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Abstract
Post-training quantization (PTQ) is a promising
solution for deploying large language models
(LLMs) on resource-constrained devices. Early
methods developed for small-scale networks, such
as ResNet, rely on gradient-based optimization,
which becomes impractical for hyper-scale LLMs
with billions of parameters. While recently pro-
posed backpropagation-free or transformation-
based methods alleviate this issue, they ignore
inter-layer interactions or use the naı̈ve nearest-
rounding-based quantized weight assignment to
save the heavy computational cost of weight op-
timization. In this paper, we introduce a novel
backpropagation-free PTQ algorithm that opti-
mizes quantized weights by considering inter-
layer dependencies. The key innovation is the
development of attention-aware Hessian matri-
ces that capture inter-layer interactions within the
attention module. Extensive experiments demon-
strate that our approach not only outperforms
existing weight quantization methods but also
shows good synergy with conventional methods
to suppress activation outliers, leading to state-
of-the-art weight-activation quantization perfor-
mance. The code will be available at https:
//github.com/SamsungLabs/BoA.

1. Introduction
The explosive growth in complexity (parameters) of large
language models (LLMs) (Touvron et al., 2023a; Zhang
et al., 2022) has resulted in a proportional increase in com-
putational costs, which has prompted an urgent need for effi-
cient model processing and compression strategies. Quanti-
zation has emerged as a pivotal solution and an essential step
for deploying AI models on resource-constrained devices
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that primarily support fixed-point arithmetic.

Two main categories of quantization approaches have been
proposed to preserve the performance of original models:
quantization-aware training (QAT) (Jin et al., 2021; Liu
et al., 2023) and post-training quantization (PTQ) (Nagel
et al., 2020; Kim et al., 2024). Although QAT can potentially
outperform PTQ, its practicality diminishes when handling
hyper-scale LLMs featuring billions of parameters. Con-
sequently, recent quantization efforts have been directed
toward PTQ.

Although classic PTQ methods have successfully quan-
tized small models such as ResNet (Nagel et al., 2020; Li
et al., 2021; Jeon et al., 2022), they rely on time-consuming
gradient-based optimization, so their efficacy decreases
when the complexity of LLMs increases. Accordingly, re-
cent efforts have shifted to develop (a) backpropagation-free
methods that optimize quantized weights based on Hes-
sian (Frantar et al., 2023) or (b) transformation-based meth-
ods that convert a model to be robust to quantization by
applying smoothing, rotation, and permutation (Shao et al.,
2023; Ashkboos et al., 2024; Liu et al., 2024; Lin et al.,
2024). However, their weight quantization performance is
limited as they ignore inter-layer dependencies or use naı̈ve
nearest rounding for weight quantization.

In this paper, we propose a novel backpropagation-free PTQ
algorithm that considers inter-layer dependencies in opti-
mizing quantized weights. Our contributions are as follows:

• We propose a novel PTQ algorithm called BOA1. The
key contribution is to exploit the attention reconstruc-
tion error, not the layer-wise reconstruction error, in
approximating the Hessian to consider inter-layer de-
pendencies within the attention module (Section 3.2).
To our knowledge, BOA is the first method to optimize
quantized weights by considering inter-layer dependen-
cies without relying on gradient-based optimization.

• While the proposed Hessian facilitates the considera-
tion of inter-layer dependencies, it requires additional
memory and computations. To mitigate the overhead,
we propose several techniques, including Hessian re-
laxation, efficient computation of inverse Hessians, and

1Backpropagation-free optimization for Attention-aware PTQ
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head-wise simultaneous quantization (Section 3.3).

• We evaluate BOA on publicly available LLMs. From
extensive experiments, we show that BOA outper-
forms existing backpropagation-free weight quanti-
zation methods by a significant margin, particularly
for low-bit precision (e.g., INT2) (Section 4.2). Fur-
thermore, when combined with existing methods to
suppress outliers (Ashkboos et al., 2024; Liu et al.,
2024), BOA achieves the state-of-the-art performance
for both weight-only and weight-activation quantiza-
tion (Sections 4.2 and 4.3).

2. Related Works
When calibration data are available, PTQ aims to minimize
the increase in task loss incurred by quantization. Assuming
the convergence of a network and the independence between
layers, the problem of quantizing weights to minimize task
loss degradation can be formulated as the following layer-
wise reconstruction problem (Nagel et al., 2020):

min
∆W(ℓ)

∥∥∥(Q(W(ℓ))−W(ℓ)
)
X(ℓ−1)

∥∥∥2
F
, (1)

where X(ℓ−1) is the input to the ℓ-th layer parameterized
by W(ℓ) and Q is a quantization function. For a uniform
quantization, if the nearest quantization bin is assigned to
each weight, Q is defined as

Q(x) = s
(

clamp
(⌊x

s

⌉
+ z, 0, 2n − 1

)
− z
)
,

where s, z, n are the scale, zero-point, and bit-width, respec-
tively, and ⌊·⌉ represents the round-off.

Early works aimed to optimize the weight-rounding mecha-
nism (Nagel et al., 2020; Hubara et al., 2021; Li et al., 2021;
Jeon et al., 2023a). Instead of allocating the nearest inte-
ger, these studies attempted to assign integer weights that
minimize the reconstruction error. One popular approach is
AdaRound, which learns quantized weights satisfying (1)
via backpropagation (Nagel et al., 2020). This algorithm has
been extended to BRECQ where the block-wise reconstruc-
tion error has been used, instead of the layer-wise reconstruc-
tion error, to consider the inter-layer dependencies (Li et al.,
2021). Although AdaRound and BRECQ have successfully
quantized small-sized models, they rely on time-consuming
gradient-based optimizations, which renders their applica-
tion to LLMs with billions of parameters challenging. Con-
sequently, recent efforts have shifted towards the develop-
ment of cost-effective quantization methods for LLMs.

These efforts can be classified into two orthogonal classes:
(a) backpropagation-free Hessian-based integer weight op-
timization methods (e.g., GPTQ (Frantar et al., 2023)) and

(b) transformation-based methods that convert a model to
be more robust to quantization by applying smoothing (e.g.,
SmoothQuant (Xiao et al., 2023), OmniQuant (Shao et al.,
2023), and AffineQuant (Ma et al., 2024)), rotation (e.g.,
QuaRot (Ashkboos et al., 2024) and SpinQuant (Liu et al.,
2024)), or permutation (e.g., DuQuant (Lin et al., 2024)).

The proposed BOA belongs to the class (a) in that it opti-
mizes quantized weights using the Hessian without relying
on backpropagation. Furthermore, similar to GPTQ, BOA
can be combined with transformation-based methods such
as QuaRot and SpinQuant (see Section 4). The primary
difference over GPTQ lies in our optimization objective:
while GPTQ assumes layer-wise independence and focuses
on layer-wise reconstruction (which leads to performance
degradation), our approach explicitly aims to preserve the
attention output, enabling us to account for inter-layer de-
pendencies within the attention module.

Other algorithms exploiting different strategies have also
been proposed. For example, SpQR (Dettmers et al., 2023),
SqueezeLLM (Kim et al., 2023), and OAC (Edalati et al.,
2024) proposed a mixed-precision approach that assigns a
large bit-width to quantization-sensitive weights or retains
them in full-precision. Compared to the standard uniform
quantization, these algorithms require additional processing
and memory costs in the inference and need special hard-
ware and dedicated kernels without which accelerating the
inference may not be easy. Furthermore, unlike server-grade
GPUs, on-device NPUs (e.g. Qualcomm Hexagon) lack sup-
port for the mixed precision format, and customizing ker-
nels for desired functionalities is very challenging. Thus,
we exclude these algorithms in our comparison and focus
on the more universally supported uniform quantization for-
mat. We also exclude recent vector quantization approaches
(e.g. QuIP# (Tseng et al., 2024) and AQLM (Egiazarian
et al., 2024)) because they need additional memory (bits)
for storing codebooks, which are required to perform the
dequantization during the inference.

3. Method
3.1. Overview of Proposed BOA

The proposed BOA quantizes weights by repeating quanti-
zation and weight-update steps; once BOA quantizes one
weight, it updates the remaining (not-yet-quantized) weights
to compensate for the task loss degradation caused by the
quantization. The update formula to compensate for the
quantization of the q-th weight wq is formulated as (Frantar
et al., 2023)

δw =
Q(wq)− wq

[U]q,q
[U]q,: where U = Chol(H−1)T , (2)

where H is the Hessian and Chol(·) denotes a Cholesky de-
composition (i.e., U is an upper triangular matrix satisfying
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Table 1. Approximated Hessians in GPTQ and the proposed BOA
Method Layer H = Hcol ⊗Hrow

GPTQ W{Q,K,V } 2XXT ⊗ I

BOA

WQ,h 2XXT ⊗KT
hKh

WK,h 2XXT ⊗QT
hQh

WV,h 2XAT
hAhX

T ⊗WT
out,hWout,h

Wout,h 2Xout,hX
T
out,h ⊗ I

* For WQ,h and WK,h of models exploiting rotary position
embedding, see (14) and (15).

H−1 = UTU).

The key difference over GPTQ lies in the approximation
of the Hessian H. In GPTQ, the layer-wise reconstruction
error ∥∆W(ℓ)X(ℓ−1)∥2F in (1) has been used (i.e., the layer-
wise independence has been assumed) to approximate H
which yields the following Hessian equation2:

H(w(ℓ)) ≈ 2X(ℓ−1)X(ℓ−1)T ⊗ I, (3)

where w(ℓ) is the flattened representation of W(ℓ), H(w(ℓ))

is the Hessian for the ℓ-th layer, ⊗ denotes the Kronecker
product operation, and I is the identity matrix. The approxi-
mated Hessian H(w(ℓ)) in GPTQ relies solely on the input,
which means that GPTQ cannot consider the influence of
other layers. In other words, GPTQ neglects inter-layer
dependencies within the attention module, a crucial aspect
of Transformers, which results in limited performance (Jeon
et al., 2023b). To overcome this, we develop Hessians that
incorporate inter-layer dependencies and then use them in-
stead of the conventional Hessian in (3).

In Table 1, we summarize the proposed Hessians; the de-
tailed derivation is provided in the following subsections. It
can be observed that the proposed Hessians not only contain
the term related to the input X, but also involve the terms
related to other layers (e.g., KT

hKh for WQ).

3.2. Proposed Attention-aware Hessian

To consider the inter-layer dependencies within the attention
module, we exploit the attention reconstruction error rather
than the layer-wise reconstruction error when approximating
the Hessian. For an input sequence X ∈ Rd×L, the output
of the multi-head attention (MHA) is expressed as

MHA(X)=

H∑
h=1

Wout,h(AhVh)
T,Ah=σ

(
QhK

T
h√

dh

)
, (4)

where Qh,Kh,Vh ∈ RL×dh are query, key, value for the
h-th attention head, dh is the head dimension, σ is the row-
wise softmax function, and H is the total number of heads.

2The second-order derivative of ∥M1∆WM2∥2F with respect
to ∆w is 2M2M

T
2 ⊗MT

1 M1 (see Appendix A for the proof).

Hessian for query When quantizing the query projection
weights WQ,h, Wout,h and Vh remain unchanged, but the
attention weights Ah change. Using the first-order Taylor
polynomial, the perturbation in Ah can be approximated as

∆Ah = σ

(
(Qh +∆Qh)K

T
h√

dh

)
− σ

(
QhK

T
h√

dh

)
≈ ∆QhK

T
h√

dh
JT
σ =

XT∆WT
Q,hK

T
hJ

T
σ√

dh
, (5)

where Jσ is the Jacobian matrix of the softmax function σ.
Thus, the attention reconstruction error is expressed as

∥∆MHA(X)∥2F = ∥Wout,h(∆AhVh)
T ∥2F

≈
∥∥∥∥Wout,hV

T
hJσKh√
dh

∆WQ,hX

∥∥∥∥2
F

, (6)

which yields the following Hessian for WQ,h (see Foot-
note 2):

H(wQ,h)=2XXT⊗
KT

hJ
T
σVhW

T
out,hWout,hV

T
h JσKh

dh
. (7)

Hessian for key As in the quantization of the query pro-
jection weights, the attention weight Ah changes when
quantizing the key projection weights WK,h. By following
the steps for (5), Ah can be approximated as

∆Ah≈
Qh∆KT

h√
dh

JT
σ =

Qh∆WK,hXJT
σ√

dh
,

and then the attention reconstruction error is expressed as

∥∆MHA(X)∥2F ≈
∥∥∥∥ Qh√

dh
∆WK,hXJT

σVhW
T
out,h

∥∥∥∥2
F

.

Thus, we obtain the following Hessian for WK,h:

H(wK,h)=2XJT
σVhW

T
out,hWout,hV

T
h JσX

T⊗Q
T
hQh

dh
. (8)

Hessian for value When quantizing the weights WV,h of
the value projection, only Vh changes. Thus, we have

∥∆MHA(X)∥2F = ∥Wout,h(Ah∆Vh)
T ∥2F

= ∥Wout,h∆WV,hXAT
h ∥2F ,

which yields the following Hessian for WV,h:

H(wV,h) = 2XAT
hAhX

T ⊗WT
out,hWout,h. (9)

Hessian for out When the out-projection weights Wout,h
are quantized, the attention reconstruction error is

∥∆MHA(X)∥2F = ∥∆Wout,h(AhVh)
T ∥2F .

Thus, the corresponding Hessian is

H(wout,h)=2VT
hA

T
hAhVh ⊗ I=2Xout,hX

T
out,h ⊗ I,

(10)

where Xout,h = (AhVh)
T .
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Algorithm 1 BOA
Input: weights W{Q,K,V } ∈ RH×dh×d and inputs X of the Transformer layer
1: for W ∈ {WQ,WK ,WV } do
2: Initialize quantized output: Q← 0H×dh×d

3: Initialize (row-wise) quantization errors: E← 0H×d

4: Compute attention-aware Hessians: Hh = Hcol,h ⊗Hrow,h ▷ see Table 1
5: Set step size (scale) S: minS tr

(
∆WhHcol,h∆WT

h

)
6: Compute inverse Hessians H−1

col,h and H−1
row,h

7: Compute Ucol,h = Chol(H−1
col,h)

T and Urow,h = Chol(H−1
row,h)

T

8: for j = 0, . . . , dh − 1 do
9: Construct W(j) ∈ RH×d by stacking the j-th rows [Wh]j,:

10: Quantize W(j): (Q:,j,:,E)← GPTQ(W(j),Ucol,h,S) ▷ see Appendix E

11: Update remaining rows: [Wh]j:,: ← [Wh]j:,: −
[UT

row,h]j:,j ·Eh,:·Ucol,h

[Urow,h]j,j
▷ see Proposition 3.1

12: end for
13: end for
Output: quantized weights Q

3.3. Efficient Implementation of BOA

While inter-layer dependencies within the attention module
can be considered by exploiting the proposed Hessians, they
are significantly more complex than the conventional Hes-
sian in (3), which may incur high computational costs. For
example, computing the proposed Hessians in (7) and (8)
would be more expensive than computing the conventional
one in (3). In this subsection, we present techniques to miti-
gate the computational overheads incurred by the proposed
attention-aware Hessians.

Hessian relaxation The largest overhead related to the
computation of the proposed Hessians is the Jacobian matrix
Jσ in (7) and (8). For an input sequence of length L, the
shape of Jσ is H×L×L×L, which requires a large amount
of memory and high computational cost (e.g., more than
400 GB even for the OPT-125M model when L = 2048).

To mitigate such overhead, we establish a relaxed Hessian
that does not require computing Jσ. To this end, we build
the following upper bound for the attention reconstruction
error in (6), which will be used as its surrogate:

∥∆MHA(X)∥2F ≤
∥∥∥∥Wout,hV

T
hJσ√

dh

∥∥∥∥2
F

· ∥Kh∆WQ,hX∥2F .

Noting that the constant term ∥Wout,hV
T
hJσ∥2F does not

affect quantization,3 we use the term ∥Kh∆WQ,hX∥2F as a
surrogate of the attention reconstruction error when deriving
the Hessian for WQ,h, which yields the following Hessian:

H(wQ,h) = 2XXT ⊗KT
hKh. (11)

Similarly, we can establish a relaxed Hessian for WK,h as

H(wK,h) = 2XXT ⊗QT
hQh. (12)

3The update δw in (2) is not affected by the constant multiple
of H because [cU]q,:/[cU]q,q=[U]q,:/[U]q,q for any constant c.

We note that if rotary position embedding (RoPE) (Su et al.,
2023) is used, the MHA output is different from that in (4),
and thus the corresponding attention-aware Hessians would
also be different. Specifically, since the attention weight Ah

for models exploiting RoPE is expressed as

Ah=σ

(
Q̃hK̃

T
h√

dh

)
, Q̃h=RoPE(Qh), K̃h=RoPE(Kh),

(13)

the surrogate ∥Kh∆QT
h ∥2F used to develop the attention-

aware Hessian in (11) changes to ∥K̃h∆Q̃T
h ∥2F . As a result,

we obtain different Hessians for models exploiting RoPE
(see Appendix B for the detailed derivation):

H(wQ,h) = 2XXT ⊗ 1

L

L∑
ℓ=1

RT
ℓ K̃

T
h K̃hRℓ, (14)

H(wK,h) = 2XXT ⊗ 1

L

L∑
ℓ=1

RT
ℓ Q̃

T
h Q̃hRℓ, (15)

where Rℓ be the rotary matrix for the ℓ-th token (see eq. (15)
in (Su et al., 2023)).

We summarize the relaxed Hessians in Table 1.

Efficient computation of inverse Hessians After com-
puting Hessians, their inverse matrices need to be computed
to update the remaining weights after each quantization
(see (2)). Owing to the size of the proposed Hessians be-
ing ddh × ddh, the complexity of the computation of the
inverse Hessian would be O(d3d3h) in our approach. This
is considerably more expensive than the complexity O(d3)
of GPTQ, where the inverse of only XXT ∈ Rd×d in (3) is
needed (Frantar et al., 2023).

For the efficient inverse computation, we exploit the use-
ful properties of the Kronecker product (see (17a)-(17c) in
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Figure 1. Illustration of BOA for the query projection WQ.

Appendix A). Specifically, let H = Hcol ⊗ Hrow where
Hcol ∈ Rd×d and Hrow ∈ Rdh×dh , then we obtain

H−1 = (Hcol ⊗Hrow)
−1 = H−1

col ⊗H−1
row.

This implies that the inverse Hessian H−1 can be obtained
by computing H−1

col and H−1
row (line 5 in Algorithm 1) whose

complexity is O(d3) + O(d3h) (= O(d3)), not O(d3d3h).
Similarly, we can efficiently perform the Cholesky decom-
position (i.e., Chol(H−1) in (2)) with the same order of
complexity as in GPTQ. Specifically, if L1 = Chol(H−1

col )
and L2 = Chol(H−1

row), H
−1 can be expressed as

H−1=L1L
T
1 ⊗ L2L

T
2 =(L1 ⊗ L2)(L1 ⊗ L2)

T .

Subsequently, noting that the Kronecker product of lower
triangular matrices is also lower triangular, we obtain

Chol(H−1) = L1 ⊗ L2 = Chol(H−1
col )⊗ Chol(H−1

row).

Thus, we can obtain Chol(H−1) by computing Chol(H−1
col )

and Chol(H−1
row) (line 6 in Algorithm 1). Consequently, the

computational complexity of the Choleksy decomposition
would be O(d3), not O(d3d3h).

Simultaneous quantization of different heads Because
the proposed Hessians model the dependency between dif-
ferent rows (e.g., Hrow = KT

hKh for WQ,h; see (11)), we
can compensate for the quantization error of a certain row
by updating other rows. Specifically, the row-update for-
mula is formulated as in the following proposition for given
Hessian H = Hcol ⊗Hrow.

Proposition 3.1. Let Wh be a dh×d matrix whose Hessian
is Hh = Hcol,h⊗Hrow,h. Suppose Wh is quantized via (2).
If the j-th row of Wh has been quantized, then the update
formula to compensate for the quantization is expressed as

[δWh]j:,: = −
[UT

row,h]j:,j · e ·Ucol,h

[Urow,h]j,j
, (16)

Table 2. Processing time (hour) of BOA with and without simulta-
neous quantization of different heads

Simultaneous
Quantization

LLaMA Model Size
7B 13B 30B

X 27.75 51.66 135.4

O 0.961 1.553 3.295

where Ucol,h = Chol(H−1
col,h)

T , Urow,h = Chol(H−1
row,h)

T ,
and e ∈ R1×d is the quantization error of the j-th row
defined as ei = ([Wh]j,i −Q([Wh]j,i))/[Ucol,h]i,i.

Proof. See Appendix C. ■

The update formula in (16) implies that we do not need
to compute and store the Cholesky decomposition Uh =
Ucol,h⊗Urow,h of the full Hessian Hh for updating weights;
only Ucol,h and Urow,h are sufficient for updating weights,
and thus we can save the memory cost caused by the high-
dimensional Kronecker product operation. Proposition 3.1
also implies that the conventional GPTQ cannot compen-
sate quantization error of certain row by updating other
rows because Hrow = I (see (3)) and thus Urow = I and
[δW]i,: = 0 for all i ̸= j.

While the proposed BOA can compensate for the quanti-
zation error of each row, the rows must be quantized se-
quentially (not simultaneously). For example, the second
row can be quantized after being updated to compensate
for the quantization error of the first row. To accelerate the
quantization process, we assume independence between dif-
ferent attention heads (see Figure 1(a)), under which rows
related to different heads are independent and can thus be
quantized together. For a better understanding, we consider
the query projection WQ as an example (see Figure 1(b)).
In the quantization step, we stack the j-th rows [WQ,h]j,:
of all different heads, constructing the sub-weight matrix
W

(j)
Q ∈ RH×d (line 8 in Algorithm 1). Because the rows of

W
(j)
Q are mutually independent, all the rows of W(j)

Q can
be quantized simultaneously as in GPTQ (line 9 in Algo-
rithm 1). Following the quantization of j-th rows, we com-
pensate for the quantization error by updating the remaining
rows. In this update step, we use the refined weight-update
formula in (16) (line 10 in Algorithm 1).

We measure quantization processing times of BOA with and
without simultaneous quantization to evaluate how much the
head-wise joint quantization can accelerate the quantization
process. From Table 2, we observe that BOA requires a
significantly long processing time without the simultaneous
quantization (more than one day even for the 7B model).
This is because all rows need to be quantized sequentially
(e.g., 4096 rows are quantized sequentially for LLaMA-7B)
and thus the massive compute capabilities of modern GPUs
cannot be utilized properly. As evident, we can significantly
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Table 3. Weight-only quantization performance on LLaMA2 and LLaMA3 models without transformation

Model Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

LLaMA2-7B

FP16 Baseline 5.473 45.90 74.66 77.92 75.94 70.86 44.00 78.89 68.90 67.13

INT2
RTN 7.8e3 26.45 26.18 39.30 25.99 0.00 24.20 49.40 49.96 30.19

GPTQ 30.85 26.96 44.15 56.30 42.52 23.95 28.20 63.22 54.70 42.50
BOA 12.76 28.33 47.73 64.71 45.46 31.33 29.60 64.85 54.46 45.81

INT3
RTN 342.4 22.53 35.06 44.13 28.87 1.63 26.40 58.11 48.70 33.18

GPTQ 6.719 36.95 59.72 65.54 66.68 58.21 39.20 74.65 66.06 58.38
BOA 6.007 40.27 69.28 74.22 72.00 66.60 41.20 78.35 67.64 63.70

LLaMA2-13B

FP16 Baseline 4.885 49.06 77.65 80.49 79.38 73.41 45.80 80.69 72.22 69.84

INT2
RTN 5.7e3 27.47 26.89 37.95 25.97 0.00 25.20 49.08 48.38 30.12

GPTQ 35.08 21.76 35.31 61.96 35.22 19.41 28.80 57.29 52.88 39.08
BOA 18.33 29.78 46.30 62.23 49.30 29.33 27.60 63.33 52.64 45.06

INT3
RTN 227.2 23.98 28.75 49.24 28.51 4.46 24.40 53.26 50.75 32.92

GPTQ 9.790 34.81 62.12 67.06 55.57 47.61 37.00 73.18 61.33 54.84
BOA 5.833 43.52 69.28 78.93 74.71 65.22 35.20 77.42 62.51 63.35

LLaMA3-8B

FP16 Baseline 6.137 53.67 77.61 81.19 79.15 72.23 45.00 81.01 73.24 70.39

INT2
RTN 6.6e4 25.51 25.80 53.94 26.34 0.00 29.00 51.52 50.20 32.79

GPTQ 24.54 23.29 32.58 53.39 39.17 7.10 27.00 53.32 52.25 36.01
BOA 21.70 26.62 44.87 60.52 43.34 16.89 29.40 59.85 55.80 42.16

INT3
RTN 129.1 23.21 33.88 55.60 34.83 4.60 25.20 58.22 52.57 36.01

GPTQ 8.226 41.47 63.01 75.47 70.05 59.53 40.60 73.78 69.85 61.72
BOA 7.782 45.14 72.77 78.69 72.66 62.41 42.60 77.31 71.35 65.37

LLaMA3.2-1B

FP16 Baseline 13.15 38.14 63.26 69.51 60.78 54.38 34.60 74.37 59.51 56.82

INT2
RTN 6.3e4 26.96 25.59 41.53 26.05 0.01 26.40 51.52 50.59 31.08

GPTQ 538.9 25.26 26.64 37.83 26.41 0.22 27.60 51.41 48.46 30.48
BOA 312.2 25.09 26.85 40.06 27.17 1.42 27.00 51.96 51.07 31.33

INT3
RTN 1.9e3 25.60 26.94 54.13 29.90 0.58 27.00 52.18 49.17 33.19

GPTQ 112.0 24.06 39.48 53.85 31.07 13.85 27.80 60.07 49.33 37.44
BOA 26.43 30.63 55.26 59.97 48.33 31.95 29.60 66.65 53.99 47.05

LLaMA3.2-3B

FP16 Baseline 11.04 46.16 67.80 78.62 70.44 62.15 36.00 75.52 67.40 63.01

INT2
RTN 2.0e4 26.79 26.52 37.89 25.93 0.00 30.80 50.92 49.09 30.99

GPTQ 98.19 24.83 27.78 52.32 33.83 4.38 28.60 52.23 51.14 34.39
BOA 54.64 25.77 35.48 57.52 35.63 14.42 29.00 56.96 53.43 38.53

INT3
RTN 882.6 26.37 27.86 45.87 37.04 1.44 26.00 53.92 48.46 33.37

GPTQ 46.14 28.92 37.63 44.01 39.27 18.76 28.60 61.64 54.70 39.19
BOA 13.64 42.32 66.12 77.52 64.46 54.18 35.20 72.69 62.51 59.38

* Results for high bit-widths and results on LLaMA1 and OPT models are provided in Appendix D.1 due to the page limitation.

reduce the processing time by applying the head-wise joint
quantization (more than 40 times reduction on the 30B
model).

4. Experiments
In this section, we evaluate the weight-only quantization
performance of the proposed BOA (Section 4.2) and synergy
with transformation-based methods in terms of weight-only
and weight-activation quantization (Sections 4.2 and 4.3).

4.1. Experimental Setup

We conduct experiments on OPT (Zhang et al., 2022),
LLaMA (Touvron et al., 2023a)), LLaMA2 (Touvron et al.,
2023b), and LLaMA3. As in previous studies (Shao et al.,
2023; Ma et al., 2024; Lin et al., 2024; Ashkboos et al., 2024;
Liu et al., 2024), we construct a calibration dataset by sam-
pling 128 random sequences of length 2048 from WikiText-
2 (Merity et al., 2016). As a performance metric, we use

the perplexity (PPL) score on the WikiText-2 test dataset
and accuracy on eight zero-shot commonsense reasoning
tasks (ARC-challenge (Arc-c) and ARC-easy (Arc-e) (Clark
et al., 2018), BoolQ (BQ) (Clark et al., 2019), HellaSwag
(HS) (Zellers et al., 2019), LAMBADA (LAMB) (Paperno
et al., 2016), OpenbookQA (OBQA) (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), and WinoGrande (WG) (Sak-
aguchi et al., 2021)). All experiments were conducted using
a single NVIDIA H100 GPU (80 GB).

When determining a quantization order in BOA, the heuris-
tic introduced by GPTQ can be used; the column/row cor-
responding to the largest diag(Hcol)/diag(Hrow) (i.e., the
most quantization-sensitive column/row) is first quantized
for better compensation. Empirically, we observed that this
heuristic could occasionally enhance the performance, yet
at other times, it may result in inferior performance. For
GPTQ and the proposed BOA, we conduct experiments with
and without this heuristic and report the better results.
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Table 4. Memory costs of GPTQ and the proposed BOA

Method Memory Cost (GB) Wiki2 PPL (↓)
7B 13B 30B 7B 13B 30B

GPTQ 4.426 5.872 8.271 19.63 34.63 9.770

BOA 9.550 16.56 32.79 10.28 8.309 6.669
Relaxed BOA∗ 6.446 8.397 11.55 10.53 8.700 7.007
* Attention-aware Hessians have been applied to query and key, but not to value.

4.2. Weight-Only Quantization Results

Comparison with GPTQ We first compare the proposed
BOA with GPTQ to demonstrate the efficacy of the proposed
attention-aware Hessians. In this experiment, we do not ap-
ply any model transformation method (e.g. QuaRot (Ashk-
boos et al., 2024) and SpinQuant (Liu et al., 2024)) to solely
evaluate the effectiveness of the proposed Hessians.

In Table 3 and Tables 8-10 (see Appendix D.1), we summa-
rize the PPL and zero-shot task performances of BOA and
GPTQ. We also include the performance of the rounding-
to-nearest (RTN) method which naively assigns the near-
est quantization bin. We observe BOA and GPTQ exhibit
reasonable PPL even for INT2 quantization where RTN
collapses significantly (i.e., PPL is almost 104). This is
because BOA and GPTQ minimize the task loss degrada-
tion rather than the weight quantization error ∆W. As
evident, BOA significantly surpasses GPTQ on all models
in both PPL and zero-shot accuracy. For example, BOA
achieves 10%p accuracy improvement on the 3-bit quan-
tized LLaMA2-13B and LLaMA3.2-1B models. In addition,
BOA shows 20%p higher accuracy for the 3-bit quantized
LLaMA3.2-3B model. The key factor leading to such an
outstanding performance is that BOA considers inter-layer
dependencies within the attention module by exploiting the
proposed attention-aware Hessians while GPTQ assumes
the independence of layers.
In Table 4, we summarize the memory costs of BOA and
GPTQ. We observe that BOA requires larger memory be-
cause BOA additionally uses outputs of other layers to con-
sider inter-layer dependencies. It is worth mentioning that
when the memory resource is limited, BOA can still be used
with a slight relaxation. Noting that the large memory cost
of BOA is attributable to the Hessian for the value projection
(Hcol,h = 2XAT

hAhX
T in (9)) whose shape is H × d× d,

we can greatly reduce the memory cost by exploiting the
standard Hessian in (3) for the value projection and apply-
ing the proposed attention-aware Hessians only for query
and key projections. In doing so, BOA needs slightly more
memory (e.g. 3 GB for 30B; see Table 4) yet still performs
much better than GPTQ.

We now compare the processing times of BOA and GPTQ.
As evident from Table 5, BOA requires a longer processing
time than that needed by GPTQ. This is because GPTQ
quantizes all the rows simultaneously, while BOA sequen-
tially quantizes them to compensate for the quantization

Table 5. Processing time (hour) of different quantization methods

Method Inter-layer
Dependency

Optimization
Type

LLaMA Model Size
7B 13B 30B

GPTQ X one-shot 0.12 0.20 0.43

OmniQuant
O gradient

-based

1.83 3.32 7.66
AffineQuant 4.32 8.41 21.4

DuQuant+LWC 1.22 2.08 4.55

BOA O one-shot 0.96 1.55 3.30

error of each row (see Figure 1(b)). Clearly, there exists
a trade-off between quantization speed and accuracy. In
real cases, when one needs to consider inter-layer depen-
dencies to preserve the performance of the original model
as much as possible, the proposed BOA would be an in-
triguing solution when compared to existing gradient-based
approaches (see Table 5 and Table 6). When faster quan-
tization is required, one possible solution is to reduce the
number of sequential quantizations by quantizing multiple
rows in each head simultaneously, which will be considered
in our future studies.

Comparison with transformation-based methods To
improve the quantization performance, recent studies have
transformed models by applying smoothing, rotation, or
permutation (Shao et al., 2023; Ma et al., 2024; Ashkboos
et al., 2024; Liu et al., 2024; Lin et al., 2024). In this experi-
ment, we evaluate BOA under those model transformations
(see Table 6 and Tables 11-12 in Appendix D.2). For con-
ventional methods, we ran the official codes provided by
the authors and reported the obtained results; details for
implementing conventional methods are provided in Ap-
pendix D.2. When measuring the performance of BOA, we
also transformed the model for a fair comparison. We ap-
plied QuaRot for the transformation because QuaRot does
not require any training and incurs no extra costs during the
actual inference (Ashkboos et al., 2024).

We observe that the performance of the proposed BOA
is boosted significantly when applying the transformation.
For example, the PPLs of the 2-bit quantized LLaMA2-
13B / LLaMA3-8B models improve from 18.33 / 21.70 to
8.237 / 15.24, respectively (see Tables 3 and 6). For INT3
quantization, BOA almost preserves the performance of the
original full-precision model; the accuracy drop is 2.3%p for
LLaMA3-8B and 1.3%p for LLaMA2-13B (see Table 11).
For all models, we achieve at least 5%p improvement in
the zero-shot accuracy (in particular 11%p improvement
for the 2-bit quantized LLaMA2-13B model). We note
that the performance gap between BOA and GPTQ remains
significant after the model transformation; for example, the
zero-shot accuracy of BOA on the 2-bit quantized LLaMA2-
7B model is 12%p larger than that obtained by QuaRot-
GPTQ.

Finally, we emphasize that BOA not only surpasses existing

7
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Table 6. Weight-only quantization performance on transformed LLaMA2 and LLaMA3 models

Model Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

LLaMA2-7B

FP Baseline 5.473 45.90 74.66 77.92 75.94 70.86 44.00 78.89 68.90 67.13

INT2

OmniQuant 21.85 25.17 36.91 61.80 38.38 5.80 28.40 57.40 49.49 37.92
AffineQuant 91.19 23.46 29.17 40.03 27.44 0.16 22.20 54.13 51.78 31.05
QuaRot-RTN 1.1e4 27.22 26.05 37.83 26.19 0.01 25.60 50.54 48.70 30.27

QuaRot-GPTQ 22.05 22.27 36.24 61.99 33.54 20.63 28.60 56.75 51.78 38.98
DuQuant 1.6e4 26.62 25.72 39.08 26.06 0.00 22.20 49.73 50.12 29.94

DuQuant + LWC 46.27 23.12 28.96 44.04 29.60 2.41 27.40 53.70 49.17 32.30
BOA† 10.42 29.69 54.84 64.37 52.03 46.54 33.60 67.52 59.43 51.00

LLaMA2-13B

FP Baseline 4.885 49.06 77.65 80.49 79.38 73.41 45.80 80.69 72.22 69.84

INT2

OmniQuant 12.92 26.71 46.00 63.64 51.19 16.93 31.40 64.64 52.64 44.14
AffineQuant 9.415 26.96 49.83 63.15 52.40 26.58 33.60 64.47 53.83 46.35
QuaRot-RTN 7.9e3 27.22 26.26 37.83 25.74 0.00 24.00 49.02 49.17 29.91

QuaRot-GPTQ 9.593 31.66 56.52 63.15 48.81 36.93 32.60 66.05 60.38 49.51
DuQuant 1.4e4 28.33 26.64 44.43 26.12 0.00 25.00 50.16 49.57 31.28

DuQuant + LWC 10.40 28.50 46.51 63.70 52.79 25.24 30.80 65.13 54.14 45.85
BOA† 8.237 35.49 63.97 71.28 58.36 56.25 35.40 71.82 62.75 56.92

LLaMA3-8B

FP Baseline 6.137 53.67 77.61 81.19 79.15 72.23 45.00 81.01 73.24 70.39

INT2

OmniQuant∗ 955.8 22.78 28.24 37.83 26.18 0.00 27.20 52.83 49.01 30.51
AffineQuant∗ 1.1e3 23.46 27.31 37.86 26.04 0.00 26.80 52.12 51.22 30.60
QuaRot-RTN 3.5e5 26.19 25.21 39.02 26.86 0.00 28.60 50.38 49.41 30.71

QuaRot-GPTQ 18.28 28.33 46.68 64.10 45.04 29.49 29.20 62.08 55.25 45.02
DuQuant 1.4e6 25.00 25.34 47.37 26.68 0.00 29.80 51.96 48.93 31.89

DuQuant + LWC 2.6e4 24.40 26.68 38.26 25.30 0.00 29.20 49.67 52.01 30.69
BOA† 15.24 30.38 54.42 68.17 49.17 39.89 34.20 65.94 60.14 50.29

LLaMA3.2-1B

FP Baseline 13.15 38.14 63.26 69.51 60.78 54.38 34.60 74.37 59.51 56.82

INT2

OmniQuant∗ 302.3 22.01 31.69 37.95 27.64 0.14 25.60 54.95 50.12 31.26
AffineQuant∗ 268.3 22.44 31.61 37.83 27.75 0.12 26.00 54.30 49.88 31.24
QuaRot-RTN 2.6e5 26.62 25.84 38.75 26.75 0.00 28.20 51.09 51.07 31.04

QuaRot-GPTQ 54.28 22.18 34.01 56.39 31.90 14.65 24.80 56.91 50.59 36.43
DuQuant 4.9e4 25.51 25.97 39.94 26.17 0.00 29.80 48.97 49.64 30.75

DuQuant + LWC 9.3e3 28.16 25.38 37.89 25.27 0.00 26.60 50.49 49.57 30.42
BOA† 40.86 24.06 39.77 58.20 34.62 16.79 26.20 57.07 52.64 38.67

LLaMA3.2-3B

FP Baseline 11.04 46.16 67.80 78.62 70.44 62.15 36.00 75.52 67.40 63.01

INT2

OmniQuant∗ 273.4 23.38 31.82 56.42 29.35 0.28 27.80 56.15 51.07 34.53
AffineQuant∗ 282.2 22.35 32.87 47.28 29.44 0.25 28.20 56.26 48.38 33.13
QuaRot-RTN 2.3e4 26.19 24.49 47.09 26.55 0.00 30.40 51.74 48.30 31.85

QuaRot-GPTQ 52.18 23.98 36.95 60.92 34.68 19.24 27.40 57.67 52.49 39.17
DuQuant 7.7e4 25.17 25.55 41.10 26.01 0.00 28.40 51.47 50.28 31.00

DuQuant + LWC 770.9 23.63 26.64 38.20 26.32 0.03 26.20 51.74 51.70 30.56
BOA† 33.40 27.30 45.66 65.87 40.86 24.57 29.00 61.37 56.27 43.86

† BOA has been applied after transforming the model via QuaRot.
* The learnable equivalent transformation (LET) option has been deactivated because this option does not support models exploiting grouped-query attention (GQA).
** Results for high bit-widths and results on LLaMA1 models are provided in Appendix D.2 due to the page limitation.

transformation-based methods exploiting the naive nearest
rounding (i.e., OmniQuant, AffineQuant, and DuQuant +
LWC) but also is much faster than those methods relying on
the gradient-based optimization (see Table 5). For example,
on the LLaMA3-8B model, BOA achieves 20%p accuracy
improvement for INT2 (see Table 6) and 13%p improvement
for INT3 (see Table 11) over OmniQuant, AffineQuant, and
DuQuant + LWC, yet reduces the quantization processing
time of OmniQuant and AffineQuant more than twofold (see
Table 5). Moreover, the degree of reduction increases with
the model size; BOA requires 7 times shorter processing
time than that needed by AffineQuant on LLaMA-30B.

4.3. Weight-Activation Quantization Results

We now evaluate the weight-activation quantization perfor-
mance (see Table 7 and Tables 13-15 in Appendix D.3). As

in previous studies (Shao et al., 2023; Ma et al., 2024; Lin
et al., 2024; Ashkboos et al., 2024; Liu et al., 2024), we
quantize input activations to all linear layers and KV caches
with the Min-Max nearest-rounding quantizer where quan-
tization parameters are determined dynamically for each
token. We use the notation ‘WxAyKVz’ to denote the x-bit
weight quantization, y-bit input activation quantization, and
z-bit KV cache quantization. In this experiment, when mea-
suring the performance of RTN, GPTQ, and the proposed
BOA, we use SpinQuant (instead of QuaRot) for the model
transformation. It is worth noting that while QuaRot uses
Hadamard matrices (that are independent of data) for the
rotation (Ashkboos et al., 2024), SpinQuant optimizes rota-
tion matrices that make models more robust to the activation
quantization and thus could outperform QuaRot (Liu et al.,
2024). In our experiments, rotation matrices have been op-
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Table 7. Weight-activation quantization performance on transformed LLaMA2 and LLaMA3 models

Model Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

LLaMA2-7B

FP16 Baseline 5.473 45.90 74.66 77.92 75.94 70.86 44.00 78.89 68.90 67.13

W2A4KV4

OmniQuant 1.0e5 26.88 26.30 39.02 25.57 0.00 25.60 48.42 50.51 30.29
AffineQuant NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SpinQuant-RTN 23.23 25.51 34.01 62.20 32.09 14.48 26.00 55.17 50.91 37.55
SpinQuant-GPTQ 24.29 22.95 36.74 59.88 32.83 13.81 26.20 56.64 51.30 37.54

DuQuant 6.4e3 28.41 26.73 38.01 25.65 0.00 26.00 48.48 51.62 30.61
DuQuant + LWC 16.35 24.91 37.33 61.99 41.46 10.54 28.20 58.71 53.28 39.55

BOA† 11.80 26.79 49.20 63.09 48.05 37.76 30.80 63.55 57.85 47.14

LLaMA2-13B

FP16 Baseline 4.885 49.06 77.65 80.49 79.38 73.41 45.80 80.69 72.22 69.84

W2A4KV4

OmniQuant 3.8e3 26.88 26.30 37.83 25.48 0.00 23.60 48.20 49.96 29.78
AffineQuant 1.2e3 26.62 27.19 37.83 26.37 0.00 24.60 48.80 49.17 30.07

SpinQuant-RTN 11.71 26.96 40.61 63.12 44.54 29.64 29.20 60.88 53.67 43.58
SpinQuant-GPTQ 15.54 23.55 41.29 62.17 35.76 16.50 29.80 59.52 51.54 40.02

DuQuant 6.4e3 28.41 26.73 38.01 25.65 0.00 26.00 48.48 51.62 30.61
DuQuant + LWC 16.35 24.91 37.33 61.99 41.46 10.54 28.20 58.71 53.28 39.55

BOA† 8.974 31.74 55.98 64.80 56.22 49.18 34.40 68.44 59.27 52.50

LLaMA3-8B

FP16 Baseline 6.137 53.67 77.61 81.19 79.15 72.23 45.00 81.01 73.24 70.39

W2A4KV4

OmniQuant∗ 3.2e5 25.85 25.46 38.26 25.35 0.00 26.80 51.58 49.09 30.30
AffineQuant∗ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SpinQuant-RTN 31.27 24.40 33.50 62.14 36.01 19.99 27.40 56.69 52.80 39.12
SpinQuant-GPTQ 29.60 22.18 34.89 58.23 35.07 13.42 27.20 55.88 51.22 37.26

DuQuant 5.4e5 27.30 24.62 50.67 26.49 0.00 28.20 50.82 50.59 32.34
DuQuant + LWC 4.1e4 25.60 26.09 37.86 25.55 0.00 25.60 51.36 49.25 30.16

BOA† 18.23 28.92 48.86 62.54 44.62 29.38 28.80 62.79 54.22 45.02

LLaMA3.2-1B

FP16 Baseline 13.15 38.14 63.26 69.51 60.78 54.38 34.60 74.37 59.51 56.82

W2A4KV4

OmniQuant∗ 7.0e3 24.83 26.26 37.98 25.59 0.00 27.60 49.84 50.75 30.36
AffineQuant∗ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SpinQuant-RTN 110.6 22.61 32.07 52.14 28.59 4.08 28.20 52.83 49.49 33.75
SpinQuant-GPTQ 143.8 22.35 31.23 51.96 28.91 2.91 26.20 53.32 51.85 33.59

DuQuant 5.6e4 26.62 24.71 41.74 26.16 0.01 28.20 48.80 50.51 30.84
DuQuant + LWC 8.5e3 28.07 26.01 38.26 25.84 0.00 28.80 50.11 50.91 31.00

BOA† 77.05 22.61 36.66 57.22 32.13 8.07 25.80 55.55 50.99 36.13

LLaMA3.2-3B

FP16 Baseline 11.04 46.16 67.80 78.62 70.44 62.15 36.00 75.52 67.40 63.01

W2A4KV4

OmniQuant∗ 6.6e3 27.82 25.00 38.35 25.43 0.00 28.00 52.18 49.80 30.82
AffineQuant∗ 6.0e3 25.94 26.89 38.10 25.66 0.01 28.40 51.58 49.80 30.80

SpinQuant-RTN 51.19 24.83 31.48 45.32 29.90 11.05 27.80 55.17 50.20 34.47
SpinQuant-GPTQ 65.09 23.21 33.54 38.26 31.16 7.18 25.80 55.98 51.38 33.31

DuQuant 1.2e5 26.02 25.51 49.02 26.74 0.00 29.00 51.03 49.88 32.15
DuQuant + LWC 1.7e3 24.40 26.09 37.83 25.91 0.00 27.80 50.49 52.49 30.63

BOA† 37.12 27.99 37.67 59.30 37.91 15.81 27.40 57.73 52.41 39.53
† BOA has been applied after transforming the model via SpinQuant.
* The LET option has been deactivated because this option does not support models exploiting GQA.
** ‘NaN‘ means that loss diverges in the quantization process.
*** Results for other configurations are provided in Appendix D.3 due to the page limitation.

timized with respect to activation-only quantized networks
(i.e., weights are fixed with full-precision) as in (Liu et al.,
2024).

From Table 7 and Tables 13-15 in Appendix D.3, we observe
that the outstanding weight-quantization performance of the
proposed BOA leads to the state-of-the-art performance for
the weight-activation quantization. In particular, the perfor-
mance gain is noticeable for low-bit (e.g., W2A4KV4 and
W2A4KV16). For example, compared to SpinQuant-GPTQ,
BOA achieves 10%p accuracy improvement on LLaMA2-
7B and 12.5%p improvement on LLaMA2-13B (see Ta-
ble 7). Compared to the conventional gradient-based meth-
ods (i.e. OmniQuant, AffineQuant, and DuQuant), BOA
achieves 8%p, 13%p, 13%p, 5%p, and 7%p improvement
on LLaMA2-7B, LLaMA2-13B, LLaMA3-8B, LLaMA3.2-

1B, and LLaMA3.2-3B, respectively.

5. Conclusion
In this paper, we proposed a novel backpropagation-free
PTQ algorithm called BOA. To consider the inter-layer de-
pendencies within the attention module, we approximated
the Hessian matrices by exploiting the attention reconstruc-
tion error rather than the layer-wise reconstruction error. To
mitigate the computational overhead incurred by the pro-
posed attention-aware Hessians, we also incorporated sev-
eral techniques, including Hessian relaxation, efficient com-
putation of inverse and Cholesky decomposition of attention-
aware Hessians, and simultaneous quantization of different
attention heads. Finally, from extensive experiments, we
demonstrated the efficacy of the proposed BOA.
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Impact Statement
BOA is a highly efficient and accurate quantization algo-
rithm that minimizes accuracy loss while significantly re-
ducing the time required for model quantization and deploy-
ment. By synergizing with other methods, BOA facilitates
the efficient operation of LLMs on resource-constrained
hardware using only integer arithmetic. This breakthrough
is particularly impactful for on-device AI, allowing real-
time model inference on mobile and edge devices without
the need for server access, paving the way for scalable,
decentralized AI solutions.

References
Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B.,

Cameron, P., Jaggi, M., Alistarh, D., Hoefler, T., and
Hensman, J. QuaRot: Outlier-free 4-bit inference in
rotated LLMs. arXiv:2404.00456, 2024.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. PIQA: Reason-
ing about physical commonsense in natural language. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pp. 7432–7439, 2020.

Botev, A., Ritter, H., and Barber, D. Practical Gauss-Newton
optimisation for deep learning. In International Confer-
ence on Machine Learning, pp. 557–565. PMLR, 2017.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. arXiv:1905.10044,
2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? Try ARC, the AI2 reasoning chal-
lenge. arXiv:1803.05457v1, 2018.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler,
T., and Alistarh, D. SpQR: A sparse-quantized rep-
resentation for near-lossless llm weight compression.
arXiv:2306.03078, 2023.

Edalati, A., Ghaffari, A., Asgharian, M., Hou, L., Chen,
B., and Nia, V. P. OAC: Output-adaptive calibration for
accurate post-training quantization. arXiv:2405.15025,
2024.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar,
E., Babenko, A., and Alistarh, D. Extreme compres-
sion of large language models via additive quantization.
arXiv:2401.06118, 2024.

Frantar, E. and Alistarh, D. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. Advances in Neural Information Processing
Systems, 35:4475–4488, 2022.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.
OPTQ: Accurate quantization for generative pre-trained
Transformers. In The Eleventh International Conference
on Learning Representations, 2023.

Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Accurate post training quantization with small cal-
ibration sets. In International Conference on Machine
Learning, pp. 4466–4475. PMLR, 2021.

Jeon, Y., Lee, C., Cho, E., and Ro, Y. Mr.BiQ: Post-training
non-uniform quantization based on minimizing the recon-
struction error. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
12329–12338, 2022.

Jeon, Y., Lee, C., and Kim, H.-y. GENIE: show me the
data for quantization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 12064–12073, 2023a.

Jeon, Y., Lee, C., Park, K., and Kim, H.-y. A frustratingly
easy post-training quantization scheme for LLMs. In
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 14446–14461,
2023b.

Jin, J., Liang, C., Wu, T., Zou, L., and Gan, Z. KDLSQ-
BERT: A quantized BERT combining knowledge distilla-
tion with learned step size quantization. arXiv preprint
arXiv:2101.05938, 2021.

Kim, J., Lee, C., Cho, E., Park, K., Kim, H.-y., Kim, J., and
Jeon, Y. Towards next-level post-training quantization
of hyper-scale transformers. In Advances in Neural In-
formation Processing Systems (NeurIPS), volume 37, pp.
94292–94326, 2024.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li, X., Shen,
S., Mahoney, M. W., and Keutzer, K. SqueezeLLM:
Dense-and-sparse quantization. arXiv:2306.07629, 2023.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. BRECQ: Pushing the limit of
post-training quantization by block reconstruction. In
International Conference on Learning Representations
(ICLR), 2021.

10



BoA: Attention-aware Post-training Quantization without Backpropagation

Lin, H., Xu, H., Wu, Y., Cui, J., Zhang, Y., Mou, L., Song,
L., Sun, Z., and Wei, Y. DuQuant: Distributing outliers
via dual transformation makes stronger quantized LLMs.
In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. Llm-qat:
Data-free quantization aware training for large language
models, 2023.

Liu, Z., Zhao, C., Fedorov, I., Soran, B., Choudhary, D., Kr-
ishnamoorthi, R., Chandra, V., Tian, Y., and Blankevoort,
T. SpinQuant: LLM quantization with learned rotations.
arXiv:2405.16406, 2024.

Ma, Y., Li, H., Zheng, X., Ling, F., Xiao, X., Wang, R.,
Wen, S., Chao, F., and Ji, R. AffineQuant: Affine
transformation quantization for large language models.
arXiv:2403.12544, 2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. arXiv:1609.07843, 2016.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. arXiv:1809.02789, 2018.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C., and
Blankevoort, T. Up or down? Adaptive rounding for
post-training quantization. In International Conference
on Machine Learning (ICML), pp. 7197–7206, 2020.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The LAMBADA dataset: Word prediction
requiring a broad discourse context. arXiv:1606.06031,
2016.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
WinoGrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P., Qiao, Y., and Luo, P. OmniQuant:
Omnidirectionally calibrated quantization for large lan-
guage models. arXiv:2308.13137, 2023.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu, Y.
RoFormer: Enhanced Transformer with rotary position
embedding. arXiv:2104.09864, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. LLaMA: Open and efficient foundation
language models. arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv:2307.09288, 2023b.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and De Sa, C.
QuIP#: Even better LLM quantization with Hadamard
incoherence and lattice codebooks. arXiv:2402.04396,
2024.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and
Han, S. SmoothQuant: Accurate and efficient post-
training quantization for large language models. In In-
ternational Conference on Machine Learning, pp. 38087–
38099. PMLR, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
HellaSwag: Can a machine really finish your sentence?
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 4791–4800,
2019.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., et al.
OPT: Open pre-trained Transformer language models.
arXiv:2205.01068, 2022.

11



BoA: Attention-aware Post-training Quantization without Backpropagation

A. Proof of Footnote 2
In our proof, we use the following useful properties of the Kronecker product:

vec (M1M2M3) =
(
MT

3 ⊗M1

)
vec(M2), (17a)

(M1 ⊗M2)
T
= MT

1 ⊗MT
2 , (17b)

(M1 ⊗M2) (M3 ⊗M4) = M1M3 ⊗M2M4, (17c)

where vec(·) denotes the vectorization operation.

Using (17a), we have

∥M1∆WM2∥2F =
∥∥(MT

2 ⊗M1

)
∆w

∥∥2
2
= ∆wT

(
MT

2 ⊗M1

)T (
MT

2 ⊗M1

)
∆w,

where ∆w = vec(∆W). In addition, by (17b) and (17c), we have

∆wT
(
MT

2 ⊗M1

)T (
MT

2 ⊗M1

)
∆w = ∆wT

(
M2 ⊗MT

1

) (
MT

2 ⊗M1

)
∆w

= ∆wT
(
M2M

T
2 ⊗MT

1 M1

)
∆w.

Finally, by exploiting the fact that ∂2xTAx
∂x2 = A+AT , we obtain

∂2 ∥M1∆WM2∥2F
∂∆w2

= M2M
T
2 ⊗MT

1 M1 +
(
M2M

T
2 ⊗MT

1 M1

)T
(a)
= M2M

T
2 ⊗MT

1 M1 +
(
M2M

T
2

)T ⊗ (MT
1 M1

)T
= 2M2M

T
2 ⊗MT

1 M1,

where (a) follows from (17b). This completes the proof.

B. Attention-aware Hessians for Models Exploiting RoPE
As mentioned, when RoPE is applied, the proposed surrogate ∥Kh∆QT

h ∥2F used to develop the attention-aware Hessian
H(wQ,h) in (11) changes to ∥K̃h∆Q̃T

h ∥2F , where K̃h = RoPE(Kh) and Q̃h = RoPE(Qh). Let Rℓ be the rotary matrix
for the ℓ-th token (see eq. (15) in (Su et al., 2023)) and Q̃T

h = [q̃h,1 . . . q̃h,L], then the objective can be expressed as

∥K̃h∆Q̃T
h ∥2F =

L∑
ℓ=1

∥K̃h∆q̃h,ℓ∥22 =

L∑
ℓ=1

∥K̃h∆(RℓWQ,hxℓ)∥22 =

L∑
ℓ=1

∥K̃hRℓ∆WQ,hxℓ∥22,

which yields the following Hessian equation (see Footnote 2):

H(wQ,h) =

L∑
ℓ=1

(2xℓx
T
ℓ ⊗RT

ℓ K̃
T
h K̃hRℓ).

Finally, we take the factorized approximation for the summation of Kronecker products (i.e., E[M1⊗M2] ≈ E[M1]⊗E[M2];
see eq. (20) in (Botev et al., 2017)):

H(wQ,h) ≈
L∑

ℓ=1

2xℓx
T
ℓ ⊗

1

L

L∑
ℓ=1

RT
ℓ K̃

T
h K̃hRℓ = 2XXT ⊗ 1

L

L∑
ℓ=1

RT
ℓ K̃

T
h K̃hRℓ.

By taking similar steps, the attention-aware Hessian for the key projection weight WK,h with RoPE can be established as

H(wK,h) = 2XXT ⊗ 1

L

L∑
ℓ=1

RT
ℓ Q̃

T
h Q̃hRℓ.
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C. Refined Weight-update Formula
We recall that the Hessian-based weight-update formula is given by (Frantar & Alistarh, 2022; Frantar et al., 2023)

δw = −wq −Q(wq)

[U]q,q
[U]q,: where U = Chol(H−1)T .

For the proposed attention-aware Hessians in Table 1, we have

Uh = Ucol,h ⊗Urow,h,

where Ucol,h = Chol(H−1
col,h)

T and Urow,h = Chol(H−1
row,h)

T (see Section 3.3). Therefore, the weight-update formula can
be recast as

δwh = − wq −Q(wq)

[Ucol,h ⊗Urow,h]q,q
[Ucol,h ⊗Urow,h]q,:.

col ,ℎ
row ,ℎ

=
col ,ℎ col ,ℎ

col ,ℎ

Quant. of
1st row

Quant. of
2nd row

Update of
2nd row

Figure 2. Illustration of the Hessian information when drow = 2 and dcol = 3

For simplicity, suppose we quantize the first (0-th) row. When the weight [Wh]0,j(= [W(0)]h,j) in the j-th column is
quantized, the weight-update of the i-th row is simplified as (see Figure 2 for the ease of understanding)

[δWh]i,: = −
[Wh]0,j −Q([Wh]0,j)

[Urow,h]0,0[Ucol,h]j,j
[Urow,h]0,i[Ucol,h]j,:

= − [Wh]0,j −Q([Wh]0,j)

[Ucol,h]j,j
· [Urow,h]0,i[Ucol,h]j,:

[Urow,h]0,0

Thus, after the quantization of all weights in the first row, the total amount of the weight-update for the i-th row can be
expressed as

[δWh,total]i,: = −
dcol−1∑
j=0

[Wh]0,j −Q([Wh]0,j)

[Ucol,h]j,j
· [Urow,h]0,i[Ucol,h]j,:

[Urow,h]0,0

= − [Urow,h]0,i
[Urow,h]0,0

dcol−1∑
j=0

[Wh]0,j −Q([Wh]0,j)

[Ucol,h]j,j
· [Ucol,h]j,:.

Furthermore, by noting that (see line 5 in Algorithm 2)

[EGPTQ]h,j =
[Wh]0,j −Q([Wh]0,j)

[Ucol,h]j,j
,
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we obtain

[δWh,total]i,: = −
[Urow,h]0,i
[Urow,h]0,0

dcol−1∑
j=0

[EGPTQ]h,j · [Ucol,h]j,: = −
[Urow,h]0,i
[Urow,h]0,0

[EGPTQ]h,:Ucol,h.

As a result, the weight-update matrix to compensate for the quantization error of the first row is given by

[δWh,total]0:,: = −
[UT

row,h]0:,0[EGPTQ]h,:Ucol,h

[Urow,h]0,0
. (18)

By taking similar steps as above, we can easily generalize (18) for the j-th row as follows:

[δWh,total]j:,: = −
[UT

row,h]j:,j [EGPTQ]h,:Ucol,h

[Urow,h]j,j
. (19)
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D. Additional Experimental Results
D.1. Performance of Weight-Rounding Optimization

We evaluate the weight-only quantization performance of the proposed BOA. To solely compare the performance of the
weight-rounding optimization, we do not apply any transform (e.g., smoothing, rotation, and permutation) to the models. In
this appendix, we provide the results for the INT4 weight quantization of LLaMA2 and LLaMA3 models (see Table 8) and
the results on LLaMA1 models (see Table 9) and OPT models (see Table 10).

Table 8. INT4 weight-only quantization performance on LLaMA2 and LLaMA3 models without transformation

Model Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

LLaMA2-7B

FP Baseline 5.473 45.90 74.66 77.92 75.94 70.86 44.00 78.89 68.90 67.13

INT4
RTN 6.998 41.64 67.05 72.72 71.36 59.78 42.60 77.04 65.75 62.24

GPTQ 5.809 42.06 69.82 67.06 70.44 62.80 43.00 77.15 68.11 62.56
BOA 5.622 43.94 72.26 78.04 74.53 68.96 44.20 78.40 69.14 66.18

LLaMA2-13B

FP Baseline 4.885 49.06 77.65 80.49 79.38 73.41 45.80 80.69 72.22 69.84

INT4
RTN 6.319 43.00 66.88 71.01 66.14 62.25 38.20 77.04 63.85 61.05

GPTQ 5.632 47.18 74.49 74.37 75.00 70.89 44.20 78.40 69.69 66.78
BOA 5.096 47.95 75.80 78.93 77.96 70.61 41.60 79.87 71.35 68.01

LLaMA3-8B

FP Baseline 6.137 53.67 77.61 81.19 79.15 72.23 45.00 81.01 73.24 70.39

INT4
RTN 7.981 49.06 73.65 73.30 76.62 59.55 45.00 78.29 72.93 66.05

GPTQ 7.960 49.06 73.44 73.70 69.30 60.19 45.00 79.54 73.56 65.47
BOA 6.561 50.17 77.74 80.31 77.42 70.20 44.40 80.14 73.88 69.28

LLaMA3.2-1B

FP Baseline 13.15 38.14 63.26 69.51 60.78 54.38 34.60 74.37 59.51 56.82

INT4
RTN 18.81 34.30 57.41 65.20 55.93 32.72 33.00 69.15 56.35 50.51

GPTQ 16.20 35.41 58.63 64.46 55.69 38.08 32.20 69.04 56.27 51.22
BOA 14.29 36.18 60.82 67.22 59.03 51.65 34.00 71.87 58.09 54.86

LLaMA3.2-3B

FP Baseline 11.04 46.16 67.80 78.62 70.44 62.15 36.00 75.52 67.40 63.01

INT4
RTN 13.86 43.26 61.24 73.67 68.27 54.18 38.40 71.76 64.01 59.35

GPTQ 12.41 44.28 63.51 77.00 68.44 57.39 36.60 74.16 67.01 61.05
BOA 11.74 44.11 66.75 77.86 69.42 61.74 36.20 75.08 66.85 62.25

Table 9. Weight-only quantization performance on LLaMA models without transformation

Model Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

LLaMA-7B

FP Baseline 5.677 44.71 72.94 75.05 76.21 70.66 44.40 79.16 70.01 66.64

INT2
RTN 5.9e3 26.37 26.73 39.82 26.37 0.01 26.00 51.80 48.62 30.72

GPTQ 19.63 25.34 41.58 56.27 37.27 26.24 30.20 61.70 55.56 41.77
BOA 10.28 28.75 52.69 64.19 49.34 41.48 32.60 66.54 59.19 49.35

INT3
RTN 61.31 26.45 50.46 59.76 40.07 14.64 33.00 67.08 55.88 43.42

GPTQ 18.44 33.53 61.36 64.40 56.22 44.91 35.40 72.09 64.33 54.03
BOA 6.267 39.76 67.68 75.35 71.01 68.92 41.80 77.80 67.48 63.73

INT4
RTN 7.912 41.47 70.29 72.81 73.16 63.81 41.60 77.86 68.27 63.66

GPTQ 7.791 40.36 66.50 70.58 68.48 61.84 39.00 77.42 68.43 61.58
BOA 5.899 43.77 72.18 75.54 74.75 69.60 44.40 78.62 69.77 66.08

LLaMA-13B

FP Baseline 5.090 47.70 74.75 77.95 79.07 73.66 44.80 80.14 72.77 68.86

INT2
RTN 2.2e3 25.60 26.01 39.48 26.00 0.00 25.20 49.46 48.54 30.04

GPTQ 34.63 26.37 43.43 56.67 46.85 33.11 31.40 65.07 57.62 45.07
BOA 8.309 32.76 59.51 69.57 59.52 51.79 35.20 71.22 65.19 55.60

INT3
RTN 134.5 25.00 49.24 56.39 36.91 11.41 29.20 64.20 54.62 40.87

GPTQ 7.096 42.24 69.74 70.73 73.40 62.99 39.20 77.09 68.11 62.94
BOA 5.461 45.82 71.93 75.96 75.71 70.62 43.40 78.35 70.24 66.50

INT4
RTN 7.742 45.22 69.99 72.42 75.67 65.65 41.60 78.78 70.56 64.99

GPTQ 6.147 45.82 72.26 74.10 76.24 70.15 43.80 80.20 71.90 66.81
BOA 5.189 47.44 74.62 77.31 78.03 73.19 45.40 80.20 73.09 68.66

LLaMA-30B

FP Baseline 4.101 52.90 78.96 82.69 82.63 75.47 48.20 82.26 75.77 72.36

INT2
RTN 7.1e3 25.60 26.52 40.67 27.20 0.11 24.60 50.92 49.64 30.66

GPTQ 9.770 35.41 60.14 64.77 61.54 50.12 38.20 70.35 66.54 55.88
BOA 6.669 37.71 64.73 73.00 64.77 61.28 39.00 73.34 67.40 60.15

INT3
RTN 81.76 30.12 58.21 54.10 42.94 6.71 35.00 69.31 58.25 44.33

GPTQ 7.064 48.12 71.46 74.89 76.73 66.39 43.20 78.35 70.80 66.24
BOA 4.575 49.57 74.75 81.87 79.21 73.77 46.20 79.38 74.19 69.87

INT4
RTN 5.802 49.40 74.16 78.07 79.48 66.67 44.00 79.87 73.16 68.10

GPTQ 5.188 51.45 75.67 80.18 79.69 70.38 45.40 79.43 73.64 69.48
BOA 4.218 53.16 78.41 82.72 81.95 75.96 49.40 81.88 75.06 72.32
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Table 10. Weight-only quantization performance on OPT models without transformation

Model Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

OPT-125M

FP Baseline 27.65 22.78 39.98 55.44 31.35 33.44 28.00 62.02 50.28 40.41

INT2
RTN 1.0e4 23.89 27.31 37.83 25.96 0.00 27.00 50.49 51.14 30.45

GPTQ 411.3 22.61 31.52 38.47 27.16 0.18 27.20 52.18 51.70 31.38
BOA 85.63 21.42 32.15 48.20 28.50 6.86 26.60 56.47 49.17 33.67

INT3
RTN 233.9 22.01 33.33 52.94 28.52 2.81 28.40 59.19 51.14 34.79

GPTQ 50.75 21.67 33.84 58.38 29.41 16.96 25.40 58.98 51.14 36.97
BOA 31.95 22.95 36.83 59.66 30.67 27.10 28.80 60.34 50.83 39.65

OPT-350M

FP Baseline 22.00 23.89 40.36 57.68 36.67 40.47 28.20 64.74 52.33 43.04

INT2
RTN 4.6e3 24.74 27.65 37.83 26.87 0.00 23.40 52.83 52.09 30.68

GPTQ 61.93 22.53 33.46 57.28 29.66 10.70 23.80 56.75 51.22 35.68
BOA 46.53 22.01 35.90 62.32 30.43 11.85 26.60 58.98 51.62 37.46

INT3
RTN 35.91 23.38 36.99 52.14 34.00 30.37 27.00 62.02 51.62 39.69

GPTQ 25.25 22.95 38.47 60.58 35.25 41.38 27.60 62.46 51.22 42.49
BOA 23.96 22.87 38.76 61.22 35.30 38.08 28.40 62.57 53.28 42.56

OPT-1.3B

FP Baseline 14.62 29.52 50.97 57.83 53.70 55.19 33.40 72.47 59.51 51.57

INT2
RTN 1.6e4 24.23 24.75 51.19 26.51 0.00 29.00 52.29 50.04 32.25

GPTQ 177.4 22.78 31.78 57.06 28.13 6.37 24.80 53.75 48.70 34.17
BOA 31.65 22.70 37.67 62.17 34.65 18.02 26.80 61.48 51.78 39.41

INT3
RTN 754.8 25.34 34.72 52.17 36.31 10.25 27.20 60.07 51.78 37.23

GPTQ 19.35 27.13 43.43 54.25 47.23 36.30 29.40 68.01 54.30 45.01
BOA 15.77 27.39 48.74 58.99 50.09 51.50 30.60 69.37 57.30 49.25

OPT-2.7B

FP Baseline 12.47 31.31 54.38 60.40 60.62 59.78 35.20 74.81 61.01 54.69

INT2
RTN 2.7e5 26.11 26.73 62.17 26.77 0.00 29.20 50.87 51.07 34.12

GPTQ 135.5 24.66 33.71 60.28 33.62 17.62 27.00 57.73 50.59 38.15
BOA 22.30 25.77 41.62 62.26 42.00 33.76 28.80 62.08 52.96 43.66

INT3
RTN 170.5 25.26 38.34 56.51 36.64 14.61 29.80 66.27 53.04 40.06

GPTQ 15.64 29.27 49.07 45.90 51.79 42.92 33.00 69.80 57.54 47.41
BOA 13.63 29.10 52.90 65.29 55.86 56.94 34.00 72.03 60.06 53.27

OPT-6.7B

FP Baseline 10.86 34.73 60.02 66.06 67.16 65.50 37.40 76.50 65.43 59.10

INT2
RTN 2.9e4 25.00 25.38 37.83 26.66 0.00 29.20 50.00 51.46 30.69

GPTQ 95.95 23.21 33.75 61.77 32.09 16.25 25.80 57.02 52.01 37.74
BOA 20.57 28.24 47.31 61.80 47.00 34.09 33.20 66.87 57.54 47.01

INT3
RTN 53.76 27.73 40.87 50.95 48.67 28.32 31.20 68.17 53.12 43.63

GPTQ 12.05 32.51 56.40 54.53 62.49 55.99 36.60 74.21 60.85 54.20
BOA 11.25 32.76 57.32 66.85 64.53 63.64 37.60 75.57 64.09 57.80

OPT-13B

FP Baseline 10.13 35.75 61.87 65.84 69.87 65.98 39.00 76.88 65.11 60.04

INT2
RTN 4.7e4 26.79 26.64 40.40 26.25 0.00 27.40 49.78 50.04 30.91

GPTQ 49.40 26.28 37.04 62.14 41.60 29.17 27.60 61.04 52.17 42.13
BOA 15.34 29.27 48.95 62.78 53.63 44.71 32.60 68.50 58.64 49.89

INT3
RTN 40.46 27.47 38.72 62.54 51.21 29.44 26.80 63.38 49.88 43.68

GPTQ 11.11 34.56 59.51 62.45 64.81 58.57 36.00 74.92 63.54 56.80
BOA 10.39 34.30 59.93 69.94 66.95 66.61 37.60 75.95 66.93 59.78

OPT-30B

FP Baseline 9.557 38.05 65.36 70.46 72.27 67.85 40.20 78.07 68.43 62.59

INT2
RTN 4.2e4 26.79 25.55 37.83 25.88 0.00 28.60 50.60 51.22 30.81

GPTQ 21.19 27.99 41.96 62.45 46.90 39.48 30.40 65.72 54.22 46.14
BOA 11.15 30.55 55.81 62.81 60.19 60.39 34.80 72.47 62.67 54.96

INT3
RTN 86.63 24.32 35.06 57.98 38.07 12.17 26.00 59.90 52.09 38.20

GPTQ 10.14 34.90 61.70 66.97 69.34 63.70 40.40 77.26 67.01 60.16
BOA 9.744 36.26 62.63 70.28 70.52 68.86 40.20 77.75 67.17 61.71
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D.2. Comparison with Transformation-based Methods

We compare the weight-only quantization performances of the proposed BOA and existing transformation-based methods.
For conventional methods, we ran the official codes provided by the authors and reported the obtained results. For
OmniQuant (Shao et al., 2023) and AffineQuant (Ma et al., 2024), we activated both learnable equivalent transformation
(LET) and learnable weight clipping (LWC) options. For AffineQuant, we did not activate the use-ln-matrix option
because this adds extra affine transformation between the normalization layer and linear layers, which incurs additional
processing time during the inference. QuaRot-RTN and QuaRot-GPTQ mean that RTN and GPTQ have been applied
for the weight quantization after transforming models via QuaRot (Ashkboos et al., 2024). For DuQuant, we report the
results obtained with and without activating the LWC option as in the original paper (Lin et al., 2024). When measuring
the performance of the proposed BOA, we also transformed the model for fair comparison. We applied QuaRot for the
transformation because QuaRot does not require training and incurs no extra costs during the actual inference (Ashkboos
et al., 2024).

In this appendix, we provide the results for the INT3 weight quantization of LLaMA2 and LLaMA3 models (see Table 11)
and the results on LLaMA1 models (see Table 12).

Table 11. INT3 weight-only quantization performance on transformed LLaMA2 and LLaMA3 models

Model Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

LLaMA2-7B

FP16 Baseline 5.473 45.90 74.66 77.92 75.94 70.86 44.00 78.89 68.90 67.13

INT3

OmniQuant 6.640 39.59 65.66 69.82 70.09 57.58 38.40 76.01 64.88 60.25
AffineQuant 6.468 40.36 68.01 70.86 70.32 61.87 38.60 76.12 65.27 61.43
QuaRot-RTN 129.2 23.46 30.60 37.83 29.30 4.75 24.40 53.10 50.20 31.71

QuaRot-GPTQ 6.122 40.96 70.16 73.30 71.44 67.63 41.40 77.42 67.48 63.72
DuQuant 6.831 41.13 67.59 69.36 70.52 62.25 41.40 76.01 65.35 61.70

DuQuant + LWC 6.226 40.70 69.15 74.77 70.97 64.06 42.40 77.04 66.85 63.24
BOA† 5.874 42.06 71.17 73.73 72.29 69.85 41.60 77.37 67.48 64.44

LLaMA2-13B

FP16 Baseline 4.885 49.06 77.65 80.49 79.38 73.41 45.80 80.69 72.22 69.84

INT3

OmniQuant 5.593 44.80 71.72 75.29 75.63 64.94 43.20 78.67 69.30 65.44
AffineQuant 5.526 45.73 73.74 77.34 74.79 65.56 43.00 77.15 67.01 65.54
QuaRot-RTN 48.06 22.01 34.72 62.14 33.44 7.80 26.60 57.67 50.51 36.86

QuaRot-GPTQ 5.382 47.01 75.42 78.84 75.70 72.14 44.60 78.56 70.01 67.79
DuQuant 5.749 44.88 72.10 79.91 75.37 68.23 43.00 77.80 70.72 66.50

DuQuant + LWC 5.414 46.67 74.62 77.92 75.93 68.63 43.80 79.98 68.75 67.04
BOA† 5.202 48.29 76.39 79.45 76.23 73.19 45.20 78.67 70.96 68.55

LLaMA3-8B

FP16 Baseline 6.137 53.67 77.61 81.19 79.15 72.23 45.00 81.01 73.24 70.39

INT3

OmniQuant 11.75 37.37 60.94 65.57 66.81 33.02 34.80 71.49 59.59 53.70
AffineQuant 11.63 37.97 63.64 64.92 67.42 33.95 36.20 71.98 60.30 54.55
QuaRot-RTN 38.64 23.72 38.22 51.28 47.53 23.63 33.60 62.35 62.04 42.80

QuaRot-GPTQ 7.490 47.87 74.49 78.44 74.67 67.43 40.00 78.07 72.38 66.67
DuQuant 11.35 35.84 53.37 64.56 65.56 49.52 36.20 72.25 65.90 55.40

DuQuant + LWC 10.78 31.66 46.59 64.65 65.25 41.29 38.00 70.13 61.80 52.42
BOA† 7.145 49.06 77.40 80.49 74.54 69.20 43.00 78.51 72.53 68.09

LLaMA3.2-1B

FP16 Baseline 13.15 38.14 63.26 69.51 60.78 54.38 34.60 74.37 59.51 56.82

INT3

OmniQuant 26.61 31.31 51.39 63.67 49.18 18.83 29.60 67.57 55.49 45.88
AffineQuant 26.43 32.00 52.48 64.31 48.71 20.67 26.20 67.57 52.88 45.60
QuaRot-RTN 98.24 24.06 36.03 61.96 35.31 7.68 28.60 59.14 51.62 38.05

QuaRot-GPTQ 16.56 32.42 57.95 64.10 52.48 43.79 32.20 68.99 57.14 51.13
DuQuant 2.1e4 25.26 25.67 41.35 26.68 0.00 27.80 49.51 48.78 30.63

DuQuant + LWC 2.7e4 25.68 26.73 40.73 25.34 0.00 29.00 49.40 52.09 31.12
BOA† 15.73 32.42 57.95 66.24 53.86 48.74 33.20 70.18 57.06 52.46

LLaMA3.2-3B

FP16 Baseline 11.04 46.16 67.80 78.62 70.44 62.15 36.00 75.52 67.40 63.01

INT3

OmniQuant 16.97 36.01 57.58 71.47 59.57 39.17 34.00 69.31 60.22 53.42
AffineQuant 16.79 36.43 56.57 72.97 59.19 40.07 35.20 70.13 60.06 53.83
QuaRot-RTN 89.54 22.01 32.79 59.08 36.18 4.82 25.00 54.35 53.67 35.99

QuaRot-GPTQ 13.58 38.31 58.96 75.72 64.59 54.59 35.80 70.18 64.96 57.89
DuQuant 18.92 30.55 48.32 71.71 60.34 40.54 32.40 66.54 60.38 51.35

DuQuant + LWC 15.18 37.20 58.33 72.02 61.22 44.58 33.40 70.02 59.98 54.59
BOA† 12.97 42.49 65.74 78.90 65.59 58.40 34.80 73.07 63.46 60.31

† BOA has been applied after transforming the model via QuaRot.
* The LET option has been deactivated because this option does not support models exploiting GQA.
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Table 12. Weight-only quantization performance on transformed LLaMA models

Model Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

LLaMA-7B

FP Baseline 5.677 44.71 72.94 75.05 76.21 70.66 44.40 79.16 70.01 66.64

INT2

OmniQuant 15.74 26.28 45.71 61.93 42.66 17.43 29.00 62.40 52.17 42.20
AffineQuant 11.93 27.22 49.33 62.51 49.26 23.57 32.20 62.89 54.06 45.13
QuaRot-RTN 1.0e4 27.90 26.39 37.83 26.03 0.00 21.60 49.24 49.49 29.81

QuaRot-GPTQ 11.53 26.45 45.75 62.48 48.23 37.37 32.80 65.67 57.46 47.03
DuQuant 9.4e3 28.33 26.89 46.42 26.24 0.00 21.20 50.71 51.62 31.43

DuQuant + LWC 12.39 27.73 49.37 63.03 49.88 23.65 31.80 64.96 56.75 45.90
BOA† 9.812 30.63 54.88 63.55 52.20 46.50 33.00 68.72 61.01 51.31

INT3

OmniQuant 6.463 38.74 66.96 72.35 69.84 62.79 40.00 77.20 66.69 61.82
AffineQuant 6.392 39.68 66.46 72.87 70.52 64.99 39.40 77.42 65.04 62.05
QuaRot-RTN 24.03 29.86 53.11 61.13 50.30 24.53 31.40 69.37 57.30 47.13

QuaRot-GPTQ 6.166 43.09 70.37 72.02 72.18 65.34 43.20 78.29 68.19 64.09
DuQuant 6.976 37.37 64.23 71.13 70.81 60.45 39.20 76.39 65.98 60.70

DuQuant + LWC 6.328 38.74 66.20 73.73 71.24 63.78 42.40 77.31 68.51 62.74
BOA† 6.091 41.04 68.18 71.77 72.26 69.32 40.40 78.18 68.67 63.73

LLaMA-13B

FP Baseline 5.090 47.70 74.75 77.95 79.07 73.66 44.80 80.14 72.77 68.86

INT2

OmniQuant 13.29 29.69 53.79 62.29 55.31 19.52 31.60 70.29 57.14 47.45
AffineQuant 10.65 28.75 53.54 65.57 53.03 30.73 34.00 68.12 59.35 49.14
QuaRot-RTN 4.1e3 28.16 26.47 37.83 25.72 0.00 22.60 51.25 48.46 30.06

QuaRot-GPTQ 9.331 31.06 58.59 63.79 54.96 45.54 35.20 69.97 63.30 52.80
DuQuant 6.2e3 25.94 25.93 39.66 26.70 0.00 23.60 50.87 51.62 30.54

DuQuant + LWC 8.770 31.74 58.38 66.27 60.98 44.46 37.00 72.20 62.19 54.15
BOA† 8.341 33.19 63.64 71.44 60.75 56.30 37.00 71.93 65.90 57.52

INT3

OmniQuant 5.671 45.05 71.13 75.44 75.35 66.82 44.40 78.56 69.46 65.78
AffineQuant 5.615 43.00 70.79 74.83 74.99 68.95 43.40 79.76 69.38 65.64
QuaRot-RTN 7.082 37.37 60.14 73.18 67.93 56.42 35.60 76.22 66.14 59.13

QuaRot-GPTQ 5.471 44.37 71.63 76.94 75.59 72.45 43.00 78.02 71.51 66.69
DuQuant 5.923 43.94 70.12 74.40 75.76 68.33 42.00 78.56 72.06 65.65

DuQuant + LWC 5.554 45.31 71.97 72.78 75.85 69.81 45.00 79.49 70.64 66.36
BOA† 5.411 45.56 72.81 75.60 75.95 72.71 45.20 79.27 71.03 67.27

LLaMA-30B

FP Baseline 4.101 52.90 78.96 82.69 82.63 75.47 48.20 82.26 75.77 72.36

INT2

OmniQuant 8.598 33.45 57.37 62.84 59.21 39.36 37.20 70.02 60.14 52.45
AffineQuant 7.267 38.14 65.07 73.33 67.61 53.75 38.60 74.21 64.96 59.46
QuaRot-RTN 3.8e3 25.77 26.52 37.83 25.80 0.01 23.80 51.69 47.83 29.91

QuaRot-GPTQ 7.283 39.08 68.01 65.44 65.54 58.15 38.40 73.39 67.56 59.45
DuQuant 5.7e3 27.13 26.98 38.75 26.76 0.00 26.20 49.89 49.17 30.61

DuQuant + LWC 7.706 38.48 64.60 70.00 67.56 48.08 36.40 72.96 65.11 57.90
BOA† 6.525 41.47 68.01 64.65 67.63 66.31 41.00 74.21 70.32 61.70

INT3

OmniQuant 4.766 50.09 76.18 79.91 79.58 70.79 45.20 79.92 74.43 69.51
AffineQuant 4.729 50.60 76.81 79.85 79.60 72.83 44.60 80.52 74.74 69.94
QuaRot-RTN 6.355 37.80 65.32 67.98 64.79 47.46 38.80 72.80 67.17 57.77

QuaRot-GPTQ 4.759 49.23 77.19 81.22 79.97 75.98 45.20 80.41 75.61 70.60
DuQuant 5.066 49.49 74.71 79.97 79.87 72.78 46.40 79.54 74.51 69.66

DuQuant + LWC 4.634 49.32 75.17 81.35 80.26 72.29 46.20 81.01 73.72 69.92
BOA† 4.602 52.73 77.23 80.83 80.04 75.91 45.60 80.79 76.16 71.16

† BOA has been applied after transforming the model via QuaRot.
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D.3. Weight-Activation Quantization Results

We evaluate the weight-activation quantization performances of the proposed BOA. As in prior works (Shao et al., 2023; Ma
et al., 2024; Lin et al., 2024; Ashkboos et al., 2024; Liu et al., 2024), we apply per-token nearest-rounding quantization
for input activations and KV caches. We use the notation ‘WxAyKVz’ to denote the x-bit weight quantization, y-bit
input activation quantization, and z-bit KV cache quantization. When measuring the performance of RTN, GPTQ, and
the proposed BOA, we use SpinQuant for the model transformation as SpinQuant outperforms QuaRot by optimizing the
transformation for the activation quantization (Liu et al., 2024). When optimizing the rotation matrix in SpinQuant, we
quantize both weights and activations for SpinQuant-RTN and quantize only activations for SpinQuant-GPTQ and the
proposed BOA, as in the original paper (Liu et al., 2024). In this appendix, we provide the results on LLaMA3 models for
various quantization configurations.

Table 13. Weight-activation quantization performance on the transformed LLaMA3-8B

Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

FP16 Baseline 6.137 53.67 77.61 81.19 79.15 72.23 45.00 81.01 73.24 70.39

W2A4KV16

OmniQuant 2.9e5 25.94 26.22 38.50 24.86 0.00 28.00 50.44 49.33 30.41
AffineQuant 3.2e5 26.62 26.30 38.13 25.62 0.00 29.60 49.51 52.57 31.04

SpinQuant-RTN 28.38 25.77 35.52 62.11 37.55 18.89 24.20 56.42 51.85 39.04
SpinQuant-GPTQ 26.35 23.38 38.30 60.43 37.34 16.44 26.20 58.71 53.51 39.29

DuQuant 4.5e5 25.77 25.97 43.09 26.09 0.00 27.00 51.85 50.83 31.33
DuQuant + LWC 4.4e4 26.28 27.10 38.38 25.81 0.00 28.00 50.49 50.12 30.77

BOA† 17.31 27.82 47.52 63.27 44.54 27.27 29.40 61.86 54.54 44.53

W3A3KV16

OmniQuant 2.7e4 26.79 26.05 38.62 25.43 0.00 26.20 50.16 50.36 30.45
AffineQuant 3.0e4 26.45 25.25 38.62 25.20 0.00 30.00 50.76 49.41 30.71

SpinQuant-RTN 21.27 27.05 42.93 62.75 45.02 27.07 29.00 62.02 52.25 43.51
SpinQuant-GPTQ 20.49 26.96 40.40 54.77 50.47 26.17 31.80 62.13 53.35 43.26

DuQuant 280.8 23.29 29.42 41.41 30.84 1.37 26.40 51.09 51.22 31.88
DuQuant + LWC 783.1 22.35 27.57 38.07 28.05 0.18 27.00 51.74 50.59 30.69

BOA† 17.56 31.66 45.88 57.98 53.55 32.56 32.00 65.34 52.17 46.39

W4A4KV16

OmniQuant 142.4 22.44 35.02 41.65 33.69 2.46 27.60 54.90 51.14 33.61
AffineQuant 144.5 25.43 32.70 45.17 33.72 2.83 25.20 56.58 49.96 33.95

SpinQuant-RTN 8.229 45.14 72.10 75.44 74.07 59.53 40.80 76.44 67.88 63.93
SpinQuant-GPTQ 7.636 46.33 72.31 75.17 72.69 64.27 42.80 76.44 68.27 64.79

DuQuant 7.793 45.90 71.46 72.60 74.36 66.06 42.40 78.02 69.61 65.05
DuQuant + LWC 8.066 44.20 71.13 74.01 73.59 58.55 40.60 76.33 66.77 63.15

BOA† 7.496 47.10 72.05 74.98 74.22 66.29 42.00 76.33 69.53 65.31

W4A4KV4

OmniQuant 188.2 22.78 32.32 43.39 31.69 2.01 25.40 54.79 50.20 32.82
AffineQuant 221.5 22.61 31.23 40.98 31.06 1.53 24.60 55.77 50.28 32.26

SpinQuant-RTN 8.503 42.06 69.40 72.78 72.69 60.50 38.40 74.21 65.19 61.90
SpinQuant-GPTQ 7.869 45.56 73.32 71.07 73.88 63.13 39.80 77.04 68.59 64.05

DuQuant 8.000 45.99 70.88 74.01 73.67 64.32 41.00 76.55 68.90 64.42
DuQuant + LWC 8.402 44.80 70.29 73.82 73.69 58.61 39.00 75.08 66.77 62.76

BOA† 7.705 45.22 74.54 72.81 74.09 65.72 43.60 77.53 66.69 65.03
† BOA has been applied after transforming the model via SpinQuant.
* The LET option has been deactivated for OmniQuant and AffineQuant because this option does not support models exploiting GQA.

19



BoA: Attention-aware Post-training Quantization without Backpropagation

Table 14. Weight-activation quantization performance on the transformed LLaMA3.2-1B

Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

FP16 Baseline 13.15 38.14 63.26 69.51 60.78 54.38 34.60 74.37 59.51 56.82

W2A4KV16

OmniQuant 2.5e3 24.83 26.85 37.83 26.01 0.00 29.00 52.34 51.78 31.08
AffineQuant 6.1e3 25.00 26.73 37.89 25.64 0.00 26.80 52.18 50.36 30.58

SpinQuant-RTN 93.90 23.63 32.62 54.59 28.71 7.51 24.60 53.43 50.75 34.48
SpinQuant-GPTQ 104.4 21.59 32.28 50.83 30.11 7.55 26.20 53.75 49.96 34.03

DuQuant 1.0e5 26.28 25.04 46.61 26.39 0.00 29.40 49.13 47.51 31.30
DuQuant + LWC 1.0e4 26.88 24.54 38.04 25.78 0.00 28.00 50.98 50.43 30.58

BOA† 59.95 23.98 37.04 54.68 32.02 9.33 27.00 56.04 52.41 36.56

W3A3KV16

OmniQuant 7.1e3 26.79 26.60 38.20 25.24 0.00 29.20 51.03 48.93 30.75
AffineQuant 5.6e3 27.39 26.77 38.38 25.59 0.00 29.40 49.89 49.09 30.81

SpinQuant-RTN 57.43 24.23 33.75 53.76 32.59 12.11 25.40 53.86 49.72 35.68
SpinQuant-GPTQ 57.52 23.38 36.07 48.93 35.13 10.89 27.40 55.82 47.12 35.59

DuQuant 2.9e4 25.09 26.14 40.00 25.94 0.01 28.40 50.49 50.75 30.85
DuQuant + LWC 1.2e4 25.17 25.21 39.33 25.65 0.00 27.20 51.85 51.22 30.70

BOA† 48.47 23.81 38.97 53.21 35.55 13.90 26.80 54.84 52.49 37.45

W4A4KV16

OmniQuant 156.0 24.23 32.66 47.89 31.15 0.84 27.20 54.84 50.12 33.62
AffineQuant 155.8 23.63 35.14 47.86 30.61 0.97 28.80 54.52 48.30 33.73

SpinQuant-RTN 17.66 32.25 54.80 63.30 53.38 40.69 30.80 68.93 53.75 49.74
SpinQuant-GPTQ 16.68 33.79 55.56 64.77 55.08 41.35 33.40 68.28 54.85 50.89

DuQuant 2.3e4 26.37 26.47 40.28 26.40 0.01 30.00 48.59 48.38 30.81
DuQuant + LWC 1.9e4 26.19 26.81 40.31 25.48 0.00 26.00 50.76 47.12 30.33

BOA† 16.25 33.62 58.12 65.72 55.06 44.28 31.80 69.80 55.64 51.76

W4A4KV4

OmniQuant 219.2 23.55 31.82 45.47 29.46 0.79 28.00 51.52 48.22 32.35
AffineQuant 222.0 23.46 32.74 48.53 29.17 0.64 30.20 52.88 52.64 33.78

SpinQuant-RTN 19.68 32.25 52.86 61.71 50.74 34.91 31.60 66.65 53.43 48.02
SpinQuant-GPTQ 18.31 30.72 55.18 61.90 52.91 39.13 31.80 67.30 51.93 48.86

DuQuant 2.0e4 25.60 25.97 39.91 26.03 0.00 27.80 49.02 50.36 30.59
DuQuant + LWC 1.7e4 27.05 26.01 38.96 26.07 0.01 28.40 49.73 49.41 30.71

BOA† 17.83 32.94 56.02 64.16 53.16 40.41 31.60 68.93 56.04 50.41
† BOA has been applied after transforming the model via SpinQuant.
* The LET option has been deactivated for OmniQuant and AffineQuant because this option does not support models exploiting GQA.

Table 15. Weight-activation quantization performance on the transformed LLaMA3.2-3B

Precision Method Wiki2 PPL (↓) Zero-shot Accuracy (↑)
Arc-c Arc-e BQ HS LAMB OBQA PIQA WG Average

FP16 Baseline 11.04 46.16 67.80 78.62 70.44 62.15 36.00 75.52 67.40 63.01

W2A4KV16

OmniQuant 5.8e3 25.94 26.81 37.89 25.83 0.00 28.80 50.44 49.80 30.69
AffineQuant 5.6e3 23.89 26.64 38.41 25.74 0.00 26.00 49.56 49.49 29.97

SpinQuant-RTN 46.31 24.06 31.14 51.87 31.41 12.70 26.60 55.39 50.99 35.52
SpinQuant-GPTQ 68.74 23.12 32.45 38.29 31.84 9.53 27.20 54.95 51.30 33.59

DuQuant 1.2e5 25.94 24.75 39.91 26.77 0.00 29.20 51.63 49.80 31.00
DuQuant + LWC 1.2e3 24.91 25.63 37.83 26.16 0.00 28.40 52.72 48.07 30.47

BOA† 34.25 24.57 36.28 60.24 38.57 17.38 29.40 57.56 52.49 39.56

W3A3KV16

OmniQuant 1.2e4 25.00 26.56 37.95 25.84 0.00 27.20 49.73 51.14 30.43
AffineQuant 1.0e4 25.77 25.72 38.13 26.21 0.00 28.20 50.05 49.72 30.48

SpinQuant-RTN 36.37 24.23 35.52 55.66 36.04 15.19 26.80 57.78 49.72 37.62
SpinQuant-GPTQ 27.23 28.33 40.70 60.73 44.15 21.53 28.20 58.16 54.06 41.98

DuQuant 564.6 22.01 27.02 43.21 29.68 0.94 27.00 50.60 52.80 31.66
DuQuant + LWC 82.65 23.04 31.61 48.75 33.24 3.01 28.80 53.32 53.43 34.40

BOA† 23.76 28.75 44.53 60.98 46.08 29.32 28.40 60.07 54.22 44.04

W4A4KV16

OmniQuant 131.8 24.57 34.55 48.75 36.10 3.21 27.00 56.37 51.07 35.20
AffineQuant 131.8 23.55 34.60 47.65 35.80 3.01 27.80 56.26 49.57 34.78

SpinQuant-RTN 12.42 38.23 60.94 72.69 64.68 55.02 31.60 71.22 61.09 56.93
SpinQuant-GPTQ 11.87 39.51 63.05 74.31 66.42 56.57 35.80 71.22 62.83 58.71

DuQuant 13.91 38.40 59.93 74.59 66.43 53.84 36.60 70.73 60.46 57.62
DuQuant + LWC 13.32 38.23 60.73 75.29 65.93 51.58 36.40 71.87 63.38 57.93

BOA† 11.57 40.70 63.68 75.50 66.86 56.77 36.00 70.24 63.61 59.17

W4A4KV4

OmniQuant 169.1 23.89 34.22 43.76 32.36 1.62 26.20 54.24 50.51 33.35
AffineQuant 197.1 21.42 32.87 42.20 31.70 1.25 27.00 55.22 50.75 32.80

SpinQuant-RTN 12.96 39.16 61.87 72.42 63.06 48.84 34.40 69.70 58.80 56.03
SpinQuant-GPTQ 12.24 39.33 61.91 72.32 65.56 54.57 35.20 70.13 61.33 57.54

DuQuant 14.65 39.51 60.02 72.08 65.76 52.54 34.00 69.53 62.19 56.95
DuQuant + LWC 13.84 38.99 59.68 72.05 64.76 49.18 35.60 70.40 61.56 56.53

BOA† 11.98 39.08 63.64 74.22 65.60 55.51 38.80 71.22 63.14 58.90
† BOA has been applied after transforming the model via SpinQuant.
* The LET option has been deactivated for OmniQuant and AffineQuant because this option does not support models exploiting GQA.
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E. Pseudocode for GPTQ
In this appendix, we provide the pseudocode of the conventional GPTQ (Frantar et al., 2023), which is omitted in the main
manuscript due to the page limitation.

Algorithm 2 GPTQ
Input: weights W, Hessian information Ucol, and pre-determined step size S

1: Initialize quantized output: Q← 0drow×dcol

2: Initialize quantization errors: E← 0drow×dcol

3: for j = 0, · · · , dcol − 1 do
4: Quantize the j-th column: Q:,j ← quant(W:,j ,S)

5: Estimate quantization error: E:,j ← (W:,j −Q:,j)/[Ucol]j,j
6: Update weights: W:,j: ←W:,j: −E:,j · [Ucol]j,j:
7: end for

Output: quantized weights Q, quantization error E
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