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UNER: A Unified Prediction Head for Named Entity Recognition
in Visually-rich Documents
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ABSTRACT
The recognition of named entities in visually-rich documents (VrD-
NER) plays a critical role in various real-world scenarios and ap-
plications. However, the research in VrD-NER faces three major
challenges: complex document layouts, incorrect reading orders,
and unsuitable task formulations. To address these challenges, we
propose a query-aware entity extraction head, namely UNER, to
collaborate with existing multi-modal document transformers to de-
velop more robust VrD-NER models. The UNER head considers the
VrD-NER task as a combination of sequence labeling and reading
order prediction, effectively addressing the issues of discontinuous
entities in documents. Experimental evaluations on diverse datasets
demonstrate the effectiveness of UNER in improving entity extrac-
tion performance. Moreover, the UNER head enables a supervised
pre-training stage on various VrD-NER datasets to enhance the doc-
ument transformer backbones and exhibits substantial knowledge
transfer from the pre-training stage to the fine-tuning stage. By
incorporating universal layout understanding, a pre-trained UNER-
based model demonstrates significant advantages in few-shot and
cross-linguistic scenarios and exhibits zero-shot entity extraction
abilities.

CCS CONCEPTS
•Computingmethodologies→ Information extraction; Trans-
fer learning; • Applied computing→ Document analysis.

KEYWORDS
UNER; Named Entity Recognition; Document Understanding; Su-
pervised Pre-training

1 INTRODUCTION
Named Entity Recognition (NER) onVisually-richDocuments (VrDs),
referred to as VrD-NER, is a task that aims to identify user-specified
entities in diverse types of documents. This research topic holds
significant importance due to its wide applicability in real-world
scenarios. In recent years, the VrD-NER task has witnessed ad-
vancements through the utilization of pre-training techniques in
NLP [2, 4] and CV [1, 12]. Many multi-modal document transform-
ers have emerged, such as the LayoutLM model series [6, 30, 33].
Typically, these document transformers are first pre-trained on a
massive document corpus with self-supervised pre-training tasks
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Figure 1: Illustration of the common issues in the VrD-NER
problem. We utilize color-coded words to indicate entities
and words of the same color signify a complete entity span.
These issues contribute to the complexity of understanding
the document and result in discontinuous entities when the
document is arranged in common reading order (e.g., top-to-
bottom and left-to-right).

and then adapted to different document understanding tasks. These
models have the capability to jointly encode the text, layout, and
visual information of documents, enabling the generation of multi-
modal representations that prove beneficial to downstream tasks.

Despite the above advancements made in improving document
representations, the VrD-NER task still faces significant challenges
due to the inherent characteristics of document data. It suffers from
two common issues in real-world documents, complex document
layouts and reading orders issues (see illustration in Figure-1). Previ-
ous studies solve these issues from two perspectives: (1) Introducing
layout-related or spatial-aware pre-training tasks to enhance the
ability of the models to understand the layout of documents [16, 24];
(2) Proposing datasets with annotations or pre-processing modules
for reading order prediction to facilitate accurate identification of
the order of token in documents [18, 29].

However, the current task formulation in VrD-NER hinders the
progress made to solve the above issues. Many document transform-
ers approach the VrD-NER task as a sequence labeling problem
and utilize a sequence labeling (SL) head with the BIO-tagging
scheme [19] for task-specific fine-tuning. Nevertheless, the SL head

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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is specifically designed for plain text in flat NER problems, thus can-
not fully utilize multi-modal representations to learn reading order
knowledge or represent discontinuous entities in documents. This
significantly limits the application of these backbones and makes
them fall short in handling the incorrect token order arrangement
in real-world documents and discontinuous entities arising from
complex layouts, leading to suboptimal performance in entity ex-
traction and necessitating additional token serialization tools. To
overcome this limitation, researchers have explored alternative
task formulations. Zhang et al. [37] recognized the importance of
reading order prediction in VrD-NER and proposed a token-path
prediction head (TPP) to combine token order prediction and to-
ken classification in an integrated manner. However, the TPP head
brings extra optimization targets and faces optimization issues. To
obtain optimal performance, it requires substantial training samples
for each entity type and performs poorly in low-resource settings.

Despite this, the SL head and the TPP head have a major draw-
back in that they are not effectively utilized for supervised pre-
training, as they are designed for a fixed number of entity types. Re-
cent studies have recognized the power of supervised pre-training
in VrD-NER [23, 35]. Tang et al. [23] proposed to unify pre-training
and multi-domain downstream tasks in a generative scheme and
leveraged 11 supervised datasets for pre-training, which exhibits
that adding supervised pre-training can further improve the model
performance.

Based on the above observations, we recognize the significant
benefits of developing a better prediction head for VrD-NER. To
this end, we propose UNER, a Unified prediction head for Named
Entity Recognition. The UNER head is a query-aware entity extrac-
tion head that collaborates with existing document transformers
to build better VrD-NER models. A UNER-based model can appro-
priately represent discontinuous entities and predict entities in
correct reading orders. By harnessing the power of the supervised
pre-training, it can effectively comprehend complex layouts and
understand new documents with limited data.

Specifically, UNER models the VrD-NER task as a combination
of sequence labeling task and reading order prediction, which is
realized by two modules: (1) A query-aware token classification
module that leverages the entity names (e.g., “address”, “flight”
and “units price” in Figure-1) as extraction clues for token-level
classification; (2) A token order prediction module that predicts
the pairwise token orders in the entities. By incorporating the
predictions from the two modules, the UNER head is capable of
learning the reading order knowledge from entity annotations and
correctly predicting discontinuous entities in VrDs.

Additionally, since the UNER head can adaptively use any entity
names as input queries, we can use a single UNER-based model
to train on different NER datasets without the need for parameter
reinitialization, thus enabling a supervised pre-training stage be-
fore fine-tuning. By leveraging supervised pre-training on external
annotated documents with various layouts and entity types, we
can incorporate universal layout understanding knowledge into
the model and further enhance its performance on downstream
VrD-NER tasks.

To assess the performance of UNER, we conducted experiments
using 7 datasets from various domains and languages. The experi-
mental results consistently demonstrated that UNER achieved sig-
nificant improvements on all datasets, thereby showcasing its ef-
fectiveness as a prediction head for VrD-NER. Additionally, when
applying a supervised pre-training stage, the UNER head exhib-
ited notable advantages in cross-linguistic and few-shot settings, as
well as demonstrating zero-shot VrD-NER capability. This discovery
highlights the document knowledge transferability of UNER.

The contributions of our paper can be summarized as follows:

(1) We introduce UNER, a query-aware entity extraction head
designed to address the challenges in VrD-NER, which works
in collaboration with existing document transformers.

(2) The UNER head enables a supervised pre-training stage to en-
hance transformer backbones, which incorporates universal
layout knowledge acquired from external pre-trained docu-
ments and results in improved performances in downstream
VrD-NER tasks.

(3) Our experimental results consistently demonstrate that UNER
can competewith previousmethods on 7 benchmark datasets,
and the incorporation of a supervised pre-training stage dis-
plays advantages in multiple settings.

2 RELATEDWORK
Pre-trained Document Transformers: Recent research in pre-
training techniques in NLP [2, 4, 39] and CV [1, 12] have demon-
strated the significant potential in buildingmulti-modal transformer
for document understanding. Inspired by BERT [4], LayoutLM [30]
improved the masked language modeling task to build a multi-
modal document transformer that can effectively combine layout
and textual information to understand and process documents with
complex layouts. Following this idea, LayoutLMv2 [33] and Lay-
outLMv3 [6] focus on incorporating visual information and de-
signing various cross-modal alignment pre-training tasks, and sig-
nificantly enhance the model’s performance in various document
understanding tasks. Meanwhile, some studies have realized the im-
portance of layout information and focus on improving text-layout
interactions, such as StructuralLM [9], LiLT [26], LayoutMask [24],
and GeoLayoutLM [16]. While the above models are pre-trained
with self-supervised tasks, UDOP [23] proposed a supervised pre-
training stage by unifying multiple VrDs tasks in a generative
framework to fully exploit the correlation among different tasks.
The UDOP model and universal NER studies in NLP [15, 34] have
inspired us to propose a unified model for VrD-NER.
Reading-order-awareMethods:Understanding the reading order
of documents remains a key challenge in VrD-NER and previous
studies tried to address this issue from different perspectives. Lay-
outReader [29] proposed a sequence-to-sequence approach and
a reading order dataset for order prediction. ERNIE-Layout [18]
designed a reading order prediction task during pre-training and
leveraged a serialization module to rearrange the order of input
tokens. However, these methods require extra annotated data or
introduce computation complexity. Inspired by discontinuous NER
studies [10, 28], Zhang et al. introduced TPP, a prediction head
to classify the document tokens and predict their correct reading
orders in an integrated manner. These studies have inspired us to
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Figure 2: An overview of the entity extraction pipeline for a document transformer using a UNER head. For better illustration,
we use a document with a reading order issue as input. Given the input document, the UNER-based model receives the entity
names (“header”, “question”, and “’answer”) as queries and conducts token classification and order prediction in its two
submodules, TOP and QTC. Here we use numbers to denote the ground-truth labels (“1” for positive and blanks for negative)
and colored backgrounds to denote the binary classification predictions (gray for positive and white for negative). Ultimately,
we combine the predictions for decoding and obtain the full entity spans. Incorrect predictions are denoted by the red color or
a cross.

reformulate the VrD-NER task and include a token order prediction
task.

3 METHODOLOGY
The UNER head is an entity prediction head that works in collabo-
ration with existing document transformers, which takes the token
embeddings of the transformer backbone as input. Given an input
document with 𝐿 tokens, a pre-trained document transformer is
first utilized to obtain the token embeddings matrix E ∈ R𝐿×ℎ ,
where ℎ is the dimension of the embeddings. The 𝑖-th entry of E,
denoted as e𝑖 ∈ Rℎ , represents the multi-modal embedding vector
of the 𝑖-th token. These token embeddings are then inputted into
the UNER head, which consists of two sub-modules: query-aware
token classification and token order prediction. The pipeline of a
UNER-based VrD-NER model is illustrated in Figure 2.

3.1 Query-aware Token Classification
Assuming that we need to extract 𝐶 types of entities from the
document. when using a sequence-labeling-based (SL) head with
the BIO-tagging scheme, the entity extraction task is treated as a
(2𝐶 + 1)-way classification problem for each token embedding e𝑖 :

F𝑠𝑙 : e𝑖 → {1, 2, ..., 2𝐶 + 1}. (1)

The function F𝑠𝑙 maps the token embedding e𝑖 to a BIO-tagging
label. However, this approach has a limitation in that it can only
handle a fixed number of pre-defined entity types.

To address this issue, we propose the Query-aware Token Clas-
sification (QTC) module. This module first uses a query encoder to
encode the entity names or descriptions as classification queries. It
then leverages these queries as semantic clues to perform binary
classification for all tokens.

To handle𝐶 entity types, we start by encoding each entity name
using a query encoder. This encoder transforms each entity name
into a ℎ-dimensional embedding, resulting in a query embedding
matrixQ ∈ R𝐶×ℎ . In this matrix, each row corresponds to an entity
type, and the 𝑗-th entry of Q, denoted as q𝑗 ∈ Rℎ , represents the
embedding of the 𝑗-th query.

Then we combine the token embedding matrix and query embed-
ding matrix to generate the query-aware token embedding tensor:
E ⊕ Q → S ∈ R𝐿×𝐶×ℎ , where ⊕ stands for the broadcastable addi-
tion operation. We use s𝑖, 𝑗 to denote (𝑖, 𝑗)-th entry of S, which is
a query-aware token embedding for the 𝑖-th token and 𝑗-th query
and satisfies: s𝑖, 𝑗 = e𝑖 + q𝑗 . For each s𝑖, 𝑗 , we will conduct a binary
classification to determine if the 𝑖-th token belongs to the 𝑗-th entity
type:

F𝑞𝑡𝑐 : s𝑖, 𝑗 → {0, 1}. (2)
We will conduct 𝐿 × 𝐶 binary classifications for all token-query
pairs and the total classification loss is calculated as :

L𝑞𝑡𝑐 = − 1
𝐿𝐶

𝐿∑︁
𝑖=1

𝐶∑︁
𝑗=1

CE(F𝑞𝑡𝑐 (s𝑖, 𝑗 ), 𝑠𝑖, 𝑗 ). (3)

Here CE(·, ·) is the cross-entropy loss function and 𝑠𝑖, 𝑗 ∈ {0, 1} is
the ground-truth label.
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In QTC, the shape of the query-aware token embedding tensor
is dynamically determined by the number of input queries. This
flexibility allows us to input any number and type of queries into
the module, thereby avoiding the limitation of pre-defined entity
types in the SL head.

Moreover, as we use independent binary classifications, each
token can be possibly classified into multiple categories. Such a
design makes the UNER head capable of extracting nested and
overlapped entities. While these entities are not fully represented
in current VrD-NER benchmarks, they are common in real-world
applications, as users may have different extraction goals within
the same document and the same token may belong to multiple
entity types. For instance, in Figure-1 case (1), a UNER-based model
can simultaneously extract the full address (denoted in green), the
city name (“Batang Kal”), and the state name (“Selangor”) by using
“address”, “city”, and “state” as input queries. In this case, these
entities are overlapped and cannot be extracted with an exclusive
𝐶-way classification head.

Furthermore, the QTC module utilizes entity names as semantic
clues for classification, which enables it to extract unseen entity
types through semantic knowledge transfer.

3.2 Token Order Prediction
After token classification, it is necessary to arrange the tokens
in order to form correct entity spans. In the SL head, the BIO-
tagging scheme labels the “Beginning” and “Inside” information,
which helps in token arrangement. However, it fails to handle
discontinuous entities or tokens that are incorrectly ordered in
VrDs. To overcome this limitation, we introduce a Token Order
Prediction (TOP) module that predicts the token orders in VrDs.

The TOPmodule treats the token order prediction task as an edge
prediction task on a token graph. For a document with 𝐿 tokens,
we represent its token order using a directed graph with 𝐿 vertices.
This graph is represented by a binary matrix G ∈ {0, 1}𝐿×𝐿 . If the
𝑘-th token is the successor of the 𝑖-th token, the (𝑖, 𝑘)-th entry
of G, which represents the directed edge from 𝑖 to 𝑘 , is set to 1.
Otherwise, it is 0. By formulating the task in this way, the token
order prediction becomes equivalent to predicting the edges on the
graph.

During training, TOP performs binary classification for all di-
rected edges in the graph:

F𝑡𝑜𝑝 : (e𝑖 , e𝑘 ) → {0, 1}. (4)

The objective of this task is to optimize the following loss function:

L𝑡𝑜𝑝 = − 1
𝐿2

𝐿∑︁
𝑖=1

𝐿∑︁
𝑘=1

CE(F𝑡𝑜𝑝 (e𝑖 , e𝑘 ), 𝑔𝑖,𝑘 ), (5)

where 𝑔𝑖,𝑘 ∈ {0, 1} represents the ground-truth label for each edge
in the graph.

It is important to note that 𝑔𝑖,𝑘 is derived from the entity an-
notations in the VrD-NER dataset, so it only covers the tokens
that are part of entities. The order of the non-entity tokens is un-
known during training, and therefore, the corresponding losses
in Equation-5 should be ignored. Fortunately, after training with
annotated documents, the knowledge of reading order learned from
the entity-related tokens can be transferred to non-entity tokens

and tokens in other types of documents. Such knowledge transfer
is discussed in detail in Section-4.4.

3.3 Optimization and Inference
The total training loss of the UNER head can be represented as
follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑞𝑡𝑐 + 𝜆L𝑡𝑜𝑝 , (6)

where 𝜆 is a hyper-parameter that controls the balance between
the two losses. As shown in Figure-2, the ground truth labels in
L𝑞𝑡𝑐 and L𝑞𝑡𝑐 are predominantly zeros, with only a small portion
being ones. This label imbalance issue poses a challenge for loss
optimization, so we employ the ZLPR loss [21] to enhance the
training of the two losses and improve optimization efficiency.

During inference, we utilize the predictions of the QTC and TOP
modules to construct full entity spans using the following steps:

(1) For each entity type (e.g., the 𝑗-th type), we identify all tokens
that meet the condition F𝑞𝑡𝑐 (s𝑖, 𝑗) > 0, along with their
valid token orders satisfying F𝑡𝑜𝑝 (e𝑖 , e𝑘 ) > 0.

(2) Based on the token orders, we identify the tokens without
any predecessor tokens and use them as the starting tokens
to create multiple token series.

(3) For each token series, we select the best subsequent token
for the last token by choosing the token with the highest
token order classification score and then adding it to the
current token series.

(4) Repeat step (3) until the last token does not have any valid
subsequent tokens, and use the resulting token series to form
entity spans.

It should be noted that the UNER head enables multiple entity
names to be queried for each document during both training and
inference. When provided with a document and𝐶 entity names, we
only need to compute the document transformer and TOP module
once and reuse their outputs to collaborate with the QTCmodule for
𝐶 iterations. This feature significantly alleviates the computational
burden for recomputing the backbones when handling dense entity
extraction tasks and enables a more flexible model deployment.

4 EXPERIMENTS
4.1 Datasets
In our experiments, we utilize 7 commonly used VrD-NER bench-
marks to compare the performance of different methods. To eval-
uate the effectiveness of supervised pre-training in VrD-NER, we
incorporate two additional datasets for pre-training, which encom-
pass a wide range of document types and entity types. Detailed
information of these datasets can be found in Table-1.
Fine-tuning: To demonstrate the effectiveness of our method,
we perform fine-tuning on 7 popular VrD-NER benchmarks. No-
tably, when comparing with other prediction heads, we use the re-
annotated versions of FUNSD [8] and CORD [17], namely FUNSD-r
and CORD-r datasets [37]. The original datasets are not suitable
for evaluating the ability to extract discontinuous entities, as the
annotations in the original datasets are manually adjusted and do
not reflect real-world scenarios. We use the re-annotated versions
to better assess the entity extraction performance of different pre-
diction heads. To provide solid experiments, we use another five
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Dataset Language Document Type # of Samples
(Train/Val/Test) # of Entity Types Stage

FUNSD-r [37] EN Form 149/ - /50 3 FT
CORD-r [37] EN Form 799/100/100 30 FT
SROIE [7] EN Receipt 626/ - /347 4 FT

EPHOIE [27] EN/ZH Paper/Forms 1183/ - /311 10 FT
WildReceipt [22] EN Receipt 1267/ - /472 25 FT

SIBR [35] EN/ZH Invoice/Bill/Receipt 600/ - /400 4 FT
XFUND [32] 7 Languages Form 1043/ - /350 4 FT
SVRD [36] ZH/EN Various types 1879/ - /1965 100+ SP
DocILE [20] EN Invoice-like 5180/100/500 55 SP

Table 1: The statistics of the datasets used in our experiments. “SP” and “FT” denote to be used during the supervised pre-
training stage and fine-tuning stage, respectively.

Backbone Head FUNSD-r CORD-r

LayoutLMv3 [6]
SL+BIO [19] 78.77 82.72
TPP[37] 80.40 91.85
UNER 80.61 92.04

LayoutMask [24]
SL+BIO [19] 77.10 81.84
TPP [37] 78.19 89.34
UNER 78.90 89.95

Table 2: The F1 scores (%) of VrD-NER task on FUNSD-r and
CORD-r datasets. We compare UNER with other prediction
heads using two backbones, LayoutLMv3 and LayoutMask.
The best results are denoted in boldface.

benchmarks when comparing UNER-based models with other base-
lines. These benchmarks, including a cross-linguistic dataset in 7
languages, cover a wide range of document types, entity types, and
languages.
Supervised Pre-training: During supervised pre-training, we
expect the dataset to have a better diversity, so we choose two
large datasets, SVRD and DocILE [20] for pre-training. The SVRD
dataset originates from the ICDAR 2023 Competition1 and con-
sists of densely annotated key-value linkings in various types of
documents in real-world scenarios. By using the key entities as
a description of the entity type, we transform these annotations
into entity extraction labels, resulting in a VrD-NER dataset with
hundreds of entity types. Since SVRD documents are primarily in
Chinese, we utilize the DocILE dataset to enhance language diver-
sity. This dataset comprises 5k documents with 55 entity types in
English.

4.2 Experimental Settings
In our experiments, we compare different prediction heads using the
base version of LayoutLMv3 and LayoutMask as transformer back-
bones, following the backbone setting in TPP. The query encoder
in the QTC module is a 4-layer transformer with cross-attention
to the transformer backbone. It is initialized with the first four

1https://rrc.cvc.uab.es/?ch=21&com=introduction

layers of Q-Former in BLIP-2 [11] with 38M parameters. We em-
ploy the tokenizer and the 1D-position embedding layer from the
transformer backbone to process queries during query encoding.
As each query can contain multiple tokens, we use the embedding
of the first token as the query embedding. To determine the optimal
value of the hyper-parameter 𝜆, we conduct ablation studies. In
our experiments, we set 𝜆 = 0.1 and 𝜆 = 0.5 for models with or
without supervised pre-training, respectively. The batch size is set
to be 16 for all fine-tuning datasets. For few-shot experiments, we
repeat them five times and report the average scores. During the
supervised pre-training stage, both the backbone and the UNER
head are trained on the pre-training datasets for 20 epochs before
fine-tuning.

4.3 Effectiveness of UNER
Comparison with Prediction Heads: We first conducted experi-
ments to compare the performance of the UNER head with other
prediction heads, namely the SL and TPP heads. Following the set-
ting in TPP, we combined these heads with different backbones
and evaluated their performance on two VrD-NER datasets, namely
FUNSD-r and CORD-r. We use the entity-level F1 score as the eval-
uation metric. The experiment results are presented in Table-2,
which demonstrate that the UNER head outperformed both the SL
and TPP heads on both datasets, regardless of the backbone used.
These results have demonstrated its superiority as a prediction head
for the VrD-NER task.

It is important to highlight that the FUNSD-r andCORD-r datasets
have discontinuous entities due to complex layouts and incorrectly
ordered tokens. This significantly impacts the performance of the
SL head, as it is unable to handle such entities. Additionally, the SL
head is incapable of learning and conveying token order knowledge
effectively, which limits its usefulness as a VrD-NER head.

While the TPP head is capable of handling discontinuous entities,
it faces optimization issues that negatively affect its performance.
This is because the TPP head attempts to jointly optimize token
classification and token order prediction in a unified manner. For
each entity, it predicts one token graph to represent entity-specific
token paths, resulting in the need to predict a 𝐿 × 𝐿 × 𝐶 binary
tensor and 𝐿2𝐶 classification sub-tasks. Such entity-specific token
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Figure 3: The few-shot performance on the CORD-r dataset when using different percentages of training samples (from 5%
to 100%). We use LayoutMask as the backbone and compare its performance with different prediction heads or supervise
pre-training conditions. (1): The entity-level F1 scores in VrD-NER when using TPP, UNER, and UNER with supervised pre-
training (“UNER+SP”). (2)&(3): For the UNER-based method, we also report the performance of its submodules, the token-level
classification accuracy in QTC, and the token order classification accuracy in TOP. As we do not have the complete reading
order annotations for all the tokens in the documents, in TOP we only calculate the accuracy for entity-related tokens.

graphs in TPP also influence the transfer of token order knowledge
among different entity types.

On the other hand, the UNER head has two separate optimization
goals and reduces the number of binary classifications sub-tasks to
(𝐿2+𝐿𝐶). Additionally, UNER explicitly learns and represents token
order knowledge in one unified token graph which is independent
of the entity types, making it suited for transferring universal to-
ken order knowledge. This design makes the UNER head easier to
optimize and more efficient with limited data.

To further highlight this advantage, we compared the TPP and
UNER head on the CORD-r dataset in a few-shot setting, where the
model is fine-tuned using only a subset of the training samples. The
results of this comparison are summarized in Figure-3. The findings
from these experiments highlight that UNER consistently outper-
forms TPP across all training percentages. It is noteworthy that
the performance advantage of UNER becomes more pronounced
as the percentage of training data decreases. For instance, when
utilizing only 5% of the data, UNER achieves a notable improvement
of +21.24% compared to TPP. This demonstrates the data efficiency
of UNER in handling limited training data.
Comparison with VrD-NER Baselines: The above results have
proved the advantage of UNER compared to other prediction heads.
In this section, in order to show that the UNER head can help
in building excellent VrD-NER models, we further extended our
comparison of two UNER-based models against other state-of-the-
art VrD-NER models on 5 datasets: SROIE, EPHOIE, WildReceipt,
SIBR, and XFUND.

The results of these comparisons are presented in Table-3. Note
that XFUND is a cross-linguistic dataset and comprises seven sub-
datasets, so we report the averaged F1 scores across them. The
UNER head demonstrates highly competitive results on all datasets
with both backbones, and it achieves the highest F1 score on three

out of the five datasets overall, which is a significant achievement
considering the number and diversity of the compared benchmarks.
Notably, “LayoutLMv3+UNER” outperforms other methods by a sig-
nificant margin (+2.93%) on the WildReceipt dataset. These results
further validate the effectiveness and compatibility of our UNER
head to work with document transformer backbones.
Comparison in Multi-task Setting: In order to demonstrate the
potential of UNER in unified entity extraction, we conducted a
multi-task experiment using four datasets: SROIE, EPHOIE, Wil-
dReceipt, and SIBR. The main objective was to illustrate that the
UNER head can effectively handle multiple datasets with one model.
We accomplished this by fine-tuning the UNER-based model on the
combined training samples from these four datasets and evaluating
the model’s performance separately. The results are presented in
Table-3 as “+Multi-task”. The UNER-based model in the multi-task
setting achieved competitive results compared to other methods,
highlighting its potential as a unified VrD-NER head.

However, we also observed that the F1 scores of the UNER-based
models in the multi-task setting were slightly lower compared to
the scores in a single-task setting. We believe that this is due to the
difficulty in balancing the number of training samples for different
datasets. As our focus is not on searching for the best performance
with a particular group of datasets, we simply combined these
datasets for training without making careful adjustments in order
to showcase the vanilla capability of UNER for unified VrD-NER.

4.4 Effectiveness of Supervised Pre-training
The UNER head has a significant advantage as it can be utilized for
supervised pre-training, which further enhances the self-supervised
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Method SROIE EPHOIE WildReceipt SIBR XFUND

GAT [25] 87.23 96.90 85.43 - -
RoBERTA [14] - 95.21 - - 71.00
TRIE [38] 96.18 93.21 85.99 85.62 -
SDMG-R [22] 87.10 - 88.70 - -
LayoutXLM [31] - 97.59 - 94.72 80.72
StrucTexT [13] 96.88 97.95 - - -
LiLT [26] - 97.97 - - 82.28
TRIE++ [3] 96.80 98.85 90.15 - -
ESP [35] - - - 95.27 87.27
GeoLayoutLM [16] 97.97 - - - -

LayoutLMv3 [6]+UNER 97.39 98.71 93.08 95.70 82.66
+Multi-task 96.35 98.39 92.45 95.13 -

LayoutMask [24] +UNER 97.61 99.10 92.53 95.40 83.87
+Multi-task 97.36 97.58 92.00 94.75 -

Table 3: The F1 scores (%) of the VrD-NER task on SROIE, EPHOIE, WildReceipt, SIBR, and XFUND. The best results for each
dataset are denoted in boldface and the second best results are underlined. The results in a multi-task setting are in grey color.

Method ZH JA ES FR IT DE PT Average

RoBERTa [14] 87.74 77.61 61.05 67.43 66.87 68.14 68.18 71.00
LayoutXLM [31] 89.24 79.21 75.50 79.02 80.82 82.22 79.03 80.72
XYLayoutLM [5] 91.76 80.57 76.87 79.97 81.75 83.35 80.01 82.04
LiLT [26] 89.38 79.64 79.11 79.53 83.76 82.31 82.20 82.28
ESP [35] 90.30 81.10 85.40 90.50 88.90 87.20 87.50 87.27

LayoutMask [24] +UNER 91.43 79.28 78.23 83.57 82.84 86.40 85.37 83.87
LayoutMask [24] +UNER+SP 91.83 81.40 82.77 90.54 87.33 88.59 85.86 86.90

Table 4: The F1 scores (%) of the VrD-NER task on the sub-datasets in XFUND. “+SP” denotes the utilization of a supervised
pre-training stage. The best results are denoted in boldface and the second best results are underlined.

pre-trained backbones. To assess such potential, we leverage two an-
notated VrD-NER datasets, SVRD and DocILE, to incorporate super-
vised pre-training before fine-tuning. We use “UNER+LayoutMask”
as the base model and compare its fine-tuning performance with
and without supervised pre-training. We find that the inclusion
of a supervised pre-training stage improves models with notable
effectiveness in cross-linguistic and few-shot scenarios and brings
zero-shot VrD-NER abilities.
Comparison in Cross-linguistic Setting: Table-4 presents the
detailed F1 scores of the sub-datasets in XFUND, a multi-linguistic
dataset comprising 7 languages. The disparity in results between
“LayoutMask+UNER” and “LayoutMask+UNER+SP” configurations
highlight the efficacy of the supervised pre-training stage in enhanc-
ing the UNER-based model across all languages, which results in an
average increase of 3.03% in F1 score. Moreover, when compared
to other methods, “LayoutMask+UNER+SP” achieves the highest
performance on four sub-datasets: ZH, JA, FR, and DE. It is worth
mentioning that the backbone model is pre-trained on English doc-
uments while the supervised pre-training datasets only include
English and Chinese documents, so six out of the seven languages

in XFUND are unseen before fine-tuning, which proves the effec-
tiveness of supervised pre-training for cross-linguistic VrD-NER
tasks.
Comparison in Few-shot Setting: In this setting, we compare the
performance of the UNER-basedmodel with andwithout supervised
pre-training after fined-tuned with a subset of the training samples.
As the performance of entity extraction in UNER relies on the
accuracy of its sub-modules, we also calculate the accuracy scores
of token classification and token order prediction in the QTC and
TOP modules to gain a more comprehensive understanding. The
results are listed in Figure-3.

Our observations indicate that supervised pre-training has sig-
nificant benefits in few-shot scenarios. Specifically, the “UNER+SP”
model achieves remarkably high performance even with a small
portion of training samples, outperforming the “UNER” model by a
large margin on all tasks and configurations. Notably, the f1 score
of “UNER+SP” in “VrD-NER” is surprisingly high with extremely
limited data (74.62% with only 5% training samples). Furthermore,
“UNER+SP” with 5% training samples has a higher accuracy score in
“TOP” than “UNER” with 25% samples (98.01% compared to 97.39%).
These advantages highlight that the UNER-based model benefits
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Figure 4: Visualization of the entity predictions. We pre-train “LayoutMask+UNER” with SVRD and DocILE and display the
predicted entities and their confidence scores with various queries. The grey texts in the brackets serve as translations and are
not used as input queries. Incorrect predictions are highlighted in red. Incorrect predictions are denoted by red color. (1): A
receipt from SROIE with queries that differ from the entity types in the original dataset. (2): Extraction of overlapped entities
with vertical alignment in SIBR. (3): A bilingual air ticket with a misaligned layout.

SP Settings SROIE EPHOIE
SVRD DocILE QTC/TOP/VRD-NER QTC/TOP/VRD-NER
√

15.14 / 48.30 / 0.07 57.38 / 93.77 / 27.14√
0.00 / 75.91 / 0.00 0.00 / 83.81 / 0.00√ √
18.70 / 99.44 / 21.90 71.65 / 96.56 / 36.86

Table 5: The zero-shot prediction results of the UNER-
based model after supervised pre-training. We pre-train the
“LayoutMask+UNER” with varying supervised pre-training
datasets and assess the zero-shot performance on SROIE and
EPHOIE. To offer a comprehensive insight, we present QTC
accuracy, TOP accuracy, and F1 score in VrD-NER.

significantly from the document knowledge learned during pre-
training on large datasets. This knowledge facilitates the model’s
adaptation to the other downstream VrD-NER dataset, particularly
when the available data is limited.
Comparison in Zero-shot Setting: In order to further explore
the effectiveness of knowledge transfer through supervised pre-
training, we conducted pre-training of the UNER-basedmodel using
various combinations of datasets and assessed their zero-shot per-
formance on other VrD-NER benchmarks. The pre-trained models
exhibited the ability to extract entities in a zero-shot setting on the
SROIE and EPHOIE datasets, and the results are summarized in
Table-5. In addition to overall VrD-NER performance, we also pro-
vide zero-shot accuracy scores for the QTC and TOP sub-modules
for a more comprehensive analysis.

Our analysis indicates that the zero-shot entity extraction ability
is largely attributed to the inclusion of the SVRD dataset, which sig-
nificantly improves the QTC for both SROIE (15.14%) and EPHOIE

(57.38%). Furthermore, incorporating the DocILE dataset further
enhances the VrD-NER abilities, particularly in SROIE where the
F1 score increased from 0.07% to 21.90%.

In order to gain a better understanding of the entity extraction
ability of the pre-trained model, we tested the best model (pre-
trained on both SVRD and DocILE) with various documents and
queries, and presented some prediction results in Figure-4. Our ob-
servations indicate that the model is effective in extracting entities
with explicit trigger words. Using these trigger words as queries
consistently yields satisfactory results, regardless of the layout
alignment. However, the model exhibits limitations when handling
entities without explicit trigger words, unnatural queries, or queries
with varying meanings. For example, the entity names in the CORD-
r dataset are specifically designed, such as “menu.sub.price” and
“total.cashprice”. Similarly, the entity type “Header” is used in mul-
tiple datasets, but its meaning can differ across documents, leading
to inconsistent predictions. These findings underscore the potential
for using diverse pre-training datasets to develop a unified VrD-
NER model with stronger zero-shot abilities, while also identifying
challenges in transferring document understanding knowledge.

5 CONCLUSION
This paper presents UNER, a query-aware entity extraction head
for unified named entity extraction to address the challenges in
VrD-NER. Experimental results across various datasets demonstrate
the superior performance of UNER compared to existing methods.
Moreover, UNER exhibits knowledge transferability when super-
vised pre-training is applied and contributes to building robust
backbones for VrD-NER tasks.
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