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ABSTRACT

Leveraging billions of years of evolution, scientists have trained protein language
models (pLMs) to understand the sequence and structure space of proteins aiding
in the design of more functional proteins. Although they have shown ability to
improve efficiency in engineering, it remains unclear if such models capture true
biological patterns or artifacts of the training data. We aim to predict the circum-
stances in which pLMs can successfully perform zero-shot fitness estimation. Our
work studies trends observed over hundreds of deep mutational scans across multi-
ple different fitness objectives. We find that the likelihood, or abstractly, implicit
preference of a certain protein sequence imbued during pretraining is predictive of
fitness prediction capabilities. Both over-preferred and under-preferred wild type
sequences harm performance. Using influence functions to causally understand
how individual data points increase protein likelihoods, we find that there exists
a power law tail due to sequence homology. Lastly, under-performance on low
likelihood wild type proteins can be remedied by unsupervised finetuning. These
findings that pLM zero-shot fitness estimation can be predicted by the likelihood of
the engineered sequence can motivate and improve pLMs’ deployment in protein
maturation campaigns.

1 INTRODUCTION

Protein Language Models (pLMs) have been thought to encapsulate millions of years of evolutionary
information through unsupervised pretraining on protein databases. Works have shown that their
likelihoods can infer evolutionary trajectories, improve design campaigns, and predict zero-shot
mutational effects (Hie et al., 2022; Biswas et al., 2021; Meier et al., 2021). However, more
recent works have begun enumerating cases where pLMs likelihoods are influenced by training data
compositions that are not direct consequences of natural evolution (Weinstein et al., 2022; Ding &
Steinhardt, 2024).

To better understand how training data selection in biological pretraining leads to biases in the
learned patterns of pLMs, we propose to study performance through the lens of preference. At
the individual comparison level, the Bradley-Terry model of preference (Bradley & Terry, 1952)
has been shown to be a flexible tool, grounding both modern alignment techniques such as Direct
Preference Optimization (Rafailov et al., 2024) and ranking techniques such as ELO. As Ding &
Steinhardt (2024) used sequence likelihood to construct species-level ELO scores, we can generalize
likelihood to be a measure of sequence preference. By framing our analysis through the lens of
preference, we aim to uncover how pLMs implicitly "prefer" certain protein sequences over others.
Crucially, we posit that this implicit preference is not just a property of the model, but stems from
the preferences encoded in the training data itself. We hypothesize that this multi-layered preference
structure, quantified by sequence likelihood, can explain variations in pLM performance across
different proteins and tasks.

We start by showing that variations in downstream protein engineering performance can be explained
by the likelihood of the starting sequence. To do so, we use deep mutational scan (DMS) datasets to
see if underlying log likelihood of starting sequences can be predictive of zero-shot fitness prediction
capabilities, and find that mutation effect prediction on lower likelihood starting (i.e. wild
type) sequences have worse performance, and that high likelihoods can become harmful after
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Figure 1: Understanding DMS and a theory of pLM evolution capabilities. (a) A deep mutational
scan follows by choosing a protein then selecting residues to mutate. Mutations are performed,
expressed, then assayed for function (e.g. binding, fluorescence, or stability) to determine a fitness
score. (b) We refine the efficient evolution hypothesis of Hie et al. (2024) suggesting that ability
of pLMs for economic protein maturation is dependent on more than nature’s plausible mutations.
Mutation effect prediction success is reliant on the underlying likelihood or preference towards the
non-mutated protein. Ultimately, model performance can be seen as a result of the model’s implicit
preference and human preference during the data curation pipeline.

a certain threshold. From this finding, we generalize the failure pathology from species-level
(Ding & Steinhardt, 2024) to individual sequence probabilities. The ability to calculate pseudo log
likelihood on datasets of evolutionary-scale magnitude is enabled by a new derivation of pseudo log
likelihood calculation reducing the number of inference passes from O(L) to O(1) without any
post-training.

A question then emerges: what is causing these sequence likelihoods? We utilize influence functions
to understand what proteins from the underlying training dataset increase the likelihood of certain
wild type proteins. Our studies reveal that the distribution of influential data points follow a power
law distribution, and that highly influential sequences can be quickly found using a search tool such
as mmseqs2 (Steinegger & Söding, 2017).

Combining these results, we motivate a past method known as evo-tuning (Alley et al., 2019) to
protein designers or test-time training (Sun et al., 2019) to the machine learning community. We
leverage our results relating to likelihood to suggest that evo-tuning on low likelihood wild types
improves performance and evo-tuning on high likelihood wild types harms performance. This
finding matches the intuition garnered from the zero-shot plots and helps to explain counterintuitive
dynamics seen in Hsu et al. (2022) that unsupervised finetuning can sometimes worsen performance.
Together, our findings improve real-world applicability of increasingly powerful pLMs, also providing
theoretical and granular analysis to how homology to training data sequences affects performance.

2 RELATED WORKS

Protein Language Models Modern pLMs come in two forms: masked or autoregressive models. Of
the former, transformer based language modeling efforts like ESM-1B, ESM-1V, and ESM-2 became
dominant with BERT-like pretraining objectives (Vaswani et al., 2017; Rives et al., 2021; Meier et al.,
2021; Lin et al., 2023). In contrast, ProGen (Alley et al., 2019; Madani et al., 2023; Nijkamp et al.,
2023) and other works embraced the GPT-like pretraining style and opted for autoregressive training
scheme.

As a result of these training tasks, pLMs have afforded many capabilities surrounding evolution
through their likelihoods. Biswas et al. (2021) use pLMs to do property engineering with a limited
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number of labeled sequences. Meier et al. (2021) showed that pLMs are capable of zero-shot mutation
prediction by comparing the log odds ratios between sequences of interest. Extending this, Hie
et al. (2022) proved pLMs can predict the evolutionary trajectory of a range of different proteins and
selective pressures. Not only can pLMs predict evolution, Hie et al. (2024) demonstrated that an
ensemble of pLMs can improve the affinity of monoclonal antibodies without any information about
the antigen.

Limitations Protein Language Models of Training Data Though data research is becoming
more and more prevalent within the language modeling, its treatment within the domain of pLMs
has not yet been as extensive thus far. Fannjiang & Listgarten (2024) provides an introduction to
the relationship between data and model performance in both protein specific and general purpose
modeling regimes. On the matter of training as a whole, Weinstein et al. (2022) argued that the
density of pLM training data alone doesn’t specify the fitness functions of interest, rather due to
misspecification pLMs learn to model the stationary distribution enabling their success in fitness
tasks. Recently, Ding & Steinhardt (2024) showed how species bias within protein databases has lead
to biases in the underlying pretraining sets for most pLMs. It further demonstrated that pLMs fail
on design tasks catered towards low-likelihood species and would often revert to over-represented
homologs. Lastly, Hermann et al. (2024) uncovered dataset overlaps between commonly used pLM
benchmarks and their pretraining datasets. When these overlapping points were removed from the
benchmarks, scores decreased.

Relating Training Data and Model Outputs One of the first attempts to relate a probabilistic
model’s outputs to its input data comes from influence functions (IFs) in robust statistics (Hampel,
1974). Koh & Liang (2017) ported the classic technique to deep learning. A few years later, Grosse
et al. (2023) improved computations of IFs enabling evaluation for models of up to 52 billion
parameters.

Other modern schools of thought surrounding data have begun understanding downstream model
performance as a function of pretraining data for robustness and pruning. Fang et al. (2022) finds
that the data distribution is the cause of the large gains in effective robustness for CLIP. Others used
data pruning to outperform classical neural scaling laws (Sorscher et al., 2022). With the growing
importance being placed on data, tasks are now developing to understand which data points are
most important through the DataComp challenges that have been put forward for multimodal and
traditional language models (Gadre et al., 2024; Li et al., 2024). Further evidence can be seen with
complex data distributions and post-training regimes in works such as Llama 3.1 (Dubey et al., 2024).

3 PRELIMINARIES

3.1 ZERO-SHOT FITNESS PREDICTION

One of the most common methods for determining how protein fitness changes with mutations is
called a deep mutational scan (DMS). As seen in 1a, deep mutational scans start with a protein of
interest, then perform combinatorial set of mutations to select residues in the protein. Those are
characterized in the wet lab then compared against the unmutated or wild type starter protein.

We choose to focus on masked language models in this study due to their ease of use in point
wise mutations and community adoption. Following ESM-1V we utilize, the difference in model
likelihoods to compute zero-shot fitness predictions. We denote the wild type sequence as x and the
set of mutable residues as T . From here we can calculate a predicted gain in fitness f of a mutated
sequence x′ over x using parameters θ as the log odds ratio of the mutated sequence against the wild
type:

f(x′, x) =
∑
t∈T

logP (yt = x′
t|x\t,θ)− logP (yt = xt|x\t,θ). (1)

Each evaluation of f can be compared against real world assay values, thus Spearman correlation
can be used as a measurement of agreement (Spearman, 1904) making the task equivalent to ranking.
This method is how the predictions in ProteingGym are formulated for the ESM suite of models.

Although this is a powerful method of zero-shot precition, it has two major limitations. First is the
linear additivity of fitness. As a result it can’t model epistatic fitness interactions. Second is the need
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for mutants to be identical in length to the wild type sequence. Since we’re evaluating the log odds
ratios at certain locations to derive fitness, each residue must have an existing counterpart on both
proteins to enable evaluation.

3.2 INFLUENCE FUNCTIONS

We find ourselves utilizing a training dataset D = {zi}Ni=1 of N samples and individual sequences
zis. Models are then fit to minimize the empirical risk of a loss function L to derive an optimal set of
parameters:

θ⋆ = argmin
θ⋆
J (D,θ) = argmin

θ⋆

1

N

N∑
i=1

L(zi,θ). (2)

In particular, we are interested in understanding the effect of a single point m. We choose to weight
this data point with some parameter ϵ arriving at:

θ⋆(ϵ) = argmin
θ⋆

1

N

N∑
i=1

L(zi,θ) + ϵL(zm,θ). (3)

Setting ϵ = −1 can be thought of as asking the counterfactual: what if zm wasn’t in the training
set? Using a first-order Taylor series of Equation 3, the Implicit Function Theorem, and a few other
assumptions we can derive the influence of zm on θ⋆ in Equation 4. Furthermore, Equation 5 shows
that we can calculate the influence of a sequence on a functional evaluation of f via the chain rule.

Iθ⋆(zm) =
dθ⋆

dϵ

∣∣∣
ϵ=0

= −H−1∇θL(zm,θ⋆) (4)

If (zm) = ∇θf(θ
⋆)⊤Iθ⋆(zm) = −∇θf(θ

⋆)⊤H−1∇θL(zm,θ⋆) (5)

H−1 represents the inverse hessian calculated over D. As one can imagine, calculating this directly
becomes prohibitively memory intensive. Grosse et al. (2023) makes it computationally feasible by
assuming layer-wise independence and using of EK-FAC for hessian calculation (George et al., 2018).
We use the implementation of Bae (2024) in our analysis.

Although giving insight to a very complex relationship, influence functions are not without their
limitations. Basu et al. (2020) show the fragility of the method to training alterations like the number
of layers, layer width, and the inclusion of weight decay. Extending upon these findings, Bae et al.
(2022) showed how a mixture of complications in assumptions and practical training dynamics differ
from the idealized construction in influence functions. The work argued that influence functions
better capture the proximal Bregman response function, that is what is the effect of removing a data
point while also attempting to maintain current predictions?

3.3 PSEUDO LOG LIKELIHOODS

Unlike autoregressive language models, masked language models don’t have a natural way to
immediately compute the joint likelihood of a sequence. As a result, Wang & Cho (2019) proposed
to mask every index of a sequence one-at-a-time then average to derive a PLL (Wang & Cho, 2019):
PLL(x) = 1

L

∑L
i=1 logP (yi = xi|x\i,θ).

This formulation suffers from the need to run O(L) forward passes to compute a perplexity or log
likelihood. In response to this, the community only considers autoregressive pLMs when computing
fitness values for proteins containing insertions or deletions.
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4 UTILIZING PLM LIKELIHOODS TO PREDICT ZERO-SHOT SUCCESS

4.1 EFFICIENT PSEUDO LOG LIKELIHOOD CALCULATION

For non-autoregressive models, papers (Lin et al., 2023) often use a measure of pseudo log likelihood
(PLL) by evaluating PLL(x) = 1

L

∑L
i=1 logP (yi = xi|x\i,θ). The resultant equation requiresO(L)

forward passes to calculate, where L is the length of the protein. Because of the high computational
burden, autoregressive language models are sometimes preferred over masked language models
when likelihood-based mutation effect prediction is the desired downstream use. To overcome this,
Kantroo et al. (2024) perform post training on ESM-2 to predict the distribution of tokens of as if the
underlying token of interest had been masked.
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Figure 2: Single Inference PLL is Con-
sistent with PLL. ESM-2 650M Single
Inference PLL plotted against traditional
PLL on a diverse set of proteins.

We argue that PLL can be approximated for any masked
language model in a single forward pass using Algorithm 2
as a result of Remark 4.1. To achieve this, we define the
term "mask-consistent", where a token’s masked probabil-
ity is equal to its probability under the implicit assumption
that the token might have been scrambled by the training
procedure. Using mask consistency, we produce an ap-
proximation of the probability of a masked token when
the token is not masked during inference in Remark 4.1.
As a result, we can calculate PLL for any model without
requiring bespoke finetuning or exhaustive resources.

Remark 4.1 Under a mask-consistent masked language
model with a training scheme that sets training tokens
to a random token with probability α and keeps them
unchanged with probability β:

P (yi = xi|x\i,θ) =
α+ β

α
P (yi = xi|x,θ)−

β

α
. (6)

4.2 PROOF OF REMARK 4.1

Recalling the training of BERT (Devlin et al., 2018), 15%
of tokens in a sequence are chosen for training. Of those tokens 80% are turned into [MASK], 10%
are substituted with random tokens, and the last 10% are left unchanged. We denote the likelihood of
substitution with α and the probability of being unchanged with β.

Letting ϕ|x ∼ Bernoulli( α
α+β ) represent the event of a token being a substituted token given that it’s

not a [MASK] token. Using the law of total probability, we can now expand the likelihood of a token
being identical to its input token.

P (yi = xi|x) = P (yi = xi, ϕ = 0|x) + P (yi = xi, ϕ = 1|x) (7)
= P (yi = xi|ϕ = 0, x)P (ϕ = 0|x) + P (yi = xi|ϕ = 1, x)P (ϕ = 1|x) (8)

= (1)(
β

α+ β
) + P (yi = xi|ϕ = 1, x)(

α

α+ β
) (9)

P (yi = xi|ϕ = 0, x) becomes 1 as the token was unchanged. Now the insight comes at the evaluation
of P (yi = xi|ϕ = 1, x). This is the probability of the ith token given that the input variable was
uninformative. Put in another way, it’s the probability if the token was masked. We call the language
model "mask-consistent" if P (yi = xi|ϕ = 1, x) = P (yi = xi|x\i). Substituting this identity with
some algebraic manipulation completes the proof.

P (yi = xi|x) =
β

α+ β
+

α

α+ β
P (yi = xi|x\i) (10)

α+ β

α
P (yi = xi|x)−

β

α
= P (yi = xi|x\i) ■ (11)
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Figure 3: pLM likelihoods are predictive of mutation effect capabilities. (a Upper) Model
parameter counts versus average Spearman correlation on DMS datasets across models. (a Lower)
Spearman correlation of PLL and performance at each model size. ESM-2 (b) and ProGen2 (c) of
varying scales comparing PLLs DMS wild types against zero-shot performance. Each plots title
lists the Spearman (ρ) and Pearson (r) correlation of the underlying data. Lastly, a second order
polynomial regression is fit to the data in all cases resulting in a concave down parabola.

4.3 ESM-2 AND PROGEN-2 LIKELIHOODS PREDICT DMS CORRELATION

Our goal is to see if the apparent capacity for pLMs to be used for zero-shot fitness is primarily driven
by data or a true understanding of the fitness landscape. To do so, we evaluate pLMs on various
deep mutational scan (DMS) tasks, and assess if task performance is correlated with likelihood.
Specifically, we take the wild type proteins in 217 DMS studies from ProteinGym (Notin et al., 2023)
and calculating PLLs for each of them. In Figure 3 we plot the relationship between PLL and DMS
Spearman ρ for the most utilized masked and autoregressive pLMs ESM-2 and ProGen-2.

Generally, ProteinGym task averages improve as parameters increase (Figure 3a upper), with ESM-2
performance degrading past 650 million parameters. But, an inverse scaling law emerges for the
Spearman correlation between likelihood and DMS correlation. Figure 3a lower suggests that in
small models, a lot of performance can be explained by the likelihood of the wild type sequence,
which then degrades as parameters increase across both ESM-2 and ProGen-2.

Further looking at the data in Figures 3b & c illuminates why the correlation between likelihoods and
DMS performance decreases. Instead of of likelihoods being less explanatory of zero-shot fitness
prediction, higher parameter count models exhibit performance degradation at high likelihoods. This
effect is magnified when looking at sequences with probabilities near 1 (or 0 on the log scale) for
models such as ESM-2 15 billion and ProGen-2 XL. One interpretation of this phenomenon is that the
increased learning capacity of larger models has caused them to overfit on certain regions of sequence
space, suggesting that the optimal choice of pretrained model is dependent on the downstream task
and dataset.
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In all, the results shown in Figure 3 corroborate a theory exemplified in Figure 1b. Low likelihood
or under preferred wild type sequences struggle to predict beneficial and harmful mutations. As the
likelihood increases so does performance, but after a certain threshold too much preference harms
predictive capability.

5 UNDERSTANDING PLM LIKELIHOODS USING INFLUENCE FUNCTIONS
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Figure 4: pLM influence tails exhibits a
power law relationship. ESM-2 650M in-
fluences plotted against the complementary
cumulative distribution.

Motivated by the predictive phenomenon with like-
lihoods, we aim to study a more rigorous causal re-
lationship between data and downstream likelihoods
using influence functions. We determine a structure
of the data involved in these likelihoods and thus pref-
erence. In Section 6, we leverage these findings to
inspire a method of post-training.

5.1 PROTEIN LIKELIHOOD
INFLUENCE HAS A POWER LAW TAIL

Influence functions (Hampel, 1974; Koh & Liang,
2017) measure the impact of a training sequence on
function of interest. We quantified per-datum influ-
ence values in the train dataset to find most influential
points on sequence likelihood to investigate our exam-
ined phenonmenon. To approximate ESM-2’s train-
ing distribution, we randomly sample 10,000 proteins
from UniRef50 and trim sequences to be of length at
most 1,024. We utilize the Kronfluence library (Bae,
2024) to calculate influences conditioning the inverse
Hessian on the random samples. Figure 4 depicts
influence of these 10,000 points as well as points retrieved by searching UniRef50 using mmseqs2
on the likelihood four common proteins of interest: Green Fluorescent Protein (GFP), Cytochrome
Complex (CytC), KaiB, and Programmed Cell Death Protein 1 (PD1).

Our results suggest two main insights. First, we reproduce the power law tail observed for traditional
LMs in Grosse et al. (2023), suggesting similar data dynamics between pLMs and LMs. From a
biological perspective, Qin & Colwell (2018) finds a power law tail in the covariance of phylogenetic
protein systems, which might lend a way to understand this result. Second, for each of the four
proteins, mmseqs2 found some of the most influential proteins when compared to an unfiltered set.
This means that search might serve as an efficient way to deduce which training samples can be used
to improve performance.

5.2 INFLUENCE DIMINISHES WITH EDIT DISTANCE
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Figure 5: Influence on likelihood decreases as
hamming distance increases. The diminishing
influence sugggests that homologous sequences
have a the greatest causal link to preference.

As protein search yields many of the influen-
tial proteins, a natural thought would be that
influence is related to the amount of homology
between a training data point and the sequence
whose likelihood is in question. To investigate
this phenomenon, we selected DMS studies by
the maximal number of edits from the wild type
sequence taking the top 10 from ProteingGym.
From each DMS study, a random 1,000 samples
are used as a synthetic set of training examples
to examine what would happen were a protein
with some number of mutants from the wild type
within the train set.

We present a representative example in Figure 5
using ESM-2 650M on Sinai et al. (2021)’s DMS
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a

b

Figure 6: Wild type likelihoods are predictive of finetuning success. (a) The change in Spearman
correlation on 217 DMS studies over 5 epochs. Each plots upper right corner denotes the slope of a
linear model. (b) The cumulative gain in performance for studies below likelihood ϵ.

Model Name

Selection Criteria

Mean Weighted
MeanActivity Binding Expression Organismal

Fitness Stability

ESM-2 650M 0.441 0.327 0.415 0.390 0.523 0.439 0.419
+ Finetune ϵ = −1.4 0.4610.020 0.3560.029 0.4370.022 0.4250.035 0.5340.011 0.4620.023 0.4430.024

+ Finetune ϵ = 0 0.3910.050 0.2710.056 0.3930.022 0.3850.005 0.4440.079 0.3980.041 0.3770.042

ProGen2 XL 0.404 0.291 0.418 0.389 0.445 0.406 0.389
EVE 0.464 0.354 0.404 0.449 0.487 0.454 0.432
MSA Transformer 0.459 0.32 0.435 0.416 0.476 0.438 0.421
TranceptEVE L 0.492 0.359 0.457 0.466 0.5 0.474 0.455

Table 1: Comparing finetuned ESM-2 650M to state-of-the-art pLMs. ESM-2 650M with and
without finetuning at various values of ϵ compared to other fitness prediction models. Results for all
non ESM-2 models are reported from ProteinGym. In line with earlier findings that high likelihoods
can harm performance, we find that applying a threshold to which sequences we finetune on improves
performance.

data chosen on the basis of having the second highest edit distance and a fairly uniform edit distance
distribution. The influence of a mutant protein against its wild type decreases as a function of its edit
distance to the wild type. Further evidence can be seen in Appendix Figures 8 and 9. Across five
different ESM-2 model scales (8M, 35M, 150M, 650M, and 3B) and all 10 datasets, we find that
as edit distance increases influence decreases. Variations in the clarity of this relationship might be
explained by the number of locations mutated on the protein of interest and underlying distribution of
edit distances.

6 EVO-TUNING PLMS TO IMPROVE FITNESS PREDICTION

Motivated by the finding that that low probability sequences underperform, and that mmseqs2 serves
as a simple heuristic for finding likelihood-influencing data points, we propose a simple remedy: a
pLM can be finetuned to increase the likelihood of the wild type sample for a protein engineering
task, but sequences with sufficiently high likelihoods should remain unchanged.

We perform unsupervised finetuning on homologous sequences (sometimes referred to as evo-tuning
(Alley et al., 2019; Biswas et al., 2021)) of ESM-2 650M on a set of sequences derived by searching
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UniRef100 for the wild type sequence on each of the 217 DMS studies in ProteinGym separately.
Post training utilizes AdamW (Loshchilov et al., 2017) with a learning rate of 1e-6 for 5 epochs on
the 1,000 most similar proteins to wild type as determined by E-value of mmseqs2 search with a
maximum cut off of 1. Finetuning starts at a batch size of 32 is progressively halved in the occurence
of an out of memory exception. Each run consumes a single 80GB A100 GPU. As our findings above
further indicate that too much likelihood harms performance, we only consider finetuning models
where the log likelihood falls below a threshold ϵ.

Examining the change in Spearman correlation on the DMS test bed from finetuning with respect
to initial sequence log likelihood in Figure 6, performance improvement is anti-correlated with
starting probability. Low likelihood sequences benefit from training, while high likelihood sequences
get harmed, an effect that gets amplified as more training occurs. This effect further corroborates
the model shown in Figure 1b. The nontrivial performance harm of too much likelihood might be
explained through Weinstein et al. (2022)’s findings that modeling the sample data distribution density
isn’t what leads to fitness prediction. In our case, further finetuning on high likelihood regions in
sequence space might cause memorization of phylogenetic artifacts instead of fitness signals.

If the model is naively finetuned before evaluation on every DMS, then performance degrades as
seen in Table 1 at ϵ = 0, in accordance with Meier et al. (2021). Figure 6b investigates how only
performing finetuning on samples that fall below some likelihood threshold ϵ leads to a gain in total
correlation accross ProteinGym. ϵ is evaluated at 11 equally spaced log likelihoods from −2 to 0.
The best performance is observed at ϵ = −1.4. After accounting for this procedure, ESM-2’s scores
jump and outperform models that utilize evolutionary information through MSAs like EVE (single)
and MSA Transformer (single) (Frazer et al., 2021; Rao et al., 2021), while becoming competetive
with the state-of-the-art hybrid MSA and pLM model TranceptionEVE (Notin et al., 2022).

7 DISCUSSION

In this work, we proposed studying pLMs through the framework of preference. Our findings
demonstrate that sequence likelihood, which can be thought of as implicit preference, can predict
pLM performance on a diverse set of fitness prediction tasks. In thinking about pLM capabilities
through preference, we illuminate different layers of preference suggesting that the learned pLM
behavior is reflective of the user level bias in curation of training data, and may not always reflect
evolutionary patterns as one might assume.

We show that both low and high likelihood sequences suffer in performance, suggesting that over or
under preferring data is harmful for fitness prediction capabilities. By utilizing influence functions,
we’re able to link the observed likelihoods to training data in a causal manner suggesting that
homologous protein training data is most responsible for the driving the latent preferences of these
models. Combining these two findings we arrive at a nuanced way to improve off the shelf models:
unsupervised finetuning on regions of low-likelihood space.

Crucially, our work demonstrates that the ability of a pLM to predict fitness is indeed a matter of
preference - not just of the model, but of the human choices and resource limitations that shape data
curation. This perspective helps us understand when these models will succeed or fail in applied use
giving us ways to improve their success.

Looking forward, our findings motivate the need to think more intentionally about pretraining and
evaluation. Naive usage of sequence databases and scaling will magnify the biases training data
leading to miscalibrated preferences. Researchers should curate the next generation of datasets
and supervision schemes to adjust for this. Lastly, understanding the interplay between data and
performance suggests that researchers should ensure proper test task representation during pretraining
when benchmarking as suggested by Dominguez-Olmedo et al. (2024). Algorithmic differences
might be overshadowed by human preferences at the data level confounding whether a model better
captures the biology of proteome.

In conclusion, by thinking about pLM behavior in terms of preference, we’ve provided a new lens
through which to understand and improve these powerful tools. As the field of protein engineering
continues to evolve, studying pLMs through their likelihoods and training distriubtions offers a
promising path to diagnose and train more effective protein language models.
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APPENDIX A FURTHER EXPERIMENTAL DETAILS

A.1 PROTEIN SEARCH

We utilize the July 24, 2024 UniProt releases of both UniRef50 and UniRef100 (Suzek et al., 2015).
The search performed over UniRef50 used the default sensitivity and a maximum E-value of 1 to be
inline with Lin et al. (2023). Similarly, searches on UniRef100 utilized a maximum E-value of 1, but
also a sensitivity of 7.5.

A.2 INFLUENCE FUNCTIONS

Using the Kronfluence (Bae, 2024) we calculate influence functions using a method identical to that
introduced in Grosse et al. (2023). As such the computation has three major components that can
be altered: the training loss function L, the measurable value f , and the data used to condition the
Inverse Hessian H−1.

For both the loss function and measurable function we want something that mirrors masked langauge
model training and PLL calculation. To that end, we choose the function 1

L

∑L
i=1 logP (yi = xi|x, θ).

This function is both a rough estimate of the training objective, while removing the need for a
stochastic loss estimation of a certain point and is similar to PLL. Although, we do introduce another
version of PLL that requires only a single inference, the clipping would result in certain tokens not
contributing to the loss. As a result, this form both avoids stochasticity and multiple inference passes
to arrive at both our training loss and observed function PLL.

As the Inverse Hessian will approximate some of the curvature of our data, we want to choose
conditions that match our study of interest. As a result, we used two different setups to perform this
training data conditioning. In Section 5.1, we use 10,000 randomly sampled points from UniRef50 as
can be thought of as an estimate of ESM-2’s training data. Then in Section 5.2, we condition on each
individual study’s downstream points as those will help capture the local curvature of the likelihoods
around the wild type protein of interest.

APPENDIX B SINGLE-INFERENCE PSEUDO LOG LIKELIHOOD

In this section, we expand on the implications of Remark 4.1. First we use it to propose Algorithm 2
that leverages this result to reduce the number of inferences from O(L) to O(1). Lastly, to ensure
that the assumptions weren’t too lenient, we evaluate our likelihoods on 7, 545 sequences of varying
species and length showing tight agreement between our Single-Inference PLL and traditional PLL.

Though Kantroo et al. (2024) also provide a method for enabling PLL calculation in a single pass,
it requires training a separate neural network ensemble to estimate the masked quantities. Hence,
whenever one wants to calculate PLL in one pass for any new model this adapter ensemble must be
trained before PLL calculation. Our method bypasses this need, letting PLL be evaluated out of the
box in a single inference pass.

B.1 ALGORITHM

Algorithm 1 provides detail on the traditional method of PLL calculation. Each residue is masked
one at a time, then the log probabilities of being the inputted sequence at the masked location are
averaged into a single scalar.

Algorithm 1 Traditional Pseudo Log Likelihood Calculation
Require: x ∈ VL

1: z ← 0 ▷ Initialize PLL
2: for i ∈ {1, . . . , L} do
3: z ← z + 1

L logP (yi = xi|x\i) ▷ Mask and infer
4: end for
5: return z
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To overcome the for loop, and thus O(L) forward passes, Algorithm 2 relies on Remark 4.1 to derive
probability values equivalent to the masked probabilities. As each probability of interest is captured
in a single forward pass, we can side step the for loop now only requiring O(1) or a single forward
pass to calculate PLL. One limitation becomes apparent in calculating our closed form probability of
interest, it’s plausible that α+β

α P (yi = xi|x) < β
α leading to a negative probability. Since probability

must be a non-negative measure, we therefore clip values that are too low to some ϵ.

Algorithm 2 Single-Inference Pseudo Log Likelihood
Require: x ∈ VL, ϵ ∈ R+

1: p← P (y = x|x) ▷ Perform inference once, p ∈ [0, 1]L×V

2: p′ ← max(α+β
α p− β

α , ϵ) ▷ Use Thm. 4.1 and ϵ for negative probabilities
3: return 1

L

∑L
i=1 log p

′(yi = xi) ▷ Vector sum and in place operation

To ground α and β for the reader, BERT plus the ESM family use 0.1 for both α and β. For each
token included in loss calculation, the models substitute and hold each token with 10% chance given.
We utilize this value for all calculations of Single-Inference PLL within this study.

B.2 EMPIRICAL VALIDATION OF SINGLE-INFERENCE PSEUDO LOG LIKELIHOOD

To assess the correctness of the Single-Inference PLL calculation, we seek to measure its correspon-
dence with classic PLL calculation. We calculate PLL using both methods using 7, 545 of various
lengths, species, and families from Ding & Steinhardt (2024). In Figure B.2 we can see the calibration
of the two quantities against one another.

The two methods have strong correlation statistics. Calculating the correlation between PLL and
Single-Inference PLL yields Spearman ρ = 0.923 and Pearson r = 0.930. The P -values for both
underflow the range of Python’s floating point precision. Spearman correlation was seen to slightly
improve as ϵ increased while Pearson correlation would lessen. As our interests lie in rank order
statistics, we chose to utilize an ϵ = 10−3 to have more rank agreement during the studies of the
main text.

APPENDIX C EXTENDED INFLUENCE FUNCTION PLOTS

We plot the relationship between influence and edit distance for the ESM-2 family at scales between
8 million and 3 billion. Each plot depicts a single model examining the effect of adding the mutants
of a DMS study into the underlying training set. We selected the 10 studies with the highest maximal
edit distance from their wild type sequence.
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Figure 7: Single-Inference PLL is calibrated with PLL on a diverse set of proteins. We plot
the mean and inner 95% quantile for 11 evenly spaced bins between -4.5 and 0. Each data point is
colored by the number of samples used to derive the statistics for the bin. Although low likelihood
sequences seem inconsistent, there are few of these points in the dataset making it hard to draw
a confident conclusion on their calibration. On the other hand, for the bins with greater sequence
counts, Single Inference PLL aligns well with with traditional PLL.
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Figure 8: Influence versus edit distance for the top 5 DMS studies with the most mutations from
wild type. Each row represents a unique study an each column an ESM-2 Model 8M, 35M, 150M,
650M, and 3B (left to right).
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Figure 9: Influence versus edit distance for the top 6-10 DMS studies with the most mutations
from wild type. Each row represents a unique study an each column an ESM-2 Model 8M, 35M,
150M, 650M, and 3B (left to right).
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