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ABSTRACT

The application of machine learning in sciences has seen exciting advances in re-
cent years. As a widely-applicable technique, anomaly detection has been long
studied in the machine learning community. Especially, deep neural nets-based
out-of-distribution detection has made great progress for high-dimensional data.
Recently, these techniques have been showing their potential in scientific disci-
plines. We take a critical look at their applicative prospects including data univer-
sality, experimental protocols, model robustness, etc. We discuss examples that
display transferable practices and domain-specific challenges simultaneously, pro-
viding a starting point for establishing a novel interdisciplinary research paradigm
in the near future.

1 INTRODUCTION

The advances in the deep learning revolution have been expanding their influence in many domains
and accelerating research in a generalized interdisciplinary manner. Neural nets serving as general
function approximators have been employed in scientific applications including object identifica-
tion/classification, anomaly/novelty detection, autonomous control, and neural net-based simula-
tion, etc. Great successes have been made in multiple scientific disciplines. A typical example is
AlphaFold (Jumper et al., 2021) for accurate protein structure prediction. At the same time, many
progresses have been made in physical sciences (Baldi et al., 2014; Ribli et al., 2019), biology
(Ching et al., 2018), molecule generation / drug discovery (Gottipati et al., 2020), medical imaging
(Zhang et al., 2020), etc.

Despite the successes, there are many challenges or unrecognized pitfalls in transporting machine
learning techniques into more traditional science domains. Not being aware of these possible pitfalls
could result in vain efforts and sometimes catastrophic consequences in real-world model deploy-
ment. In the following, we take a holistic look at the current collaborative scheme in machine learn-
ing applications for sciences in this new cross-disciplinary research era. The differences between
general machine learning (mainly focused on computer vision (CV) and natural language processing
(NLP)) and tailored scientific applications reside in all parts of the pipeline. The following aspects
build an intertwined picture in the modern machine learning-assisted scientific discovery: Nature
of the data; Inference process; Benchmarks; Uncertainty quantification; Generalization and
Robustness. Keeping the differences in mind helps shape the research guidelines toward a well-
focused and suited technology transfer. Adapting the workflow according to the needs promotes
and secures scientific applications and transforms the research paradigm in a universal manner. Fi-
nally, the interplay between machine learning and scientific discovery benefits from a communal
understanding of the field vocabulary, the publishing traditions, the collaboration schemes, and the
academic setups (Wagstaff, 2012). This new regime solicits novel community infrastructures for
more impactful research works in the next few years.

2 AN EXAMPLE: OUT-OF-DISTRIBUTION DETECTION

Thanks to the capacity of processing high-dimensional data, deep neural networks-based out-of-
distribution (OOD) detection in computer vision and natural language processing has shown great
potential and seen much progress in the past few years (Hendrycks & Gimpel, 2017; Vaze et al.,
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Figure 1: Connection and differences in the pipelines for domain science practices and machine
learning practices.

2021; Ahmed & Courville, 2020; Ren et al., 2019; Pang et al., 2021). Models trained on in-
distribution (ID) data are expected to “know” what they don’t know. Thus they are used to detect
unseen patterns as anomalies, by the associated uncertainties or likelihood. On the other hand, OOD
detection also serves as a check for model calibration and robustness against dataset shifts.

At the same time, as an important emerging research area, scientific applications of machine learn-
ing are seeing great success in advancing the discovery of novel natural phenomena. Anomaly
detection techniques have been used to search for (rare) novel particles for high energy physics ,
galactic activities for astrophysics , and novel molecular mechanisms for molecular physics . De-
spite these successes, OOD in the machine learning community often follows common workflow
and conventions, which might result in unexpected failures in real-world applications. The com-
ponents of the typical workflow (Fig. 1) reflect fundamental differences and focuses in these two
streams of research. The motives and protocols share some common aspects, yet display essential
differences and focuses. Being aware of these differences in research protocols facilitates effective
application and forges innovative and impactful collaboration. We discuss these aspects respectively
in the following.

2.1 DATASETS AND INPUT REPRESENTATION

The first and foremost element in the pipeline is the data under consideration. Computer vision and
natural language processing, as the main application areas of machine learning, have restricted input
formats. In contrast, data in sciences come in diverse formats, including raw device response records
in particle detectors, light spectra received by telescopes, X-ray images, etc.

These differences motivate intriguing research topics specifically for scientific applications. On the
one hand, the input formats of scientific data request novel tailored neural architectures that are
aware of the underlying inductive biases. For instance, many scientific data have inherent symme-
tries or are constrained by physics laws or associated invariances. In the same vein, equivariant
neural networks (Cohen & Welling, 2016) and geometric deep learning (Bronstein et al., 2021) have
pioneered neural architectures and mechanisms for incorporating the concepts of symmetries. They
have been gaining attention in particle physics (Bogatskiy et al., 2020), computational chemistry
(Anderson et al., 2019; Batzner et al., 2022), etc. At the same time, these approaches have boosted
research in the usual machine learning applications (computer vision, natural language processing,
etc.). Similar motives can broaden the research horizon of “classical” machine learning, forge
multidisciplinary collaborations, and facilitate innovative research advances. On the other hand,
attention-based transformers (Vaswani et al., 2017) have reigned the NLP community and more re-
cently intruded computer vision (Dosovitskiy et al., 2020). They have been successful in processing
multiple data formats (Reed et al., 2022). These achievements indicate potential directions for cross-
disciplinary research protocols with a uniform framework and reusable and shareable modules that
can be interfaced with scientific tasks.

Regarding the data collection process, while image labeling is expensive for machine learning re-
searchers, simulation data with labels in sciences are relatively cheaper to generate (although it could
take much computing resources in some cases). That means we can have as much data as we need.
As a practical result, some strategies (e.g., those dedicated to small datasets) are not necessarily
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appropriate for scientific applications. On the other hand, models trained on simulated data are con-
fronted with performance degradation-associated distribution shifts when applied to real data. This
will be further discussed in section 2.4.

2.2 INFERENCE, DECISION, AND EVALUATION

In most scientific applications, model inference 1 is closely related to the underlying hypotheses to
be tested and thus the evaluation metrics should depend on the chosen test sets which are supposed
to resemble the real-world deployment circumstances. In other words, the components of the test
sets define the inference strategies. At the same time, the test sets are determined by the science
under investigation.

The well-adopted practice in the ML community is testing the model on all the classes for a bench-
mark dataset and reporting class-inclusive metrics (Hendrycks & Gimpel, 2017). In most of the
research literature, the model evaluation metrics are reported for classifying two large benchmark
datasets separately collected (e.g., models trained on CIFAR are tested against other datasets such
as SVHN, or even tested on uniform noise as the OOD). This convention is, of course, convenient
and effective for a preliminary assessment.

However, in scientific applications, depending on the context, due to the common imbalance of in-
distribution classes, it is more suitable to test against class-conditional in-distribution data. A generic
example is that background events have different class weights, sometimes in extreme imbalance.
If the phenomenon of interest is detected under the circumstance of a specific set of background
events, we will need to adjust our evaluation metrics to be calculated for the distribution of focus.

Test datasets One problem of current scientific applications is the lack of consensus on benchmark
test datasets. Researchers might work under different selected subsets, different data qualities, and
different simulation settings. Even in more focused sub-fields, researchers usually report model
metrics on their own datasets. This brings variations and concerns in model comparison. From an-
other practical point of view, robustness examination and stress tests also benefit from a “complete”
set of test sets. Research schemes might bias toward specific scenarios if they are only tested on a
limited set of data.

Evaluation metrics For anomaly detection, a widely-reported metric is the Area Under the ROC
curve (AUC) score based on the binary ID/OOD classification. OOD classes are usually from other
datasets different from the training datasets. The selection of ID and OOD datasets is rotating
around common benchmarks MNIST/Fasion-MNIST or CIFAR-10/CIFAR-100/ImageNet/SVHN.
However, this kind of inclusive measure doesn’t give much information on context-sensitive use
cases. Meanwhile, different datasets have intrinsic dataset shifts which affect the validity of this ap-
proach. Though there are recent proposals (Ahmed & Courville, 2020) on transforming the research
scheme to a more specific within-benchmark evaluation, we haven’t seen large-scale changes in the
ML community.

2.3 MODEL EXAMINATION AND FAILURE ANALYSIS

Failure mode analysis can serve as a portal for understanding the methods proposed. It’s not a
“bonus” compared with the AUC. Rather, it helps reveal crucial aspects of the model learning mech-
anisms and provides insights into the robustness under variable deployment circumstances. And
these inspections often lead to further research ideas and model improvement directions. For in-
stance, OOD detection in computer vision might fail because of the pixel correlation (Ren et al.,
2019). This inspection leads to the remedies proposed there.

On the other hand, scientific data may have complex nature that makes model examination difficult
compared with the cases in CV or NLP. Usually, they come in formats not “human-readable”. To
interpret model performance and examine model failures would require extra interfaces or tools.
Sometimes, involving theoretical and expert-designed features becomes necessary.

1We follow the definition in deep learning for the terminology ”inference”, which mostly refers to the
decision-making process at test time.
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2.4 GENERALIZATION AND ROBUSTNESS

Building generalizable and robust models is the goal of every machine learning practitioner. There
are different understandings of what “robustness” (Basart, 2021) stands for, especially across dif-
ferent domains. In the ML community, adversarial attacks (Goodfellow et al., 2015) caused by
perturbations in the input space are under frequent scrutiny. Models robust to malicious attacks have
been developed and investigated. In scientific applications, we may have a different definition and
focus regarding model “robustness”. In anomalous signal detection, we would like the model to 1)
be effective across an extensive range of unseen signals, 2) have less distortion under the simulation-
to-data shift, and 3) be invariant to spurious correlations.

Uncertainty Quantification and Model Calibration In counting experiments, which is the main
probing method in particle physics, statistical and systematic uncertainties (Barlow, 1989; Cranmer,
2014; Demortier, 2008) are the common uncertainties we consider for interpreting the results. Insert-
ing neural nets into the pipeline could result in complicated uncertainty quantification. Calibration
of the outputs and estimation of the effects of nuisance parameters need extra effort. Meanwhile,
the terminologies are different in the machine learning community. Uncertainties in deep neural
models are usually categorized into epistemic uncertainty (model uncertainty) and aleatoric uncer-
tainty (data uncertainty) (Gal, 2016). At first sight, the aleatoric uncertainty seems identical to the
statistical uncertainty, while the epistemic uncertainty shares a similar meaning with the systematic
uncertainty.

Quantifying what the neural networks don’t know, or the uncertainty of the outputs, is important
to ensure we have a trustworthy deployment of the models (Ovadia et al., 2019; Malinin & Gales,
2018). Calibration is one method to quantify the quality of model uncertainty. (A calibrated model
should have a decent alignment between the model confidence and the actual likelihood.) Especially
for OoD detection, out-of-distribution uncertainty (“know what is unknown by the model”) is also
an important indicator. One typical method which has a long history is ensemble models (Laksh-
minarayanan et al., 2017). At the same time, in the framework of Bayesian Neural Networks, the
Monte Carlo drop-out (Gal & Ghahramani, 2016) technique can serve as a surrogate for estimating
model uncertainty.

Meanwhile, taking epistemic uncertainty into account can increase model robustness and improve
OOD detection performance (Lakshminarayanan et al., 2017). Correspondingly in scientific appli-
cations, systematic uncertainty has been associated with nuisance parameters (Dorigo & De Cas-
tro Manzano, 2020; d’Agnolo et al., 2022; Ghosh et al., 2021). And incorporating this uncertainty
in the training strategy can result in more robust and powerful models.

Distribution Shift Due to the large dimensionality under consideration in deep learning models,
the effects under distribution shift are hard to quantify. Robustness under distribution shift can be
realized through adversarial training strategies (Ganin et al., 2016; Li et al., 2018). Other approaches
(Magliacane et al., 2018) leverage domain invariances to achieve robustness. Similar approaches
have been taken in High Energy Physics (Louppe et al., 2017), though used in another context.

In the same vein, for many scientific domains, simulation plays an important role in modeling the
background. Especially for supervised learning, data with label information are mostly dependent
on the simulator. Models trained on simulation data will have degraded performance when directly
applied to real data. Though there are workarounds for background estimation, achieving domain
invariance brings more opportunities and makes even complex search strategies possible.

3 SUMMARY

The coming decades call for a novel collaboration scheme of machine learning and sciences, which
will foster great opportunities for machine learning researchers and domain scientists. By clarifying
the current research protocols, identifying obstacles and pitfalls, discussing possible solutions, and
conceiving future directions, we can advance this career further. In order to make the discussion
more concrete, we utilize anomaly detection – a popular topic in machine learning and an emerging
research direction in sciences – to take a detailed look at the current gaps. We discussed different
components in the pipeline, and analyzed the communal practices and the differences in the machine
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learning community and the science. We also discussed opportunities and challenges, and proposed
potential solutions for the new generation’s collaborative innovation in this new era.
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