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ABSTRACT

Attention mechanism has been widely applied to tasks that output some sequence1

from an input image. Its success comes from the ability to align relevant parts of2

the encoded image with the target output. However, most of the existing methods3

fail to build clear alignment because the aligned parts are unable to well represent4

the target. In this paper we seek clear alignment in attention mechanism through5

a sharpener module. Since it deliberately locates the target in an image region6

and refines representation to be target-specific, the alignment and interpretability7

of attention can be significantly improved. Experiments on synthetic handwritten8

digit as well as real-world scene text recognition datasets show that our approach9

outperforms the mainstream ones such as soft and hard attention.10

1 INTRODUCTION11

In modern sequence to sequence learning, attention mechanism has become a key building block,12

because it helps identify relevant parts of the input sequence and align them with the target output at13

each time step. Such alignment resembles fixation in human vision, where only the object of interest14

falls on the fovea in the retina, leading the visual scene outside to be largely ignored. Thanks to such15

ability to select perceptual information, attention mechanism has been successfully applied to many16

visual tasks, such as scene text recognition (Shi et al., 2019) and image captioning (Xu et al., 2015).17

Although a variety of attention mechanisms have been proposed to build alignment, most of them18

fail to achieve clear alignment. Soft attention (Bahdanau et al., 2015; Luong et al., 2015), the most19

popular one, aligns a weighted average of the input sequence with the target output throughout the20

time. Since the weights are never zeros, irrelevant parts are inevitably involved in the alignment and21

may introduce distraction. For distinct alignment, hard attention (Xu et al., 2015) enforces exactly22

one input part is employed, regardless of whether it represents the target or not, and thus may still23

suffer from irrelevant parts. Besides, existing attention mechanisms often regard the input sequence24

as fixed during alignment establishment. If the target representation given by the selected part(s)25

is poor, there is no way to fix it. This is especially the case in visual sequence learning, where26

features are precomputed by a convolutional neural network (CNN) before being fed into attention27

mechanisms. As each feature only characterises a local fixed image region (i.e. the receptive field), it28

hardly covers the appearance of the target exactly, thus leading to noisy representation. See Fig. 1(b)29

for an example.30

In this work we address the construction of clear alignment in attention mechanism. This is achieved31

by aligning the target output with image regions instead of features, which is a more natural approach32

to alignment for visual sequence learning. A sharpener module is then used to make the aligned33

region as specific as possible to the target, essentially a clear alignment. While it can take any form,34

the module explored in this paper consists of a localiser and an encoder. The former locates the35

target in the region, while the latter extracts features from the result for alignment. It is such accurate36

and specific representation that makes attention mechanism able to pay close attention to the target,37

leading to improved alignment and thus interpretability. The sharpener can be trained along with38

any sequence-to-sequence (Seq2Seq) model through back-propagation without extra supervision.39

Nonetheless, it is also possible to guide its training to further improve alignment quality if auxiliary40

information is available (see Sect. 4.1). Therefore, the sharpener naturally lends itself to direct41

attention manipulation, which is yet not available in most of the existing attention mechanisms.42
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Figure 1: (a) An outline of the attention mechanism. A query vector ht−1 is compared with an input
sequence X to figure out where to look via a multilayer perceptron (see the grey box), leading to
a set of weights αt. A context vector ct is then computed for alignment by a function φ, where
attention mechanisms generally differ. Soft attention computes ct as a weighted average of X while
hard attention does it by randomly sampling an element from X . (b) Poor target representation in
attention mechanism. Each element of X only represents a fixed region defined by the receptive field
(see yellow boxes). It is hard to accurately represent the target without the distraction of redundant or
missing parts (see letters ‘f’ and ‘W’ for examples).

2 SHARP ATTENTION43

2.1 ALIGNMENT44

Let X = {x1, . . . ,xM} be an input sequence of length M , where xi ∈ RD is a feature vector45

representing a region of an input image. Usually, X comes from the last convolutional layer of a46

backbone network, and xi delineates a region of fixed size given by the receptive field of that layer.47

Similarly, we denote the output sequence of length N as Y = {y1, . . . ,yN}, where yt ∈ RK is48

a one-of-K encoded vector indicating a discrete token in a vocabulary of size K. Our goal is to49

learn a model that can accurately predict yt by choosing appropriate xi in a sequential process.50

This implicitly asks for building an alignment between X and Y at each time step. To facilitate the51

construction, we introduce a latent variable A = {a1, . . . ,aN}, where at ∈ RM is a one-of-M52

encoded vector indicating the index of the selected feature vector at some time. For example, ati = 153

refers to the i-th element of X (i.e. xi) being chosen to predict yt at time t. Usually, the selected54

feature is called context vector and denoted as ct.55

To learn the model, we maximise a conditional probability56

p(Y |X) =
∑
A

p(Y,A|X) =
∑
A

N∏
t=1

p(yt, A|y1, . . . ,yt−1︸ ︷︷ ︸
y<t

, X) =

N∏
t=1

∑
at

p(yt,at|y<t, X) (1)

=

N∏
t=1

∑
at

p(at|y<t, X)p(yt|y<t, X,at) ≡
N∏
t=1

M∑
i=1

p(ati = 1|y<t, X)p(yt|y<t,xi) (2)

where the last two terms in (1) are obtained by applying chain rule on Y , and by using the assumption57

that yt only depends on at at time t, respectively. Equation (2) clearly defines two major components58

to compute p(Y |X). One is the chance of selecting each element of X , and the other is the likelihood59

of the target token given the selection. However, the computation of the latter is impractical when M60

is large because every element of X has to be considered. Two typical approximations to (2) are thus61

proposed, leading to the soft and hard attention mechanisms.62

By using the first order Taylor expansion,1 we obtain the loss function for soft attention,63

log p(Y |X) =

N∑
t=1

log

(
M∑
i=1

αtip(yt|y<t,xi)

)
≈

N∑
t=1

log p

(
yt|y<t,

M∑
i=1

αtixi

)
, (3)

1Let f(·) be a function of some random variable. By using Taylor’s theorem, the first-order approximation to
the expectation E[f(·)] is given by E[f(·)] ≈ f(E[·]).
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where we define αti ≡ p(ati = 1|y<t, X) to simplify the notation. In (3), the context vector ct is64

given by
∑M

i=1 αtixi, which means that yt is no longer predicted by a single element of X but rather65

a weighted average of X , thus leading to the break in alignment. To pursue the alignment such that66

each target token only depends on one element of X , hard attention instead estimates a variational67

lower bound on log p(Y |X) using Jensen’s inequality,68

log p(Y |X) =

N∑
t=1

log

(
M∑
i=1

αtip(yt|y<t,xi)

)
>

N∑
t=1

M∑
i=1

αti log p(yt|y<t,xi). (4)

Now the optimisation of log p(Y |X) can be thought as repeating the following steps until happy:69

(i) estimating p(at|y<t, X) by fixing all model parameters; (ii) modifying the parameters to maximise70

log p(yt|y<t,xi) using each xi. The underlying idea is to increase log p(Y |X) by iteratively raising71

the lower bound. Since it is infeasible to consider every xi as aforementioned, approximation is often72

adopted and achieved by Monte Carlo sampling (See Sect. 2.4 for details), thus leading ct to be the73

sampled feature vector for hard attention.74

2.2 LOSS FUNCTION75

Intuitively, if each xi is an accurate representation of the target token when optimising (4), particularly76

in the second step, there would be a tight gap between log p(Y |X) and its lower bound. In contrast,77

if any poor xi occurs, the gap may become large and thus result in performance degradation. Subject78

to the fixed local region, it is unlikely for xi to well characterise the target token, which makes hard79

attention hardly achieve clear alignment (see Fig. 1(b)). This motivates us to reformulate (4) for more80

flexible representation of the target tokens.81

Suppose we can break down the input image into a set ofM local regions, each of which is sufficiently82

large to cover objects of interest. We would like to maximise the marginal log-likelihood log p(Y |R),83

where R = {r1, . . . , rM} is the set of regions. Similarly, its lower bound ` is given by84

log p(Y |R) >
N∑
t=1

∑
at

p(at|y<t, R) log p(yt|y<t, R,at) ≡ `, (5)

where at is still a one-of-M encoded vector but now refers to the index of the selected region at time85

t. By working with (5), we are not restricted to the representation given by X any more. Consider86

x to be a function of r parameterised by the backbone network, e.g., x = fg(r;θg), where θg87

denotes all the weights in the network. By plugging X = {fg(r1;θg), . . . , fg(rM ;θg)} into (4), it88

is easy to see that the lower bound of log p(Y |X) is equivalent to that of log p(Y |R) when partially89

parameterising the two terms p(at|y<t, R) and log p(yt|y<t, R,at) using θg. As ` is valid for all90

model parameters, it does not rely on any specific modelling. This allows us to separately model the91

use of R in each term. For example, we may leverage the same backbone network for the first term to92

get a rough idea on where to look, while deliberately design a network for the second term to sharpen93

the focus. It is such flexible parameterisation that makes the construction of clear alignment possible.94

Below we elaborate the modelling of each term in (5).95

2.3 MODELLING96

We use a variant of VGG (Shi et al., 2017) as the backbone network to not only create the set of97

regions but also process it in p(at|y<t, R). When the backbone network is a CNN, we may take98

advantage of the implicitly defined sliding widow for region generation. For example, our backbone99

network effectively divides an input image of size 100×32 into 24 86×46 regions when extracting100

features from the final layer (Araujo et al., 2019). Note that the generation of R is arbitrary and we101

just use the sliding window for simplicity. To emphasise clear alignment with log p(yt|y<t, R,at),102

we leverage a sharpener module that consists of a localiser and an encoder. The former seeks the103

target in the selected region while the latter extracts features from the result. While a natural choice104

of the localiser is object detectors, we instead resort to spatial transformer networks (STNs, Jaderberg105

et al. (2015)) for both computational and labelling efficiency. STN is a lightweight CNN that is able106

to crop and transform an image region. Its training does not need expensive annotations such as107

bounding boxes, which are usually unavailable in sequential learning tasks. The encoder can take108

any form and we use the same CNN to the backbone to simplify the implementation. Let Z be the109

3



Under review as a conference paper at ICLR 2022

fc softmax ŷt
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Figure 2: A generic Seq2Seq learning architecture with sharp attention. Given an input image, a
backbone network breaks down it into a set of regions and extracts features from each region, leading
to a sequence of feature vectors X . An attention mechanism (see Fig. 1(a)) uses X and a hidden state
vector ht−1 to compute a categorical distribution αt, based on which a region is randomly chosen
and fed into a sharpener module to compute the context vector ct for clear alignment. A recurrent
neural network (RNN) takes in ht−1, ct and yt−1 (the token at previous time step) to update its
internal state, and then outputs current ht for token prediction and next iteration (dashed line).

encoder output, which is also a sequence of feature vectors similar to X with length dependent on the110

size of the localisation result. The output of the sharpener is the context vector, whose computation111

will be detailed in Sect. 2.5.112

The dependency of the current token yt on all previous ones y<t over the time is often modelled by113

an RNN, e.g., long short-term memory (LSTM, Hochreiter & Schmidhuber (1997)). Specifically, it is114

defined by2115

ht = fr(ht−1,yt−1, ct;θr), h0 ≡ fi

(
1

M

M∑
i=1

xi;θi

)
, y0 ≡ 0, (6)

where fr(·) refers to the non-linear function defined by LSTM with parameters θr, ht is a hidden116

state vector at time t that summarises the history tokens y<t and is initialised by a fully connected117

layer fi(·) that takes an average of X as the input, and a zero vector is used as the initial token y0.118

Now we are ready to define the two terms in (5). As we use the backbone network to process R in119

p(at|y<t, R), the probability of selecting a particular region is given by120

αti ≡ p(ati = 1|y<t, R) ≡ p(ati = 1|ht−1, X) = softmax(fa(xi,ht−1;θa)), (7)

where fa(·) is the attention function as described in Bahdanau et al. (2015) (Fig. 1(a)). The probability121

of the output token ŷt given all previous ones as well as the selected region is computed by122

p(yt = ŷt|y<t, R,at) ≡ p(yt = ŷt|ht−1, ct) = softmax(fe(yt−1,ht;θe)), (8)

where fe(·) is a fully connected layer. An overview of the whole architecture is given in Fig. 2.123

2.4 OPTIMISATION124

The differentiation of ` w.r.t. all model parameters yields the following learning rule3125

∂`

∂θ
=

N∑
t=1

∑
at

p(at|y<t, R)

[
∂ log p(yt|y<t, R,at)

∂θ
+ log p(yt|y<t, R,at)

∂ log p(at|y<t, R)

∂θ

]
,

where θ is a collection of model parameters, e.g., θ = {θg,θs,θr,θi,θa,θe} (θs for the sharpener126

module). To reduce the computational cost as explained in Sect. 2.1, the derivative at time t is often127

numerically approximated by the Monte Carlo method as follows128

∂`t
∂θ
≈ 1

S

S∑
s=1

p(âs
t |y<t, R)

[
∂ log p(yt|y<t, R, â

s
t )

∂θ
+ log p(yt|y<t, R, â

s
t )
∂ log p(âs

t |y<t, R)

∂θ

]
,

2Strictly speaking, the alignment in this modelling is no longer conditionally independent throughout the
time as assumed in Sect. 2.1. In fact, this is the modelling used in both soft and hard attention mechanisms
(Bahdanau et al., 2015; Xu et al., 2015). However, the discussion on why these mechanisms fail to achieve clear
alignment still applies.

3We use the trick∇θp(x; θ) = p(x; θ)∇θ log p(x; θ) in the derivation.
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where S is the number of samples âs
t drawn from a categorical distribution defined by p(at|y<t, R)129

(Xu et al., 2015). Similar to Mnih et al. (2014) and Ba et al. (2015), this approximation yields a hybrid130

loss function asking for different optimisation strategies for the two terms in the square brackets.131

The former is optimised by a cross entropy loss together with the ground-truth token at time t and132

gradient back-propagation. By regarding the accumulated sum of log p(yt|y<t, R, â
s
t ) over the time133

as a reward, the latter is achieved by the REINFORCE algorithm (Williams, 1992). To reduce the134

high variance in gradient estimate caused by the unbounded log p(yt|y<t, R, â
s
t ) (Ba et al., 2015),135

we follow Xu et al. (2015) to introduce a moving average baseline136

bj = 0.9× bj−1 + 0.1× 1

NS

S∑
s=1

N∑
t=1

log p(yt|y<t, R, â
s
t ),

where j is the index of the mini-batch. Finally, we use the following learning rule for optimisation137

∂`

∂θ
≈ 1

S

S∑
s=1

N∑
t=1

p(âs
t |y<t, R)

[
∂ log p(yt|y<t, R, â

s
t )

∂θ
+ λr(log p(yt|y<t, R, â

s
t )− b)

∂ log p(âs
t |y<t, R)

∂θ

]
,

(9)
where λr is a learning hyper-parameter. We do not add entropy H[at] to (9) to further reduce gradient138

variance as in Xu et al. (2015), because it encourages a uniform distribution and breaks the alignment.139

2.5 CONTEXT VECTOR140

Rather than compute c from X like both soft and hard attention do, the proposed sharp attention141

leverages the encoder output. Specifically, we explore three ways to compute ct given Zt, the encoder142

output at time t. The first one is pooling, where an average pooling of Zt is used for ct. Inspired143

by the glimpse idea (Mnih et al., 2014), we combine the result from pooling with x̂s
t , the feature144

vector associated with the sampled region, to incorporate both fine and coarse representation of the145

target token, leading to the second way—chain. Alternatively, we may compute a weighted average146

of the feature set {Zt, x̂
s
t} for better mixed representation. With ht−1, the weights can be learned in147

a similar way to the soft attention as shown in Fig. 1(a). We call this last approach to ct weighting.148

3 RELATED WORK149

In Xu et al. (2015), the alignment is treated as a latent variable to help define a loss function, which is150

optimised by gradually increasing a variational lower bound on marginal log-likelihood of the target151

output given the input sequence. Later, a variety of variational inference techniques (Lawson et al.,152

2018; Deng et al., 2018; Bahuleyan et al., 2018) are proposed to further reduce the gap between the153

lower bound and the marginal log-likelihood. Alternative approaches to approximating the marginal154

log-likelihood can be found in Shankar et al. (2018) and Shankar & Sarawagi (2019). The former155

cherry-picks a set of alignments, computes the log-likelihood conditioned on each alignment and156

averages the results, while the latter extends the idea by enforcing Markov property on adjacent157

alignments. Instead of approximation, Wu et al. (2018) attempted to compute exact marginal log-158

likelihood by assuming that each alignment is conditionally independent across time steps. All of the159

above methods regard the input sequence as fixed in optimisation and thus cannot tailor the input160

part(s) to clear alignment.161

The idea of using relevant parts to improve attention has been explored in various tasks. Mei et al.162

(2016) adjusted the weights of the input parts resulting from soft attention to highlight the most163

relevant ones for selective generation. A similar work can be found in Nallapati et al. (2016), where164

keywords are interwoven with the sentences in which they lie for text summarisation by applying soft165

attention to sentences and words respectively and rescaling word weights. Instead of reweighting,166

Cheng et al. (2017) used character-level masks to guide the selection of useful parts for scene text167

recognition. None of these methods build clear alignment due to the use of soft attention.168

Our work is closely related to Xu et al. (2015) and Ba et al. (2015). We generalise the former’s169

mathematical formulation on hard attention by introducing flexible representation of objects of interest170

via a sharpener module. While the generalisation appears similar to the latter, we use it to tackle the171

alignment issue in attention mechanisms rather than develop a new Seq2Seq model. Our modelling172

also differs. Instead of seeking desired objects within the whole image, a divide-and-conquer scheme173
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is used to gradually narrow the search range for accurate localisation. Another difference in modelling174

is that in Ba et al. (2015) prediction will not happen until a series of localisation across predefined175

time steps whereas in our work that immediately follows localisation at each time.176

4 EXPERIMENTS177

We demonstrate the efficacy of the proposed method in two different scenarios of increasing difficulty:178

(i) synthetic handwritten digit recognition and (ii) real-world scene text recognition. Rather than strive179

for state-of-the-art results, the focus here is to highlight (i) the performance of Seq2Seq models can180

be boosted if attention mechanism really yields clear alignment, that is, paying attention to the target181

object, and (ii) the proposed sharp attention is an effective approach to reaching the goal. Therefore,182

our vanilla system is built upon off-the-shelf modules and was trained without sophisticated parameter183

tuning schemes. Below we describe some common choices for all scenarios.184

Implementation All images are converted to grey scale and resized to 100×32. A variant of VGG185

(Shi et al., 2017) is then used as the backbone to extract a 24×1 feature map from each resized186

image as well as create the set of regions, whose height is clipped to 32. The input sequence X187

is obtained by splitting the feature map along its width, leading the dimensionality of each xi to188

be the feature map depth (i.e. 512). Before feeding it into the attention mechanism, we follow189

Shi et al. (2017) to further process X to capture long-range contextual information with a 2-layer190

bidirectional LSTM, where each layer has a forward LSTM and a backward LSTM, each having 256191

hidden units. The depth of the attention mechanism is set to 256 and so is the number of the hidden192

units of the associated LSTM, which runs over some time to predict the output sequence Y . The193

number of time steps is set to the maximum transcription length in each scenario. As in Sutskever194

et al. (2014), an end-of-sequence token is used to indicate the finish of prediction. The STN in the195

sharpener is composed of a localisation network, a grid generator and a sampler. Given a region,196

the localisation network, achieved by the one described in Liu et al. (2016), uses it to estimate an197

affine transformation, which is then used by the grid generator to place a set of control points on the198

region. By sampling the intensity value at each control point in a way similar to Shi et al. (2019), the199

sampler produces a patch of given size as the STN output. When multiple STNs are used, the output200

of the previous one is used as the input to the next one. The output of the last STN is plugged into201

the encoder in the sharpener to compute Z. The whole system was implemented using TensorFlow202

(Abadi et al., 2016) and the code will be released in the near future.203

Training Three kinds of Seq2Seq models were trained from scratch in terms of the attention204

mechanism used. Specifically, the soft and hard models were learned via corresponding attention205

mechanisms respectively. Unlike the previous two baseline models, the sharp models were obtained206

by the sharpener with the context vector schemes described in Sect. 2.5. A stochastic gradient descent207

method, ADADELTA (Zeiler, 2012), was used to learn the model parameters until certain number208

of iterations in different scenarios. The learning rate was constant and set to 1.0 and the decay rate209

was 0.95. In addition, all model parameters were regularised by an L2 norm with a weight decay210

of 4×10-5. All experiments were done with a batch size of 192 (per GPU) on a workstation of 4211

NVIDIA GEFORCE RTX 2080 Ti GPUs. The number of samples S was set to the batch size.212

Evaluation A prediction is correct if the predicted transcription matches ground truth. We reported213

the proportion of correct predictions on each testing dataset. As in Shi et al. (2017), all transcriptions214

were converted to lower cases and had punctuations ruled out before evaluation if applicable.215

4.1 HANDWRITTEN DIGIT RECOGNITION216

We randomly chose l images from the MNIST dataset (Lecun et al., 1998), resized them to 32×32217

and concatenated them horizontally, leading to an image of l handwritten digits. For each l in {5,218

7, 9, 11, 13}, we created 20,000 images for training and 10,000 for testing by selecting from the219

MNIST training and testing datasets respectively, leading to a normal handwritten digit dataset. To220

introduce some distortion, we repeated the above procedure for a rotated dataset by randomly turning221

the selected images around y-axis within [-30◦, 30◦] before concatenation. Examples of the generated222

images are given in Fig. 3. We trained all models with the resulting datasets for 30,000 iterations223

by setting λr = 1.0 when applicable. For better localisation, we upsampled the set of regions along224
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Figure 3: From top to bottom, we show examples of the created handwritten digit images and
transcriptions (row 2), and patches for context vector computation as well as predicted digits (failures
shown in red) at each time step (rows 3-5). Note that the patches are the receptive fields for the hard
model and the output of the STN for the pooling based sharp models. The reference images are given
below the patches in the last row.

Table 1: Recognition accuracy of all models for the handwritten digit datasets.

Model
Normal Rotation Mean

Acc.5 7 9 11 13 5 7 9 11 13
Baseline

SOFT 97.2 96.6 95.0 91.9 82.2 96.3 95.4 93.6 89.1 78.3 91.6
HARD 97.2 96.4 94.1 91.6 81.7 96.6 95.4 93.5 89.2 78.6 91.4

Sharp
POOLING 97.8 97.5 96.6 94.9 92.8 97.1 96.4 95.0 92.8 89.6 95.1
CHAIN 97.5 97.3 96.3 95.0 93.7 97.3 96.7 95.5 94.1 91.7 95.5
WEIGHTING 95.0 95.4 95.0 92.6 90.2 94.3 94.9 94.6 91.7 87.9 93.2

Pooling-based Sharp+Reference
AFFINE 98.1 97.7 96.8 96.0 94.4 98.0 97.1 96.1 95.2 93.0 96.2

the width with a scale factor of 1.8 before plugging them into the sharpener, which was efficiently225

achieved by running region generation with 180×32 images. The patch output by the STN had a size226

of 24×32.227

Table 1 shows that all sharp models significantly outperform the baseline, demonstrating the efficacy228

of clear alignment in attention mechanism. This can be easily seen from the pooling based model229

whose context vector purely results from the sharpener. Figure 3 also illustrates how attention can230

benefit from the sharpener. Take the rotation case for example. To predict digit ‘8’ (the second231

column from left), hard attention chose a feature corresponding to a region filled with four digits. Due232

to the distraction of irrelevant digits (e.g., ‘6’, ‘2’ and ‘5’), the feature failed to precisely represent233

‘8’, thus giving wrong result. Although sharp attention selected the same region, it avoided most234

of the distraction by deliberately locating ‘8’ in that region, thus leading to more accurate and235

specific representation as well as correct prediction. Besides, the resulting attention also has better236

interpretability since it is more focused. The above results testify that the performance of Seq2Seq237

models can be largely improved when attention mechanism is really focused on the object of interest.238

To show that the sharpener allows for external supervision, a set of 24×32 reference images for each239

digit (see Fig. 3) was created with the Roboto Bold typeface of font size 36.4 The supervision was240

achieved by introducing an L2 image similarity loss of a weight of 1.0 to (9) to minimise the intensity241

difference between the patch and the reference. By showing what a desired digit would look like, the242

4The font is available at https://fonts.google.com/specimen/Roboto. We used Pygame for rendering.
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Table 2: Recognition accuracy of all models for the scene text recognition datasets.

Model
IIIT SVT IC03 IC13 IC15 SP Mean

Acc.3000 647 867 857 1811 645
Baseline

SOFT 77.9 78.8 87.8 86.1 61.4 62.5 75.8
HARD 77.6 78.8 89.2 86.0 59.9 63.9 75.9

Sharp+One STN
CHAIN 76.9 78.1 88.7 88.8 61.1 65.6 76.5

Sharp+Two STNs
POOLING 73.9 72.6 83.6 83.3 54.2 60.2 71.3
CHAIN 77.9 80.1 89.0 87.7 62.0 65.1 77.0
WEIGHTING 77.7 78.5 89.0 87.4 61.5 64.0 76.4

c o t t a g e

a t m o s p h e r e

f i n n e s s

s o r a g e

(a) Success (b) Failures

Figure 4: Examples of recognition results for scene text recognition. All real-world testing images
are shown as is without rescaling and grey scale conversion. We leverage the chain based sharp model
to generate the patches localised by the sharpener and predicted tokens (failures highlighted in red)
across time steps. The results from other sharp models look similar to what has been shown here.

pooling based sharpener gives better localisation where all digit shape is well preserved with little243

distraction, compared to its counterpart without such guidance (see Fig. 3). This, in turn, improves244

the representation of the context vector for alignment, leading to a boost of the model performance.245

Table 1 shows that such improvement is the most remarkable when handling images of more digits246

(e.g., 13). This is not surprising because the receptive fields in such case have more digits filled and247

thus make it difficult for the baseline models to decide where to look. Even if compared with the best248

one amongst all sharp models trained without external supervision, i.e. the chain based model, the249

improvement is still noticeable, further demonstrating the importance of accurate and target-specific250

representation in attention mechanism.251

4.2 SCENE TEXT RECOGNITION252

To further show the effectiveness of the proposed sharp attention, we applied it to a real-world visual253

sequence learning task, scene text recognition. The training datasets include MJSynth (Jaderberg et al.,254

2014) and SynthText (Jaderberg et al., 2016), while the testing ones consist of IIIT5K-Words (Mishra255

et al., 2012), Street View Text (Wang et al., 2011), ICDAR2003 (Lucas et al., 2003), ICDAR2013256

(Karatzas et al., 2013), ICDAR2015 (Karatzas et al., 2015) and SVT Perspective (Phan et al., 2013),257

which are short for IIIT, SVT, IC03, IC13, IC15 and SP respectively. There are 8.9 million images258

in the MJSynth dataset and 5.5 million in SynthText by cropping text regions and ruling out non-259

alphanumeric characters. The number of images in each testing dataset is detailed in Table 2, where260

the three datasets, IC03, IC13 and IC15, were prepared by following the protocol in Baek et al. (2019).261

The total number of testing images is 7, 827. Note that some of these datasets (e.g., IC15 and SP) are262

quite challenging due to various nuisance factors, such as poor lighting and geometry change (Fig. 4).263

For fast evaluation of various model configurations, we randomly sampled 2 million labelled images264

from the MJSynth dataset. The sampling was done by following the distribution (i.e. histogram of265

the transcription length) of the original dataset. We set the maximum transcription length to 16 to266

enable a large batch size (i.e. 192) for robust training. For sharp models, we upsampled the regions267

along the width with a scale factor of 2.0 for better localisation. To explore the effects of using268

multiple STNs for localisation, we first used two STNs to train all sharp models, and then just used269
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the second one to train a chain based model for comparison. To see whether localisation benefits270

from a coarse-to-fine search strategy, the first STN was designed to estimate a simple transformation271

(i.e. x-direction translation) but output a large patch (i.e. 64×32), while the second STN had the same272

configuration as used in Sect. 4.1. All models were trained for 400,000 iterations with the sampled273

dataset, and no reference images were used. To train the hard and sharp models we used λr = 0.1.274

Table 3: Mean entropy of different attention mechanisms for the scene text recognition datasets.

Model IIIT SVT IC03 IC13 IC15 SP Mean
SOFT 1.06 1.01 1.06 1.00 1.15 1.12 1.07
HARD 0.63 0.61 0.67 0.63 0.63 0.62 0.63
SHARP 0.42 0.36 0.42 0.39 0.38 0.38 0.39

Table 4: Sharp attention vs. soft attention in a published scene text recognition work.

Model IIIT SVT IC03 IC13 IC15 SP Mean Acc.
SOFT(Baek et al., 2019) 84.3 83.8 93.1 91.9 70.8 71.9 82.6
SHARP 83.9 85.8 94.3 92.2 71.3 73.6 83.5

From Table 2, we see that the chain based one again works the best amongst all sharp models of two275

STNs. It beats the baseline models remarkably on most of the datasets, whereas the other two either276

moderately outperform or lag behind the baseline. It also beats its counterpart of single STN, even277

though the latter is slightly better than the baseline as well. The result from the winning sharp model278

further testifies our hypothesis on clear alignment in large-scale real-world datasets, which is also279

revealed by Fig. 4. Whenever prediction is successfully performed, there is sensible localisation of280

the target token. In fact, the sharpener attempts to highlight the token by placing it in the patch centre281

(see Fig. 4 for examples surrounded by blue boxes). This is an encouraging result given that the282

sharpener was trained in a data-driven manner with merely sequential labelling (i.e. transcriptions).283

However, the localisation is by no means satisfactory since all patches have some sort of distractions,284

such as skewed target tokens and irrelevant parts of adjacent tokens. Both this observation and the285

benefit of multi-STN suggest a potential increase in accuracy if the sharpener is properly designed286

such that it can produce good localisation as shown in Fig. 3, which is beyond the scope of this paper.287

In Fig. 3, we have shown sharp attention is more focused and yields better interpretability. This can288

be evaluated by H[at], entropy of the categorical distribution defined by αt (Shankar & Sarawagi,289

2019). It measures attention uncertainty, that is, the lower entropy, the better alignment and thus290

interpretability. Averaging H[at] across all valid time steps leads to the entropy for an image. We291

reported the mean of such entropy on each testing dataset for various attention mechanisms in292

Table 3. The results clearly show that sharp attention indeed boosts interpretability since entropy is a293

logarithmic metric. We only reported the entropy from the best sharp model in Table 2.294

Finally, we used the full datasets (i.e. MJSynth & SynthText) to train a sharp model with the same295

configuration to the best one in Table 2. To fairly compare the proposed attention with other attention296

mechanisms in existing scene text recognition works, we reported the performance of the sharp model297

and a model (i.e. VGG+BiLSTM+Attn) based on soft attention trained with the same datasets by298

Baek et al. (2019) in Table 4. The two models share the same backbone and RNN decoder. They only299

differ in attention mechanism. Table 4 further shows the superiority of our method.300

5 CONCLUSION301

We have described a novel attention mechanism that is able to build clear alignment between relevant302

regions in the input image and the target output. This is achieved by a generic sharpener module that303

computes accurate representation of the targets across time steps. Experimental results show that a304

vanilla implementation of our method can significantly beat soft and hard attention on both synthetic305

and real-world datasets in terms of performance and interpretability, without bells and whistles such306

as the auxiliary model in Ba et al. (2015) and sophisticated training schemes in Xu et al. (2015). We307

plan to apply our method to more visual sequence learning tasks in the future.308
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6 REPRODUCIBILITY STATEMENT309

The implementation details have been given in lines 185–202. Although most of the training310

parameters have been described in lines 207–212, some task-specific setting can be found in lines311

223–227 and 266–274 respectively. The generation of synthetic handwritten digit dataset has been312

detailed in lines 217–222, while the preparation of real-world scene text recognition datasets has313

been elaborated in lines 254–261.314
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