Under review as a conference paper at ICLR 2025

UNLOCKING STATE-TRACKING IN

THROUGH NEGATIVE EIGENVALUES

Anonymous authors

Paper under double-blind review

ABSTRACT

Linear Recurrent Neural Networks (LRNNSs), such as Mamba, RWKYV, GLA, mL-
STM, and DeltaNet have emerged as efficient alternatives to transformers in large
language modeling, offering linear scaling with sequence length and improved
training efficiency. However, LRNNs struggle with state-tracking which is impor-
tant for, e.g., code comprehension or tracking chess pieces across a board. Even
parity, the simplest state-tracking task, which non-linear RNNs like LSTMs han-
dle effectively, cannot be solved by current LRNNs. Recently, |Sarrof et al.|(2024)
demonstrated that the failure of LRNNs like Mamba to solve parity stems from
restricting the eigenvalue range of their diagonal state-transition matrices to [0, 1],
and that incorporating negative eigenvalues can resolve this issue. We generalize
this result to full matrix LRNNs, which have recently shown promise in models
such as DeltaNet. We prove that no finite-precision LRNN with state-transition
matrices having only positive eigenvalues can solve parity, while complex eigen-
values are needed to count modulo 3. Notably, we also prove that LRNNs can
learn any regular language when their state-transition matrices are products of
identity plus vector outer product matrices with eigenvalues in the range [—1, 1].
Our empirical results confirm that extending the eigenvalue range of models like
Mamba and DeltaNet to include negative values not only enables them to solve
parity but consistently improves their performance on state-tracking tasks. Fur-
thermore, pre-training LRNNs with an extended eigenvalue range for language
modeling achieves comparable performance and stability while showing promise
for coding tasks. Our work enhances the expressivity of modern LRNNs, broad-
ening their applicability without changing the cost of training or inference.

LINEAR RNNS

1 INTRODUCTION

Transformer architectures (Vaswani et al., [2017) have revo- 2 | g9 .

lutionized NLP but scale quadratically in sequence length, £ Eigenvalue
) . 5 0.75 R

posing computational challenges for long sequences. To 8 0.50 ange

address this, Linear Recurrent Neural Networks (LRNNs) g) = [0, 1]

have emerged as promising alternatives that offer linear scal- = 0.25 [-1, 1]

ing while maintaining competitive performance (Gu & Dao, & 0.00

2023; Dao & Gu, 2024} [Yang et al) [2024a; Peng et al.
2023} Deletang et al., 2023; Sun et al., 2024; Beck et al.|
2024). LRNNs update their state via matrix-vector products
with structured, learnable state-transition matrices, enabling
parallelization techniques like the associative scan (Blelloch,
1990) for efficient training. The structure of state-transition
matrices largely determines LRNN capabilities. While suc-
cessful models like Mamba (Gu & Dao, 2023), GLA (Yang
et al., 2024a), and mLSTM (Beck et al., [2024) use diagonal
matrices (diagonal LRNN), recent work explores more com-
plex forms. Notably, non-diagonal matrices using general-

10000 20000
Training Steps

Figure 1: Extending the eigenvalue
range of the state transition matri-
ces of diagonal LRNNs improves
performance from random guessing
(range [0, 1]), to perfect score (range
[—1, 1]) on learning parity. Trained
on sequences up to length 40; Tested
on lengths 40-256 (3 seeds).

ized Householder (GH) transformations, defined as I + uwu " where w is a learnable vector and I is
the identity, show promise in models like DeltaNet (Yang et al., 2024b) and TTT-Linear (Sun et al.,

2024), potentially enhancing expressiveness while preserving efficiency.

Under review as a conference paper at ICLR 2025

Despite these successes, both transformers and current LRNNs face a fundamental limitation: they
struggle to learn and track the state of even simple finite-state machines from sequences of state-
transitions (Deletang et al., [2023). This limitation may impair performance on tasks such as entity
tracking in narratives, handling nested structures in code, and other reasoning tasks that can benefit
from maintaining and updating an internal state over time (Merrill et al.,|2024). Even the simplest
state-tracking task, computing the parity of a sequence of bits, cannot be solved by current LRNNs,
while non-linear RNNs like LSTMs (Hochreiter & Schmidhuber, [1997) and sLSTM (Beck et al.,
2024])) can solve parity easily (Merrill et al., 2024). However, in-contrast to modern linear RNNss,
non-linear RNNs lack an efficient method for parallelizing the training across sequence length.

Recently, Sarrof et al.| (2024) demonstrated that the inability of diagonal LRNNs to solve parity
problems stems from the constraining the eigenvalues of their state-transition matrices to be posi-
tive. Specifically, they proved that diagonal LRNNs, when implemented with finite precision and
exclusively positive real eigenvalues, cannot solve the parity problem for sequences of arbitrary
length. However, their work did not provide empirical evidence showing that diagonal LRNNs with
negative eigenvalues can be successfully trained to overcome this limitation. We prove that the same
limitation also affects LRNNs with non-diagonal state-transition matrices, and further prove that
complex eigenvalues are necessary to solve the more challenging task of modular counting when
the modulus is a power of two. Our findings also apply to the GH matrices employed by DeltaNet,
as they share the same eigenvalue limitations. To overcome this, we propose a simple yet powerful
solution: extend the range of possible eigenvalues from [0, 1] to [—1, 1]. This change enables state-
tracking and significantly improves LRNNs’ expressivity without compromising their efficiency and
training stability. We illustrate in Figure [I] that this change allows diagonal LRNNS to learn parity.
We open-source the code for our experiments in this [anonymous repository.

We make the following contributions:

1. We prove that any finite-precision LRNN with only positive real eigenvalues in the state-transition
matrices (most LRNNs used in practice) cannot solve parity at arbitrary sequence lengths (Theo-
rem|I), while complex eigenvalues are required to learn counting modulo 3 (Theorem 2)).

2. By extending the eigenvalue range to [—1, 1], we significantly improve LRNN state-tracking ca-
pabilities. We prove that LRNNs with state-transition matrices formed by products of generalized
Householder (GH) matrices in the range [—1, 1] can learn any regular language (Theorem , in
some cases with just a single layer (Theorem [3). Importantly, such an extension allows even
practical LRNNSs, using just one GH matrix (like DeltaNet), to learn substantially harder tasks,
such as the composition of permutations of two elements (swaps), compared to diagonal LRNNSs.

3. We show that the eigenvalue range of Mamba and DeltaNet can be extended to [—1, 1] without
compromising efficiency or training stability. We test the modified methods on parity, modular
arithmetic, and permutation composition, demonstrating improved state-tracking performance.

4. We pre-train modified versions of DeltaNet (340M parameters) and Mamba (370M parameters)
and show that they reach performance comparable to the original models on generative language
modeling tasks, while DeltaNet shows improved perplexity on coding and math datasets. No-
tably, we gain 2 points of perplexity on CodeParrot (Tunstall et al., 2022).

2 RELATED WORK

Linear RNNs. Linear RNNs encompass state-space models and causal, linear attention mecha-
nisms. State-space models, originally used for continuous dynamical systems, inspired LRNN vari-
ants like S4 (Gu et al., 2022) and H4 (Fu et al., 2021)). Recent advancements, such as Mamba (Gu
& Dao, 2023 Dao & Gul,[2024), introduced input-dependent gating of the hidden state, significantly
improving language modeling performance. Concurrently, linear attention emerged as an alternative
to classical softmax attention, with [Katharopoulos et al.|(2020) demonstrating that causal, linear at-
tention transformers can be reformulated as RNNs with linear scaling in sequence length. Building
on this, [Yang et al.| (2024a) proposed Gated Linear Attention (GLA), adding a gating mechanism
similar to Mamba, while DeltaNet (Yang et al., 2024b)) and TTT-Linear (Sun et al., |2024) explored
more expressive gating with non-diagonal state-transition matrices. Recent work has combined non-
linear and linear RNNs, as seen in XLSTM (Beck et al.l [2024), a successor to the traditional LSTM
(Hochreiter & Schmidhuber, 1997)).

https://anonymous.4open.science/r/negative_eigenvalues-3023/readme.md

Under review as a conference paper at ICLR 2025

Expressivity Results. Several studies have explored the expressive power of transformers. |Liu
et al.[|(2023) demonstrated that transformers can learn shortcut solutions for solvable finite state au-
tomata, though these solutions lack generalizability to arbitrary sequence lengths and perform poorly
out-of-distribution. Unlike RNNSs, transformers’ high parallelizability prevents them from learning
unsolvable finite state automata|Merrill & Sabharwal|(2023). These findings typically use algebraic
formal language theory and circuit complexity (we refer to [Liu et al.|(2023)), for a tutorial on these
topics), using the log-precision assumption and a number of layers scaling linearly or logarithmi-
cally with sequence length. While earlier research established transformers’ Turing completeness,
it relied on either arbitrary precision (Deletang et al.,|2023) or infinite depth (Pérez et al., [2021)).
Diagonal LRNNSs can simulate any RNN with infinite depth|Gu & Dao|(2023)) and approximate reg-
ular enough functions when the state dimension grows linearly with sequence length (Orvieto et al.}
2024). However, things change when depth and state size are fixed. Merrill et al.| (2024) proved
that finite-depth diagonal LRNN:Ss, like transformers, cannot learn unsolvable finite state automata
when restricted to log-precision arithmetic. In a finite-precision setting, |Sarrof et al.[(2024)) showed
that diagonal LRNNs with positive values in the state-transition matrix, while capable of learning
all star-free languages, cannot solve even the simple parity problem, a non-star-free language recog-
nizable by a solvable automaton with two states. However, their analysis was limited to the diagonal
case and they did not test the benefit of negative eigenvalues in practice. Differently from these
works, we also study non-diagonal LRNNS that can still be trained efficiently at large scale.

3 BACKGROUND

3.1 LINEAR RECURRENT NEURAL NETWORKS (LRNNS)

We describe LRNNs using notation inspired by [Sarrof et al| (2024), focusing on the core linear
recurrences while abstracting away non-linear computations for each token. LRNNs are, in fact,
stacks of layers with common structure but distinct learnable parameters. Each layer takes input
vectors 1, ..., x; € R and outputs 91, ..., 9, € RP as:

H; = A(zi)H;—1 + B(xt), 9 = dec(Hy, xt)
HyecC™, A:Rl-Cv™", B:R - C™ dec:C"™4 xR —RP
Here, A, B and dec are learnable, generally non-linear functions, with dec usually expressed by a
feed-forward neural network. This definition encompasses most LRNN variants, which differ in the

form of A and B, dec parameterization, and use of positional encoding. Table [T] illustrates how
three popular LRNNS fit this framework. For other architectures, see (Yang et al.,2024b| Table 4).

(D

A(xy) B(x;) Yt
Mamba Diag (exp (—A;; exp(wi))) Apizeike ¢(g) H + w2 O ;)
GLA Diag (at) ktUtT w(quHtT)
DeltaNet I Bikik/] kv, ¢(q H)

Table 1: Different LRNNs layers as instances of , where a; = sigmoid(Wyxy), Ay =
softplus(Wax), f; = sigmoid(wgx,), while g;, k¢, v, are the output of learnable and possibly
non-linear functions of ;. Also ¢ : R? — R? is another learnable function usually containing an
MLP and a normalization, while W; € R%, Wa € R¥*! W, € R"*¢, wg € R! and wy € RY are
learnable parameters. For simplicity, for Mamba, we wrote the matrices for the recursion of each row
of the state H; and set &; = (z41,...,%1,d), W1 = (w1,1,...,w1q) and Ay = (Ay1,..., A g).

The state-transition matrices A(x;) are typically diagonal or generalized Householder (GH), i.e.,
identity plus vector outer product, as shown in Table[I] to enable efficient matrix-vector products on
modern hardware. These matrices consistently have eigenvalues (and norm) in the range [0, 1].

3.2 FORMAL LANGUAGE THEORY

Finite State Automata and Regular Languages. A (deterministic) finite state automaton (FSA)
is a tuple A= (%, Q, qo,6) where ¥ is a finite set of letters called alphabet, @ is a finite set of
states, g € is the starting state and § :) x X — @ is the state-transition function (see [Hopcroft,

Under review as a conference paper at ICLR 2025

2001, for an introduction). We define the set ¥*, whose elements are sequences called words,
as the smallest superset of X that contains the empty word € and is closed under word con-
catenation. We extend the state-transition function to §: @ x ¥* — @ by defining §(¢,c) =¢ and
d(q,w)=0(0(q, wy ... wi—1),w;) forany w = wy ... w; € £* with ¢ > 2. We say that 6(qo, w)
is the state that A reaches after reading the word w € X*. A language L C X* is said to be
recognized by A if there exists a recognizing set R C @) such that L ={w € ¥* : §(qo, w) € R}.
Regular languages are the ones that can be recognized by an FSA. Given an FSA A, the set
T(A) ={6(-,w) : w € ¥*} of functions p: Q — Q, together with the function composition op-
eration forms a monoid called transition monoid, i.e. it is associative, closed and contains the iden-
tity 0(-,£). Such monoid has a finite number of elements, since |Q| < co. Moreover, if 6(-, w) is
bijective for every w € X, then 7 (.A) forms a group, i.e. it contains the inverse for each element.

State-Tracking and Monoid Word Problems. State-tracking is the problem of determining the
state of a system only by observing a sequence of updates applied to it. Formally, it can be expressed
as a monoid word problem (Merrill et al., 2024), where given a monoid (M, -) (M is the set and -
is the associative operation), we want to send words m; ... m; € M*, describing the sequence of
updates, to their product my -ms-...-my € M, representing the state of the system after the updates.
If M is finite there is a corresponding FSA (M, M, e, §) that solves the word problem, where the
starting state is e (the identity element), and the transition function is §(m;, ma) = mgo - my for
mi,my € M. In this work, we focus on group word problems, i.e. problems where the monoid is
also a group. In particular, on the cyclic group Z,,, i.e. addition modulo m and symmetric groups
Sm, 1.e. the group of permutations on m elements. Parity is equivalent to the Sz word problem,
while many state-tracking problems such as tracking chess moves or code evaluation, can be shown
to be harder than the S5 word problem, which cannot be solved by transformers and diagonal LRNNs
even in log-precision (Merrill et al., [2024; Merrill & Sabharwall, 2023)).

One LRNN Layer is an FSA. Given an alphabet ¥ C N, we can view one layer of an LRNN in
as the FSA Ay, = (2, H, Hy, 010), where 0y, (H, w) = A(w)H + B(w), which is extended
as we saw preViousl and H = {6n(Hp,w) : w € X*}. We say that a LRNN layer in (1)
implements the FSA A = (3, Q, qo, 9) if Ay, can mimic the state transitions of Aﬂ Formally, if
there exists a surjective function g : H — @, such that forany H € H,w € ¥

(g(H),w) = g(bin(H,w)) = g(A(w)H + B(w))
Every language L recognized by A can also be recognized by this LRNN layer with a sufficiently
powerful dec. In particular if R C () is the recognizing set for L and H| is such that ¢o = g(H)),
then the decoder dec(Hy, w:) = 1{g(H;) € R}, will correctly determine if w € L. Therefore,
implementing A is harder than recognizing L. A principal goal of this work is to show that cur-
rent LRNNs cannot recognize simple languages such as parity (negative results) while appropriate
modifications to the state-transition matrices, enable LRNNs to recognize broader classes of FSA
(positive results), with certain classes of FSA requiring a single layer. Notice, that while LRNNs
with one layer can recognize any regular language, the state transition matrices might not fit into the
structure imposed by current LRNNs, such as those in Table|[T] (see Appendix [A.2]for more details).

4 THEORETICAL ANALYSIS

We begin by highlighting the limitations of current LRNNs, demonstrating that they fail to meet
a necessary condition for solving parity and modular counting problems: the eigenvalues of their
state-transition matrices are restricted to the range [0, 1]. Subsequently, we illustrate how extending
this eigenvalue range to [—1, 1] significantly enhances the expressive power of LRNNs.

4.1 LIMITATIONS OF CURRENT LRNNS

The parity y; € {0,1} of a sequence of ones and zeros x1 ...z; € {0,1}! is 1 if the total num-
ber of ones in the sequence is odd, and O if it’s even. Equivalent to addition modulo 2, it can be
computed by summing the values in the input sequence and then applying the modulo 2 function:
Y = (25:1 x;) mod 2. We can also express this as the linear recursion

hi =hi_1+x¢, ho=0, y=hs;mod?2 2

"We let d1in : R™¥¢ x & — R™*? and extend it to &1, : R**% x 3* — R™*< since we didn’t define { yet
2This definition is equivalent to that of FSA homomorphism, see (Maler & Pnueli, {1994} Definition 3)

Under review as a conference paper at ICLR 2025

where h; contains the total number of ones. This solution can be implemented by an LRNN with one
layer and scalar states by setting A(z;) = 1, B(z:) = x¢, Hy = 0, and dec(H}, z;) = H; mod 2
in Equation (I)). However, implementing such a solution with finite precision presents an issue: the
state h; can grow indefinitely with ¢, eventually reaching the limit of our precision range. Indeed,
hy € {0,...,t}, requiring log, (¢t + 1) bits for storage. Such solutions, referred to as shortcut
solutions, are the only ones learnable by transformers when allowing O (log(t)) bits of precision and
either depth O(log(t)) or width O(¢) (Liu et al., 2023). Moreover, the MLP in dec must approximate
the modulus 2 function, which is challenging to learn due to its discontinuous and periodic nature.

A more efficient solution, which implements the two-state FSA solving this problem, can still be
realized by a finite-precision LRNN with one layer and scalar states (and consequently with vector
states and diagonal state-transition matrices) using the recursion:

ht = a(x¢)he—1 + b(xe), ho=0, b(1)=a(0)=1,a(1)=-1, y:=hs. 3)

Note that the state-transition scalar a(1) is negative. However, current diagonal LRNNs do not
allow negative values, and so are unable to learn parity. This raises the question: can non-diagonal
LRNN:S, such as DeltaNet, solve parity?

The following result gives an answer to this question by providing necessary condition for a LRNN
to solve parity. It generalizes (Sarrof et al.,|2024] Theorem 2) to non-diagonal matrices, showing that
there must be at least one eigenvalue which is not real and positive. This eigenvalue could simply
have a nonzero imaginary part without necessarily being negative and real.

Theorem 1 (Parity). A finite-precision LRNN with finitely many layers of the form can solve
parity for arbitrary input lengths, in particular it can recognize the language (11)*, only if at every
layer, A(xt) admits at least one eigenvalue A with |\| > 1 and that is not real and positive.

Notice that Mamba, mLSTM, GLA and even non-diagonal LRNNSs such as DeltaNet do not satisfy
such requirement. The proof in Appendix uses the same core idea in the one of (Sarrof et al.|
2024, Theorem 2). For one layer, we show that when = 1% and the conditions for the eigenvalues
of A(1) are not met, each element of state H}, in finite precision will be constant for large enough
k. Thus, y;, cannot be equal to y;, (for k large enough) no matter the choice of dec. To show this, we
use the expression for the powers of the Jordan Canonical form of A (1), to prove that each element
of A(1)* either converges or diverges to a point in the complex infinity when k& — oo.

We now study the problem of counting modulo m, which can be seen as an easier version of addition
modulo m. For this problem the input of length k never changes and is equal to = 1%, while
the correct output is y;, = Zf;l x; mod m. The following theorem establishes that to solve this
problem, the state-transition matrices of the LRNN must have at least one eigenvalue with a nonzero
imaginary part and modulus greater than or equal to one.

Theorem 2 (Modular Counting). A finite-precision LRNN with finitely many layers can solve mod-
ular counting with modulus greater than 2 for arbitrary input lengths, in particular it can recognize
the language (1™)* with m not a power of two, only if at every layer A(x;) admits at least one
eigenvalue \ with nonzero imaginary part and such that |\| > 1.

Note that all LRNNs allowing only symmetric or triangular state-transition matrices with real entries
do not satisfy the assumptions of Theorem [2} For one layer, the proof in Appendix is similar
that of Theorem E]but we consider the two sequences Hoj, and Hoy 1, showing that they have a
defined limit when k— o0, even when A(1) admits negative eigenvalues less or equal than —1.

Theorems|[I]and 2]identify a fundamental limitation of current design choices on the structure of the
state-transition matrices of LRNNs. Specifically, the most popular approaches outlined in Table [I]
are incapable of solving parity problems, as the eigenvalues of their state-transition matrices are
confined to the interval [0,1]. Further, even if we allow negative eigenvalues that are still real,
we cannot solve counting modulus m. However, as we will see in the next section, LRNNs with
state-transition matrices that are products of generalized Householder (GH) matrices, each with
eigenvalues in [—1, 1], are more powerful than LRNNs with diagonal state-transition matrices.

4.2 ALLOWING NEGATIVE EIGENVALUES

In this section, we explore the implications of extending the eigenvalue range to include negative
values. We focus on two classes of LRNNSs: those with diagonal state-transition matrices, which are

Under review as a conference paper at ICLR 2025

currently the most prevalent (including GLA, Mamba, and Mamba?2), and those with generalized
Householder (GH) state-transition matrices, as recently proposed in the DeltaNet architecture. In
particular, if we let s : R! — [0,1]" and ¢ : R! — [0,1], v : R! — R", being learnable functions
such that ||v(z)|| = 1 for every = € R/, then the state transition matrices of each layer of many
LRNNS, such as those in Table[T] can be written as either

Agiag () := Diag(s(x)), or Acgu(z):=1I-— ¢(az)’u(sc)v(a:)T,

where Agiag () is diagonal and has every eigenvalue s(x); € [0,1] and Agn () is GH and has
all eigenvalues equal to one except for the one associated to the eigenvector v (), which is equal
to 1 — ¢(x) € [0,1]. To address the limitations discussed in the previous section, we propose the
following modification that can be easily applied to any LRNN belonging to either class.

Ajie(x) == Diag(2s(z) — 1), Agy(z):=1- 20(x)v(x)v(x)". 4)
Note that Ay;, () has eigenvalues 2s(x); — 1 € [—1,1] and Ag(z) has all eigenvalues equal

1]
to one, except for one that is equal to 1 — 2¢(x) € [—1,1]. Thus, we have extended the range of
eigenvalues from [0, 1] to [—1, 1].

We know from the previous section, that LRNNs with the modified state transition matrices can
implement the solution to the parity problem by setting s(1) = 0 and ¢(1) = 1 so that if we
consider a scalar recursion, then Ay, (1) = Agy(1) = —1. However, we have also shown that
since the eigenvalues are real, we cannot solve counting modulo m with m > 3. Despite this, we
note that counting modulo m is linked to rotation by an angle of 27 /m radians in R?, and we can
express a rotation as a product of two reflections, each of which can be written as a GH matrix. In
other words, for any integer m > 3 there exist unit norm vectors vy, vs € R? such that

_271'

sinf cos@

R(0) = { cos —sind } _ (I—Z'ulvlT) (I—ZUQ'UQT), 0 -

Interestingly, this construction can be done only with GH matrices having one eigenvalue equal
to —1. If we set the state-transition matrix in eq. (1) to A(1) = R(6), an LRNN with one layer
can count modulo m, since if we also set Hy = (1,0)", M = (Hy, R(6)Hy,...,R((m —
1)0)H,)" € R™*2, B(1) = 0 and dec(H, z) = argmax; M,' H — 1, then for the input = 1¢
we get

¢ = dec(Hy, 1) = dec(A (1) Hy, 1) = dec(R(t0)Hy, 1) = t mod m.

Therefore, we examine the impact of our change to the eigenvalue range on state-transition matrices
constructed as repeated products of GH matrices.

4.3 PRODUCTS OF GENERALIZED HOUSEHOLDER MATRICES

We define the set of all matrices in R”*™ that can be expressed as a product of X GH matrices with
a given range €2 C R of allowed eigenvalues:

Mk(Q) = {0102 - Cy Ci=1 — Biviv;, (1 — ﬁl) e, v € Rn, Hle = 1} . (5

We first observe that if My € M;({—1}), then My is a reflection, or Householder matrix, and
that for any € R', Agu(x) € M1([0,1]) and Agy(z) € Mi([—1,1]) so that with our change
we also include reflections. Note also that My (©2) C M/ () if either &’ > kand 1 € Q, or if
) C V. Repeated products of diagonal matrices with values in the range [—1, 1] remain diagonal,
with eigenvalues in the same range.

More interestingly, our next result shows that products of GH matrices can represent any matrix
with Euclidean norm less than or equal to 1. Without our modification, however, or even just by
restricting to M, ((—1, 1]), they are limited to matrices where any eigenvalue is either equal to 1 or
has modulus strictly smaller than 1.

Proposition 1 (Expressivity of products of GH matrices). The following hold for My, in eq. (3):
1. Foranyk € Nand N € My([-1,1]), |N| < 1.

2. Forany M € R™™ with | M||< 1, then M € Ms,([—1,1]) and if M is orthogonal
then M € M,,({—1,1}), while M € M,,_1({—1,1}) when M is a permutation matrix.

Under review as a conference paper at ICLR 2025

3. Any eigenvalue \ of N € My ((—1,1]) is either 1 or satisfies |\| < 1 and if in addition
N e M([0,1]), then A € R.

The proof in Appendix [C.T]uses linear algebra arguments, the SVD decomposition, and the fact that
that every n x n orthogonal matrix can be written as a product of n reflections.

A consequence of Proposition |1|is that if for every layer of an LRNN there exists £ € N such that
the map A from inputs to state transition matrix is such that A : R' — M, ((—1,1]) C R"*", then
the LRNN cannot learn to count modulo m, with m > 3, due to Theorem@ On the contrary, if we
allow A : R — M. ([—1,1]) and k is large enough, we can show that an LRNN with one layer can
implement any FSA whose transition monoid is a group and that with multiple layers the LRNN can
recognize any regular language. This is the content of the following two theorems.

Theorem 3. Every FSA A = (X, Q, qo, 0) whose transition monoid T (A) is also a group, can be
implemented by a finite-precision LRNN with one layer and A : ¥ — My_1({-1,1}) C R"*",
where n is the smallest natural number such that T (A) is isomorphic to a subgroup of Sy, and
k = maxy,ex quQ 1{6(q,w) # q} is the maximum number of changed states after applying a
single transition. Moreover, if T (A) is isomorphic to the cyclic group Z,,, then we can set A : ¥ —
Ms([—1,1]) € R**2. If m = 2 (parity) we can set A : ¥ — {—1,1}.

The proof in Appendix [C.2]uses matrix representations of groups to map each state-transition func-
tion to the corresponding matrix representation. This can always be done using permutation matri-
ces, but for cyclic groups we can also use 2 x 2 rotation matrices. In the case of permutations, if
every state-transitions permutes at most k states then the corresponding permutation matrix will be
in Mj_1({—1,1}), since if it is not the identity, it can be written as a product of at most k — 1
permutations of two elements (swaps), each in M7 ({—1}).

A consequence of Theorem [3|is that if every transition function of the FSA has a permutation rep-
resentation corresponding to a swap or to the identity, then a LRNN layer with A = A, can
implement it. This is useful in practice because the cost of the recursion increases k-fold if we use
a product of k¥ GH matrices compared to just one. Also, for many problems, state-transition for the
FSA might either be simple or be encoded using multiple letters. For example, for addition modulo
5, a word may look like “3+2+6=1" (two letters per addition operations). This makes it possible even
for an LRNN with state-transition matrices in M ([—1, 1]) to model complex transitions. Indeed if
each transition uses k letters, then if we set B = 0 and A : R" — M ([~1,1]) in eq. (1)), then

H,=C(xy,...,0—p)Hi 1, C(xy,...,74_p) = Ax1)A(22) - - Ax4—) € Mp([—1,1]),
which allows to model permutations that change up to k£ + 1 elements.
Theorem 4. Every FSA A = (2,Q, qo,d) can be implemented by a finite-precision LRNN with
s < 2191 layers, each oftheform wheren < |Q|, p<s,d=1, A: R = M, ([-1,1]) C R**"

and B : R' — N™. Therefore, LRNNs with state transition matrices that are repeated products of
GH matrices each with eigenvalues in the range [—1, 1] can recognize any regular languages.

The proof in Appendix [C.4]exploits the landmark Theorem by [Krohn & Rhodes|(1965), which states
that every FSA can be decomposed as a cascade of simpler FSAs whose state-transition functions
are either one-to-one or constant. Each layer of the LRNN will implement each FSA of the cascade
using m X n permutation matrices, with n being the number of states of the FSA, which are in
M —1({—1,1}), for the one-to-one transitions, while for constant (state-independent) transitions it
will set the state-transition matrix to 0 € M,,({0}) and set B in (1) accordingly.

Note that we can obtain the matrix 0 € R™*" only inefficiently as a product of n GH matrices, while
it can also be obtained with a single diagonal matrix. This points towards LRNNs hybrids using a
mix of GH and diagonal matrices, whose exploration we leave for future work.

Discussion The results in Theorems [3] and [4] for LRNNs are in sharp contrast with the ones for
transformers (Liu et al.| 2023} Merrill & Sabharwall 2023)) and diagonal LRNNs (Merrill et al.,
2024])), which always require either the number of layers or the precision growing with the sequence
length, and in most cases can only solve group word problems where the group is solvable, i.e.
excluding S,, with n > 5. Moreover, we note that compared to LRNNs without any restriction
to the norm of the state-transition matrices, which need only one layer to recognize any regular
language, our result requires both the number of layers and the width of the LRNN to be (in the
worst case) exponential in the number of states of the FSA, although we conjecture that the number
of layers can probably be reduced to at most linear using a more refined decomposition.

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

We investigate the effects of expanding the
eigenvalue range of state-transition matrices
from [0,1] to [—1,1], as explained in Sec-
tion .2 on both synthetic tasks and language
modeling. Our experiments involve Mamba,
and DeltaNet, with variants trained using both
the original and extended eigenvalue ranges, as
shown in Table 2l We label these variants ac-
cordingly. Note that the changes increase the

Table 2: Summary of modifications to the state-
transition matrices A(x;) to extend the eigen-
value range from [0, 1] (Table [1) to [-1,1]. We
set s(x;) = exp (—Ay; exp(wi ;).

[0, 1] [—1,1]
Mamba Diag(s(x;)) Diag(2s(x:) —1)
DeltaNet I — ﬁtktk;r I — Qﬁtktk;r

expressivity of Mamba and DeltaNet while coming at no additional computational cost. Detailed
information on the implementation can be found in Appendix

5.1 CHOMSKY HIERARCHY

We conducted experiments with some of the
formal language tasks proposed by |Deletang
et al.| (2023)) and similarly used to benchmark
xLSTM (Beck et al.l 2024). Our focus was on
tasks where mLSTM (a linear RNN) previously
underperformed while sLSTM (a non-linear
RNN) succeeded, specifically parity, modular
arithmetic (both regular languages), and mod-
ular arithmetic with brackets (context-free lan-
guage). As in Beck et al.| (2024), we trained
each model with sequence lengths ranging from
3 to 40 and evaluated on lengths from 40 to 256,
to assess length generalization. Note that our
theoretical results cover just regular languages,
excluding modular arithmetic with brackets.

We compared mLSTM and sLSTM with two
models: Mamba and DeltaNet. Our findings,
presented in Table [3| demonstrate that expand-

Table 3: Performance comparison of various re-
current models on formal language tasks. We re-
port the best of 3 runs (Table [5]in the Appendix
reports the median). Scores are scaled accuracy,
with 1.0 indicating perfect performance and 0.0
random guessing. The positive impact of allow-
ing negative eigenvalues ([—1, 1] range) versus re-
stricting to positive eigenvalues ([0, 1] range) is
evident for both Mamba and DeltaNet. Results in
parenthesis are as reported in|Beck et al.|(2024).

Mod. Arithm. Mod. Arithm.

Parity (w/o brackets) (w/ brackets)
mLSTM 0.087 (0.04) 0.122 (0.04) 0.120 (0.03)
sLSTM 1.000 (1.00) 0.135 (1.00) 0.133 (0.57)
Mamba [0, 1] 0.000 0.003 0.018
Mamba [—1, 1] 1.000 0.111 0.036
DeltaNet [0, 1] 0.017 0.187 0.182
DeltaNet [—1, 1] 1.000 0.612 0.339

ing the range of eigenvalues from [0, 1] to [-1, 1] enables all examined models to fully solve the
parity task, confirming Theorem [I] For modular arithmetic, this expansion led to substantial perfor-
mance improvements for Mamba and especially DeltaNet, since the latter has non-diagonal state-
transition matrices, more suited for this task (see Theorem [3). In Figure 2] we also report perfor-
mance vs sequence length for DeltaNet. Note that we were unable to replicate the SLSTM results
reported by |Beck et al.| (2024)) for the modular arithmetic tasks. Additional experiments and details
on the tasks in Appendix [D.I]

1.0 ; 1.0 } i 1.0 ! q

5 ! | i
£ ! ! ! Eigenvalue
805 ! 1 05F ! 1 05F 1! <4 Range

1
Sl i i 0.1
s i i i [-1, 1]
S00F 0.0F 00F i

il . ‘ i

0 100 200 0 100 200 0 100 200

Sequence Length Sequence Length Sequence Length

(a) Parity (b) Mod. Arithm. w/o brackets (c) Mod. Arithm. w/ brackets

Figure 2: DeltaNet performance (scaled accuracy) on formal language tasks across sequence lengths.
The models were trained on sequences up to length 40 (red dashed line). We test on 8192 randomly
sampled sequences of lengths between 40 and 256. The curves show mean and 95% confidence

interval.

Under review as a conference paper at ICLR 2025

S5 only swaps S5 swaps, 3-perm. S5 4 tokens per trans.
—-— DeltaNet [-1,1] 1L 100 { : g 100 F=; 100 =TT 100 F TR
—— DeltaNet [-1,1] 5L NS 1 i |
-—-- DeltaNet [0,1] 5L \i L i
Mamba [-1,1] 5L 501 ‘\; SOy 501 |
Mamba [0,1] 5L :. ; 5 i E
""""" Full matrix simple 04 O<—-—>||\‘ i_'___ 04 LY : 01, A ! ‘
10' 10° 10' 10° 10° 100 10
Sequence Length Sequence Length Sequence Length (# tokens) Sequence Length

Figure 3: Validation sequence accuracy for different lengths on Sy after 30 (2 leftmost plots) and 90
epochs of training (1 seed). The dashed vertical line indicates the sequence length used during train-
ing (32 except for the third plot from the left where it is 64 since we use 4 tokens per permutation).
Each method is labeled with name, eigenvalue range, and number of layers. The dashed vertical line
indicates the sequence length used during training. Full matrix simple is a simple one-layer baseline
where the state update matrices are unstructured and have no control on the eigenvalues.

5.2 STATE-TRACKING

We perform experiments on group word problems, relying on the code provided by Merrill et al.,
2024| In particular, we focus on the S5 group, which is the first unsolvable symmetric group where
current LRNN and transformers are known to perform poorly. We also report results for the addition
modulo 60, i.e. the cyclic group Zgg, in Appendix We note that parity is Sp. In these
experiments, the input to the model is a sequence of group elements, while the supervision is given
by another sequence of group elements, each being the product of the previous ones in the input.
Since solving S5 would require LRNNs with state-transition matrices that are repeated products of
4 GH matrices (see Theorem , each with eigenvalues [—1, 1], we also consider three simplified
setups: (i) allowing as inputs only permutations up to 2 elements (identity and swaps), (ii) allowing
only permutations up to 3 elements, (iii) using 4 tokens for each permutation. Additional details are
in Appendix[D.2] We stress that, even when restricting the inputs, possible outputs remain the same,
since swaps are generators of the group.

Results Figure 3] shows that, as predicted by Theorem [3] restricting the inputs to only swap permu-
tations allows DeltaNet [—1, 1] with one layer to fully learn the task (since its state transition matrix
can model a swap), while DeltaNet [0, 1] only manages to fit the training length, even with 5 layers.
On the contrary, just by including also permutations of 3 elements, we notice a substantial decrease
in the performance of all models, although interestingly extending the range is still advantageous and
DeltaNet [—1, 1] with 5 layers reaches a good length generalization. Moreover, using 4 tokens per
group element seems also beneficial compared to standard S, since DeltaNet [—1, 1] with 5 layers
manages to extrapolate very well until around length 120, which corresponds to 30 group elements,
while all models trained on standard S5 have 0 sequence accuracy prior to sequence length 20. We
also report that Mamba, being a diagonal model, performs poorly on all setups, with and without
increased eigenvalue range.

5.3 LANGUAGE MODELING

Experimental Setup We train DeltaNet models with 340M parameters and Mamba models with
370M parameters, each using both original and extended eigenvalue ranges. The training is done
on 32B tokens from the FineWeb-100B dataset (Penedo et al., 2024). For training details, we re-
fer to Appendix [D.3.1] Given our previous theoretical and experimental findings, we hypothesize
that models (especially DeltaNet) with extended eigenvalue range will perform better on language
modeling tasks that require state-tracking such as coding or mathematics, compared to unmodified
models. To test this hypothesis, we evaluate the perplexity of these models in a length extrapolation
setup using various datasets: CodeParrot (Tunstall et al., [2022) for coding, Math-Hard (Hendrycks
et al.}2021) for mathematics, TriviaQA (Joshi et al.,|2017), and SlimPajama (Soboleva et al., [2023)).

Results Both models trained stably even with our modification and without changing the learning
rate. The validation perplexity was comparable, albeit slightly lower, throughout training (See Fig-
ure[/|in the Appendix). The experiments in Figure 4| demonstrate that on coding and math datasets,
DeltaNet with an eigenvalue range of [—1, 1] achieves lower perplexity than the baseline with range
[0, 1]. For TriviaQA, the perplexity of DeltaNet [—1, 1] is slightly higher. Note that this is a task re-
lying on memorization, not linked to state-tracking and hence we do not expect an improvement. On

Under review as a conference paper at ICLR 2025

CodeParrot Math-Hard Trivia QA SlimPajama
— 32— — 20 — — 18 — —

26} :] : : : 1
> 1 1 1 1 Eigenvalue
R i 13 | 18 i 17 i 1 Range
= : : : : [0,1]
2l i 128¢ i 16k i 16 - i [-1,1]

20 E 26 E E 1 i

| | . . . | [y - |
0 3000 0 3000 0 3000 0 3000
Sequence Length Sequence Length Sequence Length Sequence Length

Figure 4: Performance vs sequence length of DeltaNet variants on different datasets. DeltaNet with
eigenvalue range [-1, 1] shows improved perplexity on coding and math tasks compared to the [0,
1] baseline. The dashed vertical line indicates the training context length of 2048 tokens.

Table 4: Performance comparison using Im-harness benchmark (Gao et al.| 2024} (SPJ reproduced
from|Yang et al.|(2024b), Fine-Web ours). Results show for original and extended eigenvalue range.
Our models show comparable performance across tasks.

Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c Avg. | SWDE SQUAD FDA

Model ppld ppll | acct accT accnt acct accT accnt T cont. T cont. T cont. T
2 | 340M params
2 Transformer++ 2839 42.69 | 31.0 63.3 34.0 50.4 44.5 24.2 41.2 422 22.1 21.4
2 Mamba [0, 1] 2839 39.66 | 30.6 65.0 354 50.1 46.3 23.6 41.8 12.4 23.0 2.1
= GLA [0,1] 2947 4553 31.3 65.1 33.8 51.6 44.4 24.6 41.8 24.0 24.7 7.3
= DeltaNet [0, 1] 2824 3737 | 321 64.8 343 522 45.8 23.5 42.1 26.4 28.9 12.8
s | 340M params
§ DeltaNet [0, 1] 28.71 42.63 | 285 67.5 40.4 513 46.8 24.5 432 34.3 30.0 10.5

DeltaNet [—-1,1] | 29.01 46.38 | 28.3 68.0 39.1 51.0 48.4 234 43.0 313 26.3 9.6

370M params
Mamba [0, 1] 32.04 4282 | 29.1 67.4 39.6 52.7 47.0 24.4 43.4 14.2 20.1
Mamba [—1,1] 3241 55.09 | 265 67.6 39.2 53.0 46.8 240 429 12.5 18.2

SlimPajama, we observe no significant difference between the two DeltaNet variants. For Mamba
instead, we see a general degradation of the performance on these tasks compared to the unmodified
version (Figure[§]in the Appendix).

To ensure our models are comparable with those obtained by [Yang et al.| (2024b)), we evaluate them
on the same benchmark tasks from Im-harness (Gao et al., 2024} in TableE] It is worth noting that we
trained on 32B tokens of FineWeb, while Yang et al.|(2024b) reported results from training on 15B
tokens of SlimPajama. We find that our models perform worse in terms of perplexity on WikiText
and LAMBADA, while achieving better average accuracy on classic benchmarks. Furthermore, we
report that DeltaNet [0,1] performs better on recall-intensive tasks SWDE and SQuAD, where our
eigenvalue extension slightly degrades performance.

6 CONCLUSION

In this work, we showed the substantial impact of extending the eigenvalue range of state-transition
matrices in LRNNs from [0, 1] to [—1, 1]. This modification provably enhances the expressivity of
LRNNSs in state-tracking tasks with no additional overhead in training or inference. While Mamba
successfully solves the parity problem, its diagonal matrix structure inherently limits further perfor-
mance gains. In contrast, DeltaNet, by leveraging its non-diagonal matrix structure, excels across a
broader spectrum of tasks. Notably improving the perplexity on CodeParrot by 2 points. Our results
underscore the critical role of non-diagonal state-transition matrices in augmenting state-tracking
capabilities, highlighting a promising direction for future LRNN advancements.

Limitations In our language modeling experiments, we did not observe any performance gains with
the Mamba model. Furthermore, diagonal models such as Mamba2 and GLA use the positivity of
state transition matrices to compute repeated products in log space for numerical precision, a tech-
nique our modification does not directly support. This limitation may introduce potential instabilities
in certain cases (refer to Appendix for more details).

Future work Further research is needed to assess the impact of training large-scale language mod-
els with state-tracking capabilities. To this end, we aim to understand the potential downsides of
increased expressivity, which could guide hybrid model design. For example, we hypothesize a fun-
damental trade-off between state-tracking and memorization, which holds also theoretical interest.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trum-
mer, and Christopher Ré. Language models enable simple systems for generating structured views
of heterogeneous data lakes. Proceedings of the VLDB Endowment, 17(2):92—-105, 2023.

Maximilian Beck, Korbinian Poppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Giinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Ex-
tended Long Short-Term Memory. In Advances in Neural Information Processing Systems. Cur-
ran Associates, Inc., 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about
physical commonsense in natural language. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7432-7439, Apr. 2020.

Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, School of
Computer Science, Carnegie Mellon University, 1990.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? Try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In International Conference on Machine Learning. PMLR,
2024.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural Networks and the Chomsky
Hierarchy. In The Eleventh International Conference on Learning Representations, 2023.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh
International Conference on Learning Representations, 2021.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, 07 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory. Neural computation, 9(8):
1735-1780, 1997.

JE Hopcroft. Introduction to automata theory, languages, and computation, 2001.
Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge University Press, 2012.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601-1611,
2017.

11

Under review as a conference paper at ICLR 2025

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International Conference on Ma-
chine Learning, pp. 5156-5165. PMLR, 2020.

Kenneth Krohn and John Rhodes. Algebraic theory of machines. i. prime decomposition theorem
for finite semigroups and machines. Transactions of the American Mathematical Society, 116:
450464, 1965.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. When open information extraction meets
the semi-structured web. NAACL-HLT. Association for Computational Linguistics, 2019.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In
International Conference on Learning Representations, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations, 2019.

Oded Maler and Amir Pnueli. On the cascaded decomposition of automata, its complexity and its
application to logic. ACTS Mobile Communication, 48, 1994.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531-545, 2023.

William Merrill, Jackson Petty, and Ashish Sabharwal. The Illusion of State in State-Space Models.
In Forty-first International Conference on Machine Learning, 2024.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. Universality
of linear recurrences followed by non-linear projections: Finite-width guarantees and benefits of
complex eigenvalues. In Forty-first International Conference on Machine Learning, 2024.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525-1534, 2016.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Bider-
man, Huangi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, et al. Rwkv: Rein-
venting rnns for the transformer era. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

Jorge Pérez, Pablo Barceld, and Javier Marinkovic. Attention is turing-complete. Journal of Ma-
chine Learning Research, 22(75):1-35, 2021.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 784-789, 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106, 2021.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The Expressive Capacity of State Space Models:
A Formal Language Perspective. Advances in Neural Information Processing Systems, 2024.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, June 2023.

12

Under review as a conference paper at ICLR 2025

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): RNNs with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Alexandre Torres. mamba.py: A simple, hackable and efficient Mamba implementation in pure
PyTorch and MLX., 2024. URL https://github.com/alxndrTL/mamba.py.

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Natural language processing with trans-
formers. ” O’Reilly Media, Inc.”, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated Linear Atten-
tion Transformers with Hardware-Efficient Training. In Forty-first International Conference on
Machine Learning, 2024a.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing Linear Trans-
formers with the Delta Rule over Sequence Length. Advances in Neural Information Processing
Systems, 36, 2024b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791-4800, 2019.

13

https://github.com/alxndrTL/mamba.py

Under review as a conference paper at ICLR 2025

A ADDITIONAL BACKGROUND

In this section, we provide additional details on the notation used, the relationship between RNNs
and regular languages, the assumption of finite-precision, and the decoder function.

A.1 NOTATION

We dentoe with C, R, N the sets of complex, real and natural numbers respectively. We use lower
case letters for scalar quantities (e.g. = € R), bold lower case letters for (column) vectors (e.g.
v € R™), and bold upper case letters for matrices (e.g. M € R"*%). Some functions with matrix
(vector) outputs, such as A and B in Equation (I, are also bold upper (lower) case letters to put
emphasis on the fact that they output matrices (vectors). We denote with ||v|| the euclidean norm of
the vector v € R”. When M € R"*? || M| also refers to the euclidean norm, corresponding to
the largest singular value. The vector e; € R" is the i-th vector of the canonical bases in R", i.e.
the one-hot vector with 1 only in the i-th component and 0 in the others.

We also define for a boolean s
1if s is true
0 if s is false .

10 = {

We define sigmoid(z) := 1/(1 + e~*) and softplus(x) := In(1 + €%).

We sometimes use regular expressions (see e.g. [Hopcroft, 2001), to represent their corresponding
regular language. So thate.g. (11)* = {11}*, where 11 is the set containing the word 11 and * is
the Kleene star operation, is the set of words containing the empty word e and all the words with an
even number of ones, while 1™ is the word containing 1 repeated m times. A language is star-free
if its regular expression does not contain the Kleene star.

A.2 REGULAR LANGUAGES AND RECURRENT NEURAL NETWORKS

RNNs Can Recognize Any Regular Language A layer of a general RNN can be formulated
similarly to eq. (I just by replacing the linear state update with a generic state-transition function g
as:

ht = g(ht717wt)7 h[) S RVL

It is apparent that any FSA can be implemented by an RNN layer if g is sufficiently expressive to
model its state transition function.

LRNNs Can Recognize Any Regular Language As explained in (Liu et al., {2023, Appendix A.2)
and in (Merrill et al., 2024}, Theorem 5), we can always implement any FSA, and thus recognize any
regular language, using matrix-vector multiplication and hence also a one layer LRNN by choosing
n=|Q|, Hy = (1,0...,0)T and by letting, for any w € ¥, B(w)=0 and A(w) € R**" the ma-
trix with entries A(w)y 4 =1{0(w, ¢) =¢'}. However, such construction cannot be implemented
by modern LRNNS since in general A(w) can have norm greater than one and might not be sym-
metric. Both conditions are not allowed by the state-transition matrices in modern LRNNs (see e.g.
the ones in Table[T).

A.3 FINITE PRECISION

For our positive results on LRNNs expressivity (Theorems [3|and[), by finite precision we mean that
since all quantities involved in the computations are a finite number, there exists a finite set D C R
that contains them and and thus we do not require computations to be done in the reals but we can
use D as datatype. In particular, D does not depend on the length of the input sequence. In practice,
such datatype is chosen beforehand, e.g. floating point numbers requiring a given number of bits,
which may not capture all quantities in our constructions.

In our negative results of Theorems [1| and [2| instead, we can pick the finite set D arbitrarily, e.g.
floating point numbers, and we also make the use of the function cast : R — D, that we extend
to C by applying it separately to real and imaginary part and to vector and matrices by applying it
element wise. The cast function is used because some computations of the state of the LRNN will

14

Under review as a conference paper at ICLR 2025

be allowed to be in infinite precision and then transformed to finite-precision using cast as specified
in the proofs.

We believe that the finite precision setup is not only realistic but also allows a better focus on the
drawbacks of modern LRNN. We note that for transformers, results usually rely instead on the
notion of log-precision (Liu et al.| 2023), meaning that the size of D grows logarithmically with
the sequence length. This is mainly due to their limited expressivity compared to LRNNs. We also
note that concerning the state-transition matrices of modern LRNNs (see Table E]), the values at the
extremes of the eigenvalue range are technically not included (because of the use of the sigmoid and
softplus functions). However, since we are working with finite precision, we can still include them
by choosing the appropriate datatype D, which also in practice includes key values such as 0, 1 and
—1.

A.3.1 THE DECODER FUNCTION

In (1), to compute the output ¢, from the state H,; and the vector =, of an LRNN layer, we use
the function dec, to abstract away the computations that is done on H; and x, since they are not
part of the recurrence. In this work, we do not consider the internal structure of dec, but it usually
contains a normalization and a feed-forward neural network and thus it can usually approximate any
function.

In our negative results on LRNNs expressivity in Theorems|[I]and [2] our choice of arbitrary decoder
guarantees the stronger results. For our positive results instead we either do not consider the decoder
(Theorem|3)) or we make use of a linear decoder (Theorem). We point our that to recognize regular
languages efficiently and with a smaller LRNN state it is beneficial to have a more powerful (non-
linear) decoder, as in the case of word problems for cyclic or permutation groups. However, such
decoder may be hard to approximate.

B PARITY AND MODULAR COUNTING — PROOFS

We report the full proofs for the theorems in Section[4.1]

B.1 PROOF OF THEOREM/[I]

The language (11)* contains all sequences with an even number of ones. An FSA recognizing the
language, for the sequence 1* will output v, = 1 if k is even and y, = 0 if k is odd. Consider an
LRNN with one layer as in . We will prove that if the assumptions on the eigenvalues of A(1)
are not satisfied, then there exists a £ > 0 such that for every & > k, the finite-precision version
of the state H), corresponding to the sequence 1* does not depend on k and is equal to H. Hence,
no matter the choice of dec, also the finite-precision version of g, will not vary with k and thus for
some k' > k, gpr # k' mod 2 = yg/. An inductive argument can then be used for the case of
LRNNs with multiple (finitely many) layers, using the fact that the input of the next layer will be
constant for k large enough, as the input of the first layers.

By unrolling the recursion in [T we obtain a closed form expression for the state

k—1 k—1 k
Hy =) < 11 A(mj)>B(m,-) + (HA@») Hy,
i=1 \ j=i+1 i=1

k—
where we set []

i]1 A(z;) = I to avoid clutter. We follow Merrill et al.| (2024)) and make the sim-
plifying assumption that H}, is computed using the above expression by first evaluating all products
involving the matrices A(x;) separately and in infinite precision, then casting them into finite preci-
sion, and finally executing the sum also in infinite precision and casting the result in finite precision.
Hence, if we set 1 ...z, = 1*, we get the following the exact and finite precision expressions for

the state at time k.

k—1 k—1
H, = Z A(1)'B(1) + A(1)*Hy, H), = cast <Z cast (A(1)’B(1)) + cast (A(l)kH0)> ,

=0 =0

15

Under review as a conference paper at ICLR 2025

where cast is an operation which rounds matrices with complex values elementwise into finite-
precision. In particular, we consider the case where both the real and imaginary parts are casted
separately.

Using the Jordan Canonical Form (e.g. [Horn & Johnson, [2012) we can write A(1) = PJP 1,
where J is block diagonal made of the Jordan blocks J1,...,Js with s < n, J; € RFixki and
with corresponding complex eigenvalues A; ... As. Such decomposition is useful because it allows
to write matrix powers as

A AT AT e ()N
A (ON (L) Akt
A*=PJ*P, Jf =
AN
)\k

L Z .
Therefore, to study limy_, A(l)k, we can study the behaviour of the elements of the Jordan blocks

when k& — oo. If |\;| < 1 then all elements of J¥ converge to zero, since the exponential is faster
than the binomial (’;) with fixed j. Thus limy_, Jl-k = 0. If instead \; € R and \; > 1, then
all nonzero elements of the Jordan block diverge to +oco. Finally, when A; € R and \; = 1,
the diagonal elements are \¥ = 1, while the other nonzero elements diverge to co. Therefore we
have that if |\;| < 1 or); is real and positive then there exists J; € {0, 1,00}**ki such that
limg o0 J = J,. Now, assume that for every i either |\;| < 1 or A; € R with A\; > 1. Then, from
the structure of the Jordan decomposition, each element of the matrices A(1)* B(1) and A(1)*H|
will be a linear combination (with complex coefficients) of sequences of real numbers with well
defined limits (either 0,1 or +o00), and thus, when k& — oo either converges to a point in C or
diverges to a specific point in the complex infinity.

Now let Cy, = cast(A(1)*B(1)) and D, = cast(A(1)*Hy), then since cast operates elementwise
and has bounded and finite range we have that there exists 7 € N, C € €4 and D € C"*? such
that for every k > 7, Ck — C and D;.c — D and

k-1
Hp=cast | Y Ci+D+(k-k+1)C
i=0
Note that only the last term inside cast varies with k and in particular each element of the matrix
inside cast converges to a point in C, that is the union of C and the complex infinity. Therefore,
since we are applying again the cast operation we obtain that there exists H € C"*? and k > 7
such that for every k > k we have H, » = H, which concludes the proof. O

B.2 PROOF OF THEOREM[Z]

Let Hy, and §, := cast(dec(Hy, xx)) be the finite-precision versions of the state H}, and (scalar)
output of a one-layer LRNN on the input = z; ...2, = 1*. Let also y, = 1{k mod m = 0}
be the correct output recognizing the word. We will show that if the assumptions on the eigenvalues
are not satisfied, there exist H1, Hy € C™*", 1, J» € RP and 7 € N such that for all k > 7

. e H, ifk mod2=0 . Jy ifk mod2=0
¥ 1H, otherwise L

7o otherwise ©
where without loss of generality we take §1,%2 € {0,1}. If g1 = %o, then, similarly to parity,
Uk = Y41 forall k > 7, while if & mod m = m — 1, then 1 = yi41 # yr = 0. Otherwise if
71 # Yo then if we assume that ¥ mod d = 1 and g, = y, = 0, then 1 = 41 # yr+1 = O since
m > 2. This will prove the result for a one-layer LRNN. Then, we will proceed with the proof of
finitely many layers.

The proof can proceed similar to Theorem (1| Indeed, using the k-th power formula for the Jordan
Decomposition of the matrix A(1) with eigenvalues Aq, ..., As we can prove that if 1 < i < s,

16

Under review as a conference paper at ICLR 2025

[Ai| <lor); € Rand)\; > 1, then when k — oo each element of the corresponding Jordan block
of A(1)* either converges to a single value or diverges to +occ. If instead \; € R and \; < —1,
the diagonal element of the corresponding Jordan block takes the form ¢, = (—1)*|);|¥, while the

ones in above the diagonal diagonal take the form z;, = (’;) (=1)F=t|\; |kt with ¢, j < n. It can be
shown that if we let ¢ € {1, 0o}, then

hm cop =C, lim cop41 = —C, hm Zop =00, lim zopy1 = —o0.
k— o0 k—o0 k—o0 k—o00

Therefore we can apply the same reasoning of Theorem [I] using the finite-precision assumption to
show that there exist 7 € N, C';, Cy, D1, Dy € C™*¢ such that for every k > 7 we have

G, ::cast(A(l)kB):{CllfkmOdQZI ~ {Dllfk:mod2:1

I k _
Coithmod2—o Dr=cast(A)THo) =15 040

Finally if for simplicity we consider 7 mod 2 = 0, we have that for 2k > 7

T—1
Hy, = cast (;@—i— (k—%+1)52+ (k:— 7) Cl+kD2>
T—1
Hatys = st <Z Ci+t (k N % + 1) (C2+Ch)+ kD1>
i=1

where we note that the limit for & — oo of the term inside cast is well defined. Thus there exist
H,,H, € C"*%and k > 7 such that eq. @ is satisfied, concluding the proof for the case of a
single layer.

Multiple Layers Note that since for one layer we have two sequences (even and odd) of outputs
converging in finite time, there exist a, b € RP such that for all £ > k£ we have

Yok =@, Yokt1 =b.
Therefore, consider an additional layer that takes as input m() .. wf) , with 331(2)

. (2 . (2
§),...,y,(€)as

= g, and outputs

HY = AP HP, + BP(2)?), 97 =dec?HP, 2?))

without loss of generality assume for simplicity that & = 1 and that Qg? = a and yéi)ﬂ =b. We

also set A; = AP (a), Ay = A®(b) and B; = B®(a), B, = B®(b) and C; = A, A,,
Cy; = A, B, + Bj. Then we can write

H = AH<,§>1+B1 A AH ,+ A1By + B,
k—1

k 3 +Cy =) CiC,+C{H,
=0

H{ = C\H
Furthermore for the odd sequences of states we have
k—1

HY). | = AH§)) + By =) A;CiCy + CIHy + B

i=0

We notice that the sequences H. 2(? and H éi)ﬂ are in a form similar to H, of the first layer and when
allowing for real but possibly negative eigenvalues we can use the same reasoning using the powers
of the Jordan canonical form to show that if we let H. 2(? and Héi)ﬂ being their finite-precision

counterparts, then there exist ﬁ§), H;Q), H(Q) H(Q) R™*4 ko > 0 such that for every k > k

—o [HPif2kmod2=0 = = if (2 +1) mod 2 = 0
2k — (2)) H2k+1 —(2) .
H, if2kmod2=1 H, if(2k+1)mod2=1

17

Under review as a conference paper at ICLR 2025

Therefore, for k > ks, the the function k — ﬁ;f) will be periodic with period four and hence no

matter the choice of dec®), also the function & > g,@ will be periodic with period 4. Consequently,
with two layers one can recognize the language (1”*)* only when m = 1, m = 2, m = 4, since that
is the only case where k — y;, has a period which is a divisor of 4. We can extend this argument
inductively to the case of an LRNN with L layers, to say that there exists k7, > 0 such that for every
k> kp, if we let y,(CL) be the output of the last layer, the function k > Q,(CL) is periodic with period
2% and thus it can recognize the language (1™)* only when 2 mod m = 0, which happens only

when there exists p < L such that m = 2P and hence m is a power of two, ending the proof. O

C PRODUCTS OF GENERALIZED HOUSEHOLDER MATRICES — PROOFS

We provide proofs for the results stated in Section .3

C.1 PROOF OF PROPOSITION[I]

First item It can be shown by noting that if C € M;([—1,1]), then ||C|| < 1 and using the
sub-multiplicative property of the euclidean norm, i.e the fact that | AB|| < || A|||| B]|.

Second item Note that any real matrix has a singular value decomposition. Hence we can write
M=USV'

with U,V € R™*" orthogonal and S = Diag(oy,...,0,) with o; € [0,1], since | M| < 1.
It follows from the n-reflections theore that we can write U and V as either the identity I €
M ({1}) or the product of at most n reflections, each of which is in M;({—1}). Hence U,V €
M, ({=1,1}). We can also write the matrix .S as the product of n GH matrices as

S=28,8,...8,, Si=I-(1-0)ee

where e; is the i-th element of the canonical basis of R™. Hence, S € M,,([0, 1]). The proof of the
first part is concluded since we wrote each of U, S, V' as a product of at most n GH matrices. If M is
orthogonal we apply the n-reflections theorem directly. While we note that if M = P € {0,1}"*"
with P being a permutation matrix different from the identity, it can be written as products of at
most n — 1 swaps, i.e. permutation matrices permuting only two elements. Therefore we have that

there exists an integer £ < n — 1 and indices iy, ..., it and ji, ..., jr such that ¢; # j; and
kol V2 ifl=i
P=1[Puy Py=0-2v5v)) wvu=1<-1/v2 ifl=j |,
=t 0 otherwise
where we set v;; = (vij1, . - ., Vijn). Note that since ||v;;|| = 1, P;; € My ({—1}) with & < n. For

the the case where M = I we can use the fact that I € M ({1})

Third item Let N = C,Cy---Cy, € My((—1,1]), with C; = I — B;k;k;] with ||k;|| = 1 and
B; €10,2). If N = I the statement is satisfied, otherwise, let V = span{k; : i € {1,...,k},3; >
0}. Any unit vector v € R™ can then be written as v = vy + vy with v1 € V, vy € VT and
[lvi]l, Jvz]] < 1. Now, if v; = 0, then Nv = v, and hence v is an eigenvector with eigenvalue
1. Instead, if v; # 0, then there exists i’ such that ; € (0,2) and v " k; = v{ ks € (0,1] and if
i’ < keither 3; =0orv'k; = 0forall j € {i’ +1,...,k}. Moreover, we have that

[Civ|” = |lv— Bukikjiv|* =1— B (2= By) (v k;)* < 1,

where the last line comes from the fact that min,cjo9) #(2 —) = 1 and is only reached at 0
and 2 while 8;; € (0,2). Therefore, since for every 4, ||C;|| < 1 and the euclidean norm is sub-
multiplicative we have

INv| = [|[C1Cs...Cho|| = |CLCs ... Cyv|| < ||Cy| - | Civ]| < 1.

3This is a specialization of the Cartan—Dieudonné Theorem to R™, see Theorem 3 inhttps: //faculty.
uml.edu/dklain/orthogonal . pdf|for a proof.

18

https://faculty.uml.edu/dklain/orthogonal.pdf
https://faculty.uml.edu/dklain/orthogonal.pdf

Under review as a conference paper at ICLR 2025

Therefore, if v is also an eigenvector with eigenvalue A € C, then | Nv|| = |A| < 1. Hence, we
proved that for every eigenvector with eigenvalue A either A = 1 or |A\| < 1. It remains to show
that all eigenvalues of N € My ([0, 1]) are real. For k = 1 it follows due to IN being symmetric,
fork > 2let D = C1C5---Cj_1 so that N = DC}, and let v be any eigenvector of IN with
eigenvalue A and ||v|| = 1. Then it holds that

v ' CyNv =)\v'Cjv.

Therefore if v Cjv # 0, then A = ’UTCkN’U/'vTCk’U € R. Otherwise when v Cpv = 0 it
follows that

v Cv = |[v||” — Bk v)? =1 — Bu(k)v)? =0,

which is true only if 8, = 1 and either v = kj or v = —kj, and thus Cyv = £Crkr = 0 and
hence A\ = 0, which concludes the proof. O

C.2 PROOF OF THEOREM[3]

We first recall the notion of group isomorphism. Two groups (G,) and (H,-) where G, H are
the sets and * and - are the associative operations, are isomorphic, if there exist a bijective map
f: G — H such that forevery g € G, h € H

flg*h) = f(g)- f(h).

We view the LRNN layer in eq. as the FSA Ay, = (3, H, Ho, 0yin), where 8y, (H,w) =
A(w)H + B(w), which is extended in the usual way, and H = {0y, (Ho, w) : w € ¥*}. Since
T(A) is a group, from Cayley’s theorem we have that it is isomorphic to a subgroup of .S,,, which
is the set of permutations on a set of a set of n elements. Furthermore, each element in S,, can
be represented as an n X n permutation matrix. Since in general n # |Q|, we cannot let H to
be a set of one hot vectors each corresponding to states in . Instead, we let Hy = (1,...,n) ",
P C {0,1}"*™ be the set of permutation matrices and define B = 0 and A : ¥ — P to be the
function mapping each letter w € X to the permutation matrix corresponding to d(-, w). With this
choice we can see that the function f : T (Ain) — T (A) such that f(dyin(-, w)) = 6(-, w) for
every w € X* is one-to-one (biejctive), and from our choice of Hy, also the map h : T (Ajn) — H
such that for every w € ¥*, h(iin(-, w)) = din(Hp, w) is also bijective. Moreover, the map
¢ : T(A) — @ such that ¢(6(-,w)) = §(qo,w) is surjective because we consider states that are
only reachable from qq, i.e. Q = {0(qo,w) : w € £*}. Hence if we set g = ¢ o f o h™!, then
g : H — @ is surjective and for every w € 3 and H € #H we have that

g(élin(H’w)) = 6(9(H>7w)

Thus, we have shown that such LRNN implements .A and it does so with finite precision because
the entries of all vectors and matrices are bounded integers. The proof is concluded by noting that
permutation matrices have euclidean norm equal to one and real entries.

Moreover, Let k = maxyes Y co 1{(q,w) # ¢} = maxyex Y, H{(A(w)Hy); = Ho}
be the maximum number of displaced element of the permutation associated with the alphabet X.
Then, we know that every A(w) € My_1({—1,1}).

If in addition there exists m € N such that 7 (\A) is isomorphic to a subgroup of the cyclic group Z,,
with elements {0, ..., m — 1}, we can modify the construction above to use a smaller dimension.
If m = 2, then Zy has elements {0, 1}, and .4 implements the parity automaton. Thus, we can
set Hy = —1, A(0) = 1, A(1) = —1 and g(1) = 1 while g(0) = 1, which means that we
can use a scalar recursion. Otherwise, if m > 3, we can modify the construction above by setting
Hy = (1,0) " and, if for simplicity we assume 3 € {0,...,m — 1}, for every w € 3 we let A(w)
be the 2 x 2 rotation matrix corresponding to 6(-, w):

cosf, —sinb, 27w
A(w) = R(0) sinf,, cosf, |’ O = m
such that R(#) € My ({—1}) (from Proposition|[I). O

19

Under review as a conference paper at ICLR 2025

C.3 KRHON-RHODES THEOREM

Before presenting the proof for Theorem 4} we provide the statement for the landmark result of
Krohn-Rhodes (Krohn & Rhodes| [1963)), after giving the definition of cascade product of two FSA.

Definition 1 (Cascade product). Given two FSA A = (X,Q,qo,9) and B=(Q xX,Q’, g, "), we
define the cascade product FSA asC = Bo A= (2,Q x @', (q0,4}),0") where for any w € X

" ((g:4"),w) := (0(q,w),d(q", (¢, w)))
Theorem 5 (Krohn-Rhodes, Theorem 4 in Maler & Pnueli (1994). For every FSA A
(2,Q,q0,06) there exists s < 2% and a cascade product FSA C = A®) o ... o A1)
(2,Q%, ¢, 6%), with AW = (Z(i),Q(i),qéi),é(i)), with |QW| < |Q|, and a function WV : Q* —
Q such that for any w € X*, §(go, w) = W(6* (¢, w)) and each AW is permutation-reset au-
tomaton, which means that for every w9 € £, 5(i)(-, w(i)) is either a bijection (i.e. a permutation
over Q) or constant, ie. 5(-,w®) = q(w) € QW.

C.4 PROOF OF THEOREM[4]

We apply the Krohn-Rhodes theorem (Theorem [5) to write A as the cascade product FSA C =
A o0 AW with each FSA AW = (50, Q) q(()l)7 6() being permutation-reset and we show
how the LRNN can implement C.

We now show how the i-th layer of the LRNN with the structure in [1|can implement A®).

Let n = |Q®| and without loss of generality assume that ¥ = {1,2,...,|3|} and Q) =
{1,2,...,n} with q(()z) = 1. Forevery w € %) we set A (w) € {0,1}"*", B®(w) € {0,1}"
such that ¢, ¢’ € Q¥

AD(w)y .o =1{d(q,w) = ¢}, BD(w)y =0, if 6 (-, w) is bijective, or
A (w)g 4 =0, BY(w)y = 1{¢' = q(w)}, if 67 (,w) = g(w).
Then, for every word w() = wy) .. .wt(i) e X0 weset g : R* — R, such that g(z) =
(1,...,n) "z and

H = A (w)HD, + BO@w), H? =(1,0....0)7 R
y @ = dec? (H”, w(") = (g(H"),w(”) = (09 (g5, w), w)

So that such construction implements A . In addition, by letting w = w; ... w; € ¥* be the input

to the LRNN, i.e. wit) = w;, and and setting the output of each layer as the input to the next, i.e.

J
wy) =](-171) for ¢ > 2, for the output of the last layer we get

yi = dec) (Hy, wf”)
= (6 .5
= (5(5)(q(()s)’w(s)),5(571)(q(()s—1),w(sq))’ygs—z))
= (5(8)((1(()8)710(3)), .. »5(1)(q61),w),wt) e No+L

where we removed the nested parenthesis for simplicity. Hence, the first s elements of yt(s) are
exactly the output of the cascade FSA C. Note that our construction can be implemented in finite
precision, since we only used matrices/vectors with entries either in {0, 1}, requiring only one bit,
orin QY C N, that can also be implemented using finite precision with |Q(?)| integers, requiring

log, (|Q®]) bits. Note that we can exclude the last element of y§5> to get a dimension N°.

It is also the case that ||A(i)(w)|| < 1 for every w € X since A (w) is either a permutation
matrix (||A® (w)| = 1) or the zero matrix (|| A®)(w)]|| = 0). Also, for every permutation matrix
P € {0,1}™*™ which permutes only k& < n elements we have that P € Mj_({—1,1}).

20

Under review as a conference paper at ICLR 2025

Furthermore, for the zero matrix we have

0=] - ewe) € Mai0})

It follows that AW (w) € M,,([-1,1]) fori € {1,...,s}. O

D EXPERIMENTS

D.1 CHOMSKY HIERARCHY

Here, we provide details on the formal language tasks and experimental protocol of Section [5.1]

D.1.1 DETAILS ON THE EXPERIMENTAL SETUP

Like Beck et al.|(2024)), we trained each model with sequence lengths ranging from 3 to 40 and eval-
uated on lengths from 40 to 256, to understand the length generalization capabilities. We compared
mLSTM and sLSTM with two models: Mamba (Gu & Daol|2023)) and DeltaNet (Yang et al.| 2024b).
All models contain 2 blocks, with 4 heads for the xXLSTM and DeltaNet models. We set the embed-
ding and heads’ dimension to 128 across all experiments. For Mamba and DeltaNet, we also enable
the 1-D depthwise-separable convolution layer with kernel size equal to 4 after the query/key/value
projection. We train each model using AdamW (Loshchilov & Hutter, |2019) without gradient clip-
ping, using 3 different learning rates (le-2, le-3, le-4), with 3 different seeds each. We pick the
best based on the median of the 3 seeds for every learning rate value. We use a batch size of 1024
(except for SLSTM, where we use 512) and a cosine annealing learning rate schedule (Loshchilov
& Hutter,2017) (mininum learning rate: le-6) after 10% warm-up steps. The weight decay is set to
0.1 during training. We train on every task for 100k steps in total. At each training step, we make
sure to generate a valid random sample from the task at hand (see below).

D.1.2 DETAILS ON THE EVALUATED TASKS

In Section [5.1] we conducted empirical evaluations on 3 tasks —namely parity, modular arithmetic
without brackets and with brackets — from various levels of the Chomsky Hierarchy, as proposed
by Deletang et al.[(2023) and similarly used in xLSTM (Beck et al.,2024). Details for each task are
given below, where |X| is the vocabulary size and Acc,qnq 1s the accuracy of random guessing:

* Parity (|X| = 2, Accrana = 0.5). The parity y; € {0,1} of a sequence of ones and zeros
x =mx1...7¢ € {0,1}! is equal to 1 (resp. 0) if the total number of ones in the sequence is odd
(resp. even). It is equivalent to addition modulo 2, it can be computed by summing all previous

values and then using the modulo 2 function as y; = (22:1 x;) mod 2.

* Modular Arithmetic w/o Brackets (|X| = 10, Accrqna = 1/(]2]|—5)). Given a set of special to-
kens X3 = {4+, —, *, =, [PAD|} and a modulus m > 1, we compute the remainder y; = & mod m,
where x = z1...2; € Yt and y; € {1,...,m — 1}. Here, ¥ = ¥, U {0,...,m — 1}. In our
experiments m = 5. An example sequence is as follows:

2 —3—3%2=3[PAD)

* Modular Arithmetic w/ Brackets (|X| = 12, Accrqng = 1/(|X] — 7)). Same definition as the
modular arithmetic without brackets with a set of special tokens 5 = {+, —, x,=,), (, [PAD]}. In
our experiments m = 5. An example sequence is as follows:

((B+3)+-1)+-2) = (3-(=3) + ((1) +4))) = 2 [PAD]

21

Under review as a conference paper at ICLR 2025

Table 5: Performance comparison of various recurrent models on regular and context-free language
tasks. recurrent models on formal language tasks. We report the median 4+ median absolute deviation
of 3 independent runs with different random seeds. Scores represent scaled accuracy, with 1.0
indicating perfect performance and 0.0 random guessing. The positive impact of allowing negative
eigenvalues ([—1, 1] range) versus restricting to positive eigenvalues ([0, 1] range) is evident across

different model architectures.

Mod. Arithmetic

Mod. Arithmetic

Parity (w/o brackets) (w/ brackets)
mLSTM 0.018 4= 0035 0.093 =+ 0.028 0.097 =+ 0.022
sLSTM 1.000 £ 0000 0.130 = 0.004 0.082 = 0.003
Mamba [0, 1] 0.000 £ 0000 0.000 = 0.005 0.016 =+ 0002
Mamba [—1, 1] 1.000 £ 0000 0.079 = 0032 0.029 = 0.007
DeltaNet [0, 1] 0.010 £ 0005 0.126 = .00 0.174 = o008
DeltaNet [—1,1] 0.999 £ o006 0.422 + 0.189 0.212 = 0.008

Parity Mod. Arithmetic w/o Brackets Mod. Arithmetic w/ Brackets
1.0 " I I 1.0 ! ! T 1 1.0 i ! T R
5 i | !
E 1 1 I
=5] I I
305F ! 105F 1 105F 1 1 mLSTM
z | i i SLSTM
S i i i
[+ 1 1 1
@ 00 1 0.0 ! 0.0F !
i i i
1 1 1 1 1 1 1 1 1
0 100 200 0 100 200 0 100 200
Sequence Length Sequence Length Sequence Length
(a) mLSTM and xLSTM
Parity Mod. Arithmetic w/o Brackets Mod. Arithmetic w/ Brackets
1.0 I ! 1.0 I ' ' 7 1.0 I ' ' B
1 1 :
5 i ! !
S : i I Eigenvalue
@ 0.5+ ! 4 0.5 ! 405 | 4 Range
< 1] i
< ! i i [0, 1]
3 ool M 0ol Y 0.0f ! .
2] N 1 4 1 . 1
i ! kil !
0 100 200 0 100 200 0 100 200
Sequence Length Sequence Length Sequence Length
(b) Mamba
Parity Mod. Arithmetic w/o Brackets Mod. Arithmetic w/ Brackets
10 I T 1.0 I T T .| 10 1 T T 4
1 I :
5 ! i :
g ! ! ! Eigenvalue
gost {05k {osp { Range
< 1]]
< ! ! i [0,1]
3 | | : [1,1]
R 00 ! 0.0f ! foop
i i L ;
0 100 200 0 100 200 0 100 200

Sequence Length

Sequence Length

(c) DeltaNet

Sequence Length

Figure 5: Performance (scaled accuracy) vs sequence length of mLSTM, sLSTM, Mamba and
DeltaNet variants on different formal language tasks. Trained on sequences up to length 40 (dashed
vertical red line). At test time, we sample uniformly at random 8192 sequences with lengths between
40 and 256. The curves show the mean and 95% CI.

22

Under review as a conference paper at ICLR 2025

D.2 STATE-TRACKING
D.2.1 DETAILS OF THE EXPERIMENTS

For the experiments in Section[5.2] we map each element of the group S5 to an integer from 0 to 119,
where 0 corresponds to the identity permutation, and then construct inputs and output sequences of
integers x1,...x: and yq, . . ., y; as follows

* S5 We sample z; uniformly at random from {0, ...,119}. y; is computed as the product
of the permutations corresponding to z1, . .., ;.

* S5 only swaps As S5 but x; is sampled from the permutations that permute up to two
elements (swaps and identity).

* S5 swaps, 3-permutations As S5 but z; is sampled from the permutations that permute up
to three elements.

* S5 4 tokens per transition If : mod 4 = 0, then z; is sampled uniformly at random from
{0,...,119}, otherwise x; = 120 (special token). For ¢ > 3, y; 3 is the product of the
premutations corresponding to x1, . . ., x;, where 120 is treated as the identity permutation.
y; =0fori € {1,2,3}.

For each input we also add a beginning of sequence token. For each setup we always sample 1.6M
examples for training and 40K examples of length 500 for testing. We note that we are using a
substantially larger training set compared to [Merrill & Sabharwal| (2023)), to reduce the chances of
overfitting.

We train all models using AdamW with weight decay 0.01, learning rate 0.0001, gradient clipping
to 1.0 and a batch size of 512.

Both DeltaNet and Mamba models use an embedding dimension of 128 and 4 heads for DeltaNet.
In the case of DeltaNet we do not use the 1-D convolutions for these experiments. Other parameters
are kept as defaults.

Full Matrix Baseline. For the full matrix baseline we use a single layer and map directly each token
x; to a learnable full state-transition matrix A(z;) € R™*™ via one-hot encoding. We then compute,
fori € {1,...,t} the recursion

H, = A(Ii)Hi_l, Hy=1¢€¢ R™"™

where n is set to 32 for efficiency reason (memory and compute time grow quickly with n). After
that we flatten each H; into a vector and apply first a projection on the unit ball and then a linear
decoder to get the final outputs. The projection was added to increase stability since we do not
bound the norm of A(z;). Since this model uses a full matrix, with n > 5 it should be fully able to
learn S5 without restricting the permutation in input. However in some situations the performance
degrade quickly after some length, probably due to the fact that the norm of the learned A(z;) is not
close enough to one.

D.2.2 CycLic GROUPS

We report in Figure [6] some experiments on group word problems with the group Zgo. For this
experiment we also consider the simplified version where each transition is encoded using 2 tokens.
This is done as in the experiments of S5 with 4 tokens, but using two tokens instead of 4. Using
one additional token should allow DeltaNet [-1,1] with more layers to learn the rotations needed
to solve the task. However, using more tokens does not seem to help in this case. Extending the
eigenvalue range seems to help in both settings, although surprizingly, Mamba [-1,1], even though
it has a diagonal state-transition matrix, seems to perform best. We conjecture that in this case, the
models might learn the shortcut solutions, also because they do not generalize very well to longer
sequences.

23

Under review as a conference paper at ICLR 2025

Z¢, with 2 tokens per transition

100 1 ;
80Y, i
\ —— DeltaNet [-1,1] (5 layers)
609\ —=- DeltaNet[0,1] (5 layers)
10 Y —— Mamba[-1,1] (5 layers)
Y === Mamba[0,1] (5 layers)
209 Y P
\ [
IEASL G- .
10' 10° 10' 10°
Sequence Length (# of tokens) Sequence Length

Figure 6: Validation sequence accuracy at different sequence lengths on the cyclic group Zgg (1
seed). Dashed vertical lines indicate the sequence length used for training (left 32, right 64). Using 2
tokens per transition seems to help only marginally in this case. Mamba [-1,1] is the best performing
model. The variants with eigenvalues in [0,1] performed worse.

D.3 LANGUAGE MODELING
D.3.1 DETAILS ON THE EXPERIMENTAL SETUP

Each model is trained for 200,000 steps with a per-GPU batch size of 10, distributed across 8 Nvidia
A100 GPUs, using a context length of 2048. For optimization, we use AdamW
with learning rates of 3.1e-3 for DeltaNet and 5e-4 for Mamba (higher rates led to
training instability). The learning rate was adjusted using cosine annealing (Loshchilov & Hutter,
following a linear warm-up period of 5000 steps. We applied a weight decay of 0.1 throughout
the training process.

D.3.2 DETAILS ON THE EVALUATED TASKS

To produce the results in Table[d we use the Im-harness benchmark 2024), focusing on
the same tasks as|Yang et al.|(2024b): LAMBADA (LMB) (Paperno et al., 2016), PIQA (Bisk et al.}
[2020), HellaSwag (Hella.) (Zellers et al., 2019), Winogrande (Wino.) (Sakaguchi et al., 2021), and
ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al., 2018). Additionally, we evaluate the
performance on recall-intensive tasks (like[Yang et al.|(2024b)), including FDA 2023),

SWDE (Lockard et al} 2019), and SQUAD (Rajpurkar et al.l 2018)), to provide a comprehensive
evaluation of our models’ capabilities.

3.0 3.0 T 20 T
o Eigenvalue
/5«29> 929> 318' Range
E z 2 — L1
= 28¢F % 2.8F Z
; 7 B 16l \— [0.1]
227k 27k 5
14}
2.6 2.6 .
200000 0 200000 0 200000
Training Steps Training Steps Training Steps
(a) DeltaNet

W
o
g
o
)
S

= Eigenvalue
e 29+t b = 29F E 18k Range
g > - 1,1
East X 3 =) 1]
; Z 3l \— 011]
=27 1 b 5
14} .
2.6 L 2.6 L v
0 200000 0 200000 0 200000
Training Steps Training Steps Training Steps
(b) Mamba

Figure 7: Learning curves of Mamba and DeltaNet when training on 32B tokens of Fine-Web 100B.

24

Under review as a conference paper at ICLR 2025

CodeParrot Math-Hard Trivia QA SlimPajama (6B)
—— : 50 Fr—yT : 0 P : 19.0 Frrr ‘ :
34 ! i i i
= ! I 19 ! 185 F ! 4 Eigenvalue
3! i 45 i i 1 R
5 32 i i i i ange
= 1 i 18 1 18.0 | |
£ ! | ! ! (0. 11
& 30 E 40 i 17 i 17.5 Fr)] -L1]
1
I ————— B Casttunnwe M ISEE Bhn s == R IS Sh e e
0 3000 6000 9000 0 3000 6000 9000 0 3000 6000 9000 0 3000 6000 9000
Sequence Length Sequence Length Sequence Length Sequence Length

Figure 8: Length extrapolation performance of Mamba variants on different datasets. Mamba with
eigenvalue range [—1, 1] shows worse perplexity on coding and math tasks compared to the [0, 1]
baseline. The dashed, vertical line indicates the training context length of 2048 tokens.

D.4 IMPLEMENTATION

We build on the original code for Mambeﬂ and DeltaNeﬂ For DeltaNet, implementing the ex-
tended eigenvalue range is straightforward, since there is no need to modify the Triton kernel. How-
ever, Mamba requires modifications to the CUDA code of the associative scan for both forward and
backward passes which however had no impact computational cost. We ensured the accuracy of
the modifications by comparing the results with a naive implementation using a for-loop. For ini-
tial testing of the extended eigenvalue range, we used the pure pytorch implementation of Mamba
by Torres| (2024). We provide listings of the necessary code changes in Mamba and DeltaNet in Ap-
pendix[D.4.1]

Products in Log-space We note that some diagonal models such as Mamba2 (Dao & Gul [2024),
GLA |Yang et al.[(2024a), mLSTM [Beck et al.|(2024)) take advantage of the fact that all values of the
state-transition matrices are positive to compute their repeated products in log-space. Our change
would not allow to do this directly, and early tests on the chunkwise parallel form of GLA showed
degraded performance. Therefore, for this work, we decided to focus on Mamba and DeltaNet since
they do not compute the products in log-space. We mention however, that at the cost of increased
computation time, it would be possible to do products in log-space by converting each value in
the diagonal state-transition matrix to the product of its absolute value and sign. This way, absolute
values can be multiplied in log space, while products of signs is coincidentally equivalent to addition
modulo 2, i.e. parity, and hence can be done stably. We leave the investigation of this approach to
future work. Furthermore, we also believe that our change may be less suited to method which use
a normalized RNN state, such as mLSTM.

D.4.1 IMPLEMENTATION OF EXTENDED EIGENVALUE RANGE

if constexpr (!kIsComplex) {
- thread.data[i] = make_float2 (exp2f (delta_vals[r][i] * A.val[r]),
+ thread_-data[i] = make_float2(2.0f * exp2f(delta.vals([r][i] » Awvallr]) - 1.0f,
'kIsVariableB ? delta_u_vals[r][i] : B_vals[i] x delta_u_vals[r][i]);
if constexpr (!Ktraits::kIsEvenLen) {
if (threadIdx.x kNItems + i >= params.seglen - chunk % kChunkSize) {
thread_data[i] = make_float2(l1.f, 0.f);

}

Figure 9: Modifications to the forward pass of the Mamba associative scan . These changes extend
the eigenvalue range from [0, 1] to [—1, 1], enhancing the model’s expressive capacity. Adapted
from selective_scan_fwd_kernel.cuhl

Ynttps://github.com/state-spaces/mamba
*https://github.com/sustcsonglin/flash-linear—-attention

25

https://github.com/state-spaces/mamba/blob/main/csrc/selective_scan/selective_scan_bwd_kernel.cuh
https://github.com/state-spaces/mamba
https://github.com/sustcsonglin/flash-linear-attention

272
273
274
275

288
289
290
291
292
293
294

291
292
293
294
295
296
297
298
299

301
302
303
304

196
197
198
199
200

Under review as a conference paper at ICLR 2025

— const float delta-a_exp = exp2f (delta-vals[i] x A_scaled)
+ const float delta-a-exp = 2.0f * exp2f (delta-vals[i] * A.scaled) - 1.0f

— typename Ktraits::BlockScanT (smem-scan) .InclusiveScan (
+ typename Ktraits::BlockScanT (smem_scan) .ExclusiveScan (
thread_data, thread_data, SSMScanOp<weight_t> (), prefix_op
)i

— const float a = thread-data[i].y - ('kIsVariableB ? delta-vals[i] * float (u-vals[i])
- delta_vals[i] * float (u.vals[i]) * B_vals[il]);

+ float delta.aexp = 2.0f % exp2f(delta-vals[i] * A_scaled) - 1.0f;

+ const float ddelta.a_.exp = delta.a.exp + 1;

+ const float a = ddelta-a.exp * thread-datali].y;

+ const float hi = delta.a-exp » thread-data[i].y + (!kIsVariableB ? delta-vals[i] =

+ float (uvals[i1]) : delta.vals[i] % float (u.vals[i]) = B_vals([i]);

- const float a = thread-data[i].y - ('kIsVariableB ? delta-vals[i] % float (u-vals[i])
= delta-vals[i] = float (u-vals[i]) =* B-vals[il]);

+ float delta.a_exp = 2.0f % exp2f(delta-vals[i] * A_scaled) - 1.0f;

+ const float ddelta.a_.exp = delta.a_exp + 1;

+ const float a = ddelta.a.exp * thread-datali].y;

+ const float hi = delta.a.exp * thread-data[i].y + (!kIsVariableB ? delta-vals[i] =*
+ float (u-vals[i]) : delta-vals[i] * float(u-vals[i]) =* B.vals[i]);

if constexpr (!kIsVariableB || !kIsVariableC) {

if constexpr (!kIsVariableB) { // dBC_val is dB_val
- dBC.val += dout.vals[i] * (!kIsVariableC ? thread-data[i].y : thread-datal[i].y * C-vals[i]);
+ dBC_val += dout.vals[i] * (!kIsVariableC ? hi : hi % C_vals[i]);

} else { // dBC_val is dC_val
- dBC.val += dout-vals[i] * thread-datal[i].y;
+ dBC_val += dout.vals[i] =x thread.datal[i].y;
}
}

if constexpr (kIsVariableB) { dB_vals[i] = dx % delta_vals[i] » float (u_vals[i]); }

if constexpr (kIsVariableC) {

- dC.vals[i] = dout.vals[i] * (!kIsVariableB ? thread-data([i].y * B_val : thread.datal[i].y);
+ dCvals[i] = dout.vals[i] * ('kIsVariableB ? hi = B_val : hi);

}

Figure 10: Necessary changes to[selective_scan_bwd_kernel.cuh

if self.use_beta:
- beta = rearrange (self.b_proj(hidden_states), b 1 h -> b h 1’).sigmoid()
+ beta = 2 x rearrange (self.b_proj(hidden_states), b 1 h -> b h 1’).sigmoid()
else:
beta = g.new_ones (g.shape([0], g.shape[l], g.shape[2])

Figure 11: Simple modification to the beta calculation in DeltaNet |(Source) allowing the extension
of the eigenvalues to the range [—1,1] . The original implementation (in red) is replaced with an
adjusted version (in green).

26

https://github.com/state-spaces/mamba/blob/main/csrc/selective_scan/selective_scan_bwd_kernel.cuh
https://github.com/sustcsonglin/flash-linear-attention/blob/3bafa4fcb505391d19cb7c47aa9bc9fa8e598b15/fla/layers/delta_net.py#L196

	Introduction
	Related Work
	Background
	Linear Recurrent Neural Networks (LRNNs)
	Formal Language Theory

	Theoretical Analysis
	Limitations of Current LRNNs
	Allowing Negative Eigenvalues
	Products of Generalized Householder Matrices

	Experiments
	Chomsky Hierarchy
	State-Tracking
	Language Modeling

	Conclusion
	Additional Background
	Notation
	Regular Languages and Recurrent Neural Networks
	Finite Precision
	The Decoder function

	Parity and Modular Counting – Proofs
	Proof of thm:parity
	Proof of thm:modcount

	Products of Generalized Householder Matrices – Proofs
	Proof of th:ghexpress
	Proof of thm:groups
	Krhon-Rhodes Theorem
	Proof of thm:regular

	Experiments
	Chomsky Hierarchy
	Details on the experimental setup
	Details on the evaluated tasks

	State-Tracking
	Details of the Experiments
	Cyclic Groups

	Language Modeling
	Details on the experimental setup
	Details on the evaluated tasks

	Implementation
	Implementation of Extended Eigenvalue Range

