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COLA: Cross-city Mobility Transformer for Human Trajectory
Simulation

Anonymous Author(s)
∗

ABSTRACT
Human trajectory data produced by daily mobile devices has proven

its usefulness in various substantial fields such as urban planning

and epidemic prevention. In terms of the individual privacy concern,

human trajectory simulation has attracted increasing attention from

researchers, targeting at offering numerous realistic mobility data

for downstream tasks. Nevertheless, the prevalent issue of data

scarcity undoubtedly degrades the reliability of existing deep learn-

ing models. In this paper, we are motivated to explore the intriguing

problem ofmobility transfer across cities, grasping the universal pat-

terns of human trajectories to augment the powerful Transformer

with external mobility data. There are two crucial challenges aris-

ing in the knowledge transfer across cities: 1) how to transfer the
Transformer to adapt for domain heterogeneity; 2) how to calibrate
the Transformer to adapt for subtly different long-tail frequency distri-
butions of locations. To address these challenges, we have tailored a

Cross-city mObiLity trAnsformer (COLA) with a dedicated model-

agnostic transfer framework by effectively transferring cross-city

knowledge for human trajectory simulation. Firstly, COLA divides

the Transformer into the private modules for city-specific character-

istics and the shared modules for city-universal mobility patterns.

Secondly, COLA leverages a lightweight yet effective post-hoc ad-

justment strategy for trajectory simulation, without disturbing the

complex bi-level optimization of model-agnostic knowledge trans-

fer. Extensive experiments of COLA compared to state-of-the-art
single-city baselines and our implemented cross-city baselines have

demonstrated its superiority and effectiveness. Our code will be

made publicly available
1
.
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Figure 1: Motivation and challenges of human trajectory
simulation across cities.

1 INTRODUCTION
The mobile internet has offered significant convenience for mo-

bile devices to record individual mobility trajectories, which has

shown its usage in various fields such as urban planning [30, 42],

traffic control [27, 31] and epidemic prevention [29]. For example,

leveraging the epidemiological model with mobility networks can

conduct detailed analysis and counterfactual experiments to inform

effective and equitable policy response for COVID-19 [3]. The con-

venience and usefulness of mobility data have also aroused the com-

prehensive concern of the individual privacy, which facilitates the

widespread demands of human trajectory simulation [16]. There-

fore, simulating human mobility behaviors necessitates modeling

user intentions from a collective perspective rather than an indi-

vidual one, striking a balance between generating realistic human

trajectories and preserving individual privacy in the meanwhile.

Recent deep learning models [6, 7, 11, 17, 39–41] have largely

promoted the synthetic quality of human trajectories based on

the advanced sequence generation techniques. On the one hand,

recurrent models [6, 11, 17] involve the inductive bias of human

trajectory sequence. DeepMove [6] devises an attention mechanism

for the long history of individual trajectories to retrieve related

information; CGE [11] exploits the spatio-temporal contextual in-

formation of individual trajectories with a unified location graph.

Nonetheless, recurrent models are difficult to generate the high-

fidelity trajectories from scratch because they rely on historical

trajectory. On the other hand, adversarial-based methods [7, 39–

41] incorporate high-order semantics of human mobility such as

geographical relations [7], activity dynamics [40] and Maslow’s

Hierarchy of Needs [41], and meanwhile maximize the long-term

generation reward based on a two-player min-max game. Despite

their efforts, the severe scarcity of human trajectory data will lead

these dedicated models to a sub-optimal solution.

The prevalent issue of data scarcity motivates us to transfer

the universal patterns of human mobility from abundant external

cities to help improve the synthetic quality on our target city. As

1
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illustrated in Fig. 1(a), daily activities of urban citizens are usu-

ally driven by similar intentions including working, entertainment,

commuting, shopping, rest, etc. These common intentions exhibit

universal patterns of human trajectories across different cities and

result in the similar long-tail frequency distributions of locations,

as shown in Fig. 1(b). The data scarcity of human trajectory can

be largely alleviated if the mobility knowledge across cities can be

appropriately transferred.

However, cross-city mobility transfer poses rather particular

challenges compared to spatio-temporal transfer across cities [19,

25, 33], which work on air quality metrics [33], pandemic cases [25]

or traffic speed [19]. Firstly, locations of the external city hardly

interact with locations of the target city, causing the location em-

beddings non-transferrable across cities, which is called domain

heterogeneity in knowledge transfer. In contrast, spatio-temporal

transfer usually deals with metrics of the same feature space like air

quality metrics, alleviating the transfer difficulty. Secondly, differ-

ent cities present subtly different long-tail frequency distributions

of locations due to the urban culture or geographical effects. The

subtle differences necessitate carefully calibrating existing overcon-

fident deep neural networks [15] during the knowledge transfer

process. The aforementioned challenges require us to rethink the

principles of mobility transfer across cities.

To address these challenges, we introduce the powerful Trans-

former [26, 28] block in a transfer learning framework to learn

the universal patterns of human mobility based on the attention

similarities between tokens (locations), which has demonstrated

its generalization ability in many NLP tasks. Concretely, we have

tailored a Cross-city mObiLity trAnsformer with a model-agnostic

transfer framework [8, 25], dubbed COLA, to deal with the domain

heterogeneity and different long-tail frequency distributions of lo-

cations across cities. Firstly, COLA divides the Transformer into

private modules accounting for city-specific characteristics and

shared modules accounting for city-universal knowledge, named

Half-open Transformer. It places the attention computation mecha-

nism into shared modules to better facilitate the pattern transfer

among urban human trajectories. Once transferred, the target city

can exhibit its specific mobility behaviors with the private modules

including non-transferrable location embeddings and their latent

representations. Secondly, COLA aligns its prediction probabili-

ties of locations with the real long-tail frequency distribution in a

post-hoc manner [23] to remedy the overconfident problems [15].

Compared to the iterative optimization of re-weighted loss func-

tions [44, 46], the post-hoc adjustment of the prediction probabil-

ities works only for the target city after the mobility transfer is

finished, leaving the minimum changes to the complex optimiza-

tion of the transfer framework. COLA can effectively adapt the

powerful Transformer for cross-city mobility transfer with these

dedicated designs.

In conclusion, our main contributions are summarized as follows:

• We investigate the intriguing problem of cross-city human

trajectory simulation, with identification of particular chal-

lenges compared to spatio-temporal transfer across cities.

• We have designed the dedicated method COLA with a

model-agnostic transfer framework, which leverages our

proposed Half-open Transformer to split private and shared

modules and calibrates the prediction probabilities for city-

specific characteristics.

• We conduct extensive experiments on human trajectory

datasets of four cities and demonstrate the superiority of

COLA compared to state-of-the-art single-city baselines

and our implemented cross-city baselines.

2 RELATEDWORK
Human Trajectory Simulation. Researches on human trajectory

simulation can be categorized as Markov-based methods, RNN-

based methods and Adversarial-based methods. (1) Markov-based

methods [10, 38] characterizing human trajectory with finite param-

eters of clear physical meaning are satisfactory in some cases but un-

able to capture complex patterns. (2) RNN-based methods [6, 11, 17]

can be directly employed to generate trajectories, while they are

trained for short-term goals (location prediction, which empha-

sizes recovering user-specific real data) and fail to generate high-

quality long-term trajectories (trajectory simulation, which high-

lights replicating the characteristics of user-anonymous real data).

(3) Adversarial-based methods [7, 39–41] can efficiently capture

complex mobility patterns leveraging prior knowledge of human

trajectories, while they struggle to achieve satisfactory performance

on data-scarce cities.

Cross-city Transfer Learning. Knowledge transfer [12, 20] aims

to tackle machine learning problems in data-scarce scenarios. In

the field of urban computing [1, 2, 13], it’s an ongoing research

challenge to achieve cross-city knowledge transfer, reduction of

data collection costs and higher learning efficiency. FLORAL [33]

leverages multi-modal data to achieve the sing-city transfer; Region-

Trans [32] divides the source city and the target city into different

grids for spatio-temporal feature matching. MetaST [37] first de-

signs a spatial-temporal network to realize multi-city knowledge

transfer. Panagopoulos et al. [25] use graph representation learning

to transfer cross-country knowledge between population mobility

and COVID-19 transmission. TrafficTL [21] employs a periodicity-

based transfer paradigm to achieve cross-city traffic prediction.

Existing cross-city transfer learning methods leverage various tech-

niques such as meta-learning and domain adaptation, however,

they are limited by homogeneous domains where source domain

and target domain share the same feature space. Our investigated

problem involves heterogeneous domains, where the locations of

source cities and the target city hold distinct meanings and cannot

be directly transferred like them.

Long-tail Learning. The imbalance caused by long-tail distribu-

tion of labels can be mitigated by re-sampling methods [4, 22, 45],

class-sensitive learning [5, 44, 46] and logit adjustment methods [18,

23, 34]. However, in cross-city human trajectory simulation task, it’s

crucial not only to avoid undesirable bias towards dominant labels

but also accurately capture the city-specific long-tail characteristics

across multiple cities.

3 METHODOLOGY
In this section, we propose a Cross-city mObiLity trAnsformer

(COLA) for human trajectory simulation, whose framework is pre-

sented in Fig. 2. In this framework, we design Half-open Trans-

former dividing private and shared parameters to adapt for domain

2
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Figure 2: The overall framework of COLA. (I) Initialize the shared parameters of the source model with the meta model. (II)
Optimize the source model with its internal loss. (III) Update the meta model based on the gradient evaluated on the source
city. (IV) Initialize the shared parameters of the target model with the meta model updated by all source cities. (V) Optimize the
target model with its internal loss. (VI) Simulate human trajectories with Post-hoc Adjustment technique.

heterogeneity. During simulation, we leverage Post-hoc Adjustment

to calibrate the overconfident probabilities of the model, where the

dynamic effects for different locations are further analyzed.

3.1 Overall Framework of COLA
COLA achieves the knowledge transfer across cities based on a dedi-

cated model-agnostic transfer framework. The dataset for cross-city

human trajectory simulation includes meta training set Mtr and

meta test set M𝑡𝑒 . Specifically, Mtr = {D𝑘 | 𝑘 ∈ [𝐾]} is from

𝐾 source cities, where D𝑘 = (D𝑘
train

,D𝑘
test

), and M𝑡𝑒 = { ˜D} =

{( ˜Dtrain, ˜Dtest)}. D = {x𝑚 |𝑚 ∈ [𝑀]} represents real-world mo-

bility trajectories of each city, where𝑀 is the number of trajectories.

Each trajectory x = (x1, x2, · · · , x𝑇 ) is a spatiotemporal sequence

with length 𝑇 . Our goal is leveraging common patterns learnt from

trajectories of other cities to improve the quality of simulated tra-

jectories on our target city.

Different from the classical meta learning [8] sharing all pa-

rameters of models, the parameters in our Half-open Transformer

T are divided into private parameters from location embeddings

and private attention module for city-specific characteristics, and

shared parameters from shared attention module for city-universal

patterns to handle domain heterogeneity. As illustrated in Fig. 2, the

shared parameters of the meta model are updated by source models,

which then initialize the shared parameters of the target model to

effectively transfer the universal patterns from source cities to the

target city. Meanwhile, the private parameters of source models and

the target model are consistently updated through Internal Update.
Let Θmeta, Θsrc, and Θtgt be the parameters of T for the meta,

source and target models respectively. In order to capture the uni-

versal patterns coexisting across cities, the shared parameters of

each source model are initialized from the current meta model. The

process of cloning the shared parameters from the meta model is

named Meta Clone. In the framework of COLA, a source model

firstly conducts Meta Clone as follows:

Θsrc = {𝜃 | ∀𝜃 ∈ Θshared

meta
} ∪ {𝜃 | ∀𝜃 ∈ Θ

private

src
}, (1)

where Θsrc refers to Θ𝑘
src

for simplicity. The shared parameters

cloned from the meta model provide the source model with a good

starting point for training. Subsequently, the source model performs

Internal Update through the trajectory pretraining task:

Θsrc = Θsrc − 𝛼src∇Θsrc
L(TΘsrc

(D𝑘
train

)), (2)

where 𝛼src is the learning rate for the source model and L is the

loss function defined as Eq. (12). Once the optimization is complete,

the source model acquires the prior knowledge of human mobility

in this city. Then the meta model executes Meta Update, guided by

the meta gradient evaluated on the source city, to enable the rapid

adaptation of the target city:

Θmeta = Θmeta − 𝛼meta∇Θsrc
L(TΘsrc

(D𝑘
test

)), (3)

where 𝛼meta is the learning rate for the meta model. TheMeta Clone,
Internal Update, and Meta Update are successively performed by

3
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Figure 3: Half-open attention in the Transformer.

all source cities, resulting in the meta model that incorporates the

universal patterns observed in all the source cities. Afterwards, the

target model employs Meta Clone to efficiently learn the common

patterns from source cities and perform Internal Update based on

the data of the target city:

Θtgt = {𝜃 | ∀𝜃 ∈ Θshared

meta
} ∪ {𝜃 | ∀𝜃 ∈ Θ

private

tgt
}, (4)

Θtgt = Θtgt − 𝛼tgt∇Θtgt
L(TΘtgt

( ˜Dtrain)), (5)

where 𝛼tgt is the learning rate for the target model. There are three

different loops 𝐸meta, 𝐸src and 𝐸tgt for optimization. Unlike the

classical meta learning where target domain updates 𝐸tgt epochs,

Θ
private

tgt
updates 𝐸meta×𝐸tgt epochs to synchronize the update with

meta model. After the optimization of Θtgt, COLA samples x̂𝑡+1

with the following Post-hoc Adjustment:

x̂𝑡+1 ∼ T (x1:𝑡 )/𝜋𝜏 , 𝑡 + 1 ≤ 𝑇, (6)

where 𝜋 is the empirical location frequencies on the training sam-

ples, 𝜏 is a hyperparameter and 𝜏 > 0. The details of Post-hoc

Adjustment are illustrated in Section 3.3 and the overall algorithm

of COLA is presented in Alg. 1.

3.2 Half-open Transformer
In the Half-open Transformer, in addition to location embeddings,

Value of the attention module is set as private for domain het-

erogeneity adaptation, because they encapsulates the city-specific

characteristics. Query and Key of the attention module compute

the attention weights of a location to all locations appeared in the

historical trajectory to capture city-universal patterns, suggesting

their capability for sharing across cities.

Let P = {ℓ𝑖 | 𝑖 ∈ [𝑁 ]} denote the set of city locations ℓ , where

𝑁 is the number of locations. For a trajectory x = (x1, x2, · · · , x𝑇 ),
we discrete each location x𝑡 in the trajectory and encode it with

one-hot vectors: h𝑡 = Emb
private (x𝑡 ), 𝑡 ∈ [𝑇 ]. Then, we map it into

private and shared representations by Proj for further extracting

private characteristics and shared patterns in the trajectories:

hprivate𝑡 = Proj
private (h𝑡 ),

hshared𝑡 = Proj
shared (h𝑡 ),

(7)

where Proj is a projection function comprising of an identity layer

or a position-wise MLP to employ the non-linear capability. Based

on the distinct representation of private characteristics and shared

patterns, we employ a causal self-attention mechanism to generate

the trajectory sequentially. The causal attention allows locations to

only attend to preceding locations observed in trajectories during

training, which ensures that the model does not have access to

the future trajectory when predicting, making the training process

more efficient [26]. Therefore, we project hshared𝑡 and hprivate𝑡 re-

spectively with independent operations of two category into Query
vectors q𝑡 , Key vectors k𝑡 and Value vectors v𝑡 :

v𝑡 = 𝑓 (hprivate𝑡 ;W𝑣),

(q𝑡 , k𝑡 ) = 𝑓 (hshared𝑡 ;W𝑞,W𝑘 ) .
(8)

where W𝑞 and W𝑘 are shared parameters like hshared𝑡 , while W𝑣

are private parameters similar to hprivate𝑡 , all of them are weighted

matrices. After that, we utilize causal scaled dot-product attention

on them to derive the attention coefficients for all appeared loca-

tions and compute the weighted sum of Value vectors to serve as
the feature representation of the past trajectory:

𝛼𝑡𝑡 ′ =
exp(q𝑡 · k𝑡 ′/

√
𝑑)∑

𝑡 ′≤𝑡 exp(q𝑡 · k𝑡 ′/
√
𝑑)
,

z𝑡 = MultiHead(
∑︁
𝑡 ′≤𝑡

𝛼𝑡𝑡 ′v𝑡 ′ )W𝑜 ,

(9)

where 𝑑 is the dimension of Key vectors andW𝑜 is the weighted ma-

trix for output. Furthermore, we use stacking operations to model

the relationships from different subspaces and generate a com-

prehensive representation of the past trajectory. Let h𝐿−1

𝑡 be the

representation at 𝐿 − 1-th layer. The weighed representation at this

layer z𝐿−1

𝑡 is added to h𝐿−1

𝑡 and then subjected to layer normal-

ization to obtain the intermediate representation
¯h𝑡 . Subsequently,

the representation at 𝐿-th layer h𝐿𝑡 can be obtained with a non-

linear operation followed by another layer normalization. It can be

expressed as follows:

¯h𝑡 = LayerNorm(h𝐿−1

𝑡 + z𝐿−1

𝑡 ),

h𝐿𝑡 = LayerNorm(MLP(¯h𝑡 )) .
(10)

Then we use a linear layer to process the feature to obtain the

logits of all locations. The logit at location ℓ𝑖 can be expressed

p𝑚,𝑖
𝑡+1

= 𝜔
private

𝑖
h𝐿𝑡 , where𝜔

private

𝑖
is private and same as the weights

of ℓ𝑖 embedding. Furthermore, the predicted probability of location

ℓ𝑖 can be obtained after normalizing:

ŷ𝑚,𝑖
𝑡+1

=
exp(p𝑚,𝑖

𝑡+1
)∑

𝑗∈[𝑁 ] exp(p𝑚,𝑗

𝑡+1
)
, (11)

which is used for the post-hoc sampling in the simulation phase.

During the training phase, the Transformer T is optimized with

the following internal loss function:

L = − 1

𝑀𝑇

𝑀∑︁
𝑚=1

𝑇−1∑︁
𝑡=1

y𝑚𝑡+1
· log(ŷ𝑚𝑡+1

) . (12)

3.3 Post-hoc Adjustment
On the one hand, as illustrated in Fig. 1 (b), the overall visited

frequency distributions of locations appeared in trajectories from

four cities all exhibit long-tailed characteristics. Under the circum-

stances, some locations are visited occasionally but cannot be disre-

garded. Nevertheless, the paucity of occasionally visited locations

poses a significant challenge in terms of generalisation. Further-

more, naive learning on such data is susceptible to an undesirable
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bias towards dominant locations [23]. Due to the prevalent overcon-

fident problem of deep learning models [15], our proposed Trans-

former even exaggerates the real long-tailed frequency distribution

of locations that severely overlooks the low-frequency locations.

On the other hand, the long-tailed visited frequency distribu-

tions of locations from multiple cities display subtly differences,

especially in the enlarged part of Fig. 1 (b), which is crucial in de-

termining the appropriate long-tail learning method for addressing

the class imbalance problem. Traditional long-tail learning methods

encompass two strands of work: post-hoc normalisation of class

weights and loss modification to account for varying class penalties.

Because loss modification requires loss functions with different

weights for models of various cities, which hinders the transfer

of universal mobility patterns across cities and also increase the

training cost, it is unsuitable for calibrating the imbalance of loca-

tions in trajectories during training. Therefore, COLA leverages the

post-hoc adjustment method to calibrate our overconfident proba-

bilities of locations instead of pursuing the optimal Bayesian error

of long-tailed learning [23], written as follows:

ỹ𝑚,𝑖
𝑡+1

=
exp(p𝑚,𝑖

𝑡+1
)/𝜋𝜏

𝑖∑
𝑗∈[𝑁 ] exp(p𝑚,𝑗

𝑡+1
)/𝜋𝜏

𝑗

, 𝜏 > 0. (13)

The penalization term 𝜋𝜏
𝑖
towards high-frequency locations offers

a lightweight yet effective way to simulate the real long-tailed

frequency distribution of locations. During the simulation phase,

we sample x̂𝑚
𝑡+1

∼ ỹ𝑚
𝑡+1

from T (x𝑚
1:𝑡
) following the above calibrated

probabilities of locations.

Proposition 1. Suppose that the probability density function of
locations follows Zipf’s law 𝜋 (𝑥) ∼ 𝑎𝑥−𝛾 , 𝛾 > 0, 𝑥 ∈ N+ is the
index of a location, the post-hoc adjustment dynamically scales the

pair-wise probabilities of two locations as:
ỹ𝑚,𝑖
𝑡+1

ỹ𝑚,𝑗

𝑡+1

=
ŷ𝑚,𝑖
𝑡+1

ŷ𝑚,𝑗

𝑡+1

· (𝑖/ 𝑗)𝜏 ·𝛾 .

Let 𝑖 < 𝑗 for simplicity, where 𝑖, 𝑗 are indices of locations sorted

by their frequencies. It indicates that high-frequency locations are

penalized in proportion to their frequency, while low-frequency

locations are rewarded in contrast. In situations where both loca-

tions exhibit similar frequencies, the unadjusted probabilities of the

models play a crucial role.

4 EXPERIMENT
To demonstrate the effectiveness of the proposed COLA method,

we conduct extensive experiments to answer the following research

questions:

• RQ1: How does COLA perform compared to state-of-the-art
single-city baselines and our implemented cross-city baselines

in human trajectory simulation task?

• RQ2: How do different components of COLA contribute to the

final performance?

• RQ3: Can COLA generate synthetic data of high quality for

practical applications?

• RQ4: How do hyperparameter settings influence the perfor-

mance of COLA?

Algorithm 1 COLA

Require: source cities and the target city dataset:Mtr andMte;

learning rates: 𝛼src, 𝛼meta, 𝛼tgt; Training epochs: 𝐸meta, 𝐸src, 𝐸tgt.

1: Initialize Θmeta randomly

2: for epoch 𝑒𝑚 ∈ 𝐸meta do
3: for each cityD𝑘 ∈ Mtr do
4: Meta Clone for Θ𝑘

src
with Eq. (1)

5: # Iterate 𝐸src epochs to update Θ𝑘
src

6: Internal Update for Θ𝑘
src

with Eq. (2)

7: Meta Update for Θmeta with Eq. (3)

8: end for
9: Meta Clone for Θtgt with Eq. (4)

10: # Iterate 𝐸tgt epochs to update Θtgt

11: Internal Update for Θtgt with Eq. (5)

12: end for
13: Perform simulation with Eq. (6)

Table 1: The statistics of four datasets.

Dataset # Users # Locations # Visits # AvgStep/Day

Geolife 153 32,675 34,834 8.9

Yahoo 10,000 16,241 188,061 18.8

New York 1,189 9,387 19,040 6.9

Singapore 1,461 11,509 38,522 7.0

4.1 Experimental Setup
4.1.1 Datasets. We evaluate the performance of COLA and base-

lines on four publicly available datasets:

• Geolife [47]: GeoLife consists of 17,621 trajectories collected by

182 users over a peroid of five years (from April 2007 to August

2012), which are primarily located in Beijing, China.

• Yahoo (Japan) [35]2: The dataset contains 100K individuals’

trajectories across 90 days in a metropolitan area provided by

Yahoo Japan Corporation, which is called Yahoo for simplicity.

• New York and Singapore [36]: The two datasets are derived

from Foursquare
3
, which captures user behavior worldwide. We

select the records from New York and Singapore within it.

The four datasets are preprocessed following the protocol [7] of

human trajectory simulation. For convenience and universality of

modeling, an hourly time slot is adopted as the basic simulation

unit. Moreover, only the trajectories with at least six visit records

per day are considered in our study. For Yahoo, we select 10,000

high-quality trajectories from its preprocessd data. The data sta-

tistics of preprocessed datasets are presented in Table 1. The daily

average length of trajectories in New York and Singapore is gener-

ally smaller than that in GeoLife and Yahoo, which aggravates the

irregularity and thereby increases the difficulty of modeling. For

each dataset, the training, valid and test sets follow a ratio of 7:1:2.

4.1.2 Baselines. We compare the proposed COLA with the follow-

ing two categories of state-of-the-art baselines:

2
https://connection.mit.edu/humob-challenge-2023

3
https://foursquare.com/

5
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Table 2: The performance comparison between COLA and baselines for human trajectory simulation. All experimental results
are conducted over five trials for a fair comparison. Note that a lower JSD value indicates a better performance. AVG is the
average rank across six metrics. Bold and underline mean the best and the second-best results. “*" implies statistical significance
for 𝑝 < 0.05 under paired t-test.

Dataset Geolife Yahoo

Metrics (JSD)↓ Distance Radius Duration DailyLoc G-rank I-rank AVG ↓ Distance Radius Duration DailyLoc G-rank I-rank AVG ↓
Markov 0.0316 0.1341 0.0135 0.1424 0.0830 0.0931 8.7 0.2008 0.5037 0.1682 0.5031 0.0406 0.0574 7.7

IO-HMM 0.2384 0.4138 0.0100 0.1124 0.1110 0.0799 9.2 0.5690 0.6772 0.0847 0.6716 0.0388 0.1031 10.5

DeepMove 0.2064 0.3743 0.0099 0.1269 0.1805 0.0584 7.3 0.5400 0.6775 0.0622 0.6061 0.2590 0.1079 10.5

GAN 0.2224 0.3887 0.0108 0.1114 0.0812 0.0590 7.0 0.5705 0.6786 0.0852 0.6748 0.0400 0.0989 11.2

MoveSim 0.2203 0.3851 0.1292 0.1424 0.0860 0.0736 9.8 0.4579 0.5065 0.0767 0.5843 0.0331 0.0838 7.5

CGE 0.3636 0.6637 0.0107 0.1125 0.0783 0.0768 8.5 0.3060 0.5610 0.0853 0.5339 0.0474 0.0740 9.0

ACT-STD 0.2007 0.3613 0.6931 0.6931 0.1752 0.0629 10.0 0.1438 0.3965 0.0839 0.1280 0.6931 0.0740 7.2

LSTM 0.0305 0.1224 0.0133 0.1496 0.0799 0.0595 6.8 0.0352 0.1702 0.0011 0.0231 0.0326 0.0633 3.3

SeqGAN 0.0383 0.1294 0.0100 0.1140 0.0793 0.0562 5.0 0.2906 0.2614 0.0255 0.1576 0.0335 0.0608 4.8

MobFormer 0.0300 0.1220 0.0278 0.2481 0.0776 0.0911 6.8 0.2323 0.3646 0.1423 0.4497 0.0348 0.0552 6.2

CrossLSTM 0.0300 0.1219 0.0097 0.1118 0.0788 0.0566 2.8 0.0223 0.1695 0.0004 0.0033 0.0358 0.0458 2.7

CrossSeqGAN 0.2315 0.4083 0.0110 0.1118 0.0794 0.0597 7.8 0.5166 0.6656 0.0718 0.6383 0.0400 0.1031 9.5

COLA 0.0294* 0.1205* 0.0096 0.1103* 0.0780 0.0559* 1.2 0.0161* 0.1462* 0.0002* 0.0029* 0.0294* 0.0447* 1.0

Dataset New York Singapore

Metrics (JSD)↓ Distance Radius Duration DailyLoc G-rank I-rank AVG ↓ Distance Radius Duration DailyLoc G-rank I-rank AVG ↓
Markov 0.0354 0.0917 0.0060 0.0595 0.1470 0.0693 8.0 0.0245 0.0462 0.0097 0.1506 0.1793 0.0631 9.0

IO-HMM 0.1630 0.3283 0.0055 0.1166 0.1615 0.0624 10.8 0.1839 0.2524 0.0066 0.1597 0.2000 0.0612 11.0

DeepMove 0.1632 0.3216 0.0006 0.0266 0.1501 0.0554 8.5 0.1850 0.2569 0.0011 0.0507 0.1031 0.0541 7.5

GAN 0.1601 0.3010 0.0046 0.0963 0.0914 0.0584 9.0 0.1929 0.2543 0.0059 0.1316 0.1688 0.0556 10.3

MoveSim 0.1320 0.2365 0.0067 0.3241 0.0813 0.0461 8.2 0.0950 0.1411 0.0043 0.3731 0.1220 0.0539 7.3

CGE 0.1486 0.4002 0.0243 0.4170 0.0995 0.0438 9.8 0.1341 0.4535 0.1279 0.5706 0.1636 0.0524 9.5

ACT-STD 0.1428 0.3341 0.4554 0.6346 0.1420 0.0479 10.5 0.0895 0.1758 0.3271 0.5236 0.1820 0.0542 9.7

LSTM 0.0265 0.0922 0.0015 0.0322 0.0084 0.0423 3.7 0.0072 0.0271 0.0008 0.0181 0.0146 0.0555 4.0

SeqGAN 0.0338 0.1088 0.0068 0.1396 0.0154 0.0527 7.7 0.0670 0.1046 0.0020 0.0384 0.0146 0.0541 4.8

MobFormer 0.0264 0.0917 0.0005 0.0112 0.0080 0.0508 3.2 0.0069 0.0269 0.0053 0.0593 0.0243 0.0555 5.7

CrossLSTM 0.0266 0.0916 0.0016 0.0271 0.0091 0.0457 4.0 0.0070 0.0269 0.0009 0.0095 0.0181 0.0551 3.7

CrossSeqGAN 0.1257 0.2332 0.0034 0.0776 0.0089 0.0530 6.7 0.1701 0.2262 0.0040 0.1040 0.0069 0.0555 7.2

COLA 0.0263* 0.0911* 0.0004 0.0111* 0.0078* 0.0368* 1.0 0.0067* 0.0267* 0.0007* 0.0086* 0.0141 0.0534 1.3

• Single-City Baselines: Markov [10] is a well-known probabil-

ity method, which treats locations of trajectories as states and

calculates transition probabilities of locations. IO-HMM [38] is

an extension of the traditional Hidden Markov Model (HMM).

LSTM [17] is a basic recurrent model for sequence prediction.

DeepMove [6] is a recurrent network with history attention.

GAN [14] is a prominent generative framework, where both

generator and discriminator are performed by two LSTMs in

our setting. SeqGAN [39] extends GAN by using a stochastic

policy in reinforcement learning (RL) to address the challenge of

sequence generation. MoveSim [7] is an extension to SeqGAN

by introducing the prior knowledge of urban structure and de-

signing two loss functions. CGE [11] is a static graph-based rep-

resentation for human motion built by check-ins reflecting users’

geographical preferences and visiting intentions. ACT-STD [40]

captures the spatiotemporal dynamics underlying trajectories

with neural differential equations for human activity modelling.

MobFormer is directly implemented by a Transformer [28] to

highlight its capability in contrast to existing recurrent models.

• Cross-City Baselines: To conduct a comprehensive comparison

using cross-city dataset, we further incorporate the two most ef-

fective baselines, LSTM and SeqGAN, into the proposed transfer

learning framework, called CrossLSTM and CrossSeqGAN.

4.1.3 Evaluation Metrics. We adopt six standard metrics as em-

ployed in previous works [7, 24] to assess the quality of simulated

outcomes. These metrics calculate the mobility trajectory distri-

butions from various perspectives: (1) Distance: moving distance

of each adjacent locations in individual trajectories (spatial per-

spective); (2) Radius: root mean square distance from a location

to the center of its trajectory (spatial perspective); (3) Duration:
dwell duration among locations (temporal perspective); (4) Daily-
Loc: proportion of unique daily visited locations to the length of

the trajectory for everyone (preference perspective); (5) G-rank:
visited frequency of the top-100 locations (preference perspective);

(6) I-rank: the individual version of G-rank (preference perspective).

We further use Jensen-Shannon divergence (JSD) [9] to measure the

discrepancy of the distributions between simulated and real-world

trajectories, which is defined as:

JSD(𝑝 ∥𝑞) = 𝐻 ((𝑝 + 𝑞)/2) − 1

2

(𝐻 (𝑝) + 𝐻 (𝑞)), (14)

where 𝑝 and 𝑞 are two compared distributions, and𝐻 is the entropy.

A lower JSD indicates a closer match to the statistical characteristics,

suggesting a superior simulated outcome. Specifically, we calculate

the average rank, denoted as AVG, across these six metrics for a

clear comparison.

6
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Figure 4: The performance comparison of COLA on Geolife
with different combinations of source cities. All experimental
results are conducted over five trials for a fair comparison.

4.1.4 Experiment Settings. (1) The single-city baselines are trained

with 250 epochs. (2) The cross-city baselines are trained with 5,

1 and 50 epochs for meta, source city and target city updating,

where the training epochs of the target city is in line with single-

city baselines. When a city serves as the target city, the remaining

three cities are considered as the source cities. The learning rate

for the city models (both source and target cities) and the meta

model is set to 1e-3 and 5e-4, respectively. (3) All baselines use a

hidden dimension of 96 and a batch size of 32. The other specific

hyperparameters of the baselines follow the settings reported in

their respective papers. For COLA, the number of linear layers in

MLP for extracting private and shared patterns is searched over {1,

2, 3}, and the coefficient 𝜏 for post-hoc adjustment is searched over

{0.001, 0.01, 0.1, 0.25, 0.5, 1}.

4.2 RQ1: Overall Performance
In this section, we compare our model with the sing-city baselines

and our implemented cross-city baselines over the four real-world

city datasets in the human trajectory simulation task. We present

the average performance of each method under five trials in Table 2.

The results yield the following observations:

• COLA steadily outperforms baselines. COLA achieves the best

AVG on all cities with ranking 1st on 21 metrics and ranking

2nd on 3 metrics over twenty-four metrics of the four datasets.

It’s worth noting that COLA consistently ranks first on New

York with the lowest number of trajectories and Yahoo with

the most, which validates the simulated data generated by our

framework exhibits exceptional fidelity from spatial, temporal

and preference perspective.

• Cross-city baselines exhibit distinct results. CrossLSTM signifi-

cantly improves the performance of LSTM on almost all datasets,

especially on Geolife where AVG increases from 6.8 to 2.8. How-

ever, CrossSeqGAN deteriorates the performance of SeqGAN

especially on Yahoo where AVG drops from 4.8 to 9.5, which is

due to its difficulty of convergence with meta-learning, unlike

LSTM without generative adversarial framework.

• Transformer is a highly promising model for human trajectory sim-
ulation.MobFormer, a causal-attention Transformer, averagely

surpasses 94% single-city baselines on four cities. On New York,

it even surpasses two cross-city baselines with a reduction of

Table 3: Ablation study on half-open attention (HA) and post-
hoc adjustment (PO). Bold means the best result.

Dataset Method Distance Radius Duration DailyLoc G-rank I-rank

Geolife

w/o HA 0.0347 0.1443 0.0126 0.1498 0.0914 0.0648

w/o PO 0.0344 0.1427 0.0138 0.1329 0.0872 0.0634

COLA 0.0296 0.1213 0.0096 0.1110 0.0772 0.0559

Yahoo

w/o HA 0.0260 0.1553 0.0004 0.0043 0.0330 0.0504

w/o PO 0.0258 0.1526 0.0003 0.0039 0.0360 0.0502

COLA 0.0161 0.1462 0.0002 0.0029 0.0294 0.0447

New York

w/o HA 0.0275 0.0957 0.0004 0.0137 0.0112 0.0416

w/o PO 0.0270 0.0949 0.0005 0.0124 0.0108 0.0451

COLA 0.0263 0.0911 0.0004 0.0111 0.0078 0.0368

Singapore

w/o HA 0.0130 0.0394 0.0006 0.0103 0.0235 0.0555

w/o PO 0.0101 0.0357 0.0027 0.0353 0.0196 0.0551

COLA 0.0067 0.0267 0.0007 0.0086 0.0141 0.0534

JSD up to 69%. It indicates that the attention mechanism which

captures the global attention to the history sequences are more

suitable for the human trajectory simulation task.

• The limitation of single-city baselines.Markov performs well in

spatial metrics but poorly in temporal and preference metrics.

Most baselines underperform due to their excessive annotation

requirements which is unsuitable for data-scarce scenario, e.g.

IO-HMM and ACT-STD, or due to the model’s overcomplexity

which hinders its convergence, e.g. GAN, MoveSim and CGE.

Nevertheless, LSTM capturing long-term dependencies and Seq-

GAN based on policy gradient achieve superior performance.

4.3 RQ2: Ablation Studies
4.3.1 Performance across different cities. We conduct experiments

on various source cities to explore the performance of transfer

learning across cities. Fig. 4 shows the results of selecting Geolife

as the target city (see more details of the other cities in A.1). For

simplicity, Geolife, Yahoo, New York and Singapore are denoted

as ’G’, ’Y’, ’N’ and ’S’, respectively. Obviously, leveraging all cities

leads to a steady and better performance across almost all met-

rics, indicating that multi-city knowledge transfer can enhance the

model generalizability. Specifically, the combination of Yahoo and

New York achieves the best performance on Duration and Dailyloc
metrics, likely due to their similarity of work habits influenced by

economic development degree. different cultural traditions within

cities. However, it is worth noting that the combination of New

York and Singapore exhibits the worst performance on Distance
and Radius metrics. This discrepancy may be attributed to their

varying geographical layouts and commuting distances.

4.3.2 Half-open Attention and Post-hoc Adjustment. In this part,

we investigate the effectiveness of the half-open attention and the

post-hoc adjustment in COLA. As shown in Table 3, our model with-

out the two modules still outperforms the best-performed baselines

presented in Table 2, which demonstrates the power of our basic

framework (i.e., Transformer with transfer learning). Specifically,

removing the half-open attention module leads to a noteworthy

deterioration on almost all metrics, especially on the metrics from

spatial and preference perspective, which indicates that it’s neces-

sary to distinguish city-specific characteristics and city-universal

mobility patterns when transferring. In addition, when the post-

hoc adjustment module is removed, the performance significantly
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Figure 5: Location prediction in the fully simulated scenario.
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Figure 6: Location prediction in the hybrid scenario. For sce-
narios with different numbers of real-world trajectories (i.e.
500, 1000, 1500), additional 1000 simulated trajectories are
included for data augmentation.

declines on almost all metrics, especially on Durationmetric, which

suggests that post-hoc adjustment effectively corrects the devia-

tion caused by the overconfident deep models thus improving the

simulation credibility for highly visited locations. Furthermore, the

overall performance of the model degrades further when removing

the half-open attention module.

4.4 RQ3: Practical Applications
In applications that depend on individual trajectories, directly shar-

ing real location records is often infeasible due to privacy concerns.

In such cases, COLA can be used to generate simulated data that

can mask sensitive information while preserving the availability

of real data. To evaluate the effectiveness of simulated individ-

ual trajectories, we conduct experiments with two categories of

simulated data: (1) fully simulated scenarios for enhanced privacy

protection, and (2) hybrid scenarios (combines real and simulated

data) for data augmentation. We choose location prediction as a

representative application [24, 43] which serves as the foundation

for various trajectory-related problems, including location recom-

mendation and planning. In addition, we employ a widely used

LSTM model with attention mechanism to predict future locations

based on historical trajectories.

As depicted in Fig. 5, for Geolife which is relatively sparser than

Yahoo, simulated high-quality trajectories with less noise based

on the real data enables better identification of mobility patterns,

yielding superior outcomes compared to the real data. Moreover,

our framework outperforms the best baseline, indicating the superi-

ority of our method. For Yahoo, the performance of our framework

aligns more closely with the real data compared to the best baseline,

showcasing the utility of our simulated data. Fig. 6 illustrates that
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Figure 7: The performance comparison of COLA on Geolife
using different layers and post-hoc coefficients 𝜏 . All experi-
mental results are conducted over five trials.

the model using combined data achieves better performance than

only using real data. In the hybrid scenario, COLA also surpasses

the best baseline. Additionally, the combination of real data and

simulated data generated by COLA improves performance as the

size of real data increases. The above experiments demonstrate the

practical benefits of simulated human trajectories.

4.5 RQ4: Parameter Sensitivity
We investigate two crucial hyperparameters in COLA: the number

of linear layers in the projection function of the attention mod-

ule and the coefficient 𝜏 for post-hoc adjustment during trajectory

simulation. Grid searches are performed over {1, 2, 3} and {0.001,

0.01, 0.1, 0.25, 0.5, 1.0} for these two hyperparameters, considering

all metrics across the four datasets. Fig. 7 demonstrates the robust

performance of COLA across various hyperparameter settings, in-

dicating that different values of hyperparameters do not diminish

its superiority over the baselines. Specifically, using two layers can

yield satisfactory results, possibly because increasing the depth

often results in overfitting, reducing the model generalizability.

Conversely, decreasing the depth is prone to underfitting, which

fails to fully capture the mobility patterns in trajectories. Further-

more, for Geolife, using a smaller coefficient (i.e. 0.25) for post-hoc

adjustment can lead to improved performance across most metrics.

5 CONCLUSION
In this paper, we have tailored a Cross-city mObiLity trAnsformer

with a model-agnostic transfer framework called COLA to simu-

late human trajectories, which tackles domain heterogeneity and

overcomes the overconfident problem of deep models. Extensive

experimental results demonstrate the superiority of COLA over

state-of-the-art single-city and our implemented cross-city base-

lines. Nonetheless, there lacks a unified large mobility model upon

millions of human trajectory data from global cities due to domain

heterogeneity. Inspired by the remarkable progress of GPT, we

will explore the pre-training potential of Transformer for human

trajectory simulation task in the future.
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A EXPERIMENT RESULTS
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Figure 8: The performance comparison of COLA on Yahoo
with different combinations of source cities. All experimental
results are conducted over five trials for a fair comparison.
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Figure 9: The performance comparison of COLA onNewYork
with different combinations of source cities. All experimental
results are conducted over five trials for a fair comparison.
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Figure 10: The performance comparison of COLA on Singa-
pore with different source cities. All experimental results are
conducted over five trials for a fair comparison.

A.1 Performance Across Different Cities
we present the results of transferring with various source cities

for Yahoo, New York and Singapore in Fig. 8, Fig. 9 and Fig. 10

respectively. Generally, transfer with three source cities exhibits
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Figure 11: Location prediction in fully simulated scenarios.
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Figure 12: Location prediction in hybrid scenarios. For sce-
narios with different numbers of real-world trajectories (i.e.
500, 1000, 1500), additional 1000 simulated trajectories are
included for data augmentation.

most stable and best performance on six metrics. Specifically, for

Yahoo, utilizing the remaining three cites as source cities yields

superior results onDistance andDurationmetrics due to the comple-

mentarity of spatial and temporal patterns in their trajectories; for

New York, leveraging three cities for transfer surpasses on Duration
and I-rank metrics because of the effective capturing of temporal

patterns and personal preferences in trajectories; for Singapore,

the average performance using three source cities on six metrics

is also better than other combinations of source cities, especially

on Duration and DailyLoc, suggesting the effective capturing of

temporal patterns in trajectories.

It’s noteworthy that while some combinations of source cities

achieve the optimal results on one or several metrics, their perfor-

mance is less consistent and worse on more metrics. For example,

transferring from Singapore to New York outperforms on Distance
metric but demonstrates the poorest average performance on the

other five metrics compared to other combinations of source cities.

Nevertheless, all results using cross-city knowledge significantly

outperform the baselines of this paper, validating the effectiveness

of cross-city transfer learning for human mobility simulation.

A.2 Practical Applications
The practical application results in fully simulated and hybrid sce-

narios for New York and Singapore are illustrated in Fig. 11 and

Fig. 12. As depicted in Fig. 11, both our framework and the best

baseline surpass the real data by capturing more significant mobil-

ity patterns with less noise, emphasizing the utility of the simulated

data. Fig. 12 illustrates that the model using combined data obtains

better performance than only using real data. Furthermore, COLA

also outperforms the best baseline in hybrid scenarios. In addition,
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Figure 13: The performance comparison of COLA on Yahoo
using different layers and post-hoc coefficient 𝜏 . All experi-
mental results are conducted over five trials.
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Figure 14: The performance comparison of COLA on New
York using different layers and post-hoc coefficient 𝜏 . All
experimental results are conducted over five trials.
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Figure 15: The performance comparison of COLA on Sin-
gapore using different layers and post-hoc coefficient 𝜏 . All
experimental results are conducted over five trials.

the combination of real data and the simulated data generated by

COLA improves the performance as the size of real data increases.

The above experiments showcase the practical benefits of simulated

human trajectories.

A.3 Parameter Sensitivity
The grid search results for two crucial hyperparameters (layers

and post-hoc coefficients 𝜏) in COLA on Yahoo, New York and

Singapore are presented in Fig. 13, Fig. 14 and Fig. 15, respectively.

For Yahoo, the model with two projection layers and a coefficient of

0.5 yields superior performance. For New York, leveraging a small

coefficient (𝜏 = 0.25) can exhibit good performance. Meanwhile,

using one layer enables the extraction of both private and shared

representation without overfitting. For Singapore, a deeper layer

produces improved results for better non-linear representation.

Additionally, setting 𝜏 = 0.25 can better adjust the exaggerated

probability caused by long-tail frequency distribution of locations.
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