only 3% trainable parameters. Additionally,
AutoGnothi’s surrogate exhibits more robust predictions as the number of masked inputs increases.
A detailed comparison of the training and memory costs on different models is provided in Table 1.
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Table 2: Inference efficiency comparison of various models. We assessed the computational
cost (FLOPs), total parameters, and inference time for different methods. For the baseline
method (Covert et al., 2022), we calculated these values separately for the classifier and explainer,
and then combined them. In contrast, for AutoGnothi, we computed these values directly from our
self-interpretable models, who can generate both predictions and explanations simultaneously.

Dataset ImageNette MURA Pet Yelp

Model ViT-T ViT-S ViT-B ViT-L ViT-B ViT-B BERT-B

Classifier +
Explainer

(Covert et al.)

FLOPs (G) 4.78 18.86 74.90 251.96 74.88 74.93 213.51
Time (ms) 19.7 39.0 94.9 310.3 100.3 100.2 166.90

#Params (M) 12.25 48.08 190.53 640.23 190.49 190.63 237.27

Self-Interpretable
Model

(AutoGnothi)

FLOPs (G) 2.22 (-54%) 8.73 (-54%) 34.67 (-54%) 122.60 (-51%) 36.81 (-51%) 34.67 (-54%) 116.66 (-45%)
Time (ms) 15.4 (-22%) 23.0 (-41%) 52.9 (-44%) 179.1 (-42%) 56.7 (-43%) 57.0 (-43%) 118.55 (-29%)

#Params (M) 5.68 (-54%) 22.28 (-54%) 88.22 (-54%) 311.55 (-51%) 93.65 (-51%) 88.25 (-54%) 126.63 (-47%)

4.1.2 OBTAINING THE EXPLAINER

For the explainer model, AutoGnothi uses a similar LST feature backbone as in the surrogate model
g, consisting of N MSA blocks for feature extraction. Let ϕ(i) represent the i-th MSA block of the
explainer branch ϕ. In addition to the lightweight backbone blocks in the side branch, we add M
extra FC layers as the explanation head. Together, the side network ϕ generates explanations based
on the backbone features from the main branch. Let zmain

1 denote the output for input x from the first
MSA layer f (i) of the main branch f , i.e., zmain

1 = f (1)(x). The forward process of the explainer is:

zmain
i = f (i)(zmain

i−1 ), zexp
i = ϕ(i)(FC(i)(zmain

i )) ∀i ∈ {1, . . . , N},

ϕexp(x) = FC(M)
head

(
FC(M−1)

head

(
. . .

(
FC(1)

head

(
zexp
N

))))
,

(7)

where the main branch f remains uncontaminated. We provide a theoretical guarantee for the con-
vergence of the trained side branch ϕ as follows:

Theorem 2 (Proof in Appendix B). Let ϕv(x|y) denote the exact Shapley value for input-output pair
(x, y) in game v. The expected regression loss Lexp(θ) upper bounds the Shapley value estimation
error as follows,

Ep(x,y)

[∣∣∣∣ϕθ(x, y)− ϕv(x|y))∣∣∣∣2] ≤
√
2Hd−1

(
Lexp(θ)− L⋆

exp

)
, (8)

whereL⋆
exp represents the optimal loss achieved by the exact Shapley values, andHd−1 is the (d−1)-

th harmonic number.

Theorem 2 provides a theoretical guarantee that a side-tuned explainer can achieve performance on
par with a fully trained explainer. The complete proof is presented in Appendix B.

Figure 3(b) shows the pipeline of obtaining the explainer in stage 2. We evaluated the explanation
quality of AutoGnothi against various baselines, as shown in Figure 4(b). AutoGnothi achieved the
highest insertion and lowest deletion scores among 12 explanation methods, demonstrating superior
explanation quality. Compared to (Covert et al., 2022), we reduced the trainable parameters for
explainers by 98% while maintaining comparable or even superior interpretability. Table 1 provides
detailed comparisons of training and memory efficiency for different models.

4.1.3 GENERATING EXPLANATION FOR BLACK-BOX MODELS

After obtaining the explainer, we now detail the explanation procedure. In most post-hoc explana-
tion methods (Selvaraju et al., 2020; Chattopadhay et al., 2018; Binder et al., 2016; Covert et al.,
2022), predictions and explanations must be computed separately for a single input. For instance,
as illustrated in Figure 3(a), two separate inferences are required to explain a single prediction. In
contrast, as shown in Figure 3(b), AutoGnothi generates both predictions and explanations simul-
taneously, needing only one inference. To evaluate this efficiency, we measured inference time,
computational cost (FLOPs), and total parameters required to generate predictions and explanations
for different methods. The comparison of inference efficiency is highlighted in Table 2.
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4.2 DIFFERENCE BETWEEN AutoGnothi AND PREVIOUS PETL METHODS

In this section, we provide an empirical analysis of why AutoGnothi outperforms previous PETL
approaches. We highlight that AutoGnothi is not a simple extension of classical PETL, where full
fine-tuning is typically the optimal baseline. Additionally, AutoGnothi exploits the intrinsic corre-
lation between the prediction task and its explanation, enabling black-box models to become self-
interpretable without sacrificing prediction accuracy. We elaborate on these two points below.

Full fine-tuning poses challenges for achieving self-interpretability and is not the optimal base-
line for AutoGnothi. For classical PETL, the goal is often to match the performance of fully fine-
tuned models on standard tasks (Houlsby et al., 2019; Chen et al., 2023b; Hu et al., 2021; Mercea
et al., 2024). However, in XAI scenarios, the challenge shifts: it becomes difficult, if not impossible,
to train a model that balances both prediction accuracy and explanation quality (Arrieta et al., 2020;
Gunning et al., 2019; Došilović et al., 2018). In fact, fine-tuning models to adapt interpretability
without forgetting pre-trained knowledge can be difficult (Li & Hoiem, 2017). Additionally, full
fine-tuning the original model also puts us in the Theseus’s Paradox: we won’t be sure if we are ex-
plaining the very same model anymore. Even if full fine-tuning were practical, it would contradict
the goal of interpreting the pre-trained model. In contrast, AutoGnothi pipeline addresses this issue
by freezing the primary model and training only a side network to generate explanations, offering
an efficient solution that enables self-interpretability without degrading prediction performance.

Figure 5: Other pipelines to
achieve the self-interpretability
through the full fine-tuning. (a)
Freeze the transformer encoder
and prediction head, learning only
the explanation head. (b) Simulta-
neously learn the transformer en-
coder, and both task heads. (c)
Comparison of classification and
explanation performance between
different pipelines for ViT-base.
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Figure 6: Explanation of why the Duo pipeline underperforms
compared to AutoGnothi. (a) The full fine-tuning strategy em-
ployed by Duo is not the optimal baseline for AutoGnothi due
to significant gradient conflicts between the prediction and ex-
planation tasks. This conflict results in degraded performance,
raising concerns about whether the explanation truly pertains to
the same model. Note that gradient similarity can only be mea-
sured for the Duo pipeline, as other methods freeze the predic-
tion backbones. (b) In contrast, AutoGnothi exhibits a stronger
correlation between features of the prediction and explanation
tasks. We measured the feature similarity with CKA.

Building on prior work that highlights the challenges of achieving self-interpretability through full
fine-tuning, we conducted experiments to further explore this issue. As depicted in Figure 5(a)(b),
we introduce two additional pipelines, Froyo and Duo. Froyo adds an explanation head while keep-
ing the transformer encoder and prediction head frozen to preserve prediction accuracy. In contrast,
Duo jointly learns both the prediction task and its explanation. Both pipelines use the same encoder,
prediction head, and explanation head architectures as described in (Covert et al., 2022).

We performed experiments using ViT-base model trained on the ImageNette dataset. Our findings
show that the Froyo pipeline underperforms due to the limited trainable parameters in the explanation
head, resulting in degraded explanation quality. As illustrated in Figure 5(c), this led to a reduction
in insertion by 0.038 and an increase in deletion by 0.141, despite no impact on prediction accuracy.

For the Duo pipeline, we observed a 4.0% decline in prediction accuracy on the ViT-base model,
accompanied by a reduction in insertion by 0.041 and an increase in deletion by 0.142. Further
empirical evidence, as depicted in Figure 6(a), highlights conflicting gradients between the pre-
diction and explanation tasks during training. Additionally, as previously discussed, the Theseus’s
Paradox arises when changes in predictions result in evolving explanations, thereby challenging the
consistency and identity of the original model.
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AutoGnothi uncovers the intrinsic correlation between predictions and explanations. While the
AutoGnothi pipeline enables self-interpretation with superior efficiency, the underlying mechanisms
connecting prediction and explanation remain underexplored. We propose that AutoGnothi lever-
ages the intrinsic relationship between the backbone features used for both tasks. This correlation
is illustrated in Figure 6(b), where we evaluated the Central Kernel Alignment (CKA) (Kornblith
et al., 2019) between the backbone features of the original pre-trained model and those of various
explainers. Our results show that AutoGnothi exhibits higher feature similarity between prediction
and explanation tasks on ViT-base and BERT-base models, supporting our hypothesis.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Black-box Models. For image classification, we used the ImageNette (Howard &
Gugger, 2020), Oxford IIIT-Pets (Parkhi et al., 2012), and MURA (Rajpurkar et al., 2017) datasets,
following (Covert et al., 2022). For sentiment analysis, we utilized the Yelp Review Polarity
dataset (Zhang et al., 2015). In terms of black-box models, we employed the widely used ViT
models (Dosovitskiy, 2020) for vision tasks, including ViT-tiny, ViT-small, ViT-base, and ViT-large.
For language tasks, we used the BERT-base model (Devlin et al., 2019).

Table 3: Quality metrics (insertion and deletion)
for target class explanations of ViT-base across
baseline methods and AutoGnothi on the Ima-
geNette dataset. More results for other datasets
and models are provided in Appendix E.

Method Insertion (↑) Deletion (↓)
Random 0.9578±0.0790 0.9584±0.0764

Attention last 0.9633±0.0659 0.8524±0.1748

Attention rollout 0.9408±0.0834 0.9168±0.1277

GradCAM (Attn) 0.9447±0.0936 0.9562±0.0916

GradCAM (LN) 0.9343±0.0829 0.9426±0.1307

Vanilla (Pixel) 0.9487±0.0688 0.8945±0.1513

Vanilla (Embed) 0.9563±0.0643 0.8618±0.1754

IntGrad (Pixel) 0.9670±0.0575 0.9408±0.1141

IntGrad (Embed) 0.9670±0.0575 0.9408±0.1141

SmoothGrad (Pixel) 0.9591±0.0760 0.8459±0.1788

SmoothGrad (Embed) 0.9529±0.0931 0.9561±0.0764

VarGrad (Pixel) 0.9616±0.0725 0.8600±0.1692

VarGrad (Embed) 0.9552±0.0901 0.9568±0.0756

LRP 0.9677±0.0623 0.8393±0.1866

Leave-one-out 0.9696±0.0353 0.9334±0.1493

RISE 0.9772±0.0225 0.8959±0.1962

Covert et al. 0.9839±0.0375 0.8121±0.1768

AutoGnothi (Ours) 0.9874±0.0265 0.7954±0.2294

Implementation Details. For surrogates and ex-
plainers, AutoGnothi incorporates the same num-
ber of MSA blocks as the black-box model being
explained in the side network and utilizes a re-
duction factor of r = 8 for the lightweight side
branch on both the ImageNette and Oxford IIIT-
Pets datasets, and r = 4 for MURA and Yelp
Review Polarity. Surrogates use the same task
head as the black-box classifiers with one addi-
tional FC layer as classification head for handling
partial information. Explainers utilize three addi-
tional FC layers as the explanation head after the
side network backbone. For attention masking,
we employed a causal attention masking strategy,
setting attention values to a large negative number
before applying the softmax operation (Brown,
2020). More detailed training settings are pro-
vided in Appendix A.

Evaluation Metrics for Explanations. We used
the widely adopted insertion and deletion met-
rics (Petsiuk, 2018) to evaluate explanation qual-
ity. These metrics are computed by progressively
inserting or deleting features based on their importance and observing the impact on the model’s
predictions. The corresponding surrogate model trained to handle partial inputs is used for this pro-
cess to generate prediction for masked inputs. We calculated the area under the curve (AUC) for the
predictions and average results for randomly selected 1, 000 samples on all datasets.

Baseline Methods. We considered 12 representative explanation methods for comparison. For
attention-based methods, we utilized attention rollout and attention last (Abnar & Zuidema, 2020).
For gradient-based methods, we used Vanilla Gradients (Simonyan, 2013), IntGrad (Sundararajan
et al., 2017), SmoothGrad (Smilkov et al., 2017), VarGrad (Hooker et al., 2019), LRP (Binder et al.,
2016), and GradCAM (Selvaraju et al., 2020). For removal-based methods, we employed leave-
one-out (Zeiler & Fergus, 2014) and RISE (Petsiuk, 2018). For Shapley value-based methods, we
utilized KernelSHAP (Lundberg, 2017) and ViT Shapley (Covert et al., 2022) as baselines.

5.2 EVALUATING TRAINING, MEMORY AND INFERENCE EFFICIENCY

To evaluate the training and memory efficiency of AutoGnothi, we compared it with various base-
lines in terms of trainable parameters and memory usage. Table 1 provides a summary of the memory
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Figure 7: Visualization of ViT explanations on the ImageNette, Oxford-IIIT Pets, and MURA
datasets. AutoGnothi qualitatively outperforms other baseline approaches.

costs and trainable parameters for both surrogate and explainer models across different methods.
During training, AutoGnothi achieves a significant reduction of over 87% in trainable parameters
and more than 65% in GPU memory usage for both surrogates and explainers on both vision and
language datasets, while maintaining competitive performance in both prediction accuracy and ex-
planation quality. The memory cost is evaluated with training batch size = 1.

Next, we evaluate the inference efficiency of our self-interpretable models by comparing the com-
putational cost (FLOPs), inference time, and the total number of parameters required for generating
both predictions and explanations. As shown in Table 2, AutoGnothi significantly reduces inference
time and FLOPs compared to baseline models that require separate inferences for predictions and
explanations. Specifically, when both the predictions and the explanations are required, AutoGnothi
is capable of reducing at least 45% in FLOPs, 22% in inference time (up to 44%), and 47% in total
parameters end-to-end across all datasets and tasks.

5.3 EVALUATING EXPLANATION QUALITY

Quantitative Results. To evaluate the quality of explanations generated by AutoGnothi, we com-
pared it against 12 state-of-the-art baseline methods using the insertion and deletion metrics. Table 3
presents results from a ViT-base model trained on the ImageNette dataset, where AutoGnothi con-
sistently achieves the best insertion and deletion scores for target class explanations across various
datasets. Further detailed results for other models and tasks are provided in Appendix E. For vision
task, please refer to Tables 5, 6, and 7 for the results of ViT-tiny, ViT-small, and ViT-large on Ima-
geNette, respectively. Results for ViT-base on Oxford-IIIT Pets are provided in Table 8, and results
for ViT-base on Mura are shown in Table 9. For language task, we also provide results of BERT-base
on Yelp Reivew Polarity in Table 10.

Qualitative Results. We also provide visualization results for ViTs on different datasets, as shown in
Figure 7. It may be observed that RISE happened to fail to provide human-interpretable or intuitive
results, which amongst all others AutoGnothi offers more accurate explanations with a clearer focus
on the subject and diluted colours for irrelevant classes. Additional visualization results for ViT-base
on more datasets are provided in Appendix J, shown in Figures 17, 18, 19, 20, 21, and 22.

6 CONCLUSION

This paper introduces AutoGnothi to bridge the gap between self-interpretable models and post-hoc
explanation methods in Explainable AI. Inspired by parameter-efficient transfer-learning, AutoG-
nothi incorporates a lightweight side network that allows black-box models to generate faithful
Shapley value explanations without affecting the original predictions. Notably, AutoGnothi outper-
forms directly fine-tuning the all the parameters in the model for explanation by a clear margin.
This approach empowers black-box models with self-interpretability, which is superior to standard
post-hoc explanations that require generating predictions and explanations in two separate, heavy in-
ferences. Experiments on ViT and BERT demonstrate that AutoGnothi achieves superior efficiency
on computation, storage and memory in both training and inference periods.
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A FURTHER EXPERIMENTAL DETAILS

A.1 ENVIRONMENT

Our experiments were conducted on one 128-core AMD EPYC 9754 CPU with one NVIDIA
GeForce RTX 4090 GPU with 24 GB VRAM. No multi-card training or inference was involved.
We implemented the training and inference pipelines for image classification tasks under the Py-
Torch Lightning framework, and for the sentiment analysis task with just PyTorch. For evaluations
on baseline methods we leverage the SHAP library (Lundberg, 2017), with minor modifications
applied to bridge data format differences between Numpy and PyTorch.

A.2 FLOPS AND MEMORY

We used the profile function from the thop library to evaluate the FLOPs for each model during
the inference stage. Memory consumption was manually calculated during the training stage based
on the model parameters, activations, and intermediate results. Our memory estimations were made
under the assumption that the memory was evaluated under a batch size of 1 and uses 32-bit floating
point precision (torch.float32).

A.3 CLASSIFIER

The training of all tasks is split into 3 stages. In the first stage parameters of the classifier are
inherited from the original base model verbatim, with the exception of AutoGnothi adding additional
parameters for the new side branch, initialized with Kaiming initialization.

We fine-tune this classifier model on the exact same dataset with the AdamW optimizer, using a
learning rate of 10−5 for 25 epochs, and retain the best checkpoint rated by minimal validation loss.
Classification loss is minimum square error with respective to the predicted classes and the ground-
truth labels. For AutoGnothi the classes come from the side branch, while all remaining models use
the classes from the main branch. We train and evaluate these methods on 1 Nvidia RTX 4090, and
use a batch size of 32 samples provided that it fits inside the available GPU memory.

We freeze parameters in all stages likewise. As is described in 4.2, AutoGnothi only trains the side
branch and all parameters from the original model are frozen. In ViT-shapley (Covert et al.) and Duo
pipelines, all parameters are trained, whilst the Froyo pipeline only trains the classification head.

A.4 SURROGATE

Surrogate models have the same model architecture as the classifiers, with a different recipe. We
load all parameters from the classifier without any changes or additions, further fine-tune the model
for 50 epochs, and retain the best checkpoint with minimal validation loss.

Unlike the classifier, the surrogate model focuses on mimicking the classifier model’s behavior under
a masked context. Consider the logits p(y|x0) from the classifier model, where x is the input and y is
the corresponding class label. The surrogate model aims at closing in its masked logits distribution,
p(y|xs), with the original distribution:

Lsurr(β) = E
x∼p(x),s∼U(0,d)

[DKL (f(x)∥gβ(xs))] , (1)

The mask is selected on an equi-categorical basis. We first pick an integer ns = s · 1⊤ at uniform
distribution, denoting the number of tokens that shall be masked. ns mutually exclusive indices are
then randomly chosen from the input at uniform distribution. To avoid inhibiting model capabilities,
special tokens like the implicit class token in ViT or the [CLS] token applied by the BERT tokenizer
are never masked.

In order to selectively hide or mask inputs from the model, we apply causal attention masks for
both the image models and text models in our experiments. However, it’s worth noting that while
they may confuse the transformer’s attention mechanisms, certain other methods are also capable
of concealing these input tokens, primarily zeroing or assigning random values to the said pixels
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in image models, or assigning [PAD] and [MASK] to the selected tokens. We follow prior work
(Covert et al., 2022) and adhere to causal attention masks.

Recall that the transformer self-attention mechanism used in ViT (Dosovitskiy, 2020), BERT (Devlin
et al., 2019). Given an attention input t ∈ Rd×h and self-attention parameters Wqkv ∈ Rh×3h′

,
whereas d is the number of tokens and h is the attention’s hidden size, and h′ be the size of each
attention head, the output of the self-attention SA(t) for a single head is computed as follows:

[Q,K, V ] = u ·Wqkv (2)

A = softmax
(
Q ·K⊤
√
h′

)
(3)

SA(t) = A · V (4)

Transformers in practice use a multiple k attention heads, holding that k · h′ = h. An attention
projection matrix Pmsa ∈ Rh×h is used to combine the outputs of all attention heads. Denoting the
i-th self-attention head’s output as SAi(t), the final output of the attention layer MSA(t) is thus
computed:

MSA(t) = [SA1(t),SA2(t), . . . ,SAn(t)] · Pmsa (5)

We notice that the attention mechanism is entirely unrelated to the number of tokens, and can operate
in the absence of certain input tokens. Let an indicator vector s ∈ {0, 1}d correspond to a subset of
the input tokens (applying equally to images and text tokens), we calculate the masked self-attention
over t and s as follows:

[Q,K, V ] = u ·WQ,K,V (6)

A = softmax
(
Q ·K⊤ − (1− s) · ∞√

h′

)
(7)

SA(t, s) = A · V (8)

We apply masking to the multi-head attention layers likewise, such that:

MSA(t, s) = [SA1(t, s),SA2(t, s), . . . ,SAn(t, s)] · Pmsa (9)

This mechanism is widely implemented for attention models in commonplace libraries such as Hug-
gingFace’s Transformers, named by the argument attention mask in the input tensor.

A.5 EXPLAINER

We load explainer model parameters from surrogate model checkpoints, such that all are copied
from the surrogate model to the explainer model, except for the last classification head, which is
replaced with an explainer head. The explainer head contains 3 MLP layers and a final linear layer,
with GeLU (Hendrycks & Gimpel, 2017) activations from in between. For AutoGnothi only the
classification head on the side branch is replaced. We train the explainer model for 100 epochs with
the AdamW optimizer, using a learning rate of 10−5, and keep the best checkpoint.

In our implementation, we took 2 input images in each mini-batch and generated 16 random masks
for each image, resulting in a parallelism of 32 instances per batch. A slight change is applied to
the masking algorithm in the explainer model from the surrogate model, in order to reduce variance
during gradient descent. Specifically, in addition to generating masks uniform, we follow prior work
(Covert et al., 2022) and use the paired sampling trick (Covert & Lee, 2020), pairing each subset
s with its complement 1 − s. This algorithm equally applies to both image and text classification
models.

The explainer model is trained to approximate the Shapley value ϕθ(x, y). Let gβ(xs|y) be the
surrogate values respective to the input x and the class y, masked by the indicator vector s, and
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gβ(x0|y) be the surrogate values without masking. Following (Covert et al., 2022), we minimize the
following loss function:

Lexp(θ) = E
(x,y)∼p(x,y),s∼q(s)

[(
gβ(xs|y)− gβ(x0|y)− s⊤ϕθ(x, y)

)2]
(10)

s.t. 1⊤ϕθ(x, y) = gβ(x1|y)− gβ(x0|y) ∀(x, y), (Efficiency)

Notice that the explainer model ϕθ(x, y) is being trained under a mean squared error loss, and that
16 random masks are generated for each image in the mini-batch. The explainer is hence optimized
against a distribution of the Shapley values, so an accurate calculation of ground-truth Shapley
values for each training sample is not even remotely necessary.

Also, the aforementioned efficiency constraint is necessary for the explainer model to output faithful
and exact Shapley values. We leverage additive efficient normalization from (Ruiz et al., 1998)
and use the same approach as prior work (Jethani et al., 2021; Covert et al., 2022) to enforce this
constraint. The model is trained to make unconstrained predictions as is described in equation 10,
which we then modify using the following transformation to have it constrained:

ϕθ(x, y)← ϕθ(x, y) +
gβ(x1|y)− gβ(x0|y)− 1T · ϕθ(x, y)

d
(11)

After training the explainer model, we merge the original classifier model and all relevant interme-
diate stages’ models into one single, independent model to contain both the classification task and
the explanation task to have them run concurrently. For the baseline method, ViT-shapley and its
modified counterpart for NLP, no parameters overlap between the two tasks, thus inference must be
done on both tasks resulting in a huge implied performance overhead. AutoGnothi, however, only
requires a validation pass to ensure that the original classifier head is preserved verbatim in the final
model. This is done by comparing the output of the original classifier and the final model on any
arbitrary input.

A.6 DATASETS

In this section we explain in more detail which datasets are selected and how they are processed
for our experiments. Three datasets are used for the image classification task. The ImageNette
dataset includes 9, 469 training samples and 3, 925 validation samples for 10 classes. MURA (mus-
culoskeletal radiographs) has 36, 808 training samples and 3, 197 validation samples for 2 classes.
The Oxford-IIIT Pets dataset contains 5, 879 training samples, 735 validation samples and 735 test
samples in 37 classes. For the text classification (sequence classification) task, we use the Yelp
Polarity dataset, which originally contains 560, 000 training samples and 38, 000 test samples.

For each epoch, image classifiers (ViT) iterate through all available images in either of the train or
test dataset. Specifically to during training, images are normalized by the mean value and standard
deviation of each corresponding training dataset, before being down-sampled to 224 × 224 pixels.
For text classifiers, each of the epoch is trained on exactly 2048 training samples randomly chosen
from the dataset, and validated on 256 equally random test samples. This is primarily done to serve
our needs in frequent checkpoints for more thorough data analysis such as on CKA or parameter
gradients.

Due to the sheer cost from some metrics on certain tasks, we reduced the size of our test set during
evaluation. We selected 1000 test samples for datasets ImageNette, MURA and Yelp Review Polar-
ity, and randomly selected 300 samples for the Oxford-IIIT Pets dataset. For each dataset this subset
stays the same between different explanation methods and different model sizes. We emphasize that
these samples are deliberately independent from the training set to avoid potential bias from the
results.
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B PROOFS OF THEOREMS

Here we provide detailed proof for Theorem 1 and Theorem 2, which provide theoretical guarantee
for the performance of surrogates and explainers. Our proof follows (Simon & Vincent, 2020) and
(Covert et al., 2022), which exhibit similar results for a single data point.
Lemma 1. For a single input x, the expected loss under Eq. (2) is µ-strongly convex, where µ is the
minimal eigenvalue of the Hessian of Lsurr(β).

Proof. The expected loss for a single input x under the new objective function is given by:

Lsurr(β) = Es∼U(0,d) [DKL(f(x)∥gβ(xs))] . (12)

This loss function is convex in β because the KL divergenceDKL(f(x)∥gβ(xs)) is convex in gβ(xs),
and gβ(xs) is a smooth function of β. The Hessian of Lsurr(β) with respect to β is:

∇2
βLsurr(β) = Es∼U(0,d)

[
∇2

βDKL(f(x)∥gβ(xs))
]
. (13)

The convexity of Lsurr(β) is determined by the smallest eigenvalue of this Hessian, µ. Since the KL
divergence is strictly convex, the minimum eigenvalue is positive, which implies µ-strong convexity.

Theorem 1. Let the surrogate model be trained using gradient descent with step size α for t itera-
tions. The expected KL divergence between the original model’s predictions f(x) and the surrogate
model’s predictions gβ(xs) is upper-bounded by:

Ex∼p(x),s∼U(0,d) [DKL (f(x)∥gβ(xs))] ≤
1

2µ
(1− µα)t (Lsurr(β0)− L⋆

surr) , (14)

where β0 is the initial parameter value, and L⋆
surr is the optimal value during optimization.

Proof. Let the surrogate model be trained using gradient descent with step size α for t iterations.
The optimization process for minimizing the expected KL divergence between f(x) and gβ(xs) can
be written as:

βt+1 = βt − α∇βLsurr(βt). (15)

Because Lsurr(β) is µ-strongly convex, we can apply the standard result for gradient descent conver-
gence on strongly convex functions, which gives the following bound:

Lsurr(βt)− L⋆
surr ≤ (1− µα)t (Lsurr(β0)− L⋆

surr) , (16)

where L⋆
surr is the optimal value, and β0 is the initial parameter value.

Since the KL divergence is bounded by the expected loss, we have:

Ex∼p(x),s∼U(0,d) [DKL(f(x)∥gβ(xs))] ≤ Lsurr(βt). (17)

Substituting the bound on Lsurr(βt), we obtain:

Ex∼p(x),s∼U(0,d) [DKL(f(x)∥gβ(xs))] ≤
1

2µ
(1− µα)t (Lsurr(β0)− L⋆

surr) . (18)

Lemma 2. For a single input-output pair (x, y), the expected loss under Eq.(3) for the prediction
ϕθ(x, y) is µ-strongly convex with µ = H−1

d−1, where Hd−1 is the (d− 1)-th harmonic number.

Proof. For an input-output pair (x, y), the expected loss for the prediction ϕ = ϕθ(x, y) is defined
as

Lθ(x, y) = Es∼p(s)

[(
gβ(xs|y)− gβ(x0|y)− s⊤ϕ

)2]
= ϕ⊤Es∼p(s)[ss

⊤]ϕ− 2Es∼p(s)

[
s
(
gβ(xs|y)− gβ(x0|y)

)]
ϕ

+ Es∼p(s)

[(
gβ(xs|y)− gβ(x0|y)

)2]
.

(19)
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This is a quadratic function of ϕ with its Hessian given by

∇2
θLθ(x, y) = 2 · Es∼p(s)[ss

⊤]. (20)

The eigenvalues of the Hessian determine the convexity of Lθ(x, y), and the entries of the Hessian
can be derived from the subset distribution p(s). The distribution assigns equal probability to sub-
sets with the same cardinality, thus we define the shorthand pk ≡ p(s) for s such that 1⊤s = k.
Specifically, we have:

pk = Q−1 d− 1(
d
k

)
k(d− k)

and Q =

d−1∑
k=1

d− 1

k(d− k)
. (21)

We can then write A ≡ Es∼p(s)[ss
⊤] and derive its entries as follows:

Aii = Pr(si = 1) =

d∑
k=1

(
d− 1

k − 1

)
pk

= Q−1
d−1∑
k=1

d− 1

d(d− k)

=

∑d−1
k=1

d−1
d(d−k)∑d−1

k=1
d−1

k(d−k)

(22)

Aij = Pr(si = sj = 1) =

d∑
k=2

(
d− 2

k − 2

)
pk

= Q−1
d−1∑
k=2

k − 1

d(d− k)

=

∑d−1
k=2

k−1
d(d−k)∑d−1

k=1
d−1

k(d−k)

.

(23)

Based on this, we observe that A has the structure A = (b− c)Id + c11⊤, where b ≡ Aii−Aij and
c ≡ Aij . Following (Simon & Vincent, 2020; Covert et al., 2022), the minimum eigenvalue is given
by λmin(A) = b− c. A more detailed derivation reveals that it depends on the (d− 1)-th harmonic
number, Hd−1:

λmin(A) = b− c = Aii −Aij

=

∑d−1
k=1

d−1
d(d−k)∑d−1

k=1
d−1

k(d−k)

−
∑d−1

k=2
k−1

d(d−k)∑d−1
k=1

d−1
k(d−k)

=

1
d +

∑d−1
k=2

d−k
d(d−k)∑d−1

k=1
d−1

k(d−k)

=
1
d + d−2

d∑d−1
k=1

d−1
k(d−k)

=
d− 1

d
· 1∑d−1

k=1
d−1

k(d−k)

=
1

2
∑d−1

k=1
1
k

=
1

2Hd−1
.

(24)
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The minimum eigenvalue is therefore strictly positive, implying that Lθ(x, y) is µ-strongly convex,
where µ is given by

µ = 2 · λmin(A) = H−1
d−1. (25)

Note that the strong convexity constant µ is independent of (x, y) and is determined solely by the
number of input variables d.

Theorem 2. Let ϕv(x|y) denote the exact Shapley value for input-output pair (x, y) in game v. The
expected regression loss Lexp(θ) upper bounds the Shapley value estimation error as follows,

E(x,y)∼p(x,y)

[∣∣∣∣ϕθ(x, y)− ϕv(x|y))∣∣∣∣2] ≤
√
2Hd−1

(
Lexp(θ)− L⋆

exp

)
, (26)

where L⋆
exp represents the optimal loss achieved by the exact Shapley values.

Proof. We begin by considering a single input-output pair (x, y), where the prediction is given by
ϕ = ϕθ(x, y; θ). To account for the linear constraint (the Shapley value’s efficiency constraint) in
our objective, we write the Lagrangian Lθ(x, y, γ):

Lθ(x, y, γ) = Lθ(x, y) + γ
(
gβ(x1|y)− gβ(x0|y)− 1⊤ϕ

)
, (27)

where γ ∈ R is the Lagrange multiplier. The Lagrangian Lθ(x, y, γ) is µ-strongly convex, sharing
the same Hessian as Lθ(x, y):

∇2
θLθ(x, y, γ) = ∇2

θLθ(x, y). (28)

By strong convexity, we can bound the distance between ϕ and the global minimizer using the
Lagrangian’s value. Let (θ⋆, γ⋆) be the optimizer of the Lagrangian, such that

ϕθ⋆(x, y) = ϕv(x|y), (29)
where ϕv(x|y) is the exact Shapley value.

From the first-order condition of strong convexity, we obtain the inequality:

Lθ(x, y, γ
⋆) ≥ Lθ⋆(x, y, γ⋆) + (ϕ− ϕθ⋆(x, y))⊤∇θLθ⋆(x, y, γ⋆) +

µ

2
∥ϕ− ϕθ⋆(x, y)∥22. (30)

By the KKT conditions,∇θLθ⋆(x, y, γ⋆) = 0, so the inequality simplifies to:

Lθ(x, y, γ
⋆) ≥ Lθ⋆(x, y, γ⋆) +

µ

2
∥ϕ− ϕθ⋆(x, y)∥22. (31)

Rearranging this, we get:

∥ϕ− ϕθ⋆(x, y)∥22 ≤
2

µ
(Lθ(x, y, γ

⋆)− Lθ⋆(x, y, γ⋆)) . (32)

Since ϕ is a feasible solution (i.e., it satisfies the linear constraint), this further simplifies to:

∥ϕ− ϕθ⋆(x, y)∥22 ≤
2

µ
(Lθ(x, y)− Lθ⋆(x, y)) . (33)

Next, we take the expectation over (x, y) ∼ p(x, y). Denote the expected regression loss as Lexp(θ),
which is:

Lexp(θ) = E(x,y)∼p(x,y)

[(
gβ(xs|y)− gβ(x0|y)− s⊤ϕθ(x, y; θ)

)2]
. (34)

Let L⋆
exp denote the loss achieved by the exact Shapley values. Taking the bound from the previous

inequality in expectation, we have:

E(x,y)∼p(x,y)

[
∥ϕθ(x, y; θ)− ϕv(x|y)∥22

]
≤ 2

µ

(
Lexp(θ)− L⋆

exp

)
. (35)

Finally, applying Jensen’s inequality to the left-hand side, we obtain:

E(x,y)∼p(x,y) [∥ϕθ(x, y; θ)− ϕv(x|y)∥2] ≤
√

2

µ

(
Lexp(θ)− L⋆

exp

)
. (36)

Substituting the value of µ = 1/Hd−1 from Lemma 2, we conclude that:

E(x,y)∼p(x,y) [∥ϕθ(x, y; θ)− ϕv(x|y)∥2] ≤
√
2Hd−1

(
Lexp(θ)− L⋆

exp

)
. (37)
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C DISCOVERING AND MITIGATING BIAS WITH AutoGnothi

In this section, we present experimental results demonstrating the ability of AutoGnothi to discover
and mitigate bias in models. For this study, we used the ImageNette dataset and the ViT-base model.
This section is divided into two parts: (1) Bias Discovery, and (2) Bias Mitigation.

C.1 BIAS DISCOVERY

First, we demonstrate that the side-branch (explainer) in our self-interpretable model can effectively
capture biases present in the main branch (predictor). As shown in Figure 8(a), when an image
contains potentially biased information, the predictor may make a biased prediction, often resulting
in an incorrect output. The side-network identifies and explains the biased features contributing to
the prediction. In a specific example, the model mistakenly treated a person and a French horn as
a single object, leading to a biased prediction. The side-network successfully captured this biased
feature and provided a corresponding explanation, clearly indicating the source of the bias within
the prediction process.
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(a) Self-Interpretable Model: faithfully reflecting the intrinsic of the predictor

(b) Bias reduction Model: mitigating bias in the predictor through feature interventions  

Backward Propagation Forward

Figure 8: Bias discovery and mitigation using AutoGnothi on the ImageNette dataset with the side-
network. (a) The original side-network is used to uncover intrinsic behaviors of the predictor, in-
cluding potential biases within the model. For instance, biased associations between objects in an
image can lead to incorrect predictions. The side-network identifies and explains these biases ef-
fectively. (b) A novel bias reduction pipeline is introduced to mitigate the biases discovered by
the side-network. This pipeline involves performing feature intervention on biased intermediate
features within the predictor. Specifically, human-labeled explanations are employed to guide the
side-network’s training by backpropagating the loss from the side-network to the biased feature.
The biased feature is updated iteratively to reduce its influence. MSE loss is used to measure the
discrepancy between the explanation map and the human-labeled explanation, ensuring alignment.
After applying the pipeline, the bias in the side-network is significantly reduced, resulting in unbi-
ased predictions by the predictor.

C.2 BIAS MITIGATION

Next, we demonstrate that the bias discovered by the side-network can be mitigated through a novel
bias reduction pipeline. As shown in Figure 8(b), our newly designed pipeline involves performing
feature intervention on biased intermediate features within the predictor. Human-labeled explana-
tions are utilized to guide the side-network during training. Specifically, we backpropagate the loss
from the side-network to the biased features, updating these features to reduce their contribution to
the bias.

To achieve this, we employed Mean Squared Error (MSE) loss to quantify the difference between
the explanation map produced by the side-network and the human-labeled explanation. This loss
was then used to optimize the biased feature representation. Suppose that we have N patches in
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the explanation map of biased sample x. The loss function ℓ(e, egt) is defined as the mean squared
error (MSE) between the explanation map e produced by the side-network and the human-labeled
explanation egt. The loss is calculated as follows:

argmin
f(x)

ℓ(e, egt) =
1

N

N∑
i=1

(ei(x)− egt,i(x))2 (38)

After applying the bias reduction pipeline, we observed a significant reduction in bias within the
side-network, resulting in an unbiased prediction by the predictor.

For optimization, we used the SGD optimizer with a learning rate of 0.1, momentum of 0.9, and
weight decay of 5 × 10−4. The biased feature was fine-tuned over a total of 100 epochs using
the biased image. This process effectively corrected the biased prediction while maintaining the
integrity of the model’s overall performance.

D ROBUSTNESS EVALUATION OF AutoGnothi

In this section, we present a detailed analysis of the robustness of AutoGnothi on the ImageNette
dataset. We used the ViT-base model as the base model and compared the robustness of AutoGnothi
with ViT-Shapley (Covert et al., 2022). The robustness evaluation focuses on two aspects: (1) Out-
of-Distribution (OoD) samples and (2) adversarial samples.

D.1 OUT-OF-DISTRIBUTION (OOD) SAMPLES

To evaluate the robustness of AutoGnothi on Out-of-Distribution (OoD) data, we utilized the Ima-
geNette dataset with the ViT-base model. The ImageNette validation set served as the in-distribution
data, while corrupted versions of these samples, adapted from ImageNet-C (Hendrycks & Dietterich,
2019), were used as OoD samples. Specifically, we applied the following corruption methods:
Snow, Frost, Fog, Impulse-noise, Shot-noise, Speckle-noise, Motion-blur,
and Zoom-blur. Note that after applying these corruptions, the black-box ViT model still
correctly classified these samples.

Table 4: Quality metrics for AutoGnothi and ViT-Shapley on OoD samples.

Snow Frost Fog Impulse Noise Shot Noise Speckle Noise Motion Blur Zoom Blur

Insertion (↑) Covert et al. 0.8755 0.9114 0.8397 0.9105 0.9253 0.9341 0.9064 0.8911
AutoGnothi 0.9015 0.9432 0.8387 0.9482 0.9513 0.9578 0.9212 0.8963

Deletion (↓) Covert et al. 0.5813 0.6138 0.5668 0.6129 0.6075 0.6293 0.6616 0.5543
AutoGnothi 0.5657 0.5738 0.4624 0.6065 0.6055 0.6170 0.6077 0.5319

We first qualitatively evaluated the explanation quality of AutoGnothi and ViT-Shapley (Covert et al.,
2022). Despite the added corruption, the black-box ViT model successfully classified these samples
correctly. As shown in Figure 9 and Figure 10, AutoGnothi consistently captured the core object area
even after corruption, whereas ViT-Shapley struggled to highlight the key information accurately.
This performance gap was especially pronounced when the fog corruption was applied, as ViT-
Shapley failed to retain essential explanation fidelity under these conditions.

Next, we conducted a quantitative evaluation of AutoGnothi’s robustness on OoD samples using
insertion and deletion metrics. These metrics were applied to evaluate the ability of the explanations
to retain key information under corruption. As shown in Table 4, AutoGnothi outperformed ViT-
Shapley (Covert et al., 2022) in both insertion and deletion metrics across all corruption types. This
result indicates that AutoGnothi is more robust in maintaining explanation quality under challenging
OoD conditions, providing more reliable and interpretable insights into model predictions.

Our results demonstrate that AutoGnothi significantly outperforms ViT-Shapley (Covert et al., 2022)
in both qualitative and quantitative robustness evaluations on OoD samples. These findings indicate
that AutoGnothi is more capable of maintaining explanation quality under challenging OoD condi-
tions, providing more reliable and interpretable insights into model predictions.
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Figure 9: Robustness evaluation of AutoGnothi and ViT-Shapley (Covert et al., 2022) on the Ima-
geNette dataset using the ViT-base model. We used the test samples in the ImageNette dataset as
in-distribution samples and applied several corruption methods to create OoD samples. (1/2)
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Figure 10: Robustness evaluation of AutoGnothi and ViT-Shapley (Covert et al., 2022) on the Im-
ageNette dataset using the ViT-base model. We used the test samples in the ImageNette dataset as
in-distribution samples and applied several corruption methods to create OoD samples. (2/2)

D.2 ADVERSARIAL SAMPLES

Next, we evaluated the robustness of AutoGnothi on adversarial samples. The test samples from
the ImageNette dataset were treated as clean samples, and adversarial samples were generated using
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the PGD (Madry, 2017) attack. The following parameters were used for the PGD attack: number
of steps = 30, perturbation magnitude ε = 8/255, and step size α = 2/255. Unlike the OoD
samples, the focus here is on scenarios where the black-box ViT model fails to correctly classify the
adversarial samples after the attack. We evaluated whether the explaination quality of AutoGnothi
and ViT-Shapley (Covert et al., 2022) can adapt to the shifted semantics caused by the attack, i.e.,
shifting from the ground truth category to the misclassified (adversarial) category.

We qualitatively evaluated the explanation quality through visualizations. As shown in Figure 11,
the explainers are expected to adapt to the shifted semantics caused by the attack, reflecting the
new (adversarial) prediction of the black-box model. Specifically, we observed that AutoGnothi
successfully transfers its explanation focus from the original (ground truth) class to the adversarial
class predicted after the attack. In contrast, ViT-Shapley (Covert et al., 2022) fails to capture the
core information for the adversarial samples, often providing inconsistent or irrelevant explanations.

This behavior underscores the importance of an explainer’s ability to grasp the intrinsic mechanisms
of the black-box model. Adversarial samples provide a challenging test for this capability, as they
require the explainer to align with the shifted semantics of the model’s prediction under adversarial
perturbation. The superior performance of AutoGnothi in this scenario highlights its robustness and
adaptability in capturing the underlying characteristics of the black-box model.
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A good explainer is able to show the semantic shift after adversarial attack:

for correct predictions, it highlights key factors; for misclassifications, it reveals reasons for failure.
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Figure 11: Robustness evaluation of AutoGnothi and ViT-Shapley (Covert et al., 2022) on the Ima-
geNette dataset using the ViT-base model. Test samples were used to generate adversarial samples
using the PGD attack. Explanations were computed for the original target class and the predicted
class after the attack for each sample.
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E ADDITIONAL RESULTS FOR AutoGnothi

In addition to the results on ImageNette included in the main paper, we provide more detailed results
on other datasets ranging from image classification tasks to text classification tasks, against a number
of baseline explanation methods, with respect to other model sizes in this section.

Table 5: Performance metrics for ViT-tiny on ImageNette.

Method Insertion (↑) Deletion (↓)
Random 0.9231±0.1094 0.9229±0.1106

Attention last 0.9281±0.1033 0.7311±0.2422

Attention rollout 0.9138±0.1102 0.7306±0.2449

GradCAM (Attn) 0.9155±0.1242 0.8292±0.2089

GradCAM (LN) 0.9280±0.0937 0.8436±0.2046

Vanilla (Pixel) 0.9006±0.1173 0.8161±0.2034

Vanilla (Embed) 0.9131±0.1109 0.7708±0.2272

IntGrad (Pixel) 0.9383±0.0808 0.8734±0.1817

IntGrad (Embed) 0.9317±0.0808 0.8092±0.1817

SmoothGrad (Pixel) 0.9153±0.1199 0.7724±0.2236

SmoothGrad (Embed) 0.9268±0.1092 0.7852±0.2176

VarGrad (Pixel) 0.9219±0.1147 0.7872±0.2157

VarGrad (Embed) 0.9317±0.1063 0.8092±0.2062

LRP 0.9439±0.0852 0.6883±0.2603

Leave-one-out 0.9632±0.0401 0.7671±0.2902

RISE 0.9743±0.0333 0.6514±0.3028

Covert et al. 0.9824±0.0289 0.5243±0.2579

AutoGnothi (Ours) 0.9802±0.0268 0.5097±0.2688

Table 6: Performance metrics for ViT-small on ImageNette.

Method Insertion (↑) Deletion (↓)
Random 0.9471±0.0827 0.9461±0.0843

Attention last 0.9599±0.0771 0.7617±0.2205

Attention rollout 0.9293±0.0940 0.8566±0.1793

GradCAM (Attn) 0.9217±0.1205 0.9301±0.1186

GradCAM (LN) 0.9239±0.0893 0.9184±0.1571

Vanilla (Pixel) 0.9535±0.1006 0.8179±0.1686

Vanilla (Embed) 0.9564±0.0894 0.8240±0.1886

IntGrad (Pixel) 0.9581±0.0738 0.9219±0.1281

IntGrad (Embed) 0.9581±0.0738 0.9219±0.1281

SmoothGrad (Pixel) 0.9542±0.0770 0.7998±0.2055

SmoothGrad (Embed) 0.9550±0.0788 0.8065±0.2090

VarGrad (Pixel) 0.9535±0.0798 0.8179±0.1954

VarGrad (Embed) 0.9564±0.0776 0.8240±0.1942

LRP 0.9636±0.0637 0.7549±0.2275

Leave-one-out 0.9684±0.0319 0.8815±0.2056

RISE 0.9773±0.0206 0.7960±0.2599

Covert et al. 0.9828±0.0440 0.6865±0.2255

AutoGnothi (Ours) 0.9791±0.0305 0.6667±0.2636
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Table 7: Performance metrics for ViT-large on ImageNette.

Method Insertion (↑) Deletion (↓)
Random 0.9645±0.0748 0.9642±0.0757

Attention last 0.9251±0.0794 0.8997±0.1380

Attention rollout 0.9336±0.0835 0.9429±0.0997

GradCAM (Attn) 0.9398±0.0692 0.9328±0.1228

GradCAM (LN) 0.9590±0.0619 0.9366±0.1330

Vanilla (Pixel) 0.9040±0.1046 0.9372±0.1106

Vanilla (Embed) 0.9151±0.0959 0.9258±0.1237

IntGrad (Pixel) 0.9716±0.0584 0.9596±0.0948

IntGrad (Embed) 0.9716±0.0584 0.9596±0.0948

SmoothGrad (Pixel) 0.9499±0.0778 0.8953±0.1579

SmoothGrad (Embed) 0.9636±0.0681 0.8664±0.1643

VarGrad (Pixel) 0.9444±0.0827 0.9060±0.1456

VarGrad (Embed) 0.9558±0.0687 0.8827±0.1545

LRP 0.9506±0.0646 0.8814±0.1530

Leave-one-out 0.9743±0.0521 0.9534±0.1085

RISE 0.9801±0.0373 0.9245±0.1570

Covert et al. 0.9843±0.0436 0.7646±0.2012

AutoGnothi (Ours) 0.9837±0.0225 0.6570±0.2171

Table 8: Performance metrics for ViT-base on Oxford-IIIT Pet.

Method Insertion (↑) Deletion (↓)
Random 0.8642±0.1855 0.8625±0.1851

Attention last 0.9066±0.1302 0.5534±0.2183

Attention rollout 0.8616±0.1384 0.7387±0.2326

GradCAM (Attn) 0.8726±0.1585 0.7582±0.2296

GradCAM (LN) 0.8828±0.1137 0.7648±0.2462

Vanilla (Pixel) 0.8855±0.1362 0.6551±0.2395

Vanilla (Embed) 0.8996±0.1354 0.5783±0.2405

IntGrad (Pixel) 0.9219±0.1137 0.8451±0.1990

IntGrad (Embed) 0.9219±0.1137 0.8451±0.1990

SmoothGrad (Pixel) 0.9140±0.1329 0.5508±0.2347

SmoothGrad (Embed) 0.8731±0.1462 0.8716±0.1514

VarGrad (Pixel) 0.9145±0.1268 0.5801±0.2366

VarGrad (Embed) 0.8818±0.1437 0.8778±0.1487

LRP 0.9192±0.1178 0.5362±0.2258

Leave-one-out 0.9468±0.0666 0.7341±0.2951

RISE 0.9581±0.0333 0.6186±0.3096

Covert et al. 0.9422±0.1035 0.4958±0.2404

AutoGnothi (Ours) 0.9384±0.1088 0.4888±0.2480
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Table 9: Performance metrics for ViT-base on MURA. MURA is a binary classification dataset, we
calculated metrics for each of its two categories.

Abnormal Normal
Method Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)
Random 0.8195±0.1875 0.8206±0.1859 0.1548±0.1396 0.1564±0.1415

Attention last 0.8416±0.1863 0.6303±0.1912 0.1546±0.1365 0.1849±0.1348

Attention rollout 0.8047±0.1887 0.7236±0.2107 0.1758±0.1393 0.1636±0.1366

GradCAM (Attn) 0.8077±0.1883 0.8172±0.1925 0.1611±0.1387 0.1655±0.1518

GradCAM (LN) 0.8509±0.1787 0.7451±0.2171 0.1771±0.1537 0.1487±0.1338

Vanilla (Pixel) 0.8384±0.1764 0.5971±0.2056 0.1710±0.1401 0.1603±0.1310

Vanilla (Embed) 0.8412±0.1774 0.5709±0.1993 0.1666±0.1393 0.1649±0.1295

IntGrad (Pixel) 0.8677±0.1642 0.7690±0.2261 0.2011±0.1842 0.1326±0.1283

IntGrad (Embed) 0.8677±0.1642 0.7690±0.2261 0.2011±0.1842 0.1326±0.1283

SmoothGrad (Pixel) 0.8351±0.1893 0.6469±0.2000 0.1610±0.1428 0.1842±0.1385

SmoothGrad (Embed) 0.8293±0.1863 0.8006±0.1971 0.1605±0.1500 0.1552±0.1406

VarGrad (Pixel) 0.8397±0.1844 0.6667±0.2012 0.1592±0.1404 0.1813±0.1453

VarGrad (Embed) 0.8328±0.1841 0.8022±0.1983 0.1575±0.1461 0.1556±0.1418

LRP 0.8524±0.1786 0.6009±0.1932 0.1693±0.1459 0.1745±0.1238

Leave-one-out 0.8996±0.1336 0.6887±0.2412 0.2952±0.2235 0.0977±0.0911

RISE 0.9247±0.1037 0.6258±0.2510 0.3470±0.2431 0.0844±0.0786

Covert et al. 0.9319±0.0795 0.4199±0.2136 0.4516±0.2506 0.0539±0.0478

AutoGnothi (Ours) 0.9292±0.0597 0.4116±0.2116 0.4563±0.2524 0.0581±0.0488

Table 10: Performance metrics for Bert-base on Yelp Review Polarity.

Method Insertion (↑) Deletion (↓)
KernelShap 0.8894±0.1324 0.4624±0.2548

Covert et al. 0.9620±0.0472 0.1725±0.1176

AutoGnothi (Ours) 0.9588±0.0206 0.1004±0.0377
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F ADDITIONAL RESULTS FOR AutoGnothi ON COMPLIATED DATASETS

We provide addtional results for AutoGnothi on more compliated datasets. We have shown results
on ImageNette, Oxford-IIIT Pet, MURA, and Yelp Review Polarity in Section E. Here we provide
results on four new datasets. Specifically, for image classification, we conducted further results on
CUB-200 (Wah et al., 2011) dataset. For NLP task, we provide further results on question answering
dataset BoolQ (Clark et al., 2019), and also SNLI (Bowman et al., 2015) and IMBD (Maas et al.,
2011) dataset.

Additional NLP Datasets. We provide results on three NLP datasets, BoolQ, SNLI, and IMDB.
BoolQ is a question answering dataset that consists of 15942 examples, each containing a question
and a corresponding boolean answer. SNLI is a large-scale dataset for natural language inference,
containing 570k human-annotated sentence pairs. This is a dataset for binary sentiment classification
containing substantially more data than previous benchmark datasets. We provide a set of 25,000
highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data
for use as well. We pre-trained a Bert-base model on BoolQ, SNLI, and IMDB datasets. The
corresponding surrogate and explainer models were obtained through our paradigm. We compared
AutoGnothi with Covert et.al (Covert et al., 2022) on these datasets using the Bert-base model. The
results are shown in Table 11. We also computed the insertion and deletion metrics for each method.

Table 11: Insertion and Deletion metrics for Bert-base on BoolQ, SNLI, and IMDB datasets.

BoolQ SNLI IMDB

Method Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)
Covert et al. 0.9411±0.0849 0.1649±0.1407 0.8535±0.0526 0.2367±0.1172 0.9719±0.0526 0.0646±0.0665

AutoGnothi 0.9409±0.1363 0.1652±0.2007 0.8676±0.1364 0.2538±0.0892 0.9696±0.0388 0.0689±0.0487

Table 12: Training Efficiency of AutoGnothi on BoolQ, SNLI, and IMDB datasets.

Dataset BoolQ SNLI IMDB

Classifier
to be explained

Memory (MB) 815.19 815.19 815.19
#Params (M) 109.48 109.48 109.48
Accuracy (↑) 0.805 0.907 0.877

Surrogate
(Covert et al.)

Memory (MB) 815.19 815.19 815.19
#Params (M) 109.48 109.48 109.48
Accuracy (↑) 0.712 0.633 0.779

Surrogate
(AutoGnothi)

Memory (MB) 668.69 (-18%) 668.69 (-18%) 668.69 (-18%)
#Params (M) 7.15 (-94%) 7.15 (-94%) 7.15 (-94%)
Accuracy (↑) 0.712 0.596 0.807

Explainer
(Covert et al.)

Memory (MB) 6399.34 6399.34 6399.34
#Params (M) 127.79 127.79 127.79

Explainer
(AutoGnothi)

Memory (MB) 3441.77 (-46%) 3441.77 (-46%) 3441.77 (-46%)
#Params (M) 17.15 (-87%) 17.15 (-87%) 17.15 (-87%)

Table 13: Inference efficiency comparison on BoolQ, SNLI, and IMDB datasets.

Dataset BoolQ SNLI IMDB

Classifier +
Explainer

(Covert et al.)

FLOPs (G) 213.51 213.51 213.51
Time (ms) 21.4 22.0 22.2

#Params (M) 237.27 237.27 237.27

Self-Interpretable
Model

(AutoGnothi)

FLOPs (G) 116.66 (-45%) 116.67 (-45%) 116.66 (-45%)
Time (ms) 15.88 (-26%) 10.2 (-54%) 10.4 (-53%)

#Params (M) 17.15 (-93%) 17.15 (-93%) 17.15 (-93%)
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We also provided visualization of the explanation generated by AutoGnothi on BoolQ dataset. The
results are shown in Figure 12 and Figure 13.

AutoGnothi (Ours)  

there were also sam' s club locations in canada, six located in ontario, in which the 
last location closed in2009./ are there any sam' s clubs in canada  

Covert et al.  

there were also sam' s club locations in canada, six located in ontario, in which the 
last location closed in2009./ are there any sam' s clubs in canada  

 

AutoGnothi (Ours)  

the act provides a comprehensive code of company law for the united kingdom, and 
made changes to almost every facet of the law in relation to companies. the key 
provisions are:/ does companies act 2006 apply to all companies  

Covert et al.  

the act provides a comprehensive code of company law for the united kingdom, and 
made changes to almost every facet of the law in relation to companies. the key 
provisions are: / does companies act2006 apply to all companies  

  Figure 12: Visualization of Bert-base explanation on BoolQ dataset. (1/2)
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AutoGnothi (Ours)  

in marketing, a corporate anniversary is a celebration of a firm' s continued existence 
after a particular number of years. the celebration is a media event which can help a 
firm achieve diverse marketing goals, such as promoting its corporate identity, 
boosting employee morale, building greater investor confidence, and encouraging 
sales. as a public relations opportunity, it is a way for a firm to tout past 
accomplishments while strengthening relationships with employees and customers 
and investors. the duration of the celebration itself can vary considerably, from an 
hour or day to activities happening throughout the year. many businesses use an 
anniversary to express gratitude for past success. generally, larger corporations have 
the means to stage more elaborate celebrations./ does a business have a birthday or 
anniversary  

Covert et al.  

in marketing, a corporate anniversary is a celebration of a firm' s continued existence 
after a particular number of years. the celebration is a media event which can help a 
firm achieve diverse marketing goals, such as promoting its corporate identity, 
boosting employee morale, building greater investor confidence, and encouraging 
sales. as a public relations opportunity, it is a way for a firm to tout past 
accomplishments while strengthening relationships with employees and customers 
and investors. the duration of the celebration itself can vary considerably, from an 
hour or day to activities happening throughout the year. many businesses use an 
anniversary to express gratitude for past success. generally, larger corporations have 
the means to stage more elaborate celebrations. / does a business have a birthday or 
anniversary  

 

AutoGnothi (Ours)  

the eighth season of shame less , an american comedy- drama television series based 
on the british series of the same name by paul abbott, was announced on 
december19,2016, a day after the seventh season finale. the season, which premiered 
on november5,2017, consisted of a total of12 episodes./ is shameless coming out with 
a season 8  

Covert et al.  

the eighth season of shameless, an american comedy- drama television series based on 
the british series of the same name by paul abbott, was announced on 
december19,2016, a day after the seventh season finale. the season, which premiered 
on november5,2017, consisted of a total of 12 episodes./ is shameless coming out with 
a season8  

 

 

Figure 13: Visualization of Bert-base explanation on BoolQ dataset (2/2).
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Additional Image Classification Datasets. The CUB-200 dataset is a widely-used benchmark for
fine-grained visual categorization tasks, particularly in the domain of bird species classification.
The dataset comprises a total of 11,788 images across 200 bird subcategories, with 5,994 images
designated for training and 5,794 images for testing. We pre-trained a ViT-base model on CUB-200
train set. The corresponding surrogate and explainer model were obtained through our paradigm.

We compared AutoGnothi with other baseline methods on the CUB-200 test dataset using the ViT-
base model. The results are shown in Figure 14. We also computed the insertion and deletion
metrics for each method, and the results are summarized in Table 14. The results demonstrate that
AutoGnothi outperforms the baseline methods in terms of both insertion and deletion metrics. The
training and inference efficiency metrics are further provided in Table 15 and Table 16.

Attention lastAttention rolloutCovert et al.AutoGnothi GradCAM LRPTree Sparrow

Yellow Breasted Chat Attention lastAttention rolloutCovert et al.AutoGnothi GradCAM LRP

Attention lastAttention rolloutHouse Wren Covert et al.AutoGnothi GradCAM LRP

Attention lastAttention rolloutSavannah Sparrow Covert et al.AutoGnothi GradCAM LRP

Attention lastAttention rolloutCovert et al.AutoGnothi GradCAM LRPBoat Tailed Grackle

Attention lastAttention rolloutCovert et al.AutoGnothi GradCAM LRPHarris Sparrow

Attention lastAttention rolloutCovert et al.AutoGnothi GradCAM LRPRing Billed Gull

Attention lastAttention rolloutCovert et al.AutoGnothi GradCAM LRP
Orange Crowned 

Warbler

Attention lastAttention rolloutCovert et al.AutoGnothi GradCAM LRPRing Billed Gull

Attention lastAttention rolloutCovert et al.AutoGnothi GradCAM LRPRing Billed Gull

Explanation MethodsInput Image

Figure 14: Visualization of ViT-base explanation on CUB-200 dataset.
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Table 14: Explanation Quality Metrics for ViT-base on CUB-200 dataset.

Method Insertion (↑) Deletion (↓)
Random 0.4990±0.1572 0.4599±0.1460

Attention last 0.5888±0.1722 0.2229±0.1213

Attention rollout 0.5862±0.1774 0.1606±0.0663

LRP 0.6191±0.1777 0.1018±0.0430

GradCAM 0.4855±0.1772 0.4051±0.2063

Covert et al. 0.5096±0.1841 0.3045±0.2355

AutoGnothi (Ours) 0.6234±0.1665 0.0903±0.0449

Table 15: Training Efficiency of AutoGnothi on CUB-200 dataset.

Classifier to be explained
Memory (MB) 1313.61
#Params (M) 85.95
Accuracy (↑) 0.8436

Surrogate (Covert et al.) Memory (MB) 1313.61
#Params (M) 85.95

Surrogate (AutoGnothi) Memory (MB) 710.39 (-46%)
#Params (M) 24.91 (-71%)

Explainer (Covert et al.) Memory (MB) 1609.49
#Params (M) 105.30

Explainer (AutoGnothi) Memory (MB) 758.93 (-53%)
#Params (M) 28.10 (-73%)

Table 16: Inference efficiency comparison on CUB-200 datasets.

Dataset CUB-200

Classifier +
Explainer

(Covert et al.)

FLOPs (G) 75.13
Time (ms) 72.75

#Params (M) 191.26

Self-Interpretable
Model

(AutoGnothi)

FLOPs (G) 44.78 (-40%)
Time (ms) 61.59 (-15%)

#Params (M) 114.05 (-40%)
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G ABLATION STUDY ON THE SIZE OF SIDE-NETWORKS

In this section, we present an ablation study on the architecture and size of side-networks in Auto-
Gnothi. Specifically, we investigated the effect of varying the reduction factor (r = 2, 4, 8, 16, 32)
on the side-networks of ViT-base model. To evaluate the impact, we compared the performance of
AutoGnothi with Covert et al. (Covert et al., 2022) on the ImageNette dataset. The evaluation was
performed using the insertion and deletion metrics, and the results are summarized in Table 17.

This study aimed to assess the balance between computational efficiency and explanation quality
under different configurations of the side-network. The findings are as follows:

• Too Large r: When the reduction factor r was too large (resulting in a very small side-
network), the network lacked sufficient capacity to learn the explanations effectively. As
a result, the explanation quality degraded, with the side-network failing to capture enough
information from the main branch.

• Too Small r: Conversely, when r was too small (resulting in a larger side-network), the net-
work consumed excessive computational resources and interfered with the shared features
of the predictor. This interference reduced the feature similarity between the prediction and
explanation tasks, negatively impacting the faithfulness of the explainer.

• Moderate r: A moderate reduction factor (e.g., r = 8) provided the optimal trade-off
between computational efficiency and explanation quality. This configuration allowed the
side-network to effectively utilize the features from the predictor while maintaining re-
source efficiency.

These results highlight the importance of carefully selecting the reduction factor to optimize the per-
formance of AutoGnothi across different transformer architectures. The identified trade-offs ensure
that the side-network remains both effective and efficient, making it suitable for various applications.

Table 17: Explanation Quality Metrics of the ViT-base Explainer on ImageNette dataset.

Method Insertion (↑) Deletion (↓)

Covert et al. 0.9839±0.0375 0.8121±0.1768

AutoGnothi (r=2) 0.9894±0.0329 0.8687±0.1806

AutoGnothi (r=4) 0.9857±0.0251 0.7846±0.1957

AutoGnothi (r=8) 0.9874±0.0265 0.7954±0.2294

AutoGnothi (r=16) 0.9720±0.0288 0.6202±0.2023

AutoGnothi (r=32) 0.9520±0.0443 0.5547±0.1941
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H INTERGRATING PATCHDROPOUT TO AutoGnothi

The core of the AutoGnothi it to obtain the explainer for the self-interpretable model through side-
tuning. This procedure involes obtaining a surrogate model to guide the explainer. The only reason
we have to train the surrogate model, just like (Covert et al., 2022), is that the black-box models
cannot fit the masked distribution. Indeed, if we can train the black-box model with the masked
distribution, we can directly use the explainer to explain the black-box model. In this section, we
show that we can train the black-box model with the masked distribution using PatchDrop (Liu et al.,
2022).

Church       AutoGnothi    PatchDrop

Golf ball       AutoGnothi    PatchDrop

Church       AutoGnothi    PatchDrop

Gas pump       AutoGnothi    PatchDrop

English Springer  AutoGnothi  PatchDrop

Church           AutoGnothi    PatchDrop

Garbage truck     AutoGnothi    PatchDrop

Golf ball       AutoGnothi    PatchDrop

Cassette player  AutoGnothi    PatchDrop Chain saw       AutoGnothi    PatchDrop

Gas pump       AutoGnothi    PatchDrop Chain saw       AutoGnothi    PatchDrop

Figure 15: Comparison of the explanation quality of AutoGnothi with and without PatchDropout on
ImageNette dataset.

As shown in Figure 15, we compared the performance of AutoGnothi with and without PatchDropout
on the ImageNette dataset. The results demonstrate that PatchDropout did not obtain the compara-
tive explanation quality of AutoGnothi.

Table 18 shows the comparison of the explanation quality of AutoGnothi with and without Patch-
Dropout on the ImageNette dataset. The results demonstrate that PatchDropout did not obtain the
comparative explanation quality of AutoGnothi.
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Table 18: Quality metrics (insertion and deletion) for target class explanations of ViT-base across
baseline methods and AutoGnothi on the ImageNette dataset.

Explanation Method Insertion ↑ (target) Deletion ↓ (target)

Random 0.3618±0.2136 0.4993±0.2138
Attention last 0.4393±0.2148 0.4095±0.2071
Attention rollout 0.4177±0.2006 0.3780±0.2108
GradCAM 0.4713±0.2112 0.4818±0.2207
LRP 0.6274±0.1986 0.2077±0.1751
Covert et al. w/ PatchDropout 0.7946±0.2269 0.18655±0.0535
AutoGnothi w/ PatchDropout 0.8016±0.1223 0.1299±0.1377
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I HUMAN-IN-THE-LOOP EVALUATION FOR AutoGnothi

The objective of this study is to evaluate the utility of explanation methods (ViT-Shapley and Auto-
Gnothi) by assessing their impact on participants’ ability to predict a model’s output f(x). Follow-
ing (Colin et al., 2022), we designed a human-in-the-loop evaluation to determine whether explana-
tion heatmaps improve prediction accuracy and whether AutoGnothi offers superior utility compared
to ViT-Shapley.

Datasets: We curated 15 images for each dataset, including ImageNette, Oxford-IIIT Pets, and
MURA datasets, split into:

• Training Phase: 5 samples for participant training (for each session).
• Testing Phase: 10 samples for evaluation.

Each sample included: (1) an image (x), (2) its true label (y), (3) the model’s prediction (f(x)), and
(4) heatmaps from ViT-Shapley (ϕA(f, x)) and AutoGnothi (ϕB(f, x)).

For the ImageNette and Oxford-IIIT Pets datasets, testing is conducted over two sessions.
Each session includes samples from only one category. For the MURA dataset, testing is con-
ducted in a single session, as it involves a binary classification task. Specifically, the model is
trained to predict whether a medical image is abnormal or not. Therefore, when the true label
is provided, all possible labels are inherently covered.

Procedure:

• Training Phase: Participants (ψ) were trained to predict the model’s output using images and
heatmaps, receiving feedback on their predictions.

• Testing Phase: Participants evaluated 10 samples under three conditions:
1. Case 1: Image (x), label (y), and prediction (f(x)) without heatmaps.
2. Case 2: Image (x), label (y), prediction (f(x)), and ViT-Shapley heatmaps (ϕA(f, x)).
3. Case 3: Image (x), label (y), prediction (f(x)), and AutoGnothi heatmaps (ϕB(f, x)).
Participants predicted f(x) for each sample and rated heatmap clarity and utility (Cases 2 and 3).
Test samples were presented in randomized order without feedback to ensure unbiased evaluation.

The questionnaire is included in the supplementary materials for reference.

We measure explanation utility using the Utility-K metric:

Utility-K =
P(ψ(K)(x) = f(x))

P(ψ(0)(x) = f(x))

where ψ(K) and ψ(0) are human meta-predictors trained with and without heatmaps, respectively.
Higher Utility-K indicates more effective explanations. Aggregating over varying K, we compute
the Area Under the Curve (AUC) of Utility-K values to derive the Utility score:

Utility = AUC(C),
where C = {(K0,Utility-KK0

), . . . , (Kn,Utility-KKn
)}. Higher Utility scores represent better

explanation utility.

The intuitive procedure of the whole human-in-the-loop pipeline is shown in Figure 16. The par-
ticipants were trained to predict the model’s output using images and heatmaps, receiving feedback
on their predictions. In the testing phase, participants evaluated 10 samples under three conditions:
(1) image, label, and prediction without heatmaps, (2) image, label, prediction, and ViT-Shapley
heatmaps, and (3) image, label, prediction, and AutoGnothi heatmaps. Participants predicted the
model’s output for each sample and rated heatmap clarity and utility. Test samples were presented
in randomized order without feedback to ensure unbiased evaluation. Due to time and resource con-
straints, the study was conducted with 5 participants, comprising volunteers with basic familiarity
with machine learning concepts, such as students or researchers, but none of them is related to this
work. While the sample size is small, the evaluation setup was carefully controlled to ensure fair
comparison between explanation methods. Participants were trained uniformly, and test cases were
randomized to reduce bias.
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𝜓
Participant

“Chain saw”

𝑥
Image

𝜙(𝑓, 𝑥)
Explanation

𝑓(𝑥)
Prediction

True label

𝑥′
Test Image

𝜓 𝑥′ = 𝑓 𝑥′

𝜓 𝑥′ ≠ 𝑓(𝑥′)

TestingTrainingRecruiting

Figure 16: Human-in-the-loop evaluation procedure.

Table 19: Utility-K and Utility scores for ViT-Shapley and AutoGnothi. Bolded values are statisti-
cally significant improvements.

Method ImageNette Oxford-IIIT Pets MURA
Session 1 Session 2 Utility Session 1 Session 2 Utility Session 1 Utility

ViT-Shapley (ϕA) 62.0 58.0 1.00 72.0 70.0 1.10 61.0 1.0
AutoGnothi (ϕB) 74.0 72.0 1.20 70.0 73.0 1.10 70.0 1.2

The Utility-K and Utility metrics are normalized and aggregated using the AUC metric. This study
is intended to provide initial insights into the relative performance of AutoGnothi and ViT-Shapley
in aiding human predictions.

Table 19 presents Utility-K and Utility scores for ViT-Shapley (ϕA) and AutoGnothi (ϕB) across
three datasets. These results confirm that AutoGnothi provides more effective and interpretable
explanations, significantly aiding human predictions compared to ViT-Shapley.
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J ADDITIONAL VISUALIZATIONS FOR AutoGnothi

In this section we present a number of image samples on the ViT-base model, regarding explana-
tion outputs from 12 representative baseline explanation methods. We ensure that these samples
correspond to correct model predictions made by the base model to ensure better clarity.

Golf ball

AutoGnothi Covert et al. VarGrad RISE GradCAM Attention rollout

IntGrad SmoothGrad Leave-one-out

AutoGnothi Covert et al. VarGrad RISE GradCAM Attention rollout

IntGrad SmoothGrad Leave-one-out

Vanilla LRP Attention last

Vanilla LRP Attention last

Cassette player

AutoGnothi Covert et al. VarGrad RISE GradCAM Attention rollout

IntGrad SmoothGrad Leave-one-out

AutoGnothi Covert et al. VarGrad RISE GradCAM Attention rollout

IntGrad SmoothGrad Leave-one-out

Vanilla LRP Attention last

Vanilla LRP Attention last

AutoGnothi Covert et al. VarGrad RISE GradCAM Attention rollout

IntGrad SmoothGrad Leave-one-out Vanilla LRP Attention last

Garbage truck

French horn

Cassette player

Figure 17: Visualization of ViT-base explanation on ImageNette dataset (1/2).
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Figure 18: Visualization of ViT-base explanation on ImageNette dataset (2/2).
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Figure 19: Visualization of ViT-base explanation on Oxford-IIIT Pet dataset (1/2).
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Figure 20: Visualization of ViT-base explanation on Oxford-IIIT Pet dataset (2/2).
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Figure 21: Visualization of ViT-base explanation on MURA dataset (1/2).
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Figure 22: Visualization of ViT-base explanation on MURA dataset (2/2).
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