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ABSTRACT

The brain’s ability to transform sensory inputs into motor functions is central to
neuroscience and crucial for the development of embodied intelligence. Sensory-
motor integration involves complex neural circuits, diverse neuronal types, and
intricate intercellular connections. Bridging the gap between biological realism
and behavioral functionality presents a formidable challenge. In this study, we
focus on the columnar structure of the superficial layers of mouse barrel cortex
as a model system. We constructed a model comprising 4,218 neurons across 13
neuronal subtypes, with neural distribution and connection strengths constrained
by anatomical experimental findings. A key innovation of our work is the de-
velopment of an effective construction and training pipeline tailored for this bi-
ologically constrained model. Additionally, we converted an existing simulated
whisker sweep dataset into a spiking-based format, enabling our network to be
trained and tested on neural signals that more closely mimic those observed in
biological systems. The results of object discrimination utilizing whisker sig-
nals demonstrate that our barrel cortex model, grounded in biological constraints,
achieves a classification accuracy exceeds classical convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and long short-term memory net-
works (LSTMs), by an average of 8.6%, and is on par with recent spiking neural
networks (SNNs) in performance. Interestingly, a whisker deprivation experiment,
designed in accordance with neuroscience practices, further validates the percep-
tual capabilities of our model in behavioral tasks. Critically, it offers significant
biological interpretability: post-training analysis reveals that neurons within our
model exhibit firing characteristics and distribution patterns similar to those ob-
served in the actual neuronal systems of the barrel cortex. This study advances
our understanding of neural processing in the barrel cortex and exemplifies how
integrating detailed biological structures into neural network models can enhance
both scientific inquiry and artificial intelligence applications. The code is available
at https://github.com/fun0515/RSNN_bfd.

1 INTRODUCTION

The brain’s remarkable ability to transform sensory inputs into coordinated motor actions is pivotal,
not only in neuroscience but also in the development of embodied intelligence systems (Bartolozzi
et al., 2022; Putra et al., 2024). This process, known as sensory-motor integration, relies on complex
neural circuits, diverse neuronal types, and intricate inter-neuronal connections (Karadimas et al.,
2020; Muñoz-Castañeda et al., 2021; Ziegler et al., 2023). These elements are fundamental for both
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Figure 1: The biophysical modeling of the barrel cortex based on real anatomy. (A) The
“whisker-barrel” signaling pathway. Sensory signals from the whiskers are transmitted by the
trigeminal ganglion neurons (1) to the brainstem neurons (2), then relayed to the barrel cortex via
the thalamus neurons (3). (Figure modified from (Petersen, 2019)). (B) An anatomical image of the
barrel cortex in adult mice, sourced from the Allen Brain Atlas (Wang et al., 2020). (C) Thalamic
projection neurons directed to the barrel cortex. Those highlighted in red represent core thala-
mic projection neurons, originating from the ventral posteromedial thalamic nucleus, predominantly
projecting to layer 4 (L4) of the cortex. (D) Outline of our biologically constrained network archi-
tecture. External inputs are conveyed into the network through 200 thalamic neurons. The network
comprises 13 neuronal populations with a total of 4218 adaptive Leaky Integrate-and-Fire neurons.
Red signifies excitatory neurons, whereas blue signifies inhibitory neurons. For instance, “Pyr ”
denotes a specific subtype within the category of pyramidal neurons. The network’s prediction is
readout from the state of three excitatory populations within the network by two linear layers. De-
tailed information of 13 neuronal subtypes can be found in the supplementary material.

understanding brain function and advancing artificial intelligence systems capable of interacting
seamlessly with the physical environment. However, achieving a balance between biological real-
ism and functional performance in computational models remains a significant challenge, as these
models must accurately replicate these complex biological processes.

The rodent barrel cortex, which processes tactile information from whiskers, serves as an exemplary
model system for studying sensory-motor integration. Its well-documented columnar organization
and neuronal circuitry provide a robust framework for investigations (Petersen, 2019; Staiger &
Petersen, 2021). Despite this, traditional computational models often oversimplify biological com-
plexities to achieve functionality, thus losing crucial insights into the actual neural mechanisms.
Conversely, highly detailed biologically realistic models (Fan & Markram, 2019; D’Angelo & Jirsa,
2022), while rich in data, are often computationally intensive and difficult to train, limiting their
practical application in simulating behaviorally relevant tasks.

To address these challenges, our study introduces an effective construction and training pipeline
specifically designed for a biologically constrained model of barrel cortex, aimed at achieving bio-
plausible sensory-motor integration. Our approach is characterized by three primary contributions:

• Biologically constrained barrel cortex model: We developed a columnar model of the
mouse barrel cortex, comprising 4,218 neurons across 13 neuronal subtypes. This model
meticulously reflects the neural distribution and synaptic connections dictated by experi-
mental anatomical findings (Huang et al., 2022), ensuring an authentic replication of the
biological structure of mouse barrel cortex.
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Figure 2: Anatomical connection probability and network initialization. (A) Connection prob-
abilities among 13 neuron subtypes, derived from (Huang et al., 2022), with excitatory connections
represented in red borders and inhibitory connections in blue. (B) The impact of two significant
parameters θinit and Winit discussed in Sec. 3.2. Network’s initial states are assessed using the co-
efficient of variation (CV) to measure the synchrony of neuronal firing. (C) Accuracy on a whisker-
related dataset (see in Sec. 3.3) for three initial settings, as denoted by rectangle symbols in (B).

• Pipeline for model construction and training: Our novel pipeline is specifically tailored
to balance the biological authenticity and behavioral functionality. This includes using
intuitive neuron models and sparse connections to mimic the neural diversity and projection
strength, introducing an order parameter to measure the synchrony of neuronal activity,
thereby identifying trainable initial states. This pipeline is not only applicable to the barrel
cortex but can also be extended to other biologically constrained models.

• Establishing a novel spiking whisker sweep dataset: We leveraged a previously devel-
oped simulated whisker sweep dataset (Zhuang et al., 2017), originally generated using a
physical engine (Coumans & Bai, 2016–2021) with parameters informed by neuroscience
research. Our significant contribution was transforming this simulated data into a novel
spiking-based dataset (see in Fig. 3), which emulates the sensory signals from the thalamus
area. This newly established spiking dataset provides a biologically meaningful platform
for training and evaluating our model’s sensory-motor integration capabilities.

While trained on the Spiking Whisker Sweep Dataset (see in Fig. 3), the classification accuracy of
our model surpasses that of mainstream models like CNNs (Zhuang et al., 2017), RNNs (Collins
et al., 2017), and LSTMs (Ullah et al., 2017), and is competitive with recent SNNs (Yin et al., 2020;
Yu et al., 2022; Yao et al., 2021), particularly in neuroscience-inspired whisker deprivation experi-
ments. Additionally, our model demonstrates superior biological interpretability. Our post-training
analysis shows that neurons within our network exhibit firing patterns and distribution characteristics
remarkably similar to those observed in an actual barrel cortex, including aspects such as response
selectivity, dynamical gradients, and node degree distribution. Our findings underscore the potential
of incorporating biological constraints into neural network models to enhance their performance on
sensory-motor tasks and provide deeper insights into the underlying neural mechanisms. This ap-
proach promises significant advances in developing AI systems with brain-like perceptual and motor
capabilities and contributes to neuroscientific efforts designed to unravel the complexities of brain
function through advanced computational modeling.

2 RELATED WORK

Barrel cortex: The barrel cortex, a distinct area discovered within the primary somatosensory cor-
tex of rodents, assumes a pivotal role in the animal’s spatial perception, precise localization capa-
bilities, and motor functions. Neurons within this cortex are organized into mesoscale barrel-like
formations (see in Fig. 1B), aligned with the layout of the animal’s snout whiskers, hence the name.
Each “barrel” preferentially responds to tactile stimuli from the corresponding whisker, forming a
distinctive “whisker-barrel” sensory pathway (Petersen, 2019; Staiger & Petersen, 2021). The gen-
eral pathway process unfolds as follows: Sensory stimuli originating from the whiskers are initially
conveyed through the brainstem, subsequently relayed to the barrel cortex via the thalamus, facil-
itating the integration and processing of tactile information (see in Fig. 1A). The unique structure
and function of this “whisker-barrel” model make it a prevalent tool for studying information in-
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Figure 3: Spiking whisker sweep dataset. (A) 3D objects sweep across the virtual whisker array
in a physics engine (Zhuang et al., 2017), recording the force and torque signals from whisker
base sensors. Then, the analog inputs are converted into spiking inputs by generating spike trains
within a time window through the sigmoid function and Bernoulli sampling. (B) Bernoulli sampling
probability calculated by the sigmoid function and the actual generated spikes firing rate.

tegration and processing in the brain. Advances in the understanding of cell types, locations, and
projection patterns (Peron et al., 2015; Sermet et al., 2019; Zhang & Zagha, 2023; Estebanez et al.,
2016; Gardères et al., 2024) in the mouse barrel cortex indicate that the sensor-motor integration in
biological systems possesses detailed anatomical principles.

Biologically constrained model for barrel cortex: Drawing upon the continuously accumulating
quantitative anatomical data, neuroscientists have attempted to reconstruct local circuitry of the
barrel cortex on silicon, aiming to validate our understanding of the sensory system. For instance,
by employing the Izhikevich single-neuron model (Izhikevich, 2003), a three-barrel model of the
superficial layer was constructed to mimic the alterations in synaptic strength that occur subsequent
to whisker deprivation (Huang et al., 2022). The dendritic model of spiny stellate cells (Lavzin
et al., 2012), direction selectivity model (Kremer et al., 2011), and layer 4 local network model in
Fmr1-KO mice (Domanski et al., 2019) have also been constructed. These biological computing
models accurately reflect the complex activities in the sensory system, yet they lack perceptual
functions in behavioral contexts. This limitation stems primarily from two key factors: Firstly,
the intricate dynamics and inherent instabilities of biological models, such as neuronal refractory
periods, are not conducive to computational gradients. Secondly, the substantial cost associated
with live experiments and the challenges in precisely capturing sensory signals have led to a scarcity
of datasets, which in turn, hinders the direct training of biological models akin to machine learning
paradigms. Consequently, the application potential of these biological models remains constrained.

Trainable biologically constrained model: However, mainstream trainable models overlook the
detailed structure of cortical circuits. For instance, artificial neural networks typically adopt reg-
ular fully-connected (multilayer perceptrons) or locally-connected (convolutional neural networks)
architectures, which are discrepant from the intricately heterogeneous connectivity found in real
cortex (Oh et al., 2014). Furthermore, current models do not strictly differentiate between neuron
types (excitatory or inhibitory) and numbers, which have been a focal point in recent neuroscien-
tific efforts to decipher brain function (Muñoz-Castañeda et al., 2021; Yao et al., 2023). Therefore,
an emerging direction is to integrate more detailed biological mechanisms into traditional compu-
tational models, such as introducing dendrites to enhance the spatiotemporal dynamics of network
models (Zheng et al., 2024). A spiking neural network (Chen et al., 2022), consisting of over 50,000
neurons distributed across four distinct subtypes, was trained on five biologically pertinent visual
tasks, leveraging the findings from neuroscience on the mouse primary visual cortex (Billeh et al.,
2020). However, to our best knowledge, network models that possess both the topological structure
of the sensory cortex and perceptual behavioral functions are currently rare.

3 METHODOLOGY

3.1 MODEL CONSTRUCTION

Network topology: To enhance biological authenticity, we established a biologically constrained
barrel cortex model with reference to the study in neuroscience. The number, location, type, and con-
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nectivity of neurons in our model faithfully replicate the findings from the anatomical study (Huang
et al., 2022). This study utilized immunohistochemistry, confocal imaging, and other biological
techniques to elucidate specific neuronal distribution patterns in the superficial layers of the mouse
barrel cortex. In general, our model comprises 13 neuronal subtypes, including 3 excitatory and 10
inhibitory subtypes, totaling 4,218 neurons, along with an additional 200 thalamic neurons. Follow-
ing the classical “whisker-barrel” signaling pathway (see in Fig. 1A, C), external inputs are initially
processed by 200 thalamic neurons and then primarily propagate to four neuronal subtypes found in
layer 4 (L4) of the barrel cortex. Considering that the projecting neurons are predominantly excita-
tory in brain, we use the state of three excitatory communities processed through two linear layers
as the readout for the entire network (see in Fig. 1D).

The number of connections between neurons is generated through sampling based on experimentally
measured projection strength (see in Fig. 2A). Assuming there are n presynaptic neurons and m
postsynaptic neurons, the potential number of connections is n×m. We introduce a boolean matrix
M to constrain the number of connections. The calculation formula is as follows:

W
′
= W⊙M,W ∈ Rn×m

1

nm

n∑
i=1

m∑
j=1

Mij =p,Mij ∈ {0, 1}, p ∈ [0, 1]

PMF (Mij) = p·δMij ,1 + (1− p) · δMij ,0

(1)

, where W and W
′

denote the original and constrained connection weight matrices, respectively. M
represents a boolean matrix of the same size as W , where an element of 1 indicates the presence
of a corresponding connection, and 0 indicates its absence. p and δ stand for the experimentally
measured connection probability and Kronecker delta, respectively. PMF signifies the Probability
Mass Function. Weights and gradients are only computed and updated on existing connections. By
repeating this process to establish all connections, our model can be collectively viewed as a spiking
recurrent neural network, with each neuronal population construed as a hidden layer within it.

Single-neuron dynamic model: We employ the adaptive Leaky Integrate-and-Fire (aLIF) (Yin
et al., 2020) model as the backbone for depicting single-neuron dynamics. In comparison to the
frequently employed Izhikevich (Izhikevich, 2003) and GLIF (Teeter et al., 2018) neural models in
neuroscience, the aLIF model offers simplified computational requirements and is more amenable
to training. In contrast to the straightforward LIF neurons, the aLIF model sets the time constant
as trainable parameters, thereby effectively capturing the dynamic variations among neurons within
cortical networks. The membrane potential V at time t is updated according to this formula:

V (t) = e−
1

τm · V (t− 1) + (1− e−
1

τm ) ·R · I(t)− S(t− 1) · θ(t− 1) (2)
, where R and τm respectively denote the resistance and time constant of cell membranes, with I
representing the input current. S is a heaviside function used to indicate whether the neuron emits
a spike. If a spike is emitted, the membrane potential V undergoes a soft reset by subtracting the
current firing threshold θ.

To avoid abnormal firing, the fired spike triggers a temporary increase in the firing threshold θ. The
firing threshold θ(t) at time t can be calculated using the following formula:

θ(t) = θinit + β · η(t)

η(t) = e
− 1

τadp · η(t− 1) + (1− e
− 1

τadp ) · S(t− 1)
(3)

, where θinit is the minimum firing threshold. β is a constant that regulates the increment of the
threshold induced by spikes η, which we set to 1.8. τadp represents the adaptive time constant of the
firing threshold. Notably, we set τm and τadp as two additional trainable parameters to investigate
the differentiation of neural dynamics in the trained model (see in Sec. 4.3).

To reflect neuronal diversity, we have additionally specified the categories of input current to the
neurons: excitatory or inhibitory currents. Neurons in the network receive not only external input
currents Ie but also currents Irec from connected neurons. The total current I(t) received by a
neuron at time t can be calculated by the following formula:

I(t) = WeIe(t) + Irec(t),We > 0

Irec(t) =
∑
i

HiW
rec
i Si(t− 1), Hi ∈ {−1, 1},W rec > 0 (4)
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Table 1: Classification accuracies (%) among models. ANNs are tested on the original real-valued
whisker sweep dataset (Zhuang et al., 2017), while SNNs are tested on both the real-valued dataset
and the spiking-based dataset constructed in Sec. 3.3.

ANNs ST CNN DB LSTM RNN+ UGRNN
(Zhuang et al., 2017) (Ullah et al., 2017) (Collins et al., 2017)

Real-valued 67.2 70.9 78.2 76.4

SNNs SRNN 256 STSC SNN TA SNN Barrel model
(Yin et al., 2020) (Yu et al., 2022) (Yao et al., 2021) (ours)

Spiking-based 81.8 80.0 81.8 81.8
Real-valued 85.5 87.3 83.6 89.1

Table 2: Classification accuracies of SNNs in whisker deprivation experiments. Tested on the
spiking whisker sweep dataset.

SNNs Number of deprived whiskers
0 1 2 3 4 5 6 7 8

SRNN 256 (Yin et al., 2020) 81.8 69.0 66.2 61.6 59.0 57.0 55.0 53.4 53.2
STSC SNN (Yu et al., 2022) 80.0 71.9 68.4 64.8 65.2 61.7 58.3 57.5 57.2
TA SNN (Yao et al., 2021) 81.8 72.4 66.3 64.5 60.4 56.8 54.7 47.8 48.4

Barrel model (ours) 81.8 73.8 69.7 67.9 66.1 63.7 60.4 60.1 58.0

, where We and W rec
i represent the weights of the external connection and the connection with the

i-th presynaptic neuron, respectively. Hi is a binary constant used to indicate the type of the i-th
presynaptic neuron, where 1 represents an excitatory type and −1 represents an inhibitory type. S
represents the spike emitted by the i-th presynaptic neuron. To distinguish the effects of excitatory
and inhibitory currents, all connection weights are clamped to remain positive.

Based on the aforementioned single-neuron dynamics, we can apply Backpropagation-Through-
Time (BPTT) to train the entire network. To compute the gradients at the spike-timing, we employ
a Gaussian function as the surrogate gradient:

grad = N (V (t)|θ(t), σ2) (5)

, where the mean of distribution N is the firing threshold θ, and the variance is a constant σ used to
scale the membrane potential. Unless otherwise specified, the parameters of neural dynamics in our
network are set to the same value.

3.2 MODEL TRAINING

Another primary issue in training biologically constrained models is that, as a complex dynam-
ical system, subtle variations in initial parameters can lead to bifurcation in our biological net-
work (Wang, 2022). Therefore, searching for appropriate initialization parameters is crucial for
stable training of the network state. Here, we investigate two critical parameters: the initial firing
threshold θinit and the initialized connection weight Winit. After generating neuronal connections
according to Eq. 1, all connection weights are randomly sampled from a uniform distribution within
the range [0,Winit].

Chaotic neuronal activity, as opposed to regular firing, typically signifies a more abundant learnable
representational space. Consequently, we introduce the coefficient of variation (CV) as an order
parameter to quantify the synchronization of neuronal electrical activity (Tian et al., 2022). Prior
to training, we first input samples from the dataset into networks with varying initial states, and
quantify the activity of all neurons during the forward propagation process. For an initial network,
the spike emissions during the forward propagation of external inputs with time length T among
N neurons are recorded, forming an N × T boolean matrix. Then coefficients of variation can be
calculated with this formula:

CV =
1

N

N∑
i=1

σi

µi
(6)
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Figure 4: Firing selectivity of neurons in the trained network. (A) Count the spikes for each
neuron across three categories of inputs, and use this as a vote to determine its displacement in the
directions representing the three categories. (B) Visualization results of input-specific firing in the
initialized network (left) and the trained network (right). Neurons with a P-value less than 0.001, as
determined by one-way ANOVA, are considered to exhibit significant firing selectivity.

, where µi and σi represent the mean firing rate and standard deviation, respectively, of the i-th
neuron. We consider the average value of CV across all input samples as the final score for this
initial network. Fig 2B illustrates the evolution of CV score, where a higher value typically indicates
more disordered neuronal activity (see in the supplementary material). Fig 2C presents the training
performance of three differently initialized networks on the dataset constructed in Sec 3.3, with the
initialization exhibiting the higher CV score yielding the best training performance.

3.3 SPIKING WHISKER SWEEP DATASET

The absence of corresponding behavioral datasets poses a significant hindrance to the training of
biologically constrained models. High time cost of in vivo behavioral experiments and difficulty in
accurately recording whisker signals have resulted in a scarcity of available datasets that directly
correspond to the barrel cortex. As a result, we converted a virtual whisker sweep dataset (Zhuang
et al., 2017) into the spiking format, which serves as a platform for training and analyzing our barrel
model, while also facilitating comparisons with mainstream computational models.

In the field of sensory-motor integration in neuroscience, scientists have leveraged anatomical
knowledge of rat heads and whiskers to create a physically and biologically realistic whisker array
model within a physics engine (Coumans & Bai, 2016–2021). This model comprises 31 whiskers,
accurately reflecting mechanical properties such as length, intrinsic curvature, and relative positions.
By recording the forces and torques experienced by each whisker as three-dimensional models from
ShapeNet dataset (Chang et al., 2015) sweep across the whisker array, a virtual whisker signal clas-
sification task can be established.

However, this whisker sweep dataset was originally created for training convolutional neural net-
works, and thus requires converting signals into spiking-based inputs before they can be used for
our biologically constrained network training. Recent neuroscientific research has revealed that
whisker vibration signals undergo a transformation from temporal coding to cortical rate coding in
the thalamus (Lee et al., 2024). Inspired by this finding, we have developed a method to generate
spike trains from force and torque signals recorded by sensors, utilizing a rate coding approach (see
in Fig. 3). For the magnitude of the force detected by a whisker sensor at a particular moment |F |,
we map it to a probability p of firing a pulse using the sigmoid function:

p =
1

1 + e−(ln |F |−c)
(7)

, where c is the shift coefficient. Subsequently, based on the probability p, independent spikes are
generated within a fixed-length time window using Bernoulli sampling. We set the length of time
windows to 5, meaning that the time step is extended to five times its original length. The sampling
probability versus the actual pulse firing rate is illustrated in Fig. 3B. The torque is processed in the
same manner as the force. Specifically, the shape of a single sample in our spiking whisker sweep
dataset is (550, 31, 3, 2), representing 550 time steps, 31 whiskers, 3 sensors at the base of each
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Figure 5: Emergent similarities in neural dynamics between the trained network and neuro-
science experiments. (A) Kernel density estimation plots of τm and τadp for the four L4 subtypes
in the trained network. Red vertical lines denote the mean value, while green vertical lines indicate
the identical initial values assigned. The complete set of 13 subtypes is presented in the supplemen-
tary material. (B) The comparison of the 13 subtypes after training with experimental-based firing
rates, quantified as the Pearson correlation coefficient. The firing rates are normalized to the interval
[0.1, 1] to draw the chart. Due to the identical initial dynamic parameters of all neurons, the firing
rates are the same pre-training (red reference line).

whisker, and 2 channels for force and torque, respectively. There are 91 samples for each of the
three classes, and the dataset is randomly split into training and testing sets in an 8:2 ratio.

4 EXPERIMENTAL RESULTS

In this section, we compared comprehensively the ability of our model to perceive objects with sev-
eral mainstream computational models based on the whisker sweep dataset. Then, we emphasize
the biological interpretability of our trained model, delving into the dynamic evolution that tran-
spires within our model throughout the training phase. This exploration offers insights into how the
model’s behavior mimics and elucidates underlying biological mechanisms. Details of the model
training are provided in the Appendix.

4.1 PERFORMANCE COMPARISON WITH BASELINE MODELS

We first evaluated the ability of our barrel cortex constrained model to distinguish objects based
on whisker signals and contrasted its classification accuracy with other prominent computational
models. As shown in Tab. 1, our model’s accuracy on the whisker sweep dataset surpassed tradi-
tional ANNs, reaching a peak of 89.1% on the original real-valued dataset and matching the best
performance of recent SNNs at 81.8% on our spiking-based dataset.

Subsequently, we introduced a commonly used whisker deprivation experiment from neuroscience
to further compare the whisker-related perceptual abilities of our model with other SNNs. Neuro-
scientists commonly trim or cauterize specific whiskers of mice in behavioral experiments to study
the plasticity of sensory neural system (Gunner et al., 2019; Pan et al., 2022). We mimicked this
scenario by randomly occluding different numbers of whisker signals in the spiking whisker sweep
dataset (experimental details are provided in the Appendix). The results (see in Tab. 2) demonstrate
that our model consistently achieved the highest classification accuracy in all experimental settings,
showcasing not only improved fidelity in sensory circuitry but also perceptual classification capabil-
ities that rival those of mainstream computational models.

4.2 NEURAL SPECIFIC FIRING SELECTIVITY

Next, we focus on examining the internal modifications that transpire within our model as it develops
perceptual capabilities, starting with the firing selectivity. The selective firing observed by neuro-
scientists in the sensory cortex is a prominent feature for elucidating the mechanisms of sensory
functions in the brain (Guy et al., 2023). In vivo experiments have revealed that the barrel cortex
contains a vast range of neurons with specific responses; these neurons exhibit strong reactions to
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Figure 6: (A) Alterations in weighted degree distribution pre- and post-training. (B) Training perfor-
mance of networks created with varying connection probabilities. From left to right: anatomically
based connection probabilities, random connection probabilities, fully connected network, and fixed
connection probability P . Each configuration was trained ten times to plot the violin diagram. All
connection configurations, with the exception of random connections, were initialized using the
method described in Sec. 3.2, with the process detailed in the supplementary material.

signals of particular directions (Wilent & Contreras, 2005; Estebanez et al., 2016) and deflection
angles (Lavzin et al., 2012) but are relatively insensitive to irrelevant signals.

The approach for quantifying neuronal firing selectivity in our model illustrated in Fig. 4A. Specifi-
cally, we sequentially input the three types of samples from dataset into the network, count category-
related spikes for each cell, and then employ one-way Analysis of Variance (ANOVA) to judge
whether significant differences exist. A neuron is considered input-specific if the resulting P-value
is less than 0.001. To visualize this category selectivity, we divided three equally spaced directions
and voted for its position according to the number of spikes by cells respond to each category.

Statistical results show that after training, the proportion of neurons with significant firing selectivity
has increased from 32.2% to 53.2%. Moreover, the differentiation of category preference becomes
more evident (see in Fig. 4B). In the initialized network, the number of spikes responded by neurons
to different categories of inputs is balanced, so they are clustered in the central area. However, in
the trained network, a cluster of neurons is gathered in the direction of each category, indicating that
the number of spikes released in response to that category of input far exceeds that of the other two
categories. The same selective firing analysis for other SNNs can be found in the supplementary
material. Reproducing neural firing selectivity similar to that of brains enhances the biological
interpretability of our network.

4.3 DIFFERENTIATED NEURONAL DYNAMICS

Furthermore, we compared the dynamical similarity of 13 neural subtypes between our trained net-
work and those statistically observed in neuroscience experiments, thereby quantifying the biolog-
ical plausibility of our model. The heterogeneous dynamical properties across neocortex serve as
the structural foundation for the coordinated function of different regions (Wang, 2022). Although
all neuronal subtypes were initially assigned the same values for τm and τadp elaborated in Sec. 3.1,
during the training process, these two trainable parameters self-updated in response to optimizing
the objective function, leading to the differentiation of individual dynamics for each neuron.

Fig. 5 demonstrates that our network, under the optimization constraint of the classification task only,
spontaneously differentiates into dynamic gradients across 13 neuronal subtypes (see in Fig. 5A).
Then, we quantitatively compared the similarity between our neural dynamic gradients and ex-
perimental results (see in Fig. 5B). Corresponding to these neuron subtypes, Izhikevich neuronal
models (Izhikevich, 2003) have been established in neuroscience to fit the data from biological ex-
periments (Huang et al., 2022). We preserved the dynamic parameters of all neuronal subtypes
post-training and then applied an identical continuous 550 ms, 1mV constant current to our neurons
and their corresponding Izhikevich neurons, recording their firing rates and comparing their simi-
larity. The external current was applied in isolation to each subtype, rather than across the entire
network, to prevent cross-contamination of effects. Then, we calculate the Pearson correlation co-
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efficient between these two firing rates. In the initial network, all neurons were assigned identical
dynamic parameters, resulting in equal firing rates (red reference line in Fig. 5B) across subtypes
and no Pearson correlation. However, after training, the Pearson correlation coefficient increased to
0.73 with a P-value of 0.005. Given that biological neuron models typically have longer simulation
steps compared to aLIF neurons, we employed a simple normalization to scale their firing rates to
the same range [0.1, 1.0] to better visualize them together. The normalization process is as follows:

fr
′
= 0.1 + 0.9× (fr − frmin)

(frmax − frmin)
(8)

, where fr and fr
′

represent the original and normalized firing rates. frmax and frmin denote
the highest and lowest firing rates among 13 neural subtypes. This normalization does not affect
the calculation of the Pearson correlation coefficient. The results indicate that our trained network
spontaneously developed dynamic gradients analogous to those observed in the real barrel cortex.

4.4 DEGREE DISTRIBUTION AND CONNECTIVITY PROBABILITY ABLATION

Finally, we investigated the alterations in the network’s topological structure through statistical anal-
ysis of the weighted degree distribution among its nodes. Contrary to the abstract neurons in machine
learning models, each neuron in our model is a well-defined biological entity, allowing our network
to be viewed from a graph-theoretic perspective (Lynn & Bassett, 2018). We define the sum of the
weights of neuron-related connections as the weighted in-degree and out-degree, and then tally the
number of nodes for each weighted degree.

Results show that both the in-degree and out-degree distribution of our network exhibit a pronounced
long-tail effect after training (see in Fig. 6A), indicating that the network has spontaneously evolved
important hub nodes during training process. The degree distribution of neurons in the network
is more dispersed than initially, which is consistent with reports on the scale-free properties of
brain networks in related work (Zheng et al., 2020; Henriksen et al., 2016; Yu et al., 2018). The
two general conditions for the generation of scale-free networks are model growth and preferential
attachment (Henriksen et al., 2016). However, our network can also reproduce similar properties
merely by optimizing the weights of existing connections through training, which provide a new
direction for establishing structurally realistic brain network models in neuroscience. The results
using the same statistical method on other models can be found in the supplementary material.

We additionally quantified the impact of anatomic connection probabilities within our network, com-
paring its training performance to networks established with random connections, fully connected
network and regular connection probabilities of 0.5 and 0.3. The results suggest that networks which
maintain the anatomic connection probabilities are not only the most biologically authentic but also
the most effective to train in our whisker-related sensory task (see in Fig. 6B).

5 CONCLUSION

In this paper, we develop an effective constructing and training pipeline for biologically constrained
sensory-motor integration networks. Our model, grounded in the authentic anatomical structure
of the mouse barrel cortex, matches mainstream computing models in sensory performance and
spontaneously aligns with the firing characteristics, dynamics, and degree distribution observed in
real neural systems during the training process. Through the innovative pipeline and converted
spiking-based whisker sensory dataset, we advanced the bridging of the gap between biological
realism and computational performance in current sensory related models.

Limitations and future work: In the initialization process, we introduced the Coefficient of Varia-
tion (CV) measure as a general principle, but a more granular analysis depends on further integration
with research outcomes from brain dynamics. Figure 1 in the supplementary material presents raster
plots of our model, where abnormal synchronous firing (with a higher CV score indicating stronger
intensity) can still be observed in the initial network. This is due to all neurons being assigned same
parameter values at the start. Although this does not affect the training and disappears in the trained
model, it reduces the biological authenticity of the initial network. Further constraining neuronal ac-
tivity can bring it closer to biologically realistic networks. For example, there is research potential in
employing more nuanced biological constraints, such as membrane potential dynamics (Rossbroich
et al., 2022) and synaptic scaling, to guide the initialization.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We employ Backpropagation-Through-Time (BPTT) to train our network, adopting the cross-
entropy loss function. Our network model was trained for 250 epochs using the Adam optimizer,
with an initial learning rate of 0.08, which was decayed by a factor of 0.8 every 20 epochs. The batch
size was set to 128. θinit and Winit discussed in section 3.2 were set to 0.04 and 0.06 respectively.
All experiments were carried out on a single NVIDIA A100 80 GB GPU. For the artificial neural
networks (ANNs) under comparison (Zhuang et al., 2017; Collins et al., 2017; Ullah et al., 2017),
we adhere to the existing experimental setup (Zhuang et al., 2017), utilizing the original real-valued
data inputs. In the experiments presented in Tab. 1, spiking neural networks (SNNs) (Yu et al., 2022;
Yin et al., 2020; Yao et al., 2021) are tested on both the original real-valued dataset and the spiking-
based dataset devised in Sec. 3.3. Additionally, unless otherwise specified, other experiments of our
model are based on the spiking-based dataset.

Whisker deprivation: We randomly set varying numbers of whisker signals in the test set samples
to zero and recorded the accuracy of trained models. This process was repeated multiple times, and
the average accuracy was presented as the results in Tab. 2. The experiment of depriving one whisker
was repeated 31 times, while the other experiments were each repeated 50 times.
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