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Santiago, Chile

pablo.rademacher@uc.cl

Carlos A. Sing Long
Institute for Mathematical and Computational Engineering

Pontificia Universidad Católica de Chile
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Abstract—Sparse signal recovery has become one of the pre-
ferred methods to recover signals from a set of incomplete linear
measurements. This is due both to its appealing computational
properties, as it involves solving a convex optimization problem,
and its rigorous justification by the theory of Compressed
Sensing. When the underlying signal is not sparse, but it is instead
a sparse combination of elementary building blocks called atoms,
the signal can be recovered by minimizing the atomic norm, i.e.,
the gauge associated to the convex hull of the atomic set. Although
this approach has been successfully used in several applications,
there is an implicit geometric constraint in this approach: only
the atoms that are exposed points of the convex hull will be
selected to represent the solution to atomic norm minimization.
This can be an issue when the representation of the underlying
signal is sparse when using all the atoms, but dense when using
exposed ones. In this work, we propose an approach based on
lifting that allows us to promote representations using atoms that
are not exposed. Our method is based on convex optimization,
preserving many of the computational benefits of atomic norm
minimization. We present phase diagrams derived from a suitable
signal model showing the benefits of using our approach.

Index Terms—Signal reconstruction, signal recovery, Com-
pressed Sensing, sparse signal recovery, atomic norm, atomic
norm minimization.

I. INTRODUCTION

In the last decades, ℓ1-norm recovery has become the
favored approach for solving discrete signal recovery problems
when the underlying signal is sparse, i.e., when the number of
its non-zero components is small [1], [2]. Let Φ ∈ Rm×d and
suppose that we want to recover an unknown signal x0 ∈ Rd

from m ≪ d linear measurements y = Φx0. Then ℓ1-norm
recovery consists in solving

min
x∈Rd

∥x∥1 s.t. Φx = y. (1)

The theory of Compressed Sensing [2], [3] provides condi-
tions under which x0 is the unique optimal solution to this
problem. If the signal x0 is s-sparse, i.e., at most s of its
components are non-zero, and Φ is a Gaussian matrix with
Φi,j

iid∼ N(0, 1/
√
m) then only m ∼ s log(d/s) measurements

are enough to ensure that x0 is the unique solution to (1) with
high probability [4].
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The underlying assumption in ℓ1-norm recovery is that the
underlying signal is sparse. However, in some applications
[5]–[7], the underlying signal is not necessarily sparse, but
instead a sparse combination of elementary building blocks
called atoms. Atomic norm recovery is the natural extension
of ℓ1-norm recovery to this case [8]. The atomic norm induced
by a finite collection of atoms A := {a1, . . . ,an} is

ρA(x) = inf
{∑n

i=1
ci : x =

∑n

i=1
ciai, ci ≥ 0

}
. (2)

It follows that dom(ρA()) = cone(A) and that ρA(x) = ∞
when x is not a conic combination of atoms. Atomic norm
recovery consists on solving

minx∈Rd ρA(x) s.t. Φx = y. (3)

If we let A ∈ Rd×n be the matrix with the atoms as its
columns then the above is equivalent to solve

min
c∈Rn

+

∑n

i=1
ci s.t. ΦAc = y. (4)

If c⋆ is a solution to the above, then x⋆ := Ac⋆ is an
optimal solution to (3). It follows that ℓ1-norm recovery
is a special case of atomic norm recovery when A =
{±e1, . . . ,±ed}. This approach has been successfully applied
to super-resolution [9], [10] and signal processing [11], [12],
and presents excellent recovery guarantees [13].

There is an implicit geometric constraint in (3) that has
not received much attention in the literature, namely, that
not all atoms in A are used to represent the optimal solu-
tion x⋆ to (3). If we let A∗ = A ∪ {0d} and denote as
CA = conv(A∗) its convex hull, then it is apparent that
ρA() coincides with the gauge of CA [14]. Hence, the optimal
solution x⋆ will always lie in the boundary of ρA(x

⋆)CA.
As a consequence, when x0 is a sparse linear combination
of atoms ai1 , . . . ,ais ∈ int(CA), atomic norm recovery will
attempt to represent x0 as a sparse linear combination of the
exposed points EA of CA. We call these exposed atoms and
masked atoms all the remaining ones. Since by the Krein-
Milman theorem conv(A∗) = conv(EA∗), the atoms lying
on the interior of CA may as well never have been included
in the signal model! This may have practical implications as a
representation of x0 using exposed atoms may require a large
number of them compared to using masked atoms.



A. Previous work and contributions
A popular approach to mitigate the effect of masked atoms is

to construct an atomic set Ā of normalized atoms [15] to then
solve (3). In this case Ā is a subset of the unit sphere in Rd and
all the atoms become exposed. However, normalizing atoms
removes all the information about their magnitude, which may
be itself important in applications. To our knowledge, the
impact of this approach on the performance of the method
has not been compared to alternatives.

In this work, we propose an alternative approach that
does not involve normalizing and is based on a lifting to a
higher-dimensional space. All the atoms become exposed in
the lifted space and thus may be selected to represent the
optimal solution to atomic norm recovery. We show how this
lifted atomic set can be used to improve the reconstruction
performance for a simple signal model with exposed and
masked atoms over using normalized atoms.

II. PRELIMINARIES

The canonical inner product between two vectors x,y is
denoted as x⊤y. The vector in Rd with all components equal
to one is denoted as 1d and the zero vector as 0d. The
restriction of a function f : Rd → R to a set S ⊂ Rd is
denoted as f |S . We assume that the atoms in A are non-zero.

III. LIFTING THE ATOMIC NORM

To unmask the masked atoms, we propose to lift the atomic
set to a higher-dimensional space. For our purposes, it suffices
to map the atomic set to Rd+1. Let λ : Rd → R+ be the lifting
coordinate and define the lifting map Λ : Rd → Rd+1 as

Λ(x) =
[
x λ(x)

]⊤
.

We let Â = Λ(A∗) be the lifted atomic set and we denote
CÂ = conv(Â∗). We have the following proposition. We
omit its proof for brevity.

Proposition 1. If λ|CA : CA → R+ is concave then every
element in Â is in the boundary of CÂ. If it is strictly concave,
then every element in Â is an extreme point of CÂ.

If â ∈ Â is a lifted atom then âd+1 = λ(a) for some
a ∈ A. We call âd+1 the lifted coordinate. From now on we
write Â = {â1, . . . , ân+1} where ân+1 = Λ(0d). The lifted
atomic norm is

ρÂ(x̂) := inf

{∑n+1

i=1
ci : x̂ =

∑n+1

i=1
ciâi, ci ≥ 0

}
. (5)

The magnitude of the lifted coordinate should reflect the
degree of masking of the atom, e.g., λ(a) = 0 if a is an
exposed atom in CA and λ(0d) = 1. We consider lifting
coordinates of the form

λ(x) = ζ(ρA(x))

where ζ : [0, 1] → [0, 1] is strictly concave with ζ(0) = 1 and
ζ(1) = 0. From now on, we let λ ∈ Rn be the vector of lifted
coordinates for all the atoms in A and we let

Â =

[
A 0d

λ 1

]

be the matrix associated to the lifted atomic set. It will be
useful to decompose any ĉ ∈ Rn+1 from now on as

ĉ =
[
c cn+1

]⊤
.

Although Proposition 1 does not ensure that all the lifted atoms
will be exposed for this choice, they are for the signal model
we introduce in Section V-B.

IV. RECOVERY WITH THE LIFTED ATOMIC NORM

The lifted atomic norm is defined on Rd+1 and it cannot
be directly used in (3) to replace the atomic norm. Roughly
speaking, this is because there is an additional degree of
freedom that needs to be accounted for. For instance, if we
write

Φ̂ =
[
Φ 0m

]
and x̂ =

[
x x̂d+1

]⊤
then the optimal solution x̂⋆ to

min
x̂∈Rd+1

ρÂ(x̂) s.t. Φ̂x̂ = y. (6)

is such that x̂⋆
d+1 = 0 and x⋆ is an optimal solution to (3).

This follows from the fact that the constraint

HD = {x̂ ∈ Rd+1 : Φ̂x̂ = y} (7)

is a vertical affine space in Rd+1. For this reason, we propose
one strategy to use the lifted atomic norm for signal recovery.

A. Recovery by signal lifting

By fixing the lifting coordinate of the optimization variable
to a value α ≥ 0 we can solve

min
x̂∈Rd+1

ρÂ(x̂) s.t. Φx = y, x̂d+1 = α. (8)

This is equivalent to minimizing the lifted atomic norm on
the intersection between the affine space HD in (7) and the
horizontal slice

Hα := {x̂ ∈ Rd+1 : x̂d+1 = α}.

In practice, this strategy can be implemented by combining (5)
with (8) to solve

min
c∈Rn

+

(1n − λ)⊤c s.t. ΦAc = y, λ⊤c ≤ α. (9)

If c⋆ is an optimal solution to the above, then x⋆ = Ac⋆ is
an optimal solution to (8). See Appendix A for details.

The following proposition shows that under mild conditions,
by selecting a suitable value of α, we can indeed promote
representations of the optimal solution with masked atoms.

Proposition 2. Let S ⊂ {1, . . . , n} be such that ai is masked
for every i ∈ S. Let x0 = Ac0 with supp(c0) = S and let

λ+ = maxi∈S λ(ai) and λ− = mini∈S λ(ai)

If c∗ is an optimal solution to (4), and both

1⊤
n c0 ≤ α

1− λ−
and 1⊤

n c0 <
1

λ+
1⊤
n c

∗

hold, then both c0 and c∗ are feasible for (9) but c0 attains
a strictly lower objective than c∗.



Proof of Proposition 2. It follows from our previous argu-
ments that c∗ only selects atoms in the boundary, i.e., ai is
exposed for i ∈ supp(c∗). As λ(a) = 0 if a is an exposed
atom, it follows that λ⊤c∗ = 0 whence c∗ is feasible for (9).
From the hypothesis, we have that

λ⊤c0 ≤ λ+1nc0 ≤ α

whence c0 is also feasible for (9). Finally,

(1n − λ)⊤c0 ≤ (1− λ−)1
⊤
n c0 < 1⊤

n c
∗ = (1n − λ)⊤c∗

from where the claim follows.

V. NUMERICAL EXPERIMENT

A. Atomic set

We first generate an atomic set using the following model.
Let Ae = {e1, . . . , ed}, let ℓ ∈ N be a number of layers, and
let ρ1, . . . , ρℓ ∈ (0, 1] be sparsity parameters. We generate
the sets A′

1, . . . ,A′
ℓ as follows. For every k ∈ {1, . . . , ℓ} we

generate d random vectors z1, . . . ,zd with support of size
sk = [ρkd] selected at random. The non-zero entries are drawn
independently from an Exp(1) distribution. The elements of
A′

k are then

ai =
1

√
sk

(
1− k

ℓ+ 1

)
1

∥zi∥2
zi, i ∈ {1, . . . , d}.

This normalization ensures that A′
k is a collection of masked

atoms, and that the degree of masking increases with k. The
atomic set is then A = Ae∪A′

1∪. . .∪A′
ℓ. By construction, the

atomic norm is the ℓ1-norm restricted to the positive orthant.

B. Atomic signal model

We generate signals using the following atomic signal
model. Fix parameters 0 ≤ ν− < ν+ ≤ 1. Define

I(ν−, ν+) = {i ∈ {1, . . . , n} : ν− ≤ ρA(ai) ≤ ν+}

and let n∗ = |I(ν−, ν+)|. For a given sparsity parameter
ρ ∈ (0, 1], we select a random subset S ⊂ I(ν−, ν+) with
|S| = [ρn∗] and we draw a vector c0 with support S such that
its non-zero entries are drawn independently from an Exp(1)
distribution. We then let x0 = Ac0 and let (x0, c0) be a
sample from this model. This ensures that we are always taking
a combination of a fraction of ρ atoms with a fixed degree of
masking. The generated signals belong to the positive orthant.

C. Phase diagram

To evaluate the performance of different recovery methods
using the atomic signal model, we estimate their phase dia-
gram1. We choose d = 256, ℓ = 2, ρ1 = 0.1 and ρ2 = 0.2 so
that the atoms reduce their sparsity as their degree of masking
increases. Observe that they cluster in 3 layers (Fig. 1a). We
select ν− = 0.4 and ν+ = 0.6. For the atomic set we use
in our experiments, we have that n = 768, 512 atoms are

1The code to reproduce the results can be found in the GitHub repository
csl-lab/liftedAtomicNormRecovery

masked, and n∗ = 248. We use ζ(s) =
√
1− s2 to compute

the lifting coordinate.
In Fig 1b we see samples for (1n−λ)⊤c0 when c0 is drawn

from the atomic signal model whereas in Fig. 1c we show the
corresponding samples of (1n −λ)⊤c∗1 where c∗1 a minimum
ℓ1-norm representation of x0. Comparing both figures suggests
that c0 often achieves a lower objective in (9) than c∗1.

We select the sparsity parameter ρ and the sampling param-
eter δ from 10 equispaced values in [0, 1]. For each value of
the pair (ρ, δ) we draw a sample x0 from the atomic signal
model and we generate the measurements y = Φx0 using a
random matrix as described in Section I. A recovery method
is applied to obtain an estimate x of x0. We repeat the process
20 times and we assume that the recovery is exact when
∥x − x0∥2 ≤ 10−2∥x0∥2, i.e., if the recovery error is less
that 1%.

D. Discussion

In Fig. 1d we show for reference the phase diagram for ℓ1-
norm recovery using a sparse signal model, i.e., the atomic
signal model when A = Ae and ν− = ν+ = 1. In Fig. 1e we
show the phase diagram for atomic norm recovery using the
atomic signal model. The performance degrades substantially,
as only the extremely sparse signals can be recovered with
a substantial number of measurements. Remark that this also
reflects the performance of ℓ1-norm recovery for this model.
In Fig. 1f we show the phase diagram for atomic norm
minimization with normalized atoms. Observe that in this case
the method is unable to succeed as it completely destroys
the information encoded in the norms of the masked atoms.
Finally, the phase diagram for lifted atomic norm recovery
for α = 50, α = 100 and α = 150 shows a substantial
improvement. Although it is not able to reproduce the diagram
in Fig. 1d, it substantially improves over Figs. 1e and 1f.
Finally, it shows how the parameter α impacts the phase
diagram.

VI. CONCLUSION

In this work we addressed an implicit geometric constraint
in atomic norm minimization, namely, that only exposed atoms
are selected to represent the solution. By lifting the atomic
set, we were able to propose a method based on convex
optimization that is able to selected masked atoms to represent
the optimal solution. The computational burden compared to
atomic norm minimization seems to be minimal, while our
numerical results show that the performance of our method
can improve over atomic norm minimization in the atomic
signal model that we used.

As future research directions, we will develop alternative
strategies to use the lifted atomic norm for signal recovery. In
light of our numerical results, we will also focus on developing
a general atomic signal model to derive guarantees for exact
signal recovery.

https://github.com/csl-lab/liftedAtomicNormRecovery
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Fig. 1: (a) Atomic norms of the atoms. (b) Samples of (1n −λ)⊤c0 for c0 drawn from the atomic signal model. (c) Samples
of (1n − λ)⊤c0 associated to the minimum ℓ1-norm representation of x0. (d) Phase diagram using a sparse signal model for
ℓ1-norm recovery. (e-i) Phase diagram using the atomic signal model for: (e) Atomic norm recovery; (f) Normalized atomic
norm recovery; (g, h, i) Lifted atomic norm with (g) α = 50, (h) α = 100 and (i) α = 150.

APPENDIX

A. Equivalence between (8) and (9)

From (6) and (8) we can solve

min
ĉ∈Rn+1

+

1⊤
n+1ĉ s.t. ΦAc = y, λ⊤c+ cn+1 = α. (10)

From the second constraint we have cn+1 = α−λ⊤c whence

1⊤
n+1ĉ = 1nc+ cn+1 = (1n − λ⊤)c+ α.

We relax the constraint cn+1 = α − λ⊤c to α − λ⊤c ≥ 0.
This yields (9). Now, let ĉ⋆ be a solution to (10). Then c⋆ is

feasible for (9). If there exists c attaining a lower objective
in (9) then

ĉ =
[
c α− λ⊤c

]⊤
is feasible for (10) and

1n+1ĉ
⋆ = 1⊤

n c+ (α− λ⊤c) = (1n − λ)⊤c+ α

< (1n − λ)⊤c⋆ + α = 1⊤
n c

⋆ + c⋆n+1 = 1⊤
n+1ĉ

⋆

contradicting the optimality of ĉ⋆. Consequently c⋆ is optimal
for (9). A similar argument proves the converse, showing the
equivalence. We omit the details for brevity.
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