
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STUTTER MAKES LARGE LANGUAGE MODELS
SMARTER

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success in generating
coherent and contextually relevant text. However, their large parameters and
high memory requirements limit their efficiency and adoption in industry and
academia. Recent studies have shown that dynamically adjusting inference op-
erations can improve model performance without significantly increasing size. In
this paper, we introduce the stutter mechanism, a novel method that enhances
transformer models by selectively applying additional layers to more challenging
tokens. This approach mimics a human speaker’s stutter, allocating more compu-
tational effort where needed, thus improving language capabilities without gener-
ating excessive tokens. Our experiments with various Pythia models demonstrate
that the stutter mechanism consistently enhances performance across benchmark
datasets. Specifically, the Pythia-410M model, enhanced by our method, outper-
forms the larger Pythia-1B model on WinoGrande and WSC. Additionally, our
method is data-efficient, requiring only less than 1% of the pretraining data for
the additional training. These results highlight the stutter mechanism’s potential
to enhance LLMs’ efficiency and performance in real-world applications.

1 INTRODUCTION

Decoder-only transformers (Radford et al., 2019; Brown et al., 2020) have become the standard
for large language models. These models, such as GPT-3 and its successors, have demonstrated
remarkable capabilities in generating coherent and contextually relevant text across a wide range of
applications, from natural language understanding to creative writing. The architecture’s simplicity,
combined with its ability to scale effectively with increased data and computational resources, has
made it the go-to choice for developing state-of-the-art language models. However, despite their
success, there remains significant room for improvement, particularly in efficiency and adaptability
to varying input complexities.

Typically, a transformer processes all inputs with the same procedure. This uniform approach, while
straightforward, does not account for the varying difficulty levels of different inputs or the specific
quality requirements of the output. There have been a number of attempts aiming to dynamically
adapt the operation flow of a transformer to the difficulty level of the input or the requirements on the
quality of the output (Snell et al., 2024). These methods include techniques such as adaptive com-
putation time, where the model decides how many layers to apply based on the input’s complexity,
and dynamic layer skipping, which allows the model to bypass certain layers when they are deemed
unnecessary. Such approaches aim to make the model more efficient by allocating computational
resources more judiciously, thereby improving both speed and performance.

Inspired by recent upscaling studies (Kim et al., 2024; Chowdhery et al., 2023), which have shown
that larger models tend to perform better across a variety of tasks, we sought to explore ways to
enhance the language capabilities of existing transformer models without significantly increasing
their size. Upscaling studies have demonstrated that increasing the number of parameters and layers
in a model can lead to substantial improvements in performance. However, this comes at the cost
of increased memory requirements and training time. Our goal was to find a method that could
leverage the benefits of upscaling while mitigating its drawbacks, particularly in terms of efficiency
and memory consumption. While using pause tokens (Goyal et al., 2024) is an intuitive method
that allows encoding the prefix in parallel, they require substantial computational resources and time

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

for pretraining on the entire C4 dataset. Similarly, the work ALBERT (Lan et al., 2020) focuses
on reducing memory usage by factorizing embedding parameters and sharing parameters across
layers. Our approach, however, aims to improve performance through the stutter mechanism, which
enhances the model’s ability to utilize prior information effectively.

In this paper, we propose the stutter mechanism, a minimally intrusive method to dynamically raise
the language ability of an existing transformer when needed. Our approach is based on the hypoth-
esis that not all tokens are equally easy to generate; for at least some of them, a transformer can
do better by ”giving more thought” to an in-flight token by ”transforming” it with more operations.
It works as if a human speaker stutters when encountering a key diverging point in a speech. This
analogy captures the essence of our method: by selectively applying additional layers to more chal-
lenging tokens, the model can allocate more computational effort where it is most needed, thereby
improving overall performance without a significant increase in resource usage.

This paper is about, once identified, how to apply more layers. It is compatible with any methods that
determine the tokens that deserve to be given more thoughts. This method is minimally intrusive,
requiring only minor modifications to the existing transformer architecture, and is highly effective
in enhancing the model’s language capabilities.

We implemented our method on Pythia-160M, Pythia-410M, and Pythia-1B. Our experiment results
show that the proposed methods effectively raised the accuracies of the Pythia models on the LAM-
BADA (OpenAI), PIQA, WinoGrande, WSC, ARC-e, ARC-c, SciQ and LogiQA benchmarks. With
the help of the stutter mechanism, a smaller model can even outperform a much larger model.

Our contributions are threefold:

• Innovative Mechanism for Enhanced Language Capability: We introduce the stutter
mechanism, a novel and minimally intrusive method that dynamically allocates additional
computational resources to more challenging tokens. By leveraging specific transformer
layers to serve as a silent thinking process, our approach improves the model’s language
capabilities without significantly increasing resource usage. This mechanism is compatible
with existing methods for identifying tokens that require more computational effort, making
it a versatile addition to current transformer architectures.

• Performance Improvements on Various Benchmarks: We demonstrate that the stut-
ter mechanism significantly enhances the performance of transformer models on various
benchmarks. Specifically, our experiments show that the Pythia-410M model, enhanced by
the stutter mechanism, outperforms the larger Pythia-1B model on WinoGrande and WSC.
These results highlight the practical effectiveness of our approach in real-world applica-
tions.

• Data and Computational Efficiency: We show that only one billion tokens (less than 1%
of the pretraining data) are sufficient to train the stutter mechanism, reducing the computa-
tion time and cost by a significant amount. Therefore, our method is not only effective but
also practical for large-scale deployment.

2 BACKGROUNDS

In this section, an overview of key concepts and techniques relevant to the development of trans-
former models is provided. We discuss the architecture and scaling trends of decoder-only trans-
formers, methods for upscaling and pruning, and approaches to improve computational efficiency.
Additionally, we explore the loss functions used in training and the confidence levels of transformers
in token prediction.

2.1 DECODER-ONLY TRANSFORMERS

The Generative Pre-trained Transformer (GPT) series by OpenAI showcases the power of decoder-
only transformer architectures (Radford et al., 2019; Brown et al., 2020). GPT-2, released in 2019
with 1.5 billion parameters, demonstrated impressive text generation capabilities. GPT-3, introduced
in 2020, expanded to 175 billion parameters, significantly enhancing performance and enabling more
complex and accurate text generation. This progression highlights the trend that increasing model
parameters leads to substantial performance improvements (Hoffmann et al., 2022).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

As the number of parameters increases, the depth of the model also tends to increase. For example,
GPT-2 has 48 layers, while GPT-3 scales up to 96 layers. This trend is also observed in various large
language models where more layers are added to accommodate the growing number of parameters,
thereby enhancing the model’s capacity to learn complex patterns and dependencies in the data
(Zhao et al., 2023). This scaling law is further supported by studies showing that larger models
continue to improve performance with increased size (Kaplan et al., 2020).

2.2 UPSCALING

While increasing the number of parameters and layers can enhance model performance, it also in-
troduces significant computational challenges. To address these challenges, upscaling methods are
employed to increase the parameter count and the depth of a transformer. These methods can be
broadly categorized into training-free attempts and upscale-and-train attempts. Training-free up-
scaling involves techniques such as parameter sharing and repeating layers without additional train-
ing. Recently, merged LLMs have shown success in improving performance without re-training. An
evolutionary algorithm is proposed in (Akiba et al., 2024) to search for a better merge combination
which is costly and limits the number of repetitions.

On the other hand, upscale-and-train methods involve increasing the model size and then training it
on large datasets to achieve better performance. For instance, the SOLAR 10.7B model demon-
strates effective depth upscaling techniques that significantly enhance model performance (Kim
et al., 2024). Additionally, the authors in (Chowdhery et al., 2023) discuss how scaling pathways
can be used to efficiently upscale models.

2.3 LAYERS SKIPPING AND PRUNING

Despite the benefits of upscaling, the increased model size can lead to inefficiencies during infer-
ence. To decrease the runtime computational requirements of a transformer, various methods such
as layer skipping and pruning are employed. Layer skipping involves dynamically skipping certain
layers during inference based on the input data, thereby reducing the computational load. Pruning,
on the other hand, involves removing less important weights or neurons from the model, which can
significantly reduce the model size and inference time while conceding some performance. The
authors in (Fan et al., 2024) explore these techniques in detail, showing how selective layer usage
can maintain performance while reducing computational costs. Another approach proposed in (Liu
et al., 2023; Li et al., 2022) demonstrates that layer sparsity can be contextualized, suggesting that
not all layers are necessary for processing simpler input tokens. In addition, observations from (Ha-
lawi et al., 2023) show that early-exiting in critical layers (around layer 28 in GPT2-XL) improves
the model performance.

2.4 HOW CONFIDENT IS A TRANSFORMER ON A GIVEN TOKEN

Understanding the training and inference processes is essential (Lieberum et al., 2024), but it is
equally important to evaluate the model’s confidence in its predictions. The confidence of a trans-
former on a given token can be measured by the probability distribution it outputs for the next token
prediction. Studies have shown that transformers can generate high-confidence predictions for cer-
tain tokens, which can be used to gauge the model’s certainty in its predictions. While there are
extensive studies on the overall performance of transformers in generating sequences, there is on-
going research to understand the confidence levels at the token level. For example, authors in (Sun
et al., 2024; Lad et al., 2024) discuss the confidence and interpretability of transformer layers in
generating specific tokens. Additionally, the study delves into how models process and generate
tokens with varying levels of confidence (Halawi et al., 2023).

3 METHODS

3.1 ARCHITECTURE

In a prototypical transformer with L layers and a sequence of tokens X = {x1, ..., xN}, we de-
note the input representation of layer l and token n as hn

l . The input token n to the first layer is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the proposed model architecture and stutter mechanism. (Here, we illustrated
stuttering at every token. In practice, we don’t need to stutter at every token.) (A) Model Archi-
tecture. Each blue column represents and inference step at the first pass, and each purple column
represents and inference step at the second pass. For the first pass, we input the whole sequence
(e.g. This cat ... cute), tokens are embedded as h0

0, h1
0 ... hn

0 and propagated through the base
model to store the hidden states h0

l∗ , h1
l∗ , ..., hn

l∗ . For standard token (e.g. hn
0 ), it does standard

self-attention with h0:n−1
0 and will skip all hidden states corresponding to previous stutter tokens.

For the second pass, the stutter mechanism is applied. The same sequence is fed into the model
again for the second pass, embedded as r00 = h0

0, r10 = h1
0, ... ,rn0 = hn

0 , which is the same as the first
pass input embedding. For stutter token in second pass (e.g. rn0 ), the self-attention part will skip
hidden states corresponding to both hn

0 and all previous stutter tokens r0:n−1
0 . (B) Stutter block. In

the second pass, each layer includes a stutter block. Our proposed token-retrospect map, which is
for collecting information stored in the hidden states of the chosen layer (hn

l∗ ), is applied after the
pretrained feed-forward and attention mechanisms, along with a residual connection. (C) Skipped
attention. As illustrated, during the second pass, the attention mechanism skips the hidden state
from the first pass while still attending to the previous tokens as usual.

represented as hn
0 , corresponding to the embedding of the previous output token. As the token pro-

gresses through the layers of the transformer, the transformation applied by layer l is described by
the equation hn

l+1 = FF(Attn(h0:n−1
l , hn

l )). Here, FF represents the feed-forward network, Attn
denotes the attention mechanism, and h0:n−1

l represents the representation of all previous tokens in
the corresponding layer 1. By the end of L layers, the output of the last layer hn

L+1 is converted into
the logits of tokens by language head yn = Head(hn

L+1).

3.1.1 STUTTER MECHANISM

The stutter mechanism is designed to enhance the model’s ability to process and understand a spe-
cific token n by performing the inference for that token twice. This approach allows the model to
”think again” about the token, leveraging additional semantic information gathered during the first
pass.

As illustrated in Figure 1, in the first pass, the model processes the token n by doing standard
self-attention with token 0 : n − 1 and stores the hidden state hn

l∗ , which captures the semantic
information of the token. Research indicates that the last layer of a transformer model behaves
differently from other layers (Lad et al., 2024; Liu et al., 2023), often filtering out a lot of information

1For simplicity, we have omitted the notation for positional embedding, normalization layers, and residual
connections, although they are typically present in transformer architectures

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and focusing primarily on the current output. Therefore, the hidden state before the last layer hn
l∗ =

hn
L is chosen as the semantic information from the first pass.

In the second pass, the stutter mechanism is applied, and each layer includes a stutter block. This
block consists of the original pretrained attention (Attn) and feed-forward (FF) components, along
with the newly introduced token-retrospect map. The token-retrospect map utilizes the information
stored in hn

l∗ from the first pass. The input to the first layer in the second pass, rn0 = hn
0 , is the same

as in the first pass. The intermediate representation of layer l in the second pass is denoted as rnl ,
which performs self-attention with h0:n−1

l , skipping both hn
l and r0:n−1

l .

During the ”think again” phase (i.e., the second pass), the input rnl of the layer l first goes through
the original architecture, producing an output onl+1:

onl+1 = FF(Attn(h0:n−1
l , rnl ))

The result onl+1 is then integrated with the hidden states from the first pass hn
l∗ using the token-

retrospect map. For layers l not higher than the chosen layer l∗, the transformation is described
by:

rnl+1 = token-retrospect(onl+1, h
n
l∗) + onl+1

Here, onl+1 represents the residual connection. The details of the proposed token-retrospect map are
given in the subsection below.

3.1.2 TOKEN-RETROSPECT MAP

The token-retrospect map is the key component of the stutter mechanism. It is defined as:

token-retrospect(onl+1, h
n
l∗) =

(
qTonl+1

khn
l∗√

dk

)
vhn

l∗
∀l ≤ l∗,

where qonl+1
= W q

l o
n
l+1, khn

l∗
= W k

l h
n
l∗ , vhn

l∗
= W v

l h
n
l∗ and W q

l , W k
l and W v

l are additional
attention parameters for training. This map uses the attention mechanism to integrate the output of
the original architecture with the semantic information from the first pass, enhancing the model’s
ability to ”think again” and refine its understanding of the token.

3.2 INFORM A SELF-INSIGHT TO A TRANSFORMER

To focus on the key concept of a transformer generating a token with the help of its own insights,
we adhere closely to the self-attention mechanism of the underlying transformer. In our approach,
we apply attention to two hidden states linearly, without using the Softmax function. This allows
the model to directly leverage the stored hidden states from a previous layer, providing additional
context and insight during the token generation process. The proposed stutter mechanism integrates
the result of the original model with the hidden states from the chosen layer, thereby enhancing the
model’s ability to generate tokens with greater context and insight.

3.3 TRAINING

To train the proposed architecture, we start with an existing transformer and freeze all its weights
except those in the token-retrospect map. Our primary objective is to demonstrate the effectiveness
of the stutter mechanism, so the selection of specific tokens to stutter is beyond the scope of this
paper. Therefore, during training, we stutter every token exactly once.

For the training set preparation, we perform a pass of the training sequence X through the inherited
transformer to capture h0:N

l∗ . Following this, we train the stutter transformer by stuttering at every
token. In the new training model, each layer is augmented by attending to the additional input.
Specifically, additional parameters in the token-retrospect map are introduced for this purpose. Dur-
ing the training process, only the additional attention parameters are trained, while the rest of the
network remains frozen.

The number of additional parameters is the same as the pretrained self-attention parameters, which
constitute only 10% of the entire model. Since the number of parameters does not increase sig-
nificantly, it doesn’t require a large amount of data for training. In our experiment, performance

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

saturation was achieved with only 1 billion tokens, which is less than 1% of the pretraining data,
showing competitive data efficiency.

3.4 LOSS

We use the next token prediction loss as our primary loss term. This loss function is essential
for language modeling tasks because it evaluates the model’s ability to predict the next token in a
sequence given the previous tokens. The next token prediction loss is especially useful when there
is no larger model with the same tokenization available.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We utilized ”The Pile (Gao et al., 2020)” as our training dataset, a large-scale and diverse text cor-
pus originally segmented into 30 compressed files, each containing approximately 7 million sam-
ples. Note that all existing weights of the transformers are frozen, and only weights of the newly
introduced token-retrospect map are trainable. Since the token-retrospect map has significantly
fewer parameters than the original model, we randomly selected a subset of ”The Pile” for training.
Specifically, we used 1 billion tokens to train our token-retrospect map. Following the Pythia (Bi-
derman et al., 2023) model’s approach, we employed a parallel training setting where hidden states,
MLP outputs, and attention outputs are combined. In line with this setting, we also integrated our
token-retrospect outputs to further enhance the model’s performance.

For our experiments, we utilized 4 NVIDIA A6000 GPUs to train the stutter mechanism. The
training dataset consisted of 1 billion tokens, which were trained for 1 epoch. We employed a
learning rate of 5e-5, using a cosine scheduler with a warmup ratio of 0.01. The optimizer used was
Adam, and we set the gradient accumulation steps to 8.

In the initial pass of the model with L layers, we store the hidden states of the (L − 1)-th layer for
each token. The token-retrospect map was initialized using Gaussian initialization with a mean of 0
and a standard deviation of 1e-5 before the stuttering process. We store our checkpoint models every
5000 steps and evaluate them on the LAMBADA (OpenAI) dataset as the in-training evaluation.
Stuttering is enabled for all tokens during inference and each token is only allowed to repeat once.

4.2 EVALUATION

4.2.1 PERFORMANCE ON VARIOUS BENCHMARK DATASETS

• Pythia Model: We use Pythia 160M, 410M, and 1B as our base models, showing that the
proposed stutter mechanism is effective for various model scales.

• Benchmarks: We evaluate models on the LAMBADA (OpenAI) (Radford et al., 2019),
PIQA (Bisk et al., 2020), WinoGrande(Sakaguchi et al., 2019), WSC(Levesque et al.,
2012), ARC-e (Clark et al., 2018), ARC-c(Clark et al., 2018), SciQ(Welbl et al., 2017)
and LogiQA(Liu et al., 2020) datasets. These datasets are designed to test various aspects
of language understanding and reasoning, providing a comprehensive evaluation of the
model’s capabilities.

4.3 RESULTS

The results of our experiments demonstrate the effectiveness of the proposed architecture, particu-
larly the stutter mechanism, which enhances the performance of the Pythia models by incorporating
additional hidden states during the first pass and reprocessing the tokens. This section presents a
detailed comparison of the vanilla Pythia models and the stutter Pythia models trained on 1B tokens.

4.3.1 PERFORMANCE ANALYSIS OF PYTHIA MODELS

This subsection compares the performance of Pythia-160M, Pythia-410M, and Pythia-1B on various
benchmarks, evaluating both vanilla and ”with stutter” models. As shown in Table 1, Pythia-160M-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance of Pythia-160M and Pythia-160M-Stutter on Various Benchmarks

Benchmark Metric (Acc) Pythia-160M Pythia-160M-Stutter

LAMBADA (OpenAI) 5-shot / 0-shot 0.271 / 0.353 0.295 / 0.383
PIQA 5-shot / 0-shot 0.625 / 0.623 0.631 / 0.625
WinoGrande 5-shot / 0-shot 0.513 / 0.513 0.519 / 0.519
WSC 5-shot / 0-shot 0.575 / 0.575 0.615 / 0.615
ARC-e 5-shot / 0-shot 0.442 / 0.436 0.456 / 0.449
ARC-c 5-shot / 0-shot 0.180 / 0.194 0.185 / 0.180
SciQ 5-shot / 0-shot 0.780 / 0.754 0.789 / 0.776
LogiQA 5-shot / 0-shot 0.235 / 0.196 0.225 / 0.201

Table 2: Performance of Pythia-410M and Pythia-410M-Stutter on Various Benchmarks

Benchmark Metric (Acc) Pythia-410M Pythia-410M-Stutter

LAMBADA (OpenAI) 5-shot / 0-shot 0.442 / 0.516 0.449 / 0.524
PIQA 5-shot / 0-shot 0.680 / 0.667 0.688 / 0.682
WinoGrande 5-shot / 0-shot 0.533 / 0.532 0.538 / 0.538
WSC 5-shot / 0-shot 0.659 / 0.659 0.670 / 0.670
ARC-e 5-shot / 0-shot 0.545 / 0.518 0.553 / 0.519
ARC-c 5-shot / 0-shot 0.218 / 0.214 0.219 / 0.219
SciQ 5-shot / 0-shot 0.892 / 0.815 0.894 / 0.829
LogiQA 5-shot / 0-shot 0.230 / 0.216 0.215 / 0.213

Stutter generally improves performance overall benchmarks compared to Pythia-160M, notably in-
creasing LAMBADA (OpenAI) 5-shot accuracy from 0.271 to 0.295 and 0-shot accuracy from 0.353
to 0.383. For the WSC benchmark, both 5-shot and 0-shot accuracies increase from 0.575 to 0.615.

Similar results can be found in Tables 2 and 3, where Pythia-410M and Pythia-1B also benefit from
the stutter mechanism. Notably, Pythia-410M-Stutter achieves performance close to Pythia-1B,
and in some cases, even outperforms it. In the WSC benchmark, Pythia-410M-Stutter achieved an
accuracy of 0.670 compared to Pythia-1B’s 0.666 in both 5-shot and 0-shot settings. Similarly, on
the WinoGrande dataset, Pythia-410M-Stutter outperformed Pythia-1B, achieving an accuracy of
0.538 versus 0.534 in both 5-shot and 0-shot settings.

On the LAMBADA (OpenAI), WinoGrande, WSC, and SciQ benchmarks, the stutter mechanism
shows significant and consistent improvements regardless of model size or different model families.
These results indicate that the stutter mechanism effectively enhances model performance across
various contexts, demonstrating its broad applicability and stability.

Overall, the introduction of the stutter mechanism enhances performance across various bench-
marks. Notably, on the LAMBADA (OpenAI), WinoGrade, WSC, and SciQ benchmarks, the stutter
mechanism shows significant and consistent improvements regardless of model size or model fam-
ily (Tables 1, 2, 3, 6). These results indicate that the stutter mechanism effectively enhances model
performance across diverse contexts, demonstrating its broad applicability and stability. This makes
the models competitive with larger counterparts without incurring significant computational costs.

4.3.2 CORRECTNESS TRANSITION

In order to dig into the effectiveness of the stutter mechanism, we make the statistics of the number of
tokens that are improved from incorrect to correct and vice versa. In table 4, we can see that while the
stutter mechanism does enable some tokens to be corrected (from wrong to right), it also introduces
errors (from right to wrong). The net effect across all three models (Pythia-160M, Pythia-410M,
and Pythia-1B) shows a greater number of tokens transitioning from correct to incorrect, indicating
that the mechanism has an overall positive impact on the performance of the Pythia models across

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Performance of Pythia-1B and Pythia-1B-Stutter on Various Benchmarks

Benchmark Metric (Acc) Pythia-1B Pythia-1B-Stutter

LAMBADA (OpenAI) 5-shot / 0-shot 0.485 / 0.562 0.509 / 0.578
PIQA 5-shot / 0-shot 0.714 / 0.707 0.716 / 0.700
WinoGrande 5-shot / 0-shot 0.534 / 0.534 0.542 / 0.542
WSC 5-shot / 0-shot 0.666 / 0.667 0.681 / 0.681
ARC-e 5-shot / 0-shot 0.586 / 0.569 0.596 / 0.572
ARC-c 5-shot / 0-shot 0.256 / 0.244 0.257 / 0.240
SciQ 5-shot / 0-shot 0.917 / 0.839 0.927 / 0.853
LogiQA 5-shot / 0-shot 0.238 / 0.225 0.216 / 0.224

Table 4: Correctness Transition Matrix on Lambada (OpenAI)
Pythia-160M Pythia-410M Pythia-1B

# token To Right To Wrong To Right To Wrong To Right To Wrong
From Right 1681 135 2517 143 2766 131

From Wrong 297 3040 188 2305 214 2042

different sizes. Also, the proportion of the improving tokens is roughly 3-5%, decreasing as the
baseline model performs better.

4.3.3 KL DIVERGENCE ANALYSIS

To verify if the improved small model is more aligned with the model with larger sizes, we evaluate
the KL divergence of Pythia-160M and Pythia-160M-Stutter with a larger model. Taking Pythia-
1B as the target distribution, the figure shows the averaged token-wise KL divergence between
Pythia-160M-Stutter and Pythia-1B is smaller than that between Pythia-160M and Pythia-1B. This
indicates that the stutter mechanism effectively aligns the output distribution of the smaller Pythia-
160M model closer to that of the larger Pythia-1B model. Notably, there are a few exceptions
(e.g., WinoGrande and WSC) where the KL divergence slightly increases. As we discussed in
Section 4.3.1, the performance is also improved over these two datasets. That means our mechanism
improves the performance in the way orthogonal to upscaling model sizes. Since both datasets focus
the pronoun resolution and common sense reasoning, in other words, the stutter mechanism might
exhibit a deep contextual understanding ability that could not be derived from increasing the number
of parameters.

4.4 ABLATION STUDY

We conducted an ablation study to evaluate the performance of our stutter transformer under dif-
ferent settings. The study focused on different stutter times and the effectiveness of the chosen
layer.

4.4.1 DIFFERENT STUTTER TIMES

In Table 5 we compare the performance of Pythia-160M, Pythia-410M, and Pythia-1B models on the
LAMBADA (OpenAI) benchmark, evaluating the effects of stuttering once versus stuttering twice.

For Pythia-160M, stuttering twice slightly improves perplexity from 26.927 to 26.636 and accuracy
from 0.383 to 0.387. For Pythia-410M, stuttering twice also reduces perplexity and increases accu-
racy. For Pythia-1B, stuttering twice slightly reduces perplexity from 7.439 to 7.403 but results in a
marginal decrease in accuracy from 0.578 to 0.576.

While stuttering twice generally enhances performance, the improvements are often marginal. For
instance, Pythia-410M with stutter once achieves an accuracy of 0.524, which is very close to the
0.527 accuracy with stutter twice, making the former a more cost-effective option. Therefore, given

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

LAMBADA PIQA WinoGrande WSC ARC-e ARC-c SciQ LogiQA

0.3

0.4

0.5

0.6

0.7

K
L

D
iv

er
ge

nc
e

Pythia-160M
Pythia-160M-Stutter

Figure 2: KL Divergence evaluation over 8 benchmarks.

Table 5: Pythia models with different stutter times on LAMBADA (OpenAI)

Models Metric stutter once stutter twice

Pythia-160M perplexity/acc 26.927/0.383 26.636/0.387
Pythia-410M perplexity/acc 10.387/0.524 10.272/0.527
Pythia-1B perplexity/acc 7.439/0.578 7.403/0.576

the additional computational cost, stuttering once is generally a more efficient strategy for optimizing
model performance.

4.4.2 EFFECTIVENESS OF hl∗

To assess the effectiveness of the chosen layer, we experimented with employing the stutter mecha-
nism at different layers of the Pythia-160M model:

• Layer 10: The stutter mechanism attends to the output hidden states of the L− 2th layer.

• Layer 11: The stutter mechanism attends to the output hidden states of the L− 1th layer.

• Layer 12: The stutter mechanism attends to the output hidden states of the last layer.

These experiments were designed to determine the optimal layer for capturing the intermediate
insights of the transformer and to evaluate the impact of different layers on the model’s performance.

As shown by our results in Figure 3, our findings suggest that attending at specific intermediate
positions can indeed boost performance. While attending to layer 10 and layer 11 yields similar
performance, layer 12 generally results in lower improvements across tasks except for LogiQA. As
indicated by previous work (Lad et al., 2024), the last layer filters out some semantic information
and might only contain the necessary information for the next token. That explains why layer 12
is generally not a good layer to attend to. Surprisingly, LogiQA, the most difficult dataset among
benchmarks, is improved significantly by attending the last layer. One explanation is domain knowl-
edge is stored in a specific layer. Another explanation is excluding some of the information is helpful
in tasks like LogiQA, where all the options are quite similar and confusing. Notably, We observe
consistent declines in performance in the ARC-C benchmark regardless of the attended layer. That
is because this dataset contains many lengthy options. While the stutter mechanism performs well
in providing short answers, the additional stutter mechanism might weaken the logits contributed by
the attention mechanism, resulting in inferior performance for long-context benchmarks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

LAMBADA PIQA WinoGrande WSC ARC-e ARC-c SciQ LogiQA

−5

0

5

10

A
cc

ur
ac

y
D

iff
er

en
ce

(%
)

Layer 10
Layer 11
Layer 12

Figure 3: Pythia-160M-Stutter with Different Chosen Layers (0-shot) - Baseline Subtracted

5 CONCLUSION AND FUTURE WORK

We propose the stutter mechanism that effectively enhances the performance of LLMs by facilitating
an extended thinking process. This approach not only addresses the limitations of increasing model
sizes but also optimizes computational efficiency by tailoring the processing requirements to the
complexities of different tasks. Our extensive experiments with various Pythia models demonstrate
that the stutter mechanism consistently improves performance across benchmark datasets. With the
help of the stutter mechanism, a smaller model can even outperform a much larger model. While our
proposed method has shown promising results in enhancing the language capabilities of transformer
models, there are several avenues for future research and development that could further improve
and extend our approach. Here, we outline some potential directions for future work:

• Efficient Repeating Mechanism: Future work could optimize the repeating mechanism by
dynamically determining the exact number of layers each token needs, rather than applying
the entire network. This real-time assessment would minimize unnecessary computations,
enhancing efficiency and performance by adapting more precisely to input complexities.

• Different Ways of Heuristic: Refining heuristics for the ”stuttering” mechanism is another
key area. Using fine-tuning or Reinforcement Learning from Human Feedback (RLHF),
we can develop smarter heuristics to decide when to stutter, how many times, and when to
stop, making the model more adaptive and effective in handling reasoning tasks.

• Interpreting Reasoning Mechanism: Understanding how LLMs reason is crucial for
building trust and transparency in AI systems. By analyzing attention distributions, we can
identify which attention heads contribute most to reasoning ability. This insight can help us
understand the internal mechanisms of LLMs and how they process information to arrive
at conclusions. Future work could focus on developing methods to visualize and interpret
these attention patterns, potentially guiding further improvements in model design.

REFERENCES

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony,
Shivanshu Purohit, and Edward Raff. Emergent and predictable memorization in large language
models. 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,
and Zhongyuan Wang. Not all layers of llms are necessary during inference. arXiv preprint
arXiv:2403.02181, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=ph04CRkPdC.

Danny Halawi, Jean-Stanislas Denain, and Jacob Steinhardt. Overthinking the truth: Understanding
how language models process false demonstrations. arXiv preprint arXiv:2307.09476, 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Sanghoon Kim, Dahyun Kim, Chanjun Park, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeon-
woo Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, Changbae Ahn, Seonghoon Yang, Sukyung
Lee, Hyunbyung Park, Gyoungjin Gim, Mikyoung Cha, Hwalsuk Lee, and Sunghun Kim. SO-
LAR 10.7B: Scaling large language models with simple yet effective depth up-scaling. In
Yi Yang, Aida Davani, Avi Sil, and Anoop Kumar (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 6: Industry Track), pp. 23–35, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-industry.3. URL
https://aclanthology.org/2024.naacl-industry.3.

Vedang Lad, Wes Gurnee, and Max Tegmark. The remarkable robustness of llms: Stages of infer-
ence? arXiv preprint arXiv:2406.19384, 2024.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
13th International Conference on the Principles of Knowledge Representation and Reasoning, KR
2012, Proceedings of the International Conference on Knowledge Representation and Reasoning,

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://aclanthology.org/2024.naacl-industry.3
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

pp. 552–561. Institute of Electrical and Electronics Engineers Inc., 2012. ISBN 9781577355601.
13th International Conference on the Principles of Knowledge Representation and Reasoning, KR
2012 ; Conference date: 10-06-2012 Through 14-06-2012.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi,
Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On emergence of
activation sparsity in transformers. arXiv preprint arXiv:2210.06313, 2022.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning, 2020.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters. arXiv
preprint arXiv:2407.09298, 2024.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In NUT@EMNLP, 2017.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

A APPENDIX

A.1 TIME COMPLEXITY OF STUTTER MECHANISM

Training: In our current setting in training, we stutter at every token. Our method employs a two-
pass process. For a given sample X = x1, x2, . . . , xn:

1. First Pass: We store the hidden states h1
l∗ , h

2
l∗ , . . . , h

n
l∗ for each token in the sequence.

2. Second Pass (Stutter Phase): During this phase, we utilize the stored hidden states by
passing both the stored hidden states and the current token to the model. For instance,
to generate the final prediction for the next token of x3, we inputx2 and h2

l∗ to the stutter
model. The original Feed-Forward (FF) and Attention (Attn) mechanisms perform the same
as in the base model, where x2 will attend on x1. Our token retrospect mechanism performs
linear attention using x2 and h2

l∗ to extract information from the first pass to generate the
next token.

If the base model has time complexity O(n), the time complexity of the stutter model is 2 × O(n)
since we run each sample twice, remaining the same time complexity as the base model.

Inference: In the benchmark dataset we use for inference, the only token we use for stutter is the
choice of the samples. In the Lambada-openai dataset, it only predicts the last token. In the multiple-
choice dataset, the only tokens we stutter are the choice tokens. Two examples from each type of
dataset is given below:

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 6: Performance of Llama-1B and Llama-1B-Stutter on Various Benchmarks
Benchmark Metric (Acc) Llama-1B Llama-1B-Stutter

Lambda-openai 5-shot / 0-shot 0.571 / 0.622 0.588 / 0.624
PIQA 5-shot / 0-shot 0.750 / 0.744 0.751 / 0.751
Winograde 5-shot / 0-shot 0.599 / 0.599 0.599 / 0.599
WSC 5-shot / 0-shot 0.751 / 0.751 0.762 / 0.762
ARC-Easy 5-shot / 0-shot 0.697 / 0.655 0.697 / 0.649
ARC-Challenge 5-shot / 0-shot 0.349 / 0.317 0.347 / 0.326
SciQA 5-shot / 0-shot 0.952 / 0.912 0.958 / 0.919
LogiQA 5-shot / 0-shot 0.209 / 0.209 0.220 / 0.226

1. For example, in the Lambada dataset, given the context:

He heard Rihanna speak ’The Queen wants you in her carriage.’ Tom spoke ’No,
I’m not going in some asylum.’ Ran was seen standing next to him spoke ’It’s just
for a private talk with you that’s all.’ Tom groaned and went inside the carriage
to sit down next to the

The goal is to predict ”Queen”. So we actually just stutter at the last token.

2. For another example from a multiple-choice dataset:

Question: ”George wants to warm his hands quickly by rubbing them. Which
skin surface will produce the most heat?”
Choice: [”dry palms”, ”wet palms”, ”palms covered with oil”, ”palms covered
with lotion”]

The test was to concatenate the question and each answer, so there will be four inputs, and
the model calculation is given by the sum of the lowest log probability of the choice part:

(a) ”George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat? dry palms”

(b) ”George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat? wet palms”

(c) ”George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat? palms covered with oil”

(d) ”George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat? palms covered with lotion”

For inference, we will only stutter the choice part (which is ”dry palms”, ”wet palms”, ”palms
covered with oil”, and ”palms covered with lotion”) or the last token. Therefore, the time complexity
for inference with the stutter mechanism is O(n) for the first pass and O(1) for each stuttered token
in the second pass. The overall time complexity remains O(n), similar to the base model. This
ensures that the stutter mechanism does not significantly increase the computational complexity
during inference.

A.2 EXPERIMENTS ON LLAMA ARCHITECTURE

To evaluate our approach on prominent models, we applied the stutter mechanism to the LLAMA 1B
model and tested it on the same benchmarks reported in our paper under 0-shot and 5-shot settings.
Despite training on only 125M tokens from the Pile dataset, the Llama-1B-Stutter model showed
improvements across almost all benchmark datasets. As shown in Table 6, the Llama-1B-Stutter
model demonstrates consistent improvements in several benchmarks, indicating the effectiveness
of our approach. These results highlight the potential of the stutter mechanism to enhance the
performance of state-of-the-art LLMs, even with a relatively small amount of training data.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 7: Performance of Stutter Models trained with 2B tokens on Various Benchmark

Benchmark Metric (Acc) Pythia-160M-Stutter Pythia-410M-Stutter Pythia-1B-Stutter

Lambda-openai 0-shot, Acc 0.387 0.527 0.577
PIQA 0-shot, Acc 0.624 0.680 0.702
Winograde 0-shot, Acc 0.519 0.537 0.542
WSC 0-shot, Acc 0.619 0.667 0.681
ARC-Easy 0-shot, Acc 0.454 0.524 0.565
ARC-Challenge 0-shot, Acc 0.186 0.220 0.242
SciQA 0-shot, Acc 0.780 0.828 0.856
LogiQA 0-shot, Acc 0.192 0.209 0.230

Table 8: Performance of Pythia-410M, Pythia-410M-Finetune, and Pythia-410M-Stutter on Various
Benchmarks

Benchmark Metric (Acc) Pythia-410M Pythia-410M-Finetune Pythia-410M-Stutter

Lambda-openai 0-shot, Acc 0.442 0.497 0.449
PIQA 0-shot, Acc 0.681 0.677 0.689
Winograde 0-shot, Acc 0.533 0.541 0.538
WSC 0-shot, Acc 0.659 0.630 0.670
ARC-Easy 0-shot, Acc 0.545 0.525 0.554
ARC-Challenge 0-shot, Acc 0.218 0.223 0.219
SciQA 0-shot, Acc 0.892 0.828 0.894
LogiQA 0-shot, Acc 0.230 0.198 0.215

A.3 CONTINUAL TRAINING FOR STUTTER MODELS

When fine-tuning large language models, it is common practice to use around 1 billion tokens. In
our approach, we freeze the original model weights and only train the token-retrospect part, which
consists of about 10% of the original parameters. This strategy allows us to efficiently fine-tune the
model without the need for extensive computational resources.

To further investigate the impact of training on larger datasets, we conducted a series of experiments
where we continually trained the token-retrospect map on increasing amounts of data. The training
remained stable over extended periods and larger datasets, but the efficiency of additional training
diminished. This indicates that our method is robust and does not require excessive amounts of data
to achieve optimal performance.

The results of these experiments are summarized in Table 7, which shows the performance metrics
for models trained on 1 billion and 2 billion tokens. As shown, the improvements from training on 2
billion tokens are minimal, reinforcing the idea that our approach achieves a good balance between
efficiency and performance with 1 billion tokens.

In conclusion, while the stutter mechanism can benefit from additional training data, the marginal
gains observed beyond 1 billion tokens suggest that our method is efficient and effective with a
relatively modest amount of training data. This efficiency makes our approach particularly suitable
for scenarios where computational resources are limited.

A.4 FINE-TUNING AND STUTTER MECHANISM COMPARISON FOR PYTHIA-410M

To demonstrate the effectiveness of the stutter mechanism, we conducted an experiment with the
Pythia-410M model, where we fine-tuned the Pythia-410M base model on the same 1 billion tokens
used for training the stutter mechanism.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For training cost, fine-tuning the base Pythia-410M model on the 1 billion tokens involves updating
all parameters, which incurs a significantly higher training cost compared to the Pythia-410M-Stutter
model. The stutter model, in contrast, only trains approximately 10% of the full parameters, making
it much more efficient.

The results of these experiments are summarized in Table 8. When comparing the Pythia-410M-
Finetune model to the base Pythia-410M model, the base model outperforms the fine-tuned model
on 5 benchmark datasets (PIQA, WSC, ARC-Easy, SciQA, LogiQA). When comparing the Pythia-
410M-Stutter model to the Pythia-410M-Finetune model, the stutter model outperforms the fine-
tuned model on 5 benchmark datasets (PIQA, WSC, ARC-Easy, SciQA, LogiQA).

These results demonstrate that the stutter mechanism is not only more efficient in terms of training
cost but also competitive in performance, often surpassing the fine-tuned model on several bench-
marks.

15


	Introduction
	Backgrounds
	Decoder-only transformers
	Upscaling
	Layers skipping and pruning
	How confident is a transformer on a given token

	Methods
	Architecture
	Stutter mechanism
	Token-Retrospect Map

	Inform a Self-Insight to a Transformer
	Training
	Loss

	Experiments
	Experimental Setup
	Evaluation
	Performance on Various Benchmark Datasets

	Results
	Performance Analysis of Pythia Models
	Correctness transition
	KL divergence Analysis

	Ablation Study
	Different stutter times
	Effectiveness of hl*


	Conclusion and Future Work
	Appendix
	Time Complexity of Stutter Mechanism
	Experiments on Llama Architecture
	Continual Training for Stutter Models
	Fine-Tuning and Stutter Mechanism Comparison for Pythia-410M


