
Under review as a conference paper at ICLR 2023

PROBABLE DATASET SEARCHING METHOD WITH UN-
CERTAIN DATASET INFORMATION IN ADJUSTING AR-
CHITECTURE HYPER PARAMETER

Anonymous authors
Paper under double-blind review

ABSTRACT

Different types of tasks with uncertain dataset information are studied because
different parts of data may have different difficulties to achieve. For example,
in unsupervised learning and domain adaptation, datasets are provided without
label information because of the cost of human annotation. In deep learning,
adjusting architecture hyper parameters is important for the model performance
and is also time consuming, so we try to adjust hyper parameters in two types of
uncertain dataset information:1, dataset labels are postponed to be obtained so
hyper parameters need to be adjusted without complete dataset information. 2,
hyper parameters are adjusted with a subset training dataset since training models
with complete training dataset is time consuming. Here, we propose several loss
functions to search for probable dataset when the complete dataset information is
not obtained. The experiments on 9 real world data demonstrate the performance
of our method.

1 INTRODUCTION

In deep learning, most regression data can be represented with the form (X,Y ), where X is the
data input and Y is the label. However, different parts of the data may have different difficulties
to achieve. For example, in unsupervised learning Barlow (1989) and domain adaptation Wang &
Deng (2018), the label of dataset is assumed hard to be obtained since label usually needs human
annotation. These situations could be viewed as making decisions when part of dataset information
is uncertain. Another probable situation is that input sampleX can be obtained much earlier than
label Y is obtained, because human annotation of Y is time consuming or the exact task target of Y
is not determined when the input samples are collected. In such situation, the computing resources
are assumed to be abundant before the label Y is obtained. In deep learning, architecture hyper
parameter setting is an important factor for the performance of a model. Then a question is whether
the architecture hyper parameters, corresponding to different network architectures, can be compared
and adjusted only with input sample information X . Selecting hyper parameter only with input
sample information X could save the time to try different hyper parameters when the label Y is
obtained. Input sample informationX usually takes more memory space than label information Y ,
indicating that input sample informationX contains more information than label information Y , so
predicting the architecture comparison only with input sample informationX seems probable.

To deal with the uncertain information in a dataset, we propose a probable dataset searching method to
predict architecture comparison, where the dataset representation is inspired by the dataset definitions
and assumptions in recent neural network convergence works Kohler & Langer (2021); Bauer &
Kohler (2019); Schmidt-Hieber (2020); Suzuki (2018); Farrell et al. (2021). Our method could
search probable datasets with provided dataset information such as input sample information X .
Concretely, the comparison of two hyper parameters can be predicted by searching for the existence
of probable dataset that one architecture is better or worse than another. Here, we use a neural
network to approximate the dataset regression function and apply several loss functions to search for
the probable dataset that a trained architecture is better than another in testing dataset.

An assumption in our method is that the compared architectures should have competitive performance
on searched dataset. Empirically, the compared architectures are selected because they perform well

1



Under review as a conference paper at ICLR 2023

on the data domain due to former experience, so we search the dataset from the situations that at least
one compared architecture could perform well in the dataset. In implementation, the neural network
to approximate the regression function has the same architecture as a compared architecture.

Probable dataset searching method could also help analyze the characteristics irrelevant to the concrete
dataset information ofX . For example, sometimes training models with complete dataset costs too
much time so a small subset can be used to approximately adjust architecture hyper parameters Klein
et al. (2017); Elsken et al. (2019). However, this approximation is correct sometimes and wrong at
other times. When comparing two given hyper parameters, probable dataset searching method could
figure out the conditions that the approximate comparison is correct.

2 METHOD

2.1 DATASET REPRESENTATION

When a sample in a regression dataset is denoted by a random variable vector with the form (X,Y ),
the relationship betweenX and Y can be represented as a regression function f0(x) = E{Y |X =
x}, where E is the expectation. In recent deep neural network convergence theorem Kohler & Langer
(2021); Bauer & Kohler (2019); Schmidt-Hieber (2020); Suzuki (2018); Farrell et al. (2021), it
is proved that f0 could be converged by multi-layer fully connected neural networks trained with
enough samples, where f0 satisfies some requirements and assumptions. Here, we assume that the
convergence theorem is also true with other types of deep neural networks. We then use a neural
network to approximate a regression function with two reasons: 1, as a function, neural network
also satisfies the requirements and assumptions of a regression function. 2, there is always a neural
network g that the difference between f0 and g is smaller than a given positive value because of the
definition of convergence.

As a result, a regression dataset can be expressed by
Y = g(X) + ε, (1)

where the neural network g has a small enough similarity to f0, ε is a random disturbance of
regression function with 0 expectation. Then, there are three components influencing the regression
dataset, the regression function g, X distribution and random disturbance distribution ε. ε should
be much smaller than g in the dataset so the relation between inputs and outputs could be easily
distinguished from random disturbance.

There is another additional assumption of the regression dataset: The regression function should not
be too complex that no compared architecture can perform well in the comparison. It also assumes
that the compared architectures in the searching method are selected with empirical knowledge to
provide competitive performance in an uncertain dataset with enough training samples. Practically,
the assumption is satisfied by setting the regression function g with the same architecture as a
compared architecture.

Formally, to train a neural network gAR-A with its parameters θAR-A with a training dataset α1, error
value Err is introduced as a smaller the better value to evaluate the performance of a model in the
dataset α1. Then training gAR-A with a training dataset α1 aims to find parameters θ∗AR-A(α1) that

θ∗AR-A(α1) = argmin
θAR-A

Err(α1, gAR-A(·,θAR-A)), (2)

where smaller error value means better model performance in training dataset α1. In regression task,

Root Mean Square Error (RMSE) is a widely used error value: RMSE =
√

1
K ‖ŷ − y‖

2
2, where

‖ · ‖2 is the l-2 norm, y is the true value, ŷ is the model output and K is the dimension of y.

The difference of the error value between two architectures on a testing dataset α2 can be used to
compare the performance of two architectures AR-A and AR-B:

C(AR-A,AR-B, α1, α2) = Err(α2, gAR-A(·,θ∗AR-A(α1)))− Err(α2, gAR-B(·,θ∗AR-B(α1))), (3)
where models are trained by training dataset α1 and tested by testing dataset α2.

In this paper, we try to compare the performance of two architectures when part of dataset information
is uncertain, which aims to find the probable situations that AR-A (or AR-B) performs better,
corresponding to a small C(AR-A,AR-B, α1, α2) (or C(AR-B,AR-A, α1, α2)) value.

2



Under review as a conference paper at ICLR 2023

Generate

AR-A

AR-B
−

Train

Train Test

Test

Generate

−

Training 

Dataset
Trained Network Testing 

Dataset

Iteration 1

Iteration 2

Data Representation

Testing Error 

Comparison

Figure 1: Probable dataset searching procedure, where models are trained in α1 and tested in α2. The
testing difference of two architectures are used to search probable dataset.

2.2 CALCULATION AND LOSS FUNCTION

We start with the illustration of loss functions, which are important to search for dataset parameters in
backpropagation. As shown in Fig. 1, by optimizing loss functions, we could search for the probable
dataset that architecture AR-A performs better than AR-B. Then, the comparison score can be used
to test the performance of a searched dataset.

In regression task, L2 or mean square error loss is a widely used loss function to train deep learning
models, where a small L2 loss means a small error value. The L2 loss function to train an architecture
AR-A with dataset α can be denoted by:

L2(AR-A, α) =
1

nK

n∑
i=1

‖gAR-A(Xi,θAR-A)− Yi‖22, (4)

where (Xi,Yi) ∈ α, dataset α contains n samples, K is the dimension of Y , ‖ · ‖2 denotes the l-2
norm and gAR-A is a neural network with architecture AR-A and parameters θAR-A.

When we deal with the situation that the dataset do not have label Y so the information of regression
function is uncertain, we use a neural network with architecture AR-D to approximate the regression
function g in Eq. equation 1. Then, when representing the dataset with the form of Eq. equation 1, L2

loss becomes L2(AR-A, α) = 1
nK

∑n
i=1 ‖gAR-A (Xi,θAR-A)− (gAR-D(Xi,θAR-D) + εi) ‖22, where

L2 can also be used to train the variables that contain dataset information, including the parameters
θAR-D, the distribution ofXi and εi.

To compare the performance, two architectures AR-A and AR-B first need to be trained with the
same training dataset α1 with L2 loss:

minLR1 = min
θAR-A

L2(AR-A, α1) + min
θAR-B

L2(AR-B, α1), (5)

where the parameters of AR-A and AR-B reach θ∗AR-A and θ∗AR-B with minimum LR1 value.

If we want to find a probable dataset where AR-A is better than AR-B, we need to let the comparison
score C(AR-A,AR-B, α1, α2) small. Since small L2 loss means small error value, searching a
dataset for a small comparison score equals to search θAR-D,X and ε with loss

minLR2(AR-A,AR-B) = min
θAR-D,X,ε

(L2(AR-A, α2)− L2(AR-B, α2)), (6)

where the parameters of AR-A and AR-B are trained by LR1 and not influenced by LR2. As illustrated
in the additional assumption, we let the dataset regression function architecture AR-D be the same
with AR-A in LR2 since we want to search for the dataset that AR-A performs well and a dataset
with architecture AR-A should best fit the AR-A model.

3



Under review as a conference paper at ICLR 2023

When dataset information needs to be searched, both α1 and α2 obey the relation described in
Eq. equation 1, so the dataset searched with LR2 loss function also influence α1 in LR1 loss.
Although L2 is differentiable with the respect to the parameters related to probable dataset, the LR1

loss only influence the parameters in AR-A and AR-B when training models. Besides, no parameters
in AR-A and AR-B are influenced by the LR2 loss when searching dataset. The combination of LR1

and LR2 losses means searching the dataset that a trained AR-A model performs better than a trained
AR-B model in testing dataset. We discuss more details of optimizing LR2 in Appendix.

X distribution, regression function gAR-D and ε are three unknown variables in Eq. equation 1 that
can be searched in our method. In this paper, the dataset searching method can be applied to different
types of dataset information missing. For example, when the dataset only does not have label Y , the
Xi in loss functions uses the known dataset input information and only parameters θAR-D and ε needs
to be searched in Eq. equation 6. If the dataset does not have label Y and completeX distribution,
X distribution also needs to be searched in Eq. equation 6. Concretely, the parameters θAR-D in
regression function gAR-D can be trained by backpropagation algorithm since LR2 is differentiable
with the respect to θAR-D in α2. IfX distribution needs to be searched, we use a set of discrete input
samples βX as an approximation to represent the distribution ofX , where the elements of βX obey
the distribution of X . The size of set βX should be a large number (100,000 in our experiment)
for a fine approximation. Then input samplesXi in datasets α1, α2 can be generated by randomly
selecting inputsX from βX and corresponding Y can be calculated with Eq. equation 1, where the
size of α1 is set to a fixed number to discover the relationship between train size and architecture
difference. The distribution of X can be searched by adjusting the input samples Xi in set βX
through the backpropagation of input samplesXi in dataset α2 with LR2 loss, where α2 is generated
from the set βX repeatedly. Similarly, the distribution of ε can be trained by adjusting the value in a
finite set as an approximation.

When training the distribution of X in βX , we need an additional normalization procedure since
current calculation environment can not deal with number with large out of range value (for example,
single or double precision floating point format both have maximum value). As a result, when
searchingX distribution, we apply a normalization method, which let each dimension inX has 0
mean and 1 standard deviation. The normalization equals to a linear operation to each dimension
in X . For distribution of ε, we normalize ε with 0 mean and a small standard deviation since the
expectation of ε should be 0 and we aim to study the situation that the regression function has the
main influence on the value of Y .

Similarly, the searched output value of regression function should not out of range, so we normalize
the searched regression function gAR-D with loss

LRN = ‖mean(AR-D, α2)− 0‖22 + ‖std(AR-D, α2)− 1‖22, (7)

where mean(AR-D, α2) (or std(AR-D, α2)) means calculating the mean (or standard deviation)
vector of each dimension in gAR-D on all input samples Xi in dataset α2. LRN aims to normalize
the output of regression function with 0 mean and 1 standard deviation to avoid out of range large
number in searching process.

In implementation, we search dataset through loss LR1, LR2 and LRN with several iterations, where
in each iteration, the parameters in architectures AR-A and AR-B are randomly initialized and trained.
The searched dataset will be tested by the score C(AR-A,AR-B, α1, α2) for evaluation.

3 EXPERIMENTS

3.1 ADJUSTING HYPER PARAMETER WITH INPUT INFORMATION

Here, we want to evaluate several methods in comparing two architecture hyper parameters without
knowing complete data information. These methods aim to save the time of adjusting hyper parameters
after obtaining the complete data information. When comparing two hyper parameters denoted by
architectures AR-A and AR-B with uncertain dataset information, different comparison predictions
lead to different training preferences after complete data information is obtained. There are three
types of preferences: 1, only training AR-A with complete data. 2, only training AR-B. 3, training
both and selecting the better. Three actually training preferences correspond to different comparison
prediction explanations: Corresponding to type 1 (or 2) preference, architecture AR-A (or AR-B) is

4



Under review as a conference paper at ICLR 2023

always better than or similar to another in probable datasets, so only one architecture needs to be
actually trained. Corresponding to type 3 preference, architecture AR-A is sometimes better and
sometimes worse than AR-B in probable datasets. Type 1 and 2 comparisons adjust and select hyper
parameters before the complete data information is obtained while type 3 comparison is the most
conservative prediction that adjusts hyper parameters after obtaining the complete data information.

There are two metrics in evaluating the performance of a comparison prediction, correct (or wrong)
situation and actually training times. Here, if an architecture AR-A actually performs better than
another in a complete dataset and AR-A will (or will not) be actually trained in a comparison
prediction, the comparison prediction is correct (or wrong). If an architecture AR-A actually performs
similar with another, any actually trained preference is acceptable so any comparison prediction is
correct. Here, if two architectures do not have statistical significance in a dataset with complete
information, we treat them as similar architectures, where we apply a 5% significance level t-test
score with 10 experiments for significance test.

When considering two metrics, correct prediction times is larger the better and actually training times
is smaller the better since we want to train models with smaller time consumption of adjusting hyper
parameters after obtaining complete dataset information. We apply an Average Evaluation Score
(AES) to consider two metrics together when making multiple comparison predictions:

AES =
1

N
(Correct− 2Wrong− 0.5Training), (8)

where N is comparison predictions number. Correct (or Wrong) refers to the correct (or wrong)
prediction times. Training refers to the total actually training times in the comparison predictions. In
AES, the weight of training times is half of the correct prediction times to let the most conservative
type 3 prediction has 0 evaluation score. The weight of wrong prediction times is twice of the
correct prediction times since a wrong comparison prediction means selecting a significantly worse
architecture. Then, it needs more time and computing resources to discover and rectify a wrong
prediction.

3.1.1 DATASETS AND HYPER PARAMETER CANDIDATES

We test the performance of different comparison prediction methods on time series forecasting
datasets, where the time series value of a future time step is predicted by a multidimensional time
series sequence. In time series forecasting, time step values of different time intervals can be predicted
by the same sequence, for example, a sequence from time step 1 to 100 can be used to predict the
value of time step 101, 102, 103. Then, using the series to predict the value of different time intervals
are the datasets with the same inputX and different label Y .

Then, the experiments aim to predict the selection of different Long Short Term Memory (LSTM)
hidden dimension numbers, where LSTM Hochreiter & Schmidhuber (1997) is a commonly used
architecture for time series forecasting datasets and the hidden dimension number is a commonly
adjusted hyper parameters in LSTM network. Probably the best hidden dimension numbers are
related to the input dimension, so we study the series with a fixed 6 dimension and 100 series length.
The candidate hidden dimension numbers are 4, 32, 256, which correspond to the hidden dimension
similar to the time series dimension, the hidden dimension a few times larger than the time series
dimension, the hidden dimension much larger than the time series dimension. We use the last hidden
state of LSTM to predict regression output by a 2-layer fully connected neural network with 50
hidden units and ReLU activation function. There are two comparison prediction tasks, where the
first makes hyper parameter selection between hidden dimension number 32 and 256, the second
makes selection between dimension number 4 and 32.

The experiments are made on nine different time series data with three data domains. Air: Three air
quality data contain time series of daily air quality indexes collected from 1 Jan. 2014 to 1 Mar. 2022
in the Shanghai, Beijing and Shenzhen cities of China1. WormMotion: Three organism motion data
correspond to three mutant types (wild, goa-1, unc-38) of time series extracted from EigenWorms
dataset in UEA time series classification archive Bagnall et al. (2018). HandMEG: Three brain
activity data contain the Magnetoencephalography (MEG) time series with three types of hand and
wrist movement (left, right, up) extracted from HandMovementDirection dataset in UEA time series

1https://aqicn.org/data-platform/

5



Under review as a conference paper at ICLR 2023

classification archive, where we select first 6 dimensions from 10 for forecasting to since we want
to keep the ratio between data dimension number and candidate LSTM hidden dimension numbers
consistent in different data. For each data, forecasting the time series with 1,2,3 and 4 intervals
corresponds to four regression datasets with the same X and different Y . More training samples
usually has positive influence on model performance, but whether larger training dataset size could
provide more concise architecture comparison prediction is uncertain. So we make experiments on
various train size, from 200, 400, 800 to 1600. The validation and testing dataset size are 500. As a
result, there are total 144 datasets in the experiments.

3.1.2 BASELINES

• CP: Conservative Prediction (CP) does not make any preference between two architectures, so
conservative prediction always make type 3 prediction. CP does not require any dataset information.

• SDP 1: Similar Distribution Prediction 1 (SDP 1) comes from the simple idea that the hyper
parameter performs well in a dataset will also performs well in a similar dataset. Here, we apply
SDP 1 to predict the hyper parameter of a dataset named dataset 2 based on another dataset 1, where
two datasets have exactly the sameX and different label Y (here dataset 1 and 2 are datasets with
different forecasting intervals extracted by the same time series data). SDP 1 predicts hyper parameter
of dataset 2 based on statistical significance on dataset 1, which makes type 1 (or type 2) prediction
on dataset 2 if a hyper parameter named AR-A performs significantly better (or worse) on data 1.
If two hyper parameters do not have significantly difference on dataset 1, SDP 1 will make type 3
prediction on data 2.

• SDP 2: Similar Distribution Prediction 2 (SDP 2) needs the same dataset information as SDP 1 and
makes bold prediction based on error difference on data 1. SDP 2 makes type 1 (or type 2) prediction
on dataset 2 if AR-A performs better (or worse) on data 1, no matter whether the performance is
significant or not.

In our method, architecture comparison prediction can be made by searching probable datasets with
loss in Eq. equation 6. When comparing the architecture hyper parameters denoted by AR-A and
AR-B, two types of probable datasets need to be searched, including the datasets that AR-A performs
better and the datasets that AR-B performs better. Then the comparison prediction is based on the
searching result: If a searched probable dataset shows statistically significantly better performance of
AR-A in testing dataset (after trained and validated in training and validation dataset) and no searched
probable dataset shows statistically significantly better performance of AR-B, the method makes type
1 prediction. Similarly, if a probable dataset that AR-B is significantly better exists and no probable
dataset that AR-A is significantly better exists, the method makes type 2 prediction. If the dataset that
AR-A is significantly better and the dataset that AR-B is significantly better both can be searched, the
method makes type 3 prediction. Here, we apply the probable dataset searching method to predict
architecture comparison with different levels of uncertain dataset information.

• PDS 0: Probable Dataset Searching 0 (PDS 0) method searches dataset without any dataset
information, so all parts of dataset information need to be searched in PDS 0.

• PDS 1: Probable Dataset Searching 1 (PDS 1) method searches dataset without any information of
label Y , so the regression function needs to be searched in the situation. Besides, PDS 1 has the input
samplesX information in the dataset but the training/validation/testing split of input samplesX is
unknown and shuffled in PDS 1. In time series forecasting task, the true training/validation/testing
split of input samples X is an important information since the input samples in each split are
actually similar: In time series forecasting, input samples are extracted by a sliding window and
adjacent input samples are usually put in the same split since training set should not contain the
forecasting target information of validation and testing set. Then the situation that input samples
in each training/validation/testing set are similar contains more information than the situation that
samples in each training/validation/testing set are shuffled.

• PDS 2: Probable Dataset Searching 2 (PDS 2) method searches dataset regression function with
the input samplesX information, including training/validation/testing split. Similar to PDS 1, the
method does not require any information of label Y .

Here, different methods require different levels of dataset information, which can be ordered as
follows: CP = PDS 0 < PDS 1 < PDS 2 < SDP 1 = SDP 2. SDP 1 and SDP 2 require most detailed

6



Under review as a conference paper at ICLR 2023

Table 1: Comparison prediction AES of several methods.
Comparison Task Dataset Domains Train Size CP SDP 1 SDP 2 PDS 0 PDS 1 PDS 2

32 Dim vs 256 Dim

Air

200 0 0.083 0.167 0 0 0.5
400 0 0.25 0.167 0 0 0.5
800 0 0.25 0.333 0 0 0.5
1600 0 0.333 0.5 0 0 0.5

WormMotion

200 0 0.417 0.5 0 0 0.333
400 0 0.375 0.333 0 0 0.333
800 0 0.292 0.333 0 0 0.333
1600 0 0.208 0.417 0 0 0.333

HandMEG

200 0 -0.125 -0.333 0 0 0
400 0 -0.5 -0.75 0 0 0
800 0 -0.5 -0.833 0 0 0
1600 0 -0.125 -0.167 0 0 0.167

4 Dim vs 32 Dim

Air

200 0 0.083 0.25 0 0.5 0.5
400 0 0.083 0.333 0 0.5 0.5
800 0 0.083 0.417 0 0.5 0.5
1600 0 0.125 0.167 0 0.5 0.5

WormMotion

200 0 0.333 0.333 0 0.5 0.5
400 0 0.375 0.333 0 0.5 0.5
800 0 0.5 0.5 0 0.5 0.5
1600 0 0.5 0.5 0 0.5 0.5

HandMEG

200 0 0.208 -0.167 0 0 0.5
400 0 0.25 -0.25 0 0 0.5
800 0 0.458 0.5 0 0 0.5
1600 0 0.5 0.5 0 0 0.5

Total AES 0 0.186 0.17 0 0.167 0.396
Avg. Correct 1 0.968 0.89 1 1 1
Avg. Wrong 0 0.032 0.11 0 0 0

Avg. Training Times 2 1.434 1 2 1.667 1.208

dataset information including the input samples X information and the label Y information on a
similar dataset. Probable dataset searching methods do not require such label Y information since
that information usually can not be easily obtained in real world situation. Besides, CP and PDS 0
requires no specific information of the dataset.

3.1.3 RESULTS

Table 1 shows the AES results of three data domains on two hyper parameter comparison tasks, with
the summarized information listed in the bottom 4 lines, including average AES, average correct
times, average wrong times and average actually training times. The AES result of each data domain
is averaged by the AES of three data in the domain, and each data corresponds to four datasets with
different forecasting intervals. For each dataset, there are other three datasets share the same input
samplesX and have different Y , so SDP 1 and 2 methods could make three comparison predictions
with each dataset. The best AES score is highlighted in bold.

Firstly, it can be found that the probable dataset searching method 2 (PDS 2) achieves the best AES
score while it requires less dataset information than baselines SDP 1 and 2. The predictions made by
PDS 2 could make high level of correct prediction times with small actually training times.

Secondly, the performance of PDS 0 is the same with the performance of CP, because when no dataset
information is provided, each candidate hyper parameter may perform better due to the datasets
searched by the method. As a result, in the experiments, PDS 0 always makes type 3 prediction for
each dataset as the CP method does.

Thirdly, the difference of AES score among PDS 0, PDS 1 and PDS 2 shows that with more dataset
information, the probable dataset searching method could provide better comparison prediction
between hyper parameters.

Fourthly, SDP 1 and 2 perform better than CP, PDS 0 and PDS 1 since they consider more dataset
information. However, SDP 1 and 2 are not practical methods because a similar dataset with the same
input samplesX information is hard to obtain. Besides, the predictions made by SDP 2 decrease the
actually training times but increase the wrong prediction times comparing to SDP 1. Since a wrong

7



Under review as a conference paper at ICLR 2023

Table 2: Comparison prediction by a small training subset to select hidden dimension between 32
and 256, where 32 (or 256) ↑ means 32 (or 256) performs better in RMSE error value. Sig. (or No
Sig.) means the difference is statistically significant (or not). The underlined number means the
corresponding situation could be searched by PDS, for example, 6 in row 32 ↑ & Sig. means PDS
method could find the dataset where 32 dimension is significantly better in both 200 and 1600 train
size.

Situation Happened Times Prediction Methods

Train Size 1600 Correct/Training Times/AES

32 ↑ & Sig. 256 ↑ & Sig. No Sig. CP SDP1 SDP2 PDS

Train Size
200

32 ↑ & Sig. 6 2 3 1/22/0 0.818/11/-0.045 0.818/11/-0.045 1/22/0
256 ↑ & Sig. 0 0 5 1/10/0 1/5/0.5 1/5/0.5 1/5/0.5
32 ↑ & No Sig. 4 1 6 1/22/0 1/22/0 0.909/11/0.227 1/22/0
256 ↑ & No Sig. 4 1 4 1/18/0 1/18/0 0.556/9/-0.833 1/18/0

Total AES 0 0.056 -0.083 0.069

prediction could lead to severe consequence in hyper parameter selection, SDP 2 performs worse
than SDP 1 in AES score.

Finally, increasing the training dataset size could not apparently improve the hyper parameter
comparison prediction performance, although larger training dataset size means more information for
SDP 1, SDP 2, PDS 1 and PDS 2 methods. We provide some additional illustration in Appendix.

3.2 ADJUSTING HYPER PARAMETER WITH A TRAINING SUBSET

Another situation of selecting hyper parameters without complete dataset is using a subset of training
dataset to adjust hyper parameter. Sometimes the training dataset is large so using a subset to adjust
hyper parameters is an efficient approximation. Since the approximation may be wrong sometimes,
we apply the probable dataset searching method to check the conditions when the approximate
comparison is correct. The probable dataset searching method in this part does not require any
information of input samplesX so the procedure to find the conditions do not influence the efficiency
of the approximate comparison. As a result, probable dataset searching method here is actually PDS
0, where all parts of dataset information need to be searched.

In this part, we apply the probable dataset searching method to find whether two architectures have
different performances in different train sizes. Denote the training sets in the same dataset with
two train sizes by α1 and α′1. Then, training architectures in different training sets correspond to
optimize the loss LST = LR1(AR-A,AR-B, α1) + LR1(AR-A’,AR-B’, α′1), where AR-A/AR-A’
(AR-B/AR-B’) are neural networks with the same architecture and different parameters θ. AR-A/AR-
A’/AR-B/AR-B’ are tested in the same testing set α2.

To search for different probable situations of architecture comparisons in two train sizes, we needs
different kinds of loss functions. For example, to optimize a situation that AR-A performs better
than AR-B in training set α1 while they performs similar in training set α′1, the loss function is
LS1 = LR2(AR-A,AR-B) + 1

nK

∑n
i=1 ‖gAR-A’(Xi,θAR-A’) − gAR-B’(Xi,θAR-B’)‖22, where Xi is

the input sample in α2, n is the total test size, K is the dimension of g.

Another probable situation is AR-A performs better than AR-B in training set α1 while AR-B
performs better in training set α′1, which corresponds to the loss LS2 = LR2(AR-A,AR-B) +
LR2(AR-B’,AR-A’). For the situation that AR-A performs better than AR-B in training set α1 and
α′1, the loss is LS3 = LR2(AR-A,AR-B) + LR2(AR-A’,AR-B’).

3.2.1 RESULTS

Table 2 shows the experimental results, where we use 1600 and 200 train size pairs of all the datasets
in the former experiment, which contains totally 36 dataset pairs. In this part, different methods use
the training dataset with 200 size to predict the hyper parameter selection in train size 1600. We list
the happened times of different situations in dataset pairs in the left part of the table, for example, 6
dataset pairs satisfy the situation that 32 hidden dimension is significantly better than 256 hidden
dimension with both 200 and 1600 train size. The performance of four methods in different situations

8



Under review as a conference paper at ICLR 2023

is listed in the right part of the table, for example, for the 11 dataset pairs that 32 hidden dimension is
significantly better with 200 train size, the average AES of SDP 1 is -0.045.

Here, similar to the former experiments, there are also three types of comparison predictions. Con-
servative Prediction (CP) always makes type 3 prediction. SDP 1 predicts comparison based on
statistical significance with train size 200, where SDP 1 make type 3 prediction if no significantly
difference is observed with train size 200. SDP 2 predicts comparison based on error difference
with train size 200. PDS makes prediction based on the architecture statistical difference with train
size 200 and the searched probable situations with train size 1600. For example, when 32 hidden
dimension is significantly better with 200 train size, both 32 and 256 hidden dimension may be
significantly better in PDS (6 and 2 are underlined in the table), so PDS makes type 3 prediction.

The result shows that PDS performs best among baselines including CP, SDP 1 and SDP 2. In
most situations, SDP 1 performs similar to PDS, which means SDP 1 is still a good approximation
comparison method. SDP 1 method performs worse than PDS since it makes more wrong predictions
when 32 hidden dimension is significantly better with 200 train size, which also shows that selecting
hyper parameter from a subset training dataset is not always correct.

4 RELATED WORKS

Uncertain Dataset Information. In application, different parts of dataset information have different
difficulties to obtain, which leads to several types of task with uncertain dataset information. In
unsupervised learning Barlow (1989); Creswell et al. (2021); Baevski et al. (2021); Yu et al. (2021);
Choudhury et al. (2021), data labels are assumed hard to be obtained so models are expected to work
without data labels. In domain adaptation Wang & Deng (2018); Dong et al. (2021); Zellinger et al.
(2021); Chen & Chao (2021); Lv et al. (2021); Rostami (2021), complete dataset information in
source data domain and unlabeled dataset in target data domain are used to train models in target data
domain. In few-shot learning Wang et al. (2020); Snell et al. (2017); Wang et al. (2021); Sendera et al.
(2021); Cao et al. (2021), few train size dataset is used to train models with additional information
of a similar dataset. In this paper, we discuss the adjustment of architecture hyper parameters with
two kinds of uncertain dataset information: 1, dataset labels are postponed be obtained so hyper
parameters need to be adjusted without complete dataset information. 2, adjusting hyper parameters
with a subset training dataset since training models with complete training dataset is time consuming.

Regression Dataset Representation. Recent works Kohler & Langer (2021); Bauer & Kohler
(2019); Schmidt-Hieber (2020); Suzuki (2018); Farrell et al. (2021) show that if a regression func-
tion f0 satisfies some requirements, it can be converged by a multi-layer fully connected neural
network. Although the requirements are different in different works (such as Hölder function require-
ments Schmidt-Hieber (2020) and (p,C)-smooth requirements Bauer & Kohler (2019)), they include a
wide range of function types so these requirements are assumed to be satisfied by the regression func-
tion in real world functions. Our searching method use a neural network to approximate function f0
and assume that the convergence is also true in other types of neural network. Our regression dataset
representation further assumes that at least a compared architecture has competitive performance
when the compared architectures worth for application.

5 CONCLUSION

In this paper, we discuss adjusting hyper parameters in two types of uncertain dataset information,
including the postponed dataset labels and only using a subset training dataset. To infer the probable
complete dataset information, we propose a probable dataset searching method which searches the
variables in our dataset representation. We test the performance of our method in 9 real world data
with two types of uncertain dataset information.

REFERENCES

Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and Michael Auli. Unsupervised speech recognition.
Advances in Neural Information Processing Systems, 34, 2021.

9



Under review as a conference paper at ICLR 2023

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. 2018.

Horace B Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

Benedikt Bauer and Michael Kohler. On deep learning as a remedy for the curse of dimensionality in
nonparametric regression. The Annals of Statistics, 47(4):2261–2285, 2019.

Yuhang Cao, Jiaqi Wang, Ying Jin, Tong Wu, Kai Chen, Ziwei Liu, and Dahua Lin. Few-shot object
detection via association and discrimination. Advances in Neural Information Processing Systems,
34, 2021.

Hong-You Chen and Wei-Lun Chao. Gradual domain adaptation without indexed intermediate
domains. Advances in Neural Information Processing Systems, 34, 2021.

Subhabrata Choudhury, Iro Laina, Christian Rupprecht, and Andrea Vedaldi. Unsupervised part
discovery from contrastive reconstruction. Advances in Neural Information Processing Systems,
34, 2021.

Antonia Creswell, Rishabh Kabra, Chris Burgess, and Murray Shanahan. Unsupervised object-based
transition models for 3d partially observable environments. Advances in Neural Information
Processing Systems, 34, 2021.

Jiahua Dong, Zhen Fang, Anjin Liu, Gan Sun, and Tongliang Liu. Confident anchor-induced
multi-source free domain adaptation. Advances in Neural Information Processing Systems, 34,
2021.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation and inference.
Econometrica, 89(1):181–213, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian
optimization of machine learning hyperparameters on large datasets. In Artificial intelligence and
statistics, pp. 528–536. PMLR, 2017.

Michael Kohler and Sophie Langer. On the rate of convergence of fully connected deep neural
network regression estimates. The Annals of Statistics, 49(4):2231–2249, 2021.

Fangrui Lv, Jian Liang, Kaixiong Gong, Shuang Li, Chi Harold Liu, Han Li, Di Liu, and Guoren
Wang. Pareto domain adaptation. arXiv preprint arXiv:2112.04137, 2021.

Mohammad Rostami. Lifelong domain adaptation via consolidated internal distribution. Advances
in Neural Information Processing Systems, 34, 2021.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. The Annals of Statistics, 48(4):1875–1897, 2020.

Marcin Sendera, Jacek Tabor, Aleksandra Nowak, Andrzej Bedychaj, Massimiliano Patacchiola,
Tomasz Trzcinski, Przemysław Spurek, and Maciej Zieba. Non-gaussian gaussian processes for
few-shot regression. Advances in Neural Information Processing Systems, 34, 2021.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30, 2017.

Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces:
optimal rate and curse of dimensionality. In International Conference on Learning Representations,
2018.

Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocomputing, 312:
135–153, 2018.

10



Under review as a conference paper at ICLR 2023

Ruohan Wang, Massimiliano Pontil, and Carlo Ciliberto. The role of global labels in few-shot
classification and how to infer them. Advances in Neural Information Processing Systems, 34,
2021.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

Peiyu Yu, Sirui Xie, Xiaojian Ma, Yixin Zhu, Ying Nian Wu, and Song-Chun Zhu. Unsupervised
foreground extraction via deep region competition. Advances in Neural Information Processing
Systems, 34, 2021.

Werner Zellinger, Natalia Shepeleva, Marius-Constantin Dinu, Hamid Eghbal-zadeh, Hoan Duc
Nguyen, Bernhard Nessler, Sergei Pereverzyev, and Bernhard A Moser. The balancing principle
for parameter choice in distance-regularized domain adaptation. Advances in Neural Information
Processing Systems, 34:20798–20811, 2021.

A APPENDIX

A.1 DATASET INFORMATION SEARCHING DETAILS

In Eq. (6), the searched variables θAR-D, X and ε influence LR2 in two aspects: 1, they directly
influence testing dataset α2 in Eq. (6). 2, they indirectly influence training dataset α1, which influence
the parameters θAR-A and θAR-B in Eq. (6).

The parameters of AR-A and AR-B are trained by α1 in LR1 and these parameters influence the loss
LR2. When parameters are searched by gradient decent, each step of training the i-th element of
θAR-A, denoted by θi,AR-A, with LR1 can be written as

θ̇i,AR-A = θi,AR-A −R
∂L2(AR-A, α1)

∂θi,AR-A
, (9)

where R denotes the learning rate, θ̇i,AR-A denotes the parameter after backpropagated by gradient
decent in a step. θAR-B can be trained by the same mechanism.

If we approximately consider the influence of a training dataset α1 on θi,AR-A as a one step gradient
decent (which also means LR1 and LR2 are optimized at the same time), the influence of a dataset
parameter θj,AR-D on LR2 through θi,AR-A can then be analyzed. When only considering the parameter
θ̇i,AR-A in gradient decent, the partial derivative of LR2 with the respect to the parameter θj,AR-D in α1

is the multiplication between partial derivative
∂θ̇i,AR-A

∂θj,AR-D
and

∂LR2

∂θ̇i,AR-A
:

∂θ̇i,AR-A

∂θj,AR-D

∂LR2

∂θ̇i,AR-A
= −R ∂LR2

∂θ̇i,AR-A

∂2L2(AR-A, α1)

∂θj,AR-D∂θi,AR-A
= −RPartial(AR-A, i, j), (10)

where we let the backpropagation of θi,AR-A prior to the backpropagation of θj,AR-D at each step.
∂2L2(AR-A, α1)

∂θj,AR-D∂θi,AR-A
can be calculated since θj,AR-D influence α1 in L2.

Then training θj,AR-D when considering the influence of both α2 and α1 can be denoted by

θ̇j,AR-D = θj,AR-D −R
∂LR2(α2(θAR-D))

∂θj,AR-D
+R2

∑
i

Partial(AR-A, i, j) +R2
∑
k

Partial(AR-B, k, j),

(11)

where
∂LR2(α2(θAR-D))

∂θj,AR-D
denotes the derivative only considering the direct influence of θj,AR-D

on testing dataset α2. Since the learning rate R is a small value such as 0.01, the gradient
Partial(AR-A, i, j) and Partial(AR-B, k, j) have small influence on the gradient decent of θj,AR-D,
which is omitted in our implementation. The gradient decent of other searched dataset variables have
the same characteristics. As a result, we only consider the first aspect of the influence on LR2 when
searching probable datasets with LR2.

11



Under review as a conference paper at ICLR 2023

200 400 800 1600
Training Samples

4

2

0

2

4
T-

te
st

PDS 1-1
PDS 1-2
PDS 2-1

PDS 2-2
SZ-1
SZ-2

SZ-3
SZ-4

(a) Comparing 32 and 256 hidden
dimension in Air domain, Shen-
zhen data with four time intervals.

200 400 800 1600
Training Samples

2

0

2

4

T-
te

st

PDS 1-1
PDS 1-2
PDS 2-1

PDS 2-2
MEGR-1
MEGR-2

MEGR-3
MEGR-4

(b) Comparing 32 and 256 hidden
dimension in HandMEG domain,
left hand and wrist movement da-
ta (MEGR, MEG Right) with four
time intervals.

200 400 800 1600
Training Samples

2

0

2

4

T-
te

st

PDS 1-1
PDS 1-2
PDS 2-1

PDS 2-2
SH-1
SH-2

SH-3
SH-4

(c) Comparing 4 and 32 hidden di-
mension in Air domain, Shanghai
data with four time intervals.

Figure 2: Hyper parameter comparisons in real world complete datasets and the probable datasets
searched by PDS 1 and 2. The comparisons between hyper parameters are measured by t-test
score with positive/negative symbol. The black dash-and-dot lines refer to the t-test score that has
statistically significant difference.

A.2 SEARCHED PROBABLE DATASETS ILLUSTRATION

In this part, we show the difference between hyper parameters through the t-test score, where a t-test
larger 2.262 means two hyper parameters are statistically significantly different with 5% significance
level. For easier representation, when comparing the error value of two architectures named AR-EA
and AR-EB, we apply a positive (or negative) symbol on the t-test score, which corresponds to
the situation that the error value of AR-EA is larger (or smaller) than AR-EB. In the figure, when
comparing n1 and n2 hidden dimension, AR-EA and AR-EB correspond to the architectures with n1
and n2 dimension in showing t-test score with symbol. Here we show the hyper parameters difference
of real world complete datasets and searched probable datasets in Fig. 2, where the t-test score with
symbol are reported with real word datasets and the datasets searched by PDS 1 and 2 methods in
each sub-figure. For example, in Fig. 2(a), SZ-1, 2, 3, 4 refers to the Shenzhen data with forecasting
intervals 1, 2, 3, 4. PDS methods are followed with two numbers, where the first number refers to
the type of PDS method and the second number corresponds to the architecture whose performance
is aimed to be improved in PDS method (second number 1 or 2 corresponds to AR-EA or AR-EB).
For example, PDS 2-1 refers to the probable datasets searched in loss Eq. (6) with PDS 2 methods
(because of the first number), where the loss aims to search for the probable dataset that AR-EA
(corresponds to 32 dimension, because of the second number) performs better, so AR-A and AR-B
in loss Eq. (6) corresponds to the LSTM with 32 and 256 hidden dimensions. Similarly, PDS 1-2,
PDS 2-2 refer to the probable datasets searched in loss Eq. (6) with PDS 1 and 2 method, where
the loss aims to search the probable datasets that 256 dimension performs better. In the figure, if a
value is larger or smaller than two black dash-and-dot lines, corresponding comparison has statistical
significance.

The results show that with more information required (PDS 1 < PDS 2), PDS method could make
better predictions. For example, when comparing hyper parameters between 32 and 256 hidden
dimensions in SZ datasets, PDS 1 method could find the probable dataset that 32 or 256 hidden
dimension performs significantly better than another, so it makes type 3 predictions. PDS 2 could
not find the situation that 256 hidden dimension performs significantly better, so it makes type 1
prediction. Considering the performance of two hyper parameters that 256 hidden dimension does
not performs significantly better in any SZ real world dataset, type 1 is a better prediction. When
comparing hyper parameter between 4 and 32 hidden dimensions in SH datasets, PDS 1 and 2 both
make type 2 predictions although they require different levels of dataset information.

The result in Fig. 2(b) explains the situation that SDP 1 and 2 make wrong predictions, where for the
same X , there are real world datasets with different Y that 32 or 256 hidden dimension performs
significantly better than another. In these datasets, PDS methods make type 3 predictions, which
avoid making wrong predictions.

12


	Introduction
	Method
	Dataset Representation
	Calculation and Loss Function

	Experiments
	Adjusting Hyper Parameter with Input Information
	Datasets and Hyper Parameter Candidates
	Baselines
	Results

	Adjusting Hyper Parameter with a Training Subset
	Results


	Related Works
	Conclusion
	Appendix
	Dataset Information Searching Details
	Searched Probable Datasets Illustration


