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ABSTRACT

We show that deep neural networks (DNNs) can efficiently learn any composition
of functions with bounded F1-norm, which allows DNNs to break the curse of
dimensionality in ways that shallow networks cannot. More specifically, we
derive a generalization bound that combines a covering number argument for
compositionality, and the F1-norm (or the related Barron norm) for large width
adaptivity. We show that the global minimizer of the regularized loss of DNNs can
fit for example the composition of two functions f∗ = h ◦ g from a small number
of observations, assuming g is smooth/regular and reduces the dimensionality (e.g.
g could be the quotient map of the symmetries of f∗), so that h can be learned in
spite of its low regularity. The measures of regularity we consider is the Sobolev
norm with different levels of differentiability, which is well adapted to the F1 norm.
We compute scaling laws empirically and observe phase transitions depending on
whether g or h is harder to learn, as predicted by our theory.

1 INTRODUCTION

One of the fundamental features of DNNs is their ability to generalize even when the number of
neurons (and of parameters) is so large that the network could fit almost any function (Zhang et al.,
2017). Actually DNNs have been observed to generalize best when the number of neurons is infinite
(Belkin et al., 2019; Geiger et al., 2019; 2020). The now quite generally accepted explanation to this
phenomenon is that DNNs have an implicit bias coming from the training dynamic where properties
of the training algorithm lead to networks that generalize well. This implicit bias is quite well
understood in shallow networks (Chizat & Bach, 2018; Rotskoff & Vanden-Eijnden, 2018), in linear
networks (Gunasekar et al., 2018; Li et al., 2020), or in the NTK regime (Jacot et al., 2018), but it
remains ill-understood in the general deep nonlinear case.

In both shallow networks and linear networks, one observes a bias towards small parameter norm
(either implicit (Chizat & Bach, 2020) or explicit in the presence of weight decay (Wang & Jacot,
2024)). Thanks to tools such as the F1-norm (Bach, 2017), or the related Barron norm (Weinan et al.,
2019), or more generally the representation cost (Dai et al., 2021), it is possible to describe the family
of functions that can be represented by shallow networks or linear networks with a finite parameter
norm. This was then leveraged to prove uniform generalization bounds (based on Rademacher
complexity) over these sets (Bach, 2017), which depend only on the parameter norm, not on the
number of neurons or parameters.

Similar bounds have been proposed for DNNs (Bartlett et al., 2017; Golowich et al., 2020; Barron &
Klusowski, 2019; Schmidt-Hieber, 2020; Nitanda & Suzuki, 2020; Hsu et al., 2021; Sellke, 2024),
relying on different types of norms on the parameters of the network. Analogues of these bounds
have been extended to other architectures, such as CNNs (Ledent et al., 2021; Graf et al., 2022;
Truong, 2022; Galanti et al., 2023). But there remains many issues: these bounds are typically orders
of magnitude too large (Jiang et al., 2019; Gonon et al., 2023), and they tend to explode as the depth
L grows (Sellke, 2024).

It is difficult to compare these bounds, since they involve many terms that have complex behavior
as the depth increases. To justify our new complexity measure R(θ) and bound, we pair it with an
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approximation result on composition of Sobolev functions (functions with a certain decay of their
Fourier or spherical harmonics coefficients), which implies that DNNs can learn such composite
functions with almost optimal rates, allowing to break the curse of dimensionality in certain cases.

Previous works has shown that DNNs with either bounded width/depth (Schmidt-Hieber, 2020)
or with bounded number of non-zero parameters (Galanti et al., 2023; Poggio & Fraser, 2024)
can effectively learn such compositional functions. This paper shows that these strong sparsity
assumptions are not strictly necessary for DNNs to learn such compositional functions.

The family of composite Sobolev functions is also a useful theoretical baseline to compare different
norm-based bounds, by checking which complexity measure lead to tighter rates. This allows us to
show the importance of replacing operator norms by Lipschitz constants and other design choices.

1.1 CONTRIBUTION

We consider Accordion Networks (AccNets), which are the composition fL:1 = fL ◦ · · · ◦ f1 of
multiple shallow networks fℓ(x) = Wℓσ(Vℓx+ bℓ), we prove a uniform generalization bound for

the MSE
√
L(fL:1)−

√
L̃N (fL:1) ≲

√
R(θ)√

N
, for a complexity measure

R(θ) =

(
L∏

ℓ=1

Lip(fℓ)

)(
L∑

ℓ=1

∥fℓ∥F1

Lip(fℓ)

√
dℓ + dℓ−1

)
that depends on the F1-norms ∥fℓ∥F1

(which is upper bounded by the parameter norm of the
corresponding shallow network ∥Wℓ∥2F + ∥Vℓ∥2F + ∥bℓ∥2) and Lipschitz constanst Lip(fℓ) of the
subnetworks, and the intermediate dimensions d0, . . . , dL. This use of the F1-norms makes this
bound independent of the widths w1, . . . , wL of the subnetworks, though it does depend on the depth
L (it typically grows linearly in L which is still better than the exponential growth often observed).

Any traditional DNN can be mapped to an AccNet (and vice versa), by spliting the middle weight
matrices Wℓ with SVD USV T into two matrices U

√
S and

√
SV T to obtain an AccNet with

dimensions dℓ = RankWℓ, so that the bound can be applied to traditional DNNs with bounded rank.

We then show an approximation result: any composition of Sobolev functions f∗ = f∗
L∗ ◦ · · · ◦ f∗

1
can be approximated with a network with either a bounded complexity R(θ) or a slowly growing
one. Thus under certain assumptions one can show that DNNs can learn general compositions of
Sobolev functions (i.e. functions whose first ν ∈ N derivatives are bounded in L2 norm). This ability
can be interpreted as DNNs being able to learn symmetries, allowing them to avoid the curse of
dimensionality in settings where kernel methods or even shallow networks suffer heavily from it.

Empirically, we observe a good match between the scaling laws of learning and our theory, as well as
qualitative features such as transitions between regimes depending on whether it is harder to learn the
symmetries of a task, or to learn the task given its symmetries.

2 ACCORDION NEURAL NETWORKS AND RESNETS

Our analysis is most natural for a slight variation on the traditional fully-connected neural networks
(FCNNs), which we call Accordion Networks, which we define here. Nevertheless, all of our results
can easily be adapted to FCNNs.

Accordion Networks (AccNets) are simply the composition of L shallow networks, that is fL:1 =
fL ◦ · · · ◦ f1 where fℓ(z) = Wℓσ(Vℓz + bℓ) for the nonlinearity σ : R → R, the dℓ × wℓ matrix
Wℓ , wℓ × dℓ−1 matrix Vℓ, and wℓ-dim. vector bℓ, and for the widths w1, . . . , wL and dimensions
d0, . . . , dL. We will focus on the ReLU σ(x) = max{0, x} for the nonlinearity. The parameters θ are
made up of the concatenation of all (Wℓ, Vℓ, bℓ). More generally, we denote fℓ2:ℓ1 = fℓ2 ◦ · · · ◦ fℓ1
for any 1 ≤ ℓ1 ≤ ℓ2 ≤ L.

We will typically be interested in settings where the widths wℓ is large (or even infinitely large), while
the dimensions dℓ remain finite or much smaller in comparison, hence the name accordion.

If we add residual connections, i.e. fres
L:1 = (fL + id) ◦ · · · ◦ (f1 + id) for the same shallow nets

f1, . . . , fL we recover the typical ResNets.
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Remark. The only difference between AccNets and FCNNs is that each weight matrix Mℓ of the
FCNN is replaced by a product of two matrices Mℓ = VℓWℓ−1 in the middle of the network (such a
structure has already been proposed (Ongie & Willett, 2022; Parkinson et al., 2023)). Given an AccNet
one can recover an equivalent FCNN by choosing Mℓ = VℓWℓ−1, M0 = V0 and ML+1 = WL. In
the other direction there could be multiple ways to split Mℓ into the product of two matrices, but we
will focus on taking Vℓ = U

√
S and Wℓ−1 =

√
SV T for the SVD decomposition Mℓ = USV T ,

along with the choice dℓ = RankMℓ. One can thus think of AccNets as rank-constrained FCNNs.

2.1 LEARNING SETUP

We consider a traditional MSE regression setup, where we want to find a function f : Ω ⊂ Rdin →
Rdout that minimizes the population loss L(f) = Ex∼π ∥f(x)− f∗(x)∥2 for the ‘true function’ f∗,
and input distribution π. Given a training set x1, . . . , xN of size N we approximate the population
loss by the empirical loss L̃N (f) = 1

N

∑N
i=1 ∥f(xi)− f∗(xi)∥2 that can be minimized.

To ensure that the empirical loss remains representative of the population loss, we will prove high

probability bounds on the generalization gap
√
L(f)−

√
L̃N (f) = O(

√
RN− 1

2 ) uniformly over
function families with complexity bounded by R. Thus as long as the train error is small enough
L̃N (f) = O(RN− 1

2 ), so will the test error L(f) = O(RN− 1
2 ). This type of bound on the gap

between squared roots of the losses is more natural for the MSE loss and allows for so-called fast
rates under the assumption that the train error is itself small. Note that our generalization bounds rely
on covering number arguments, so they could easily be applied to Lipschitz losses using Dudley’s
theorem.

For simplicity of analysis, we will assume that the true function f∗ and estimator f̂ are uniformly
bounded ∥f∗∥∞, ∥f̂∥∞ ≤ B. This can be guaranteed easily by adding a renormalizing nonlinearity
at the end of the network γB(x) = Bx

max{B,∥x∥} . Since this is a contraction it does not affect the
covering number argument that we rely on.

3 GENERALIZATION BOUND FOR DNNS

The reason we focus on accordion networks is that there exists generalization bounds for shallow
networks (Bach, 2017; Weinan et al., 2019), that are (to our knowledge) widely considered to be
tight, which is in contrast to the deep case, where many bounds exist but no clear optimal bound has
been identified. Our strategy is to extend the results for shallow nets to the composition of multiple
shallow nets, i.e. AccNets. Roughly speaking, we will show that the complexity of an AccNet fθ is
bounded by the sum of the complexities of the shallow nets f1, . . . , fL it is made of.

We will therefore first review (and slightly adapt) the existing generalization bounds for shallow
networks in terms of their so-called F1-norm (Bach, 2017), and then prove a generalization bound for
deep AccNets.

3.1 SHALLOW NETWORKS

The complexity of a shallow net f(x) = Wσ(V x + b), with weights V ∈ Rw×din and

W ∈ Rdout×w, can be bounded in terms of the quantity C =
∑w

i=1 ∥W·i∥
√

∥Vi·∥2 + b2i .
First note that the rescaled function 1

C f can be written as a convex combination 1
C f(x) =∑w

i=1

∥W·i∥
√

∥Vi·∥2+b2i
C W̄·iσ(V̄i·x+ b̄i) for W̄·i =

W·i
∥W·i∥ , V̄i· =

Vi·√
∥Vi·∥2+b2i

, and b̄i =
bi√

∥Vi·∥2+b2i
,

since the coefficients ∥W·i∥
√

∥Vi·∥2+b2i
C are positive and sum up to 1. Thus f belongs to C times the

convex hull
BF1

= Conv
{
x 7→ wσ(vTx+ b) : ∥w∥2 = ∥v∥2 + b2 = 1

}
.

This set can be thought as the unit ball w.r.t. to the F1-norm (Bach, 2017). The F1-norm ∥f∥F1
itself

can then be defined as the smallest positive scalar s such that 1
sf ∈ BF1 . Note that by the AM-GM
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inequality, we have

∥f∥F1
≤ C =

w∑
i=1

∥W·i∥
√
∥Vi·∥2 + b2i ≤ 1

2

w∑
i=1

∥W·i∥2 + ∥Vi·∥2 + b2i

The generalization gap over any F1-ball can be uniformly bounded with high probability:
Theorem 1. For any input distribution π supported on the L2 ball B(0, b) with radius b, we have with
probability 1− p, over the training samples x1, . . . , xN , that for all f ∈ {f : ∥f∥F1

≤ R, ∥f∥∞ ≤
B} √

L(f)−
√

L̃N (f) ≤ c0

√
BRN− 1

2 + c1B

√
− log p/2

N
.

Therefore if L̃N (f) = O(BRN− 1
2 ) then L(f) = O(BRN− 1

2 ).

This theorem is a slight variation of the one found in (Bach, 2017): we simply generalize it to multiple
outputs, and apply to the (non-Lipschitz) MSE loss instead of a general Lipschitz loss. The proof
technique however relies on covering numbers rather than Rademacher complexity, which will be
key to obtaining a generalization bound for the deep case.

Notice how this bound does not depend on the width w, because the F1-norm (and the F1-ball)
themselves do not depend on the width. This matches with empirical evidence that shows that
increasing the width does not hurt generalization (Belkin et al., 2019; Geiger et al., 2019; 2020).

To use Theorem 1 effectively we need to be able to guarantee that the learned function will have a
small enough F1-norm. The F1-norm is hard to compute exactly, but it is bounded by the parameter
norm: if f(x) = Wσ(V x+ b), then ∥f∥F1

≤ 1
2

(
∥W∥2F + ∥V ∥2F + ∥b∥2

)
, and this bound is tight

if the width w is large enough and the parameters are chosen optimally. Adding weight decay/L2-
regularization to the cost then leads to bias towards learning with small F1 norm.

3.2 DEEP NETWORKS

Since an AccNet is simply the composition of multiple shallow nets, the functions represented by an
AccNet is included in the set of composition of F1 balls. More precisely, if ∥Wℓ∥2+∥Vℓ∥2+∥bℓ∥2 ≤
2Rℓ then fL:1 belongs to the set {gL ◦ · · · ◦ g1 : gℓ ∈ BF1(0, Rℓ)} for some Rℓ.

As noticed in (Bartlett et al., 2017), the covering number is well-behaved under composition, therefore
the complexity of AccNets can be bounded in terms of the individual shallow nets it is made of:
Theorem 2. Consider an accordion net of depth L and widths dL, . . . , d0, with corresponding set of
functions F = {fL:1 : ∥fℓ∥F1

≤ Rℓ,Lip(fℓ) ≤ ρℓ, ∥fL:1∥∞ ≤ B} with input space Ω = B(0, r).
Then with probability 1− p over the sampling of the training set X from the distribution π, we have
for all f ∈ F

√
L(f)−

√
L̃N (f) ≤ c0

√√√√BρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

1√
N

(1 + o(1)) + c1B

√
− log p/2

N
,

for c0 ≈ 14.6 and c1 ≈ 7.4. Thus if L̃N (f) = O(BρL:1r
∑L

ℓ′=1
Rℓ′
ρℓ′

√
dℓ′ + dℓ′−1N

− 1
2 ) then

L(f) = O(BρL:1r
∑L

ℓ′=1
Rℓ′
ρℓ′

√
dℓ′ + dℓ′−1N

− 1
2 ).

Theorem 2 can be extended to ResNets (fL + id) ◦ · · · ◦ (f1 + id) by simply replacing the Lipschitz
constant Lip(fℓ) by Lip(fℓ + id).

The Lipschitz constants Lip(fℓ) are difficult to compute exactly, so it is easiest to simply bound it
by the product of the operator norms Lip(fℓ) ≤ ∥Wℓ∥op ∥Vℓ∥op, but we see in Theorem 4 how this
bound can be very loose1 The fact that our bound depends on the Lipschitz constants rather than the
operator norms ∥Wℓ∥op , ∥Vℓ∥op is thus a significant advantage.

1A simple example of a function whose Lipschitz constant is much smaller than its F1 norm (and thus
its operator norms since ∥W∥op ≥ ∥W∥F

RankW
) is is the ‘zig-zag’ function f(x) = |x − a−1round(ax)| on the

interval [0, 1]: we have Lip(f) = 1 but ∥f∥F1 = Ω(a) since one neuron is needed for each up or down, each
contributing a constant to the parameter norm.
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Figure 1: Visualization of scaling laws. We observe that deep networks (either AccNets or DNNs)
achieve better scaling laws than kernel methods or shallow networks on certain compositional tasks,
in agreement with our theory. We also see that our new generalization bounds approximately recover
the right scaling laws (even though they are orders of magnitude too large overall). We consider
a compositional true function f∗ = h ◦ g where g maps from dimension 15 to 3 while h maps
from 3 to 20, and we denote νg, νh for the number of times g, h are differentiable. In the first plot
νg = 8, νh = 2 so that g is easy to learn while h is hard, whereas in the second plot νg = 9, νh = 10,
so both g and h are relatively easier. The third plot presents the test error and generalization bounds
for MNIST and WESAD (Schmidt et al., 2018).

This bound can be applied to a FCNNs with weight matrices M1, . . . ,ML+1, by replacing the middle
Mℓ with SVD decomposition USV T in the middle by two matrices Wℓ−1 =

√
SV T and Vℓ = U

√
S,

with dimensions dℓ = RankMℓ+1. The Frobenius norm of the new matrices equals the nuclear norm
of the original one ∥Wℓ−1∥2F = ∥Vℓ∥2F = ∥Mℓ∥∗. Recent results have shown that weight-decay
leads to a low-rank bias on the weight matrices of the network (Jacot, 2023a;b; Galanti et al., 2022).

This allows us compare our complexity measure to the one in (Bartlett et al., 2017), whose

complexity measure
∏

ℓ ∥Wℓ∥op
(∑

ℓ

∥Wℓ∥2/3
2,1

∥Wℓ∥2/3
op

)3/2

is closest to ours. We obtain three improve-

ments: replacing the operator norm by the Lipschitz constant of fℓ, replacing the (2, 1)-norm
(∥A∥2,1 = ∥(∥A:,1∥2, . . . , ∥A:,d∥2)∥1) by the nuclear norm, and removing the 2/3 and 3/2 expo-
nents. These three changes play a significant role in Theorem 4, as we discuss later. Note however
that since our bound relies on the rank of the weight matrices being bounded, we cannot say that it is
a strict improvement over (Bartlett et al., 2017).

We compute in Figure 1 the upper bound of Theorem 2 for both AccNets and DNNs, and even though
we observe a very large gap (roughly of order 107), we do observe that it captures rate/scaling of the
test error (the log-log slope) well. So this generalization bound could be well adapted to predicting
rates, which is what we will do in the next section.

Remark. Note that if one wants to compute this upper bound in practical setting, it is important to
train with L2 regularization until the parameter norm also converges (this often happens after the
train and test loss have converged). The intuition is that at initialization, the weights are initialized
randomly, and they contribute a lot to the parameter norm, and thus lead to a larger generalization
bound. During training with weight decay, these random initial weights slowly vanish, thus leading
to a smaller parameter norm and better generalization bound. It might be possible to improve our
generalization bounds to take into account the randomness at initialization to obtain better bounds
throughout training, but we leave this to future work.
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4 BREAKING THE CURSE OF DIMENSIONALITY WITH COMPOSITIONALITY

In this section we study a large family of functions spaces, obtained by taking compositions of
Sobolev balls. We focus on this family of tasks because they are well adapted to the complexity
measure we have identified, and because kernel methods and even shallow networks do suffer from
the curse of dimensionality on such tasks, whereas deep networks avoid it (e.g. Figure 1).

More precisely, we will show that these sets of functions can be approximated by a AccNets with
bounded (or in some cases slowly growing) complexity measure

R(θ) =

L∏
ℓ=1

Lip(fℓ)

L∑
ℓ=1

∥fℓ∥F1

Lip(fℓ)

√
dℓ + dℓ−1.

This will then allow us show that AccNets can (assuming global convergence) avoid the curse of
dimensionality, even in settings that should suffer from the curse of dimensionality, when the input
dimension is large and the function is not very smooth (only a few times differentiable).

Since the regularization term R(θ) is difficult to optimize directly because of the Lipschitz constants,
we also consider the upper bound R̃(θ) obtained by replacing each Lip(fℓ) with ∥Vℓ∥op∥Wℓ∥op.

4.1 COMPOSITION OF SOBOLEV BALLS

The family of Sobolev norms capture the regularity of a function, by measuring the size of its
derivatives. Consider a function f : Rdin → R with derivatives ∂α

x f for some din-multi-index α, the
W ν,p(π)-Sobolev norm with integer ν and p ≥ 1 is defined as

∥f∥pW ν,p(π) =
∑
|α|≤ν

∥∂α
x f∥

p
Lp(π)

.

Note that the derivative ∂α
x f only needs to be defined in the ‘weak’ sense, which means that even

non-differentiable functions such as the ReLU functions can actually have finite Sobolev norm.

The Sobolev balls BW ν,p(π)(0, R) = {f : ∥f∥W ν,p(π) ≤ R} are a family of function spaces with a
range of regularity (the larger ν, the more regular). This regularity makes these spaces of functions
learnable purely from the fact that they enforce the function f to vary slowly as the input changes.
Indeed we can prove the following generalization bound:
Proposition 3. Given a distribution π with support in B(0, b), we have that with probability 1− p
for all functions f ∈ F = {f : ∥f∥W ν,2 ≤ R, ∥f∥∞ ≤ B}

√
L(f)−

√
L̃N (f) = c0

(
B2Rr

N

) 1
2+r

+ c1B

√
− log p/2

N
,

where r = din

ν . Therefore if L̃N (f) = O((B
2Rr

N )
2

2+r ), then L(f) = O((B
2Rr

N )
2

2+r ).

But this result also illustrates the curse of dimensionality: the differentiability ν needs to scale with
the input dimension din to obtain a reasonable rate. If instead ν is constant and din grows, then the
number of datapoints N needed to guarantee a test error of at most ϵ2 scales exponentially in din, i.e.
N ∼ ϵ−(2+r) = ϵ−(2+

din
ν ). One way to interpret this issue is that regularity becomes less and less

useful the larger the dimension: knowing that similar inputs have similar outputs is useless in high
dimension where the closest training point xi to a test point x is typically very far away.

4.1.1 BREAKING THE CURSE OF DIMENSIONALITY WITH COMPOSITIONALITY

To break the curse of dimensionality, we need to assume some additional structure on the data or task
which introduces an ‘intrinsic dimension’ that can be much lower than the input dimension din:

Manifold hypothesis: If the input distribution lies on a dsurf -dimensional manifold, the error rates
typically depends on dsurf instead of din (Schmidt-Hieber, 2019; Chen et al., 2022).

Known Symmetries: If f∗(g · x) = f∗(x) for a group action · w.r.t. a group G, then f∗ can be
written as the composition of a quotient map g∗ : Rdin → Rdin/G which maps pairs of inputs which
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Figure 2: A comparison of empirical and theoretical error rates. The frist two columns show
the log decay rate of the test error with respect to the dataset size N based on our empirical
simulations for 4 different models. The top right plot depicts the theoretical decay rate of the test
error −min{ 1

2 ,
2νg

2νg+din
, 2νh

2νh+dmid
}. The bottom right plot displays the difference between the rates

of AccNets and shallow nets. The lower left region represents the area where g is easier to learn than
h, the upper right where h is easier to learn than g, and the lower right region where both f and g are
easy. We see that the biggest gain of AccNets over shallow nets are in the. lower left regions, where
learning h is hard.

are equivalent up to symmetries to the same value (pairs x, y s.t. y = g · x for some g ∈ G), and then
a second function h∗ : R

din/G → Rdout , then the complexity of the task will depend on the dimension
of the quotient space Rdin/G which can be much lower. If the symmetry is known, then one can for
example fix g∗ and only learn h∗ (though other techniques exist, such as designing kernels or features
that respect the same symmetries) (Mallat, 2012).

Symmetry Learning: However if the symmetry is not known then both g∗ and h∗ have to be learned,
and this is where we require feature learning and/or compositionality. Shallow networks are able
to learn translation symmetries, since they can learn so-called low-index functions which satisfy
f∗(x) = f∗(Px) for some projection P (with a statistical complexity that depends on the dimension
of the space one projects into, not the full dimension (Bach, 2017; Abbe et al., 2021)). Low-index
functions correspond exactly to the set of functions that are invariant under translation along the
kernel kerP . To learn general symmetries, one needs to learn both h∗ and the quotient map g∗

simultaneously, hence the importance of feature learning.

For g∗ to be learnable efficiently, it needs to be regular enough to not suffer from the curse of
dimensionality, but many traditional symmetries actually have smooth quotient maps, for example
the quotient map g∗(x) = ∥x∥2 for rotation invariance. This can be understood as a special case of
composition of Sobolev functions, whose generalization gap can be bounded:

Theorem 4. Let F = FL ◦ · · · ◦ F1 where Fℓ ={
fℓ : Rdℓ−1 → Rdℓ s.t. ∥fℓ∥W νℓ,2 ≤ R, ∥fℓ∥∞ ≤ B,Lip(fℓ) ≤ ρℓ

}
, and let rmax = maxℓ rℓ for

rℓ =
dℓ−1

νℓ
, then with probability 1− p we have for all f ∈ F

√
L(f)−

√
L̃N (f) ≤ c0

(
B2Rrmax

N

) 1
2+rmax

+ c1B

√
− log p

N
,

where c0 depends only on rℓ, ρℓ. Thus if L̃N (f) ≤ O(N− 2
2+rmax ) then L(f) ≤ O(N− 2

2+rmax ).
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We see that only the largest ratio rmax matters when it comes to the rate of learning. Coming back to
the symmetry learning example, we see that the hardness of learning a function of the type f∗ = h◦ g
with inner dimension dmid and regularities νg and νh leading to ratios rg = din

νg
and rh = dmid

νh
, the

test error will of order (assuming the train error is small enough)

L = O
(
N

−min{ 2
2+rg

, 2
2+rh

}
)
= O

(
N

−min{ 2νg
2νg+din

,
2νh

2νh+dmid
}
)
.

This suggests the existence of two regimes depending on whether g or h is harder to learn, which is
determined by which ratio rg or rh is larger.

In contrast, without taking advantage of the compositional structure, we expect f∗ to be only
min{νg, νh} times differentiable, so trying to learn it as a single Sobolev function would lead to an er-

ror rate of N− 2min{νg,νh}
2min{νg,νh}+din = N

−min{ 2νg
2νg+din

,
2νh

2νh+din
} which is no better than the compositional

rate assuming dmid ≤ din, and can in some cases be arbitrarily worse.

Furthermore, since multiple compositions are possible, one can imagine a hierarchy of symmetries
that slowly reduce the dimensionality with less and less regular quotient maps. For example one could
imagine a composition fL ◦ · · · ◦ f1 with dimensions dℓ = d02

−ℓ and regularities νℓ = d02
−ℓ so that

the ratios remain constant rℓ = d02
−ℓ

d02−ℓ+1 = 1
2 , leading to an almost parametric rate of N− 1

2 logN ,

improving significantly over to the non-compositional rate of N−2−L

.

Remark. A naive argument suggests that the rate of N− 2
2+rmax should be optimal: assume that the

maximum rℓ is attained at a layer ℓ, then one can consider the subset of functions such that the image
fℓ−1:1(B(0, r)) contains a ball B(z, r′) ⊂ Rdℓ−1 and that the function fL:ℓ+1 is β-non-contracting
∥fL:ℓ+1(x)− fL:ℓ+1(y)∥ ≥ β ∥x− y∥, then learning fL:1 should be as hard as learning fℓ over the
ball B(z, r′), thus forcing a rate of at least N− 2

2+rmax . An analysis of minimax rates in a similar
setting has been done in (Giordano et al., 2022).

4.2 BREAKING THE CURSE OF DIMENSIONALITY WITH ACCNETS

Now that we know that composition of Sobolev functions can be easily learnable, even in settings
where the curse of dimensionality should make it hard to learn them, we need to find a model that can
achieve those rates. Though many models are possible 2, we focus on DNNs, in particular AccNets.
Assuming convergence to a global minimum of the loss of sufficiently wide AccNets with two types
of regularization, one can guarantee close to optimal rates:
Theorem 5. Given a true function f∗

L∗:1 = f∗
L∗ ◦ · · · ◦ f∗

1 going through the dimensions d∗0, . . . , d
∗
L∗ ,

along with a continuous input distribution π0 supported in B(0, b0), such that the distributions πℓ

of f∗
ℓ (x) (for x ∼ π0) are continuous too and supported inside B(0, bℓ) ⊂ Rd∗

ℓ . Further assume
that there are differentiabilities νℓ and radii Rℓ such that ∥f∗

ℓ ∥W νℓ,2(B(0,bℓ))
≤ Rℓ, and ρℓ such that

Lip(f∗
ℓ ) ≤ ρℓ. For an infinite width AccNet with L ≥ L∗ and dimensions dℓ ≥ d∗1, . . . , d

∗
L∗−1, we

have for the ratios r̃ℓ = max{d∗
ℓ−1+3

νℓ
, 2}:

(1) At a global min f̂L:1 of L̃N (fL:1) + λR(θ), we have L(f̂L:1) = O(N− 2
2+r̃max ) for r̃max =

max{r̃1, . . . , r̃L}.

(2) At a global min f̂L:1 of L̃N (fL:1) + λR̃(θ), we have L(f̂L:1) = O(N− 2
2+r̃sum ) for r̃sum =

2 +
∑

ℓ(r̃ℓ − 2).

In the proof, we build a network f̂L:1 that approximates f∗
L∗:1 in the following manner: we adapt

approximation results from (Bach, 2017) to approximate each Sobolev function f∗
ℓ by a shallow

network f̂ℓ′ and if L > L∗ we add L−L∗ identity layers where the dimensionality d∗ℓ is minimal (the
parameter norm required to represent the identity on a d-dimensional representation is proportional
to d, so it is optimal to add identity layers at the smallest dimension).

2One could argue that it would be more natural to consider compositions of kernel method models, for
example a composition of random feature models. But this would lead to a very similar model: this would be
equivalent to a AccNet where only the Wℓ weights are learned, while the Vℓ, bℓ weights remain constant. Another
family of models that should have similar properties is Deep Gaussian Processes (Damianou & Lawrence, 2013).
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F1-norm/Barron norm: This shows the power of replacing other parameter norm measures (such
as the (2, 1)-norm from Bartlett et al. (2017)) with the F1-norm, by allowing us to repurpose the
already existing approximation results for shallow networks. While we do not prove that a similar
approximations cannot be achieved with small (2, 1)-norm too, it seems unlikely, since generic
Sobolev functions require a high variety of active neurons (a natural way to approximate them is
to use a random feature approach (Rahimi & Recht, 2008)) which seems in contradiction with the
(2, 1)-norm which imposes a sparsity on the neurons.

Norm based vs Sparsity based: In (Schmidt-Hieber, 2020; Poggio & Fraser, 2024) a similar class of
functions is considered and optimal rates N− 2

2+rmax with rmax = max{d∗
0

ν1
, . . . ,

d∗
L∗−1

νL∗ } instead of

r̃max = max{d∗
0+3
ν1

, . . . ,
d∗
L∗−1+3

νL∗ , 2} are proven. The presence off the +3 comes from the shallow
network approximation results and could potentially be removed. The bigger gap happens for easy
tasks, where the ‘fast’ rates can be achieved N−1 when rmax ≈ 0, whereas our result can never
predict rates faster than N− 1

2 because r̃max ≥ 2. This might be a fundamental gap, because norm-
based complexity measures are known to be unable to yield fast rates (Srebro et al., 2010), so a
control on the dimensionality of the model might be required to obtain these fast rates. Real world
tasks are probably rarely easy enough to achieve rates faster than N− 1

2 , e.g. LLMs scaling laws have
been observed to be roughly N−0.095 in (Kaplan et al., 2020).

Lipschitz constant vs operator norm: By evaluating the complexities R, R̃ on this approximation,
we obtain two bounds illustrating the tradeoff between these two complexities. The first complexity
measure based on Lipschitz constant Lip(fℓ) leads to almost optimal rates, whereas the second
complexity measure can lead to arbitrarily suboptimal rates when two or more ratios d∗

ℓ−1+3

νℓ
are

larger than 2. This is due to the fact to approximate a general Sobolev functions with a large ratio
d∗
ℓ−1+3

νℓ
with a shallow network, the parameter norm ∥Wℓ∥2F + ∥Vℓ∥2F needs to grow to infinity as

ϵ ↘ 0, leading to exploding operator norms, even though the Lipschitz constant remains bounded.

Obviously, the Lipschitz constants Lip(fℓ) are difficult to optimize over. For finite width networks it
is in theory possible to take the max over all linear regions, but the complexity might be unreasonable.
It might be more reasonable to leverage an implicit bias instead, such as a large learning rate, because
a large Lipschitz constant implies that the network is sensible to small changes in its parameters,
so GD with a large learning rate should only converge to minima with a small Lipschitz constant
(such a bias is described in (Jacot, 2023b)). For this reason, we apply standard weight-decay to
minimize the F1-norms, and rely on the implicit bias to control the Lipschitz constants. Going further,
techniques from (Wei & Ma, 2019) could be used to replace the Lipschitz constant in the bound with
the maximum Jacobian over the dataset, which could then be optimized directly.

Impact of Depth: As can be seen in the proof of Theorem 5, when the depth L is strictly larger than
the true depth L∗, one needs to add identity layers, leading to a so-called Bottleneck structure, which
was proven emerge as a result of weight decay in (Jacot, 2023a;b; Wen & Jacot, 2024). These identity
layers add a term that scales linearly in the additional depth (L−L∗)d∗

min√
N

to the first regularization,
(and multiplicative factor of order L to the second), see the proof for more details. The removal of
the 2/3 and 3/2 exponents3 in our bounds in comparison to previous bounds Bartlett et al. (2017)
allow us to get such a O(L) bound instead of O(L

3
2 ). Interestingly, the first bound proposed in

Golowich et al. (2020) to obtain a better depth dependence depends on the product of the Frobenius
norms, which would grow exponentially as minℓ{d∗0, . . . , d∗L}(L−L∗) if the minimum dimension is 2
or more. Finally, note that by switching to a ResNet, there is no need for those identity layers, and
the generalization becomes constant in depth.

Limitations: There are a number of limitations to this result. First we assume that one is able to
recover the global minimizer of the regularized loss, which should be hard in general4 (we already
know from (Bach, 2017) that this is NP-hard for shallow networks and a simple F1-regularization).
Note that it is sufficient to recover a network fL:1 whose regularized loss is within a constant of the

3We achieve this by applying chaining accross the layers instead of applying to each layer separately.
4Note that the unregularized loss can be optimized polynomially, e.g. in the NTK regime (Jacot et al.,

2018; Allen-Zhu et al., 2019; Du et al., 2019), but this is an easier task than finding the global minimum of the
regularized loss where one needs to both fit the data, and do it with an minimal regularization term.
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global minimum, which might be easier to guarantee, but should still be hard in general. The typical
method of training with GD on the regularized loss is a greedy approach, which might fail in general
but could recover almost optimal parameters under the right conditions (some results suggest that
training relies on first order correlations to guide the network in the right direction (Abbe et al., 2021;
2022; Petrini et al., 2023)).

Another limitation is that our proof requires an infinite width, because we were not able to prove
that a function with bounded F1-norm and Lipschitz constant can be approximated by a sufficiently
wide shallow networks with the same (or close) F1-norm and Lipschitz constant (we know from
(Bach, 2017) that it is possible without preserving the Lipschitzness). We are quite hopeful that this
condition might be removed in future work.

4.2.1 EXPERIMENTS

We train our models on a synthetic dataset obtained by composing two Gaussian processes Y =
h(g(X)) with Matérn kernels Kg,Kh chosen so that g and h have the right differentiability. In Figure
2, we compare the empirical rates (by doing a linear fit on a log-log plot of test error as a function of
N ) and rates min{ 1

2 ,
2νg

2νg+din
, 2νh

2νh+dmid
} which seem to yield the best match. Note that this best fit

for the rates is a mix of the theoretical lower bound min{ 2νg

2νg+din
, 2νh

2νh+dmid
} and the upper bound

min{ 1
2 ,

2νg

2νg+din+3 ,
2νh

2νh+dmid+3}, suggesting that the appearance of the +3 in the denominator might
be an artifact of the proofs, whereas the 1

2 might actually be optimal. But the amount of noise in our
approximation of the rates does not allow us to give a definite answer for what the rates should be.

Notice also that all experiments were done with a simple L2-regularization, which suggests the
Lipshitz constants Lip(fℓ) do not need to be optimized directly. The use of large learning rates
and the edge of stability phenomenon (Cohen et al., 2021) could explain this implicit control of the
Lipschitzness, because a large Lipschitz constant can lead to exploding gradients, and training with
large learning rates could implicit avoid such parameters. Stability under large learning rate has been
shown to control the regularity of the representations in previous works (Jacot, 2023a;b).

4.2.2 COMPUTATIONAL GRAPHS

Theorem 5 can be adapted to show that AccNets can also learn any ‘computational graph’ as in
(Schmidt-Hieber, 2020; Poggio & Fraser, 2024), where a variables v1, . . . , vK each with their
own dimension dk. Each variable has a set of parents P (k) ⊂ {1, . . . ,K} on whom it depends
vk = fk((vm : m ∈ P (k))) for a νk-Sobolev or F1 function gk. We assume that the variables can be
ordered in such a way that all parents of a variable belong have smaller indices, or equivalently that
the directed graph with K vertices, with edges connecting parents to their child is acyclic. The input
variable is 1 and output one is K.

It is then possible to organize the variables into ‘layers’ of variables that only have parents in the
previous layers (possibly adding identities to keep certain variables from previous layers until they
are needed). We say that the depth L∗ of the computational graph is the minimal number of layers
required to find such a representation, and it matches the length of the longest directed path in the
graph. Thus the complete function can be written as the composition of L∗ functions f∗

L:1, where each
f∗
ℓ is the product of a few gks, e.g. f∗

ℓ (v1, v2, v3) = (g1(v1, v2), g2(v3), g3(v1, v3)). The F1-norm
has the property that F1-norm of the product of multiple functions is upper bounded by the sum
of the F1 norms, e.g. ∥f∗

ℓ ∥F1
= ∥g1∥F1

+ ∥g2∥F1
+ ∥g3∥F1

, as well as the Lipshchitz constant
Lip(f∗

ℓ ) = Lip(g1)+Lip(g2)+Lip(g3). One can then easily see that, assuming bounded Lipschitz

constants, we can guarantee a rate of learning of N− 2
2+r̃max for r̃max = maxk=1,...,K

3+
∑

m∈P (k) dk

νk
.

5 CONCLUSION

We have given a generalization bound for Accordion Networks and as an extension Fully-Connected
networks. It depends on the F1-norms and Lipschitz constants of its shallow subnetworks. This
allows us to prove under certain assumptions that AccNets can learn general compositions of Sobolev
functions efficiently, making them able to break the curse of dimensionality in certain settings, such
as in the presence of unknown symmetries.
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Mario Geiger, Stefano Spigler, Stéphane d’Ascoli, Levent Sagun, Marco Baity-Jesi, Giulio Biroli,
and Matthieu Wyart. Jamming transition as a paradigm to understand the loss landscape of deep
neural networks. Physical Review E, 100(1):012115, 2019.

Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli,
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The Appendix is structured as follows:

1. In Section A, we describe the experimental setup and provide a few additional experiments.
2. in Section B, we introduce the notion of covering numbers and prove a Theorem that we

will use to obtain generalization bounds from covering numbers bound.
3. In Section C, we prove Theorems 1 and 2 from the main.
4. In Section D, we prove Proposition 3 and Theorem 4.
5. In Section E, we prove Theorem 5 and other approximation results concerning Sobolev

functions.
6. In Section F, we prove a few technical results on the covering number.

A EXPERIMENTAL SETUP

In this section, we review our numerical experiments and their setup both on synthetic and real-
world datasets in order to address theoretical results more clearly and intuitively. The code used for
experiments is publicly available here.

A.1 DATASET

A.1.1 EMPIRICAL DATASET

By Corollary A.6 from (Tuo & Wu, 2015), the Reproducing kernel Hilbert space (RKHS) generated
by Matérn kernel is norm equivalent to the Sobolev space Hν+d/2(Ω), so we utilized Matérn kernels
to generate the synthetic dataset which retains Sobolev properties.

The Matérn kernel is considered a generalization of the radial basis function (RBF) kernel. It
controls the differentiability, or smoothness, of the kernel through the parameter ν. As ν → ∞, the
Matérn kernel converges to the RBF kernel, and as ν → 0, it converges to the Laplacian kernel, a
0-differentiable kernel. In this study, we utilized the Matérn kernel to generate Gaussian Process (GP)
samples based on the composition of two Matérn kernels, Kg and Kh, with varying differentiability
in the range [0.5,10]×[0.5,10]. The input dimension (din) of the kernel, the bottleneck mid-dimension
(dmid), and the output dimension (dout) are 15, 3, and 20, respectively.

This outlines the general procedure of our sampling method for synthetic data:

1. Sample the training dataset X ∈ RD×din

2. From X, compute the D ×D kernel Kg with given νg

3. From Kg , sample Z ∈ RD×dmid with columns sampled from the Gaussian N (0,Kg).
4. From Z, compute Kg with given νh

5. From Kh, sample the test dataset Y ∈ RD×dout with columns sampled from the Gaussian
N (0,Kh).

We used 128 GB of RAM to generate our synthetic dataset. Due to the Matérn Kernel’s time
complexity of O(n3) and the space complexity of O(n2), the maximum possible dataset size for 128
GB of memory is approximately 52,500. Among the 52,500 dataset points, 50,000 were allocated for
training, and 2,500 were used for the test dataset.

A.1.2 REAL-WORLD DATASET: MNIST AND WESAD

In our study, we utilized both MNIST (Modified National Institute of Standards and Technology)
and WESAD (Wearable Stress and Affect Detection) to train our AccNets for classification tasks. As
a standard benchmark for image classification tasks, MNIST consists of 60,000 grayscale images
of 10 different handwritten digits. On the other hand, the WESAD dataset provides multimodal
physiological and motion data collected from 15 subjects using devices worn on the wrist and
chest. For the purpose of our experiment, we specifically employed the Empatica E4 wrist device to
distinguish between non-stress (baseline) and stress conditions.
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Figure 3: A comparison: singular values of the weight matrices for DNN and AccNets models.
The first two plots represent cases where N = 10000 while the right two plots correspond to N =
200.The number of outliers at the top of each plot signifies the rank of each network. The plots with
N = 10000 datasets demonstrate a clearer capture of the true rank compared to those with N = 200
indicating that a higher dataset count provides more accurate rank determination.

After preprocessing, the dataset comprised a total of 136,482 instances. We implemented a train-test
split ratio of approximately 75:25, resulting in 100,000 dataset for the training set and the rest 36,482
dataset for the test set. The overall hyperparameters and architecture of the AccNets model applied
to the WESAD dataset were largely consistent with those used for our synthetic data. The primary
differences were the use of 100 epochs for each iteration of Ni from N in the model setup and a
learning rate set to 1e-5.

A.2 MODEL SETUPS

For analyzing the scaling law of test error for our synthetic dataset, we trained mod-
els with gradually increasing Ni data points from our training data, where N =
[100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000]. The models utilized for our analysis are
the kernel method, shallow networks, fully connected deep neural networks (FCNN), and Acc-
Nets. For FCNN and AccNets, we set the network depth to 12 layers, with the layer widths as
[din, 500, 500, ..., 500, dout] for DNNs, and [din, 900, 100, 900, ..., 100, 900, dout] for AccNets.

In order to have a comparable number of neurons between the shallow networks and other deeper
networks, the width for the shallow networks was set to 50,000, resulting in dimensions of
[din, 50000, dout].

We utilized ReLU as the activation function and L2-norm as the cost function, with the Adam
optimizer. The total number of batch was set to 5, and the training process was conducted over 3600
epochs, divided into three phases. The detailed optimizer parameters are as follows:

1. For the first 1200 epochs: learning rate (lr) = 1.5 ∗ 0.001, weight decay = 0

2. For the second 1200 epochs: lr = 0.4 ∗ 0.001, weight decay = 0.002

3. For the final 1200 epochs: lr = 0.1 ∗ 0.001, weight decay = 0.005

We conducted experiments utilizing 12 NVIDIA V100 GPUs (each with 32GB of memory) over
approximately 7 days to train all the synthetic datasets. In contrast, training the WESAD and MNIST
dataset required only one hour on a single V100 GPU.

B COVERING NUMBERS

We will use a covering number argument to prove generalization bounds. Before we start, we must
define a few notions.

The ϵ-covering number N2(F ; ϵ) of set F of functions f : Ω → Rd, is the smallest integer n such
that for any distribution π supported on Ω there is a covering F̃ , i.e. a finite set with no more than n

16
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Figure 4: Comparison of our bounds to a number of previous bounds on the composition of two
functions dataset across different differentiabilities of g and h. For simplicity, we drop the constant
prefactors in each bound, since they are mostly an artifact of the proofs. We see that our bound
(Jacot24 Jacobian) obtains strictly better than previous ones, even when using upper bounding the
Lipschitz constants by the operator norms (Jacot24 OP). Since we cannot compute the Lipschitz
constant, we approximate them by a max over 100 random points (taking more points does not
significantly change the final bound). The lines appear flat because most of the variation is between
different bounds rather than as N increases, but by zooming in, we can see a downward trend, albeit a
slow and noisy one. The case (2, 2) lies in the regime where both g and h are hard, in which case our
theory predicts that the operator norm bound should have a worse scaling exponent than the Lipschitz
based bound. The experiments appear to match our prediction, because the Lipschitz-constant based
bound seems to be the only one that is decreasing in N , while the operator norm bound, as well as all
previous bounds, are increasing (the fact that uniform generalization bounds can be increasing in N
has been observed in previous work (Nagarajan & Kolter, 2019)). Though these trends are interesting,
there is clearly a lot of noise in the resulting curves, so it is difficult to confidently conclude anything
from these experiments.

elements, such that for all f ∈ F there is a cover f̃ ∈ F̃ with∥∥∥f − f̃
∥∥∥
π
=

√
Ex∼π

∥∥∥f(x)− f̃(x)
∥∥∥2 ≤ ϵ.

We will also sometimes say that f̃ covers f in such case.

The covering number allows us to bound the difference between the errors of two datasets uniformly
over the whole functions set F with high-probability:

Theorem 6. Let F be a space of functions such that ∥g∥∞ ≤ B for all g ∈ F . Given a true function
f∗ such that ∥f∥∞ ≤ B, we have that with probability at least 1 − p over the sampling of two
datasets S, S′ from a distribution π, one has for all g ∈ F:

∥g − f∗∥S′ − ∥g − f∗∥S ≤ 2min
ϵ

ϵ+B

√
2
logN (F , ϵ)− log p

N
.

Proof. We start with a Chernoff bound:

PS,S′

[
sup
g∈F

∥g − f∗∥S′ − ∥g − f∗∥S ≥ c

]
≤ ES,S′

[
exp

(
t sup
g∈F

∥g − f∗∥S′ − ∥g − f∗∥S

)]
e−tc

Defining M(t) = ES,S′
[
exp

(
t supg∈F ∥g − f∗∥S′ − ∥g − f∗∥S

)]
, this can be reformulated as

saying that with probability 1− p, we have that for all g ∈ F

∥g − f∗∥S′ − ∥g − f∗∥S < min
t

logM(t)− log p

t
.

Let us now bound M(t). For any pair of datasets S, S′, we consider the ϵ-covering F̃ of F w.r.t. to
the measure S+S′

2 which is the empirical measure corresponding to the dataset of size 2N made up
of the union of S and S′. Thus for any function g ∈ F , there is a g̃ ∈ F̃ such that ∥g − g̃∥S+S′

2

≤ ϵ

and
∣∣∣F̃∣∣∣ ≤ N (F , ϵ).

We can now bound
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M(t) = ES,S′

[
exp

(
t sup
g∈F

∥g − f∗∥S′ − ∥g − f∗∥S

)]
≤ ES,S′

[
exp

(
t sup
g∈F

∥g̃ − g∥S + ∥g̃ − g∥S′ + ∥g̃ − f∗∥S′ − ∥g̃ − f∗∥S

)]
≤ e2tϵES,S′

[
exp

(
t sup
g∈F

∥g̃ − f∗∥S′ − ∥g̃ − f∗∥S

)]
= e2tϵES,S′

[
sup
g∈F

exp

(
t

∑N
i=1 ∥g̃(xi)− f∗(xi)∥2 − ∥g̃(x′

i)− f∗(x′
i)∥

2

N (∥g̃ − f∗∥S′ + ∥g̃ − f∗∥S)

)]

≤ e2tϵES,S′

sup
g∈F

exp

t

∑N
i=1 ∥g̃(xi)− f∗(xi)∥2 − ∥g̃(x′

i)− f∗(x′
i)∥

2

√
2N ∥g̃ − f∗∥S+S′

2


where we used the fact that ∥h∥S +∥h∥S′ ≤

√
2 ∥h∥2S + 2 ∥h∥2S′ = 2 ∥h∥S+S′

2

≤ 2ϵ and conversely

∥h∥S + ∥h∥S′ ≥
√
∥h∥2S + ∥h∥2S′ =

√
2 ∥h∥S+S′

2

. We may now introduce i.i.d. Rademacher

random variables σi equal to 1 and −1 with prob. 1
2 :

M(t) ≤ e2tϵES,S′

Eσ

sup
g̃∈F̃

exp

t

∑N
i=1 σi

(
∥g̃(xi)− f∗(xi)∥2 − ∥g̃(x′

i)− f∗(x′
i)∥

2
)

√
2N ∥g̃ − f∗∥S+S′

2


≤ e2tϵES,S′

∑
g̃∈F̃

N∏
i=1

Eσi

exp
 tσi

(
∥g̃(xi)− f∗(xi)∥2 − ∥g̃(x′

i)− f∗(x′
i)∥

2
)

√
2N ∥g̃ − f∗∥S+S′

2

 .

To understand why adding the Rademacher random variables σi does not change the expectation, one
can think of these random variables as randomly switching the i-th datapoints xi from S and x′

i from
S′ with each other (not that these switches leave the denominator unchanged too). Sampling two
datasets S and S′ followed by random switches is equivalent to sampling without the switches.

We now use Hoeffdings Lemma, which tells us that for any random var X with EX = 0 and
X ∈ [−b, b] a.s. one has E exp tX ≤ exp t2b2

2 to obtain

M(t) ≤ e2tϵES,S′

∑
g̃∈F̃

exp

 t2
∑N

i=1

(
∥g̃(xi)− f∗(xi)∥2 − ∥g̃(x′

i)− f∗(x′
i)∥

2
)2

2N2 ∥g̃ − f∗∥2S+S′
2




≤ e2tϵES,S′

∑
g̃∈F̃

exp

 t2B2
∑N

i=1 ∥g̃(xi)− f∗(xi)∥2 + ∥g̃(x′
i)− f∗(x′

i)∥
2

N2 ∥g̃ − f∗∥2S+S′
2


= e2tϵES,S′

∑
g̃∈F̃

exp

 t2B2
(
∥g̃ − f∗∥2S + ∥g̃ − f∗∥2S′

)
N ∥g̃ − f∗∥2S+S′

2


≤ e2tϵES,S′

∑
g̃∈F̃

exp

(
t22B2

N

)
≤ N (F , ϵ) exp

(
2tϵ+

t22B2

N

)
.
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This bound on M(t) then implies that with probability at least 1− p over the sampling of S, S′ for
all g ∈ F

∥g − f∗∥S′ − ∥g − f∗∥S ≤ min
t

logM(t)− log p

t

≤ min
t,ϵ

2ϵ+
2B2t

N
+

logN (F , ϵ)− log p

t

= 2min
ϵ

ϵ+B

√
2
logN (F , ϵ)− log p

N
.

We can then use the above to bound the generalization error uniformly:
Theorem 7. Under the same setup as Theorem 6, we have that with prob. 1− p for all g ∈ F

∥g − f∗∥π − ∥g − f∗∥S ≤ min
ϵ

2ϵ+B

√
8
logN (F , ϵ)

N
+ cB

√
− log p/2

N
,

for c =
√
2(3 +

√
5).

Proof. Our goal is to approximate the population error ∥f∗ − g∥2π by the test error ∥f∗ − g∥2S′ for a
sample S′ independent of g, and this test error is itself close to the train error thanks to Theorem 6.

We use Bennett’s inequality which relies on the fact that the function h(x) = ∥f∗(x)− g(x)∥2 is
bounded by 4B2:

P
[
∥f∗ − g∥2π − ∥f∗ − g∥2S′ ≥ a

]
= P

[
N∑
i=1

h(xi)−NEh(x) ≥ Na

]

≤ exp

(
−
NEπ

[
(h(x)− Eh(x))2

]
(4B2)2

ϕ

(
4B2a

Eπ [(h(x)− Eh(x))2]

))
for ϕ(u) = (1 + u) log(1 + u)− u.

Lemma 8 gives us the bound ϕ−1(v) ≤
√
2v + 2v, which implies that with probability p

∥f∗ − g∥2π − ∥f∗ − g∥2S′ ≤
Eπ

[
(h(x)− Eh(x))2

]
4B2

(√
−2(4B2)2 log p

NEπ [(h(x)− Eh(x))2]
+

−2(4B2)2 log p

NEπ [(h(x)− Eh(x))2]

)

=

√
2Eπ [(h(x)− Eh(x))2]

− log p

N
+ 8B2− log p

N
.

We now use the facts that Eπ

[
(h(x)− Eh(x))2

]
≤ Eπ

[
h(x)2

]
≤ 4B2Eπ [h(x)] = 4B2 ∥g − f∗∥2π

to obtain

∥f∗ − g∥2π − ∥f∗ − g∥2S′ ≤ B ∥g − f∗∥π

√
8
− log p

N
+ 8B2− log p

N
.

Reordering this is implies

∥f∗ − g∥2π − ∥f∗ − g∥π

√
8B2

− log p

N
− ∥f∗ − g∥2S′ − 8B2− log p

N
≤ 0

which by the quadratic formula yields the inequality

∥f∗ − g∥π ≤
√
2B2

− log p

N
+

√
2B2

− log p

N
+ ∥f∗ − g∥2S′ + 8B2

− log p

N

≤ ∥f∗ − g∥S′ + (
√
2 +

√
10)B

√
− log p

N
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This implies that with probability 1− 2p we have that for all g ∈ F ,

∥g − f∗∥π − ∥g − f∗∥S ≤ ∥f∗ − g∥S′ − ∥g − f∗∥S + (
√
2 +

√
10)B

√
− log p

N

≤ min
ϵ

2ϵ+ 2B

√
2
logN (F , ϵ)− log p

N
+ (

√
2 +

√
10)B

√
− log p

N

≤ min
ϵ

2ϵ+B

√
8
logN (F , ϵ)

N
+

√
2(3 +

√
5)B

√
− log p

N
.

Let us now prove the lemma we used in the proof:
Lemma 8. The function ϕ(u) = (1 + u) log(1 + u)− u satisfies

ϕ(u) ≤ 1

1 + u

u2

2
.

It is also invertible over the non-negative reals and its inverse satisfies

ϕ−1(v) ≤
√
2v + 2v.

Proof. To obtain the first inequality, we compute the derivatives of ϕ:

ϕ′(u) = log(1 + u) + 1− 1 = log(1 + u)

ϕ′′(u) =
1

1 + u
.

which implies that

ϕ(u) =

∫ u

0

∫ v

0

1

1 + w
dwdv ≥ 1

1 + u

∫ u

0

∫ v

0

dwdv =
1

1 + u

u2

2
.

Solving for a non-negative u in

v =
1

1 + u

u2

2
yields

2v =
1

u−2 + u−1

=⇒ u−2 + u−1 − 1

2v
= 0

=⇒ u−1 =
−1 +

√
1 + 2

v

2

=⇒ u =
2
√
v√

2 + v −
√
v
=

√
v(
√
2 + v +

√
v)

which implies that
ϕ−1(v) ≤

√
v(
√
2 + v +

√
v) ≤

√
2v + 2v.

Example 1. As an example consider a function space F whose log covering number (this is also
called the metric entropy) grows polynomially:

logN2(F , ϵ) ≤ cϵ−r.

Therefore we get that

∥f∗ − f∥π − ∥f∗ − f∥S ≤ min
ϵ

2ϵ+
√
8B

√
c√

ϵrN
+ c1B

√
− log p/2

N
.
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Choosing ϵ =
(
2B2 c

N

) 1
2+r (chosen so that the two terms depending on ϵ match), we obtain

∥f∗ − f∥π − ∥f∗ − f∥S ≤ 2
(
2B2 c

N

) 1
2+r

+ c1B

√
− log p/2

N
,

which is of order N− 1
2+r .

Assuming that the train error is zero (or sufficiently small, i.e. O(N− 1
2+r )), we get that

∥f∗ − f∥2π = O(N− 2
2+r ).

C ACCNET GENERALIZATION BOUNDS

The proof of generalization for shallow networks (Theorem 1) is the special case L = 1 of the proof
of Theorem 2, so we only prove the second:
Theorem 9. Consider an accordion net of depth L and widths dL, . . . , d0, with corresponding set of
functions F = {σL ◦ fL:1 : ∥fℓ∥F1

≤ Rℓ,Lip(fℓ) ≤ ρℓ} with input space Ω = B(0, r) and with a
final nonlinearity σL that is 1-Lipschitz and uniformly bounded by B. Then with probability 1− p
over the sampling of the training set X from the distribution π, we have for all f ∈ F

√
L(f)−

√
L̃N (f) ≤ c0

√√√√BρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1N− 1

2 (1 + o(1)) + c1B

√
− log p/2

N
,

for c0 ≈ 14.6 and c1 ≈ 7.4. Thus if
√
L̃N (f) ≤ c0

√
BρL:1r

∑L
ℓ′=1

Rℓ′
ρℓ′

√
dℓ′ + dℓ′−1N− 1

2 +

c1B
√

− log p/2
N we have

L(f) ≤ 8c20BρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1N

− 1
2 (1 + o(1)) + 8c21B

2− log p/2

N
.

Proof. The strategy is: (1) prove a covering number bound on F , (2) use it to bound the generalization
error.

(1) We define fℓ = Vℓ ◦ σ ◦Wℓ so that fθ = fL:1 = fL ◦ · · · ◦ f1. First notice that we can write each
fℓ as convex combination of its neurons:

fℓ(x) =

wℓ∑
i=1

vℓ,iσ(w
T
ℓ,ix) = Rℓ

wℓ∑
i=1

cℓ,iv̄ℓ,iσ(w̄
T
ℓ,ix)

for w̄ℓ,i =
wℓ,i

∥wℓ,i∥ , v̄ℓ,i =
vℓ,i

∥vℓ,i∥ , Rℓ =
∑ℓ

i=1 ∥vℓ,i∥ ∥wℓ,i∥ and cℓ,i =
1
Rℓ

∥vℓ,i∥ ∥wℓ,i∥.

Let us now consider a sequence ϵk = 2−k for k = 0, . . . ,K and define ṽ(k)ℓ,i , w̃
(k)
ℓ,i to be the ϵk-covers

of v̄ℓ,i, w̄ℓ,i, furthermore we may choose ṽ
(0)
ℓ,i = w̃

(0)
ℓ,i = 0 since every unit vector is within a ϵ0 = 1

distance of the origin. We will now show that one can approximate fθ by approximating each of the
fℓ by functions of the form

f̃ℓ(x) = Rℓ

Kℓ∑
k=1

1

Mk,ℓ

Mk,ℓ∑
m=1

ṽ
(k)

ℓ,i
(k)
ℓ,m

σ(w̃
(k)T

ℓ,i
(k)
ℓ,m

x)− ṽ
(k−1)

ℓ,i
(k)
ℓ,m

σ(w̃
(k−1)T

ℓ,i
(k)
ℓ,m

x)

for indices i(k)ℓ,m = 1, . . . , wℓ choosen adequately. Notice that the number of functions of this type

equals the number of Mk,ℓ quadruples (ṽ(k)
ℓ,i

(k)
ℓ,m

, w̃
(k)T

ℓ,i
(k)
ℓ,m

, ṽ
(k−1)

ℓ,i
(k)
ℓ,m

, w̃
(k−1)T

ℓ,i
(k)
ℓ,m

) where these vectors belong

to the ϵk- resp. ϵk−1-coverings of the din- resp. dout-dimensional unit sphere. Thus the number of
such functions is bounded by

Kℓ∏
k=1

(
N2(Sdin−1, ϵk)N2(Sdout−1, ϵk)N2(Sdin−1, ϵk−1)N2(Sdout−1, ϵk−1)

)Mk,ℓ
,
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and we have this choice for all ℓ = 1, . . . , L. We will show that with sufficiently large Mk,ℓ this set
of functions ϵ-covers F which then implies that

logN2(F , ϵ) ≤ 2

L∑
ℓ=1

Kℓ∑
k=1

Mk,ℓ

(
logN2(Sdin−1, ϵk−1) + logN2(Sdin−1, ϵk−1)

)
.

We will use the probabilistic method to find the right indices i(k)ℓ,m to approximate a function fℓ =

Rℓ

∑wℓ

i=1 cℓ,iv̄ℓ,iσ(w̄
T
ℓ,ix) with a function f̃ℓ. We take all i(k)ℓ,m to be i.i.d. equal to the index i =

1, · · · , wℓ with probability cℓ,i, so that in expectation

Ef̃ℓ(x) = Rℓ

Kℓ∑
k=1

wℓ∑
i=1

cℓ,i

(
ṽ
(k)
ℓ,i σ(w̃

(k)T
ℓ,i x)− ṽ

(k−1)
ℓ,i σ(w̃

(k−1)T
ℓ,i x)

)
= Rℓ

wℓ∑
i=1

cℓ,iṽ
(K)
ℓ,i σ(w̃

(K)T
ℓ,i x).

We will show that this expectation is O(ϵKℓ
)-close to fℓ and that the variance of f̃ℓ goes to zero as

the Mℓ,ks grow, allowing us to bound the expected error E
∥∥∥fL:1 − f̃L:1

∥∥∥2
π
≤ ϵ2 which then implies

that there must be at least one choice of indices i(k)ℓ,m such that
∥∥∥fL:1 − f̃L:1

∥∥∥
π
≤ ϵ.

Let us first bound the distance

∥∥∥fℓ(x)− Ef̃ℓ(x)
∥∥∥ = Rℓ

∥∥∥∥∥
wℓ∑
i=1

cℓ,i

(
v̄ℓ,iσ(w̄

T
ℓ,ix)− ṽ

(K)
ℓ,i σ(w̃

(K)T
ℓ,i x)

)∥∥∥∥∥
≤ Rℓ

wℓ∑
i=1

cℓ,i

(∥∥∥(v̄ℓ,i − ṽ
(K)
ℓ,i

)
σ(w̄T

ℓ,ix)
∥∥∥+ ∥∥∥ṽ(K)

ℓ,i

(
σ(w̄T

ℓ,ix)− σ(w̃
(K)T
ℓ,i x)

)∥∥∥)
≤ Rℓ

wℓ∑
i=1

cℓ,i

(∥∥∥v̄ℓ,i − ṽ
(K)
ℓ,i

∥∥∥∥∥w̄T
ℓ,ix
∥∥+ ∥∥∥ṽ(K)

ℓ,i

∥∥∥ ∥∥∥w̄T
ℓ,ix− w̃

(K)T
ℓ,i x

∥∥∥)
≤ 2Rℓ

wℓ∑
i=1

cℓ,iϵKℓ
∥x∥

= 2RℓϵKℓ
∥x∥ .
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Then we bound the trace of the covariance of f̃ℓ which equals the expected square distance between
f̃ℓ and its expectation:

E
∥∥∥f̃ℓ(x)− Ef̃ℓ(x)

∥∥∥2
=

Kℓ∑
k=1

R2
ℓ

M2
k,ℓ

Mk,ℓ∑
m=1

E
∥∥∥∥ṽ(k)ℓ,i

(k)
ℓ,m

σ(w̃
(k)T

ℓ,i
(k)
ℓ,m

x)− ṽ
(k−1)

ℓ,i
(k)
ℓ,m

σ(w̃
(k−1)T

ℓ,i
(k)
ℓ,m

x)− E
[
ṽ
(k)

ℓ,i
(k)
ℓ,m

σ(w̃
(k)T

ℓ,i
(k)
ℓ,m

x)− ṽ
(k−1)

ℓ,i
(k)
ℓ,m

σ(w̃
(k−1)T

ℓ,i
(k)
ℓ,m

x)

]∥∥∥∥2

≤
Kℓ∑
k=1

R2
ℓ

M2
k,ℓ

Mk,ℓ∑
m=1

E
∥∥∥ṽ(k)ℓ,mσ(w̃

(k)T
ℓ,m x)− ṽ

(k−1)
ℓ,m σ(w̃

(k−1)T
ℓ,m x)

∥∥∥2
=

Kℓ∑
k=1

R2
ℓ

Mk,ℓ

wℓ∑
i=1

ci

∥∥∥ṽ(k)ℓ,i σ
(
w̃

(k)T
ℓ,i x

)
− ṽ

(k−1)
ℓ,i σ

(
w̃

(k−1)T
ℓ,i x

)∥∥∥2
≤

Kℓ∑
k=1

2R2
ℓ ∥x∥

2

Mk,ℓ

wℓ∑
i=1

ci

∥∥∥ṽ(k)ℓ,i

∥∥∥2 ∥∥∥w̃(k)
ℓ,i − w̃

(k−1)
ℓ,i

∥∥∥2 + ci

∥∥∥ṽ(k)ℓ,i − ṽ
(k−1)
ℓ,i

∥∥∥2 ∥∥∥w̃(k−1)
ℓ,i

∥∥∥2
≤

Kℓ∑
k=1

4R2
ℓ ∥x∥

2

Mk,ℓ
(ϵk + ϵk−1)

2

≤
Kℓ∑
k=1

36R2
ℓ ∥x∥

2

Mk,ℓ
ϵ2k.

Putting both together, we obtain

E
∥∥∥fℓ(x)− f̃ℓ(x)

∥∥∥2 ≤ 4R2
ℓϵ

2
Kℓ

∥x∥2 +
Kℓ∑
k=1

36R2
ℓ ∥x∥

2

Mk,ℓ
ϵ2k

= 4R2
ℓ ∥x∥

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

We will now use this bound, together with the Lipschitzness of fℓ to bound the error

E
∥∥∥fL:1(x)− f̃L:1(x)

∥∥∥2. We will do this by induction on the distances E
∥∥∥fℓ:1(x)− f̃ℓ:1(x)

∥∥∥2.
We start by

E
∥∥∥f1(x)− f̃1(x)

∥∥∥2 ≤ 4R2
1 ∥x∥

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,1

)
.

And for the induction step, we condition on the first ℓ− 1 layers

E
∥∥∥fℓ:1(x)− f̃ℓ:1(x)

∥∥∥2 = E
[
E
[∥∥∥fℓ:1(x)− f̃ℓ:1(x)

∥∥∥2 |f̃ℓ−1:1

]]
= E

∥∥∥fℓ:1(x)− E
[
f̃ℓ:1(x)|f̃ℓ−1:1

]∥∥∥2 + EE
[∥∥∥f̃ℓ:1(x)− E

[
f̃ℓ:1(x)|f̃ℓ−1:1

]∥∥∥2 |f̃ℓ−1:1

]
= E

∥∥∥fℓ:1(x)− fℓ(f̃ℓ−1:1(x))
∥∥∥2 + EE

[∥∥∥f̃ℓ:1(x)− fℓ(f̃ℓ−1:1(x))
∥∥∥2 |f̃ℓ−1:1

]
≤ ρ2ℓE

∥∥∥fℓ−1:1(x)− f̃ℓ−1:1(x)
∥∥∥2 + 4R2

ℓE
∥∥∥f̃ℓ−1:1(x)

∥∥∥2(ϵ2Kℓ
+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

Now since

E
∥∥∥f̃ℓ−1:1(x)

∥∥∥2 ≤ ∥fℓ−1:1(x)∥2 + E
∥∥∥fℓ−1:1(x)− f̃ℓ−1:1(x)

∥∥∥2
≤ ρ2ℓ−1 · · · ρ21 ∥x∥

2
+ E

∥∥∥fℓ−1:1(x)− f̃ℓ−1:1(x)
∥∥∥2
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we obtain that

E
∥∥∥fℓ:1(x)− f̃ℓ:1(x)

∥∥∥2 ≤

(
ρ2ℓ + 4R2

ℓ

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

))
E
∥∥∥fℓ−1:1(x)− f̃ℓ−1:1(x)

∥∥∥2
+ 4R2

ℓρ
2
ℓ−1 · · · ρ21 ∥x∥

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

We define ρ̃2ℓ = ρ2ℓ

[
1 + 4

R2
ℓ

ρ2
ℓ

(
ϵ2Kℓ

+ 9
∑Kℓ

k=1
ϵ2k

Mk,ℓ

)]
and obtain

E
∥∥∥fL:1(x)− f̃L:1(x)

∥∥∥2 ≤ 4

L∑
ℓ=1

ρ̃2L:ℓ+1R
2
ℓρ

2
ℓ−1:1 ∥x∥

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

Thus for any distribution π over the ball B(0, r), there is a choice of indices i(k)ℓ,m such that

∥∥∥fL:1 − f̃L:1

∥∥∥2
π
≤ 4

L∑
ℓ=1

ρ̃2L:ℓ+1R
2
ℓρ

2
ℓ−1:1r

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

We now simply need to choose Kℓ and Mk,ℓ adequately. To reach an error of 2ϵ, we choose

Kℓ =

⌈
− log ϵ+

1

2
log

[
4ρ2L:1r

2

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)
Rℓ

ρℓ
√
dℓ + dℓ−1

]⌉

where ρL:1 =
∏L

ℓ=1 ρℓ. Notice that that ϵ2Kℓ
≤ 1

4ρ2
L:1r

2
(∑L

ℓ′=1

R
ℓ′

ρ
ℓ′

√
dℓ′+dℓ′−1

) ρℓ

√
dℓ+dℓ−1

Rℓ
ϵ2.

Given s0 =
∑∞

k=1

√
k2−k ≈ 1.3473 < ∞, we define

Mk,ℓ =

⌈
36ρ2L:1r

2s0

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)
Rℓ

ρℓ
√
dℓ + dℓ−1

2−k

√
k

1

ϵ2

⌉
.

So that for all ℓ

4
R2

ℓ

ρ2ℓ

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
≤

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2
+

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2∑Kℓ

k′=1

√
k′2−k′

s0

≤ 2

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2.
Now this also implies that

ρ̃ℓ ≤ ρℓ exp

2

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2


and thus

ρ̃L:ℓ+1 ≤ ρL:ℓ+1 exp

2

∑L
ℓ′=ℓ+1

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2
 ≤ ρL:ℓ+1 exp

(
2

ρ2L:1r
2
ϵ2
)
.
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Putting it all together, we obtain that∥∥∥fL:1 − f̃L:1

∥∥∥2
π
≤ 4

L∑
ℓ=1

ρ̃2L:ℓ+1R
2
ℓρ

2
ℓ−1:1r

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)

≤ exp

(
2

ρ2L:1r
2
ϵ2
)
ρ2L:1r

2
L∑

ℓ=1

4
R2

ℓ

ρ2ℓ

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)

≤ 2 exp

(
2

ρ2L:1r
2
ϵ2
)
ϵ2

= 2ϵ2 +O(ϵ4).

Now since logN2(Sdℓ−1, ϵ) = dℓ log
(
1
ϵ + 1

)
and

Mk,ℓ ≤ 36ρ2L:1r
2s0

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)
Rℓ

ρℓ
√
dℓ + dℓ−1

2−k

√
k

1

ϵ2
+ 1,

we have

logN2(F ,
√
2 exp

(
ϵ2

ρ2L:1r
2

)
ϵ) ≤ 2

L∑
ℓ=1

Kℓ∑
k=1

Mk,ℓ

(
logN2(Sdℓ−1, ϵk−1) + logN2(Sdℓ−1−1, ϵk−1)

)
≤ 2

L∑
ℓ=1

Kℓ∑
k=1

Mk,ℓ (dℓ + dℓ−1) log(
1

ϵk−1
+ 1)

≤ 72s0ρ
2
L:1r

2

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)
L∑

ℓ=1

Rℓ

ρℓ

√
dℓ + dℓ−1

Kℓ∑
k=1

2−k log( 1
ϵk−1

+ 1)
√
k

1

ϵ2

+ 2

L∑
ℓ=1

(dℓ + dℓ−1)

Kℓ∑
k=1

log(
1

ϵk−1
+ 1)

≤ 72s20ρ
2
L:1r

2

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)2

1

ϵ2
+ o(ϵ−2).

The diameter of F is smaller than ρL:1r, so for all δ ≥ ρL:1r, logN2(F , δ) = 0. For all δ ≤ ρL:1r

we choose ϵ = δ√
2e

so that
√
2 exp

(
ϵ2

ρ2
L:1r

2

)
ϵ ≤ δ and therefore

logN2(F , δ) ≤ 144s20eρ
2
L:1r

2

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)2

1

δ2
+ o(δ−2).

(2) We now apply Theorem 7 along the lines of Example 1 with r = 2 and

c = 144s20eρ
2
L:1r

2

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)2

1

δ2
,

to obtain

√
L(f)−

√
L̃N (f) ≤ 2

√√√√24Bs0
√
eρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1N

− 1
4 (1 + o(1))

+ c1B

√
− log p/2

N

= c0

√√√√BρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1N

− 1
4 (1 + o(1)) + c1B

√
− log p/2

N
,
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for c0 = 2
√

24s0
√
e ≈ 14.6 and c1 =

√
2(3 +

√
5) ≈ 7.4.

Therefore if
√

L̃N (f) ≤ c0

√
BρL:1r

∑L
ℓ′=1

Rℓ′
ρℓ′

√
dℓ′ + dℓ′−1N

− 1
4 + c1B

√
− log p/2

N , we have

L(f) ≤

2c0

√√√√BρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1N

− 1
4 (1 + o(1)) + 2c1B

√
− log p/2

N

2

≤ 8c20BρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1N

− 1
2 (1 + o(1)) + 8c21B

2− log p/2

N
.

D COMPOSITION OF SOBOLEV BALLS

Let us first prove a simple generalization bound for Sobolev balls:
Proposition 10 (Proposition 3 from the main.). Given a distribution π with support in B(0, b), we
have that with probability 1− p for all functions f ∈ F = {f : ∥f∥W ν,2 ≤ R, ∥f∥∞ ≤ B}

√
L(f)−

√
L̃N (f) = c0

(
B2Rr

N

) 1
2+r

+ c1B

√
− log p/2

N
,

where r = d
ν . Therefore if

√
L̃N (f) ≤ c0

(
B2Rr

N

) 1
2+r

+ c1B
√

− log p/2
N , we have

L(f) ≤ 8c20

(
B2Rr

N

) 2
2+r

+ 8c21B
2− log p/2

N
.

Proof. (1) We know from Theorem 5.2 of (Birman & Solomjak, 1967) that the Sobolev ball
BW ν,2(0, R) over any d-dimensional hypercube Ω satisfies

logN2(BW ν,2(0, R), ϵ) ≤ C0

(
R

ϵ

) d
ν

for a constant c and any measure π supported in the hypercube.

(2) We now apply Theorem 7 along the lines of Example 1 with r = d
ν and c = C0R

r, to obtain that

√
L(f)−

√
L̃N (f) ≤ 2

(
2B2C0R

r

N

) 1
2+r

+ (
√
2 + c1B

√
− log p/2

N

= c0

(
B2Rr

N

) 1
2+r

+ c1B

√
− log p/2

N
.

The bound on the covering number of Sobolev balls, can then be used to bound compositions of
Sobolev balls, thanks to the following general result:
Proposition 11. Let F1, . . . ,FL be set of functions mapping through the sets Ω0, . . . ,ΩL, then if all
functions in Fℓ are ρℓ-Lipschitz, we have

logN2(FL ◦ · · · ◦ F1,

L∑
ℓ=1

ρL:ℓ+1ϵℓ) ≤
L∑

ℓ=1

logN2(Fℓ, ϵℓ).

Proof. For any distribution π0 on Ω there is a ϵ1-covering F̃1 of F1 with
∣∣∣F̃1

∣∣∣ ≤ N2(F1, ϵ1) then

for any f̃1 ∈ F̃1 we choose a ϵ2-covering F̃2 w.r.t. the measure π1 which is the measure of f1(x) if

26



Published as a conference paper at ICLR 2025

x ∼ π0 of F2 with
∣∣∣F̃2

∣∣∣ ≤ N2(F2, ϵ), and so on until we obtain coverings for all ℓ. Then the set

F̃ =
{
f̃L ◦ · · · ◦ f̃1 : f̃1 ∈ F̃1, . . . , f̃L ∈ F̃L

}
is a

∑L
ℓ=1 ρL:ℓ+1ϵℓ-covering of F = FL ◦ · · · ◦ F1,

indeed for any f = fL:1 we choose f̃1 ∈ F̃1, . . . , f̃L ∈ F̃L that cover f1, . . . , fL, then f̃L:1 covers
fL:1: ∥∥∥fL:1 − f̃L:1

∥∥∥
π
≤

L∑
ℓ=1

∥∥∥fL:ℓ ◦ f̃ℓ−1:1 − fL:ℓ+1 ◦ f̃ℓ:1
∥∥∥
π

≤
L∑

ℓ=1

∥∥∥fL:ℓ − fL:ℓ+1 ◦ f̃ℓ
∥∥∥
πℓ−1

≤
L∑

ℓ=1

ρL:ℓ+1ϵℓ,

and log cardinality of the set F̃ is bounded
∑L

ℓ=1 logN2(Fℓ, ϵℓ).

We can now put the two previous results together to obtain a generalization bound for composition of
Sobolev balls:
Theorem 12. Let F = FL ◦ · · · ◦ F1 where Fℓ ={
fℓ : Rdℓ−1 → Rdℓ s.t. ∥fℓ∥W νℓ,2 ≤ R, ∥fℓ∥∞ ≤ B,Lip(fℓ) ≤ ρℓ

}
, and let r∗ = minℓ rℓ

for rℓ = νℓ

dℓ−1
, then with probability 1− p we have for all f ∈ F√

L(f)−
√

L̃N (f) ≤ c0

(
B2Rr∗

N

) 1
2+r∗

+ c1B

√
− log p/2

N
,

where c0, c1 depend only on rℓ, ρℓ and L. Thus if
√

L̃N (f) ≤ c0

(
B2Rr∗

N

) 1
2+r∗

+ c1B
√

− log p/2
N ,

we have

L(f) ≤ 8c20

(
B2Rr∗

N

) 2
2+r∗

+ 8c21B
2− log p/2

N
.

Proof. (1) We know from Theorem 5.2 of (Birman & Solomjak, 1967) that the Sobolev ball
BW νℓ,2(0, R) over any dℓ-dimensional hypercube Ω satisfies

logN2(BW ν,2(0, R), πℓ−1, ϵℓ) ≤
(
Cℓ

R

ϵℓ

)rℓ

for rℓ = dℓ

νℓ
and a constant Cℓ that depends on the size of hypercube and the dimension dℓ and the

regularity νℓ and any measure πℓ−1 supported in the hypercube.

Thus Proposition 11 tells us that the composition of the Sobolev balls satisfies

logN2(FL ◦ · · · ◦ F1,

L∑
ℓ=1

ρL:ℓ+1ϵℓ) ≤
L∑

ℓ=1

(
Cℓ

R

ϵℓ

)rℓ

.

Given r∗ = maxℓ rℓ, we can bound it by Rr∗
∑L

ℓ=1

(
Cℓ

1
ϵℓ

)r∗
and by then choosing ϵℓ =

ρ−1
L:ℓ+1(ρL:ℓ+1Cℓ)

r∗
1+r∗∑

ℓ(ρL:ℓ+1Cℓ)
r∗

1+r∗
ϵ, we obtain that

logN2(FL ◦ · · · ◦ F1, ϵ) ≤

(
L∑

ℓ=1

(ρL:ℓ+1Cℓ)
r∗

1+r∗

)1+r∗ (
R

ϵ

)r∗

.

(2) Again, we apply Theorem 7 along the lines of Example 1, we obtain that√
L(f)−

√
L̃N (f) ≤ c0

(
B2Rr∗

N

) 1
2+r∗

+ c1B

√
− log p/2

N
.
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E GENERALIZATION AT THE REGULARIZED GLOBAL MINIMUM

In this section, we first give the proof of Theorem 5 and then present detailed proofs of lemmas used
in the proof. The lemmas are largely inspired by (Bach, 2017) and may be of independent interest.

E.1 THEOREM 5 IN SECTION 4.2

Theorem 13 (Theorem 5 in the main). Given a true function f∗
L∗:1 = f∗

L∗ ◦ · · · ◦f∗
1 going through the

dimensions d∗0, . . . , d
∗
L∗ , along with a continuous input distribution π0 supported in B(0, b0), such

that the distributions πℓ of f∗
ℓ (x) (for x ∼ π0) are continuous too and supported inside B(0, bℓ) ⊂

Rd∗
ℓ . Further assume that there are differentiabilities νℓ and radii Rℓ such that ∥f∗

ℓ ∥W νℓ,2(B(0,bℓ))
≤

Rℓ, and ρℓ such that Lip(f∗
ℓ ) ≤ ρℓ. For an infinite width AccNet with L ≥ L∗ and dimensions

dℓ ≥ d∗1, . . . , d
∗
L∗−1, we have for the ratios r̃ℓ = max{d∗

ℓ−1+3

νℓ
, 2}:

(1) At a global min f̂L:1 of L̃N (fL:1) + λR(θ), we have L(f̂L:1) = O(N− 2
2+r̃max ) for r̃max =

max{r̃1, . . . , r̃L}.

(2) At a global min f̂L:1 of L̃N (fL:1) + λR̃(θ), we have L(f̂L:1) = O(N− 2
2+r̃sum ) for r̃sum =

2 +
∑

ℓ r̃ℓ − 2.

Proof. If f∗ = f∗
L∗ ◦ · · · ◦ f∗

1 with L∗ ≤ L, intermediate dimensions d∗0, . . . , d
∗
L∗ , along with a

continuous input distribution π0 supported in B(0, b0), such that the distributions πℓ of f∗
ℓ (x) (for

x ∼ π0) are continuous too and supported inside B(0, bℓ) ⊂ Rd∗
ℓ . Further assume that there are

differentiabilities ν∗ℓ and radii Rℓ such that ∥f∗
ℓ ∥W ν∗

ℓ
,2(B(0,bℓ))

≤ Rℓ.

We first focus on the L = L∗ case and then extend to the L > L∗ case.

Each f∗
ℓ can be approximated by another function f̃ℓ with bounded F1-norm and Lipschitz constant.

Actually if 2νℓ ≥ d∗ℓ−1 + 3 one can choose f̃ℓ = f∗
ℓ since ∥f∗

ℓ ∥F1
≤ CℓRℓ by Lemma 16, and by

assumption Lip(f̃ℓ) ≤ ρℓ. If 2νℓ < d∗ℓ−1 + 3, then by Lemma 15 we know that there is a f̃ℓ with∥∥∥f̃ℓ∥∥∥
F1

≤ CℓRℓϵ
−

d∗ℓ−1+3

2νℓ
+1

ℓ and Lip(f̃ℓ) ≤ CℓLip(f
∗
ℓ ) ≤ Cℓρℓ and error∥∥∥f∗

ℓ − f̃ℓ

∥∥∥
L2(πℓ−1)

≤ cℓ

∥∥∥f∗ − f̃ℓ

∥∥∥
L2(B(0,bℓ))

≤ cℓϵℓ.

Note that by setting r̃ℓ = max{d∗
ℓ−1+3

νℓ
, 2}, we can write

∥∥∥f̃ℓ∥∥∥
F1

≤ CℓRℓϵ
− r̃ℓ

2 +1

ℓ in both cases.

Therefore the composition f̃L:1 satisfies∥∥∥f∗
L:1 − f̂L:1

∥∥∥
L2(πℓ−1)

≤
L∑

ℓ=1

∥∥∥f̃L:ℓ+1 ◦ f∗
ℓ:1 − f̃L:ℓ ◦ f∗

ℓ−1:1

∥∥∥
L2(π)

≤
L∑

ℓ=1

Lip(f̃L:ℓ+1)cℓϵℓ

≤
L∑

ℓ=1

ρL:ℓ+1CL:ℓ+1cℓϵℓ.

For any L ≥ L∗, dimensions dℓ ≥ d∗ℓ and widths wℓ ≥ N , we can build an AccNet that fits exactly
f̃L:1, by simply adding zero weights along the additional dimensions and widths, and by adding
identity layers if L > L∗, since it is possible to represent the identity on Rd with a shallow network
with 2d neurons and F1-norm 2d (by having two neurons eiσ(eTi ·) and −eiσ(−eTi ·) for each basis
ei). Since the cost in parameter norm of representing the identity scales with the dimension, it is
best to add those identity layers at the minimal dimension min{d∗0, . . . , d∗L∗}. We therefore end up
with a AccNet with L− L∗ identity layers (with F1 norm 2min{d∗0, . . . , d∗L∗}) and L∗ layers that
approximate each of the f∗

ℓ with a bounded F1-norm function f̃ℓ.
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Since f∗
L:1 has zero population loss, the population loss of the AccNet f̃L:1 is bounded by

(ρ
∑L

ℓ=1 ρL:ℓ+1CL:ℓ+1cℓϵℓ)
2.Using Bennett’s inequality as in the proof of Theorem 7 (though in the

‘other direction’ since we want to bound L̃N in terms of L and not vice versa), we obtain that with
probability 1− p

L̃N (f̃L:1) ≤ L(f̃L:1) +

√
8B2L(f̃L:1)

− log p

N
+ 8B2− log p

N

≤

(√
L(f̃L:1) +

√
8B2

− log p

N

)2

≤

(
ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓϵℓ +

√
8B2

− log p

N

)2

(1) At the global minimizer f̂L:1 = f̂L ◦ · · · ◦ f̂1 of the regularized loss (with the first regularization
term), the regularized loss is upper bounded by(

ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓϵℓ +

√
8B2

− log p

N

)2

+ λ
√
2d

L∗∏
ℓ=1

Cℓρℓ

 L∗∑
ℓ=1

Rℓϵ
2−r̃ℓ

2

ℓ

Cℓρℓ
+ 2(L− L∗)min{d∗0, . . . , d∗L∗}

 .

Taking ϵℓ = N
− 1

2+r̃ℓ and λ = N− 1
2 , this is upper bounded by(

ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓN
− 1

2+r̃ℓ +

√
8B2

− log p

N

)2

+
√
2d

L∗∏
ℓ=1

Cℓρℓ

[
L∗∑
ℓ=1

Rℓ

Cℓρℓ
N

− 2
2+r̃ℓ + 2(L− L∗)min{d∗0, . . . , d∗L∗}N− 1

2

]
.

The above is of order N− 2
2+r̃max for r̃max = max{r̃ℓ : ℓ = 1, . . . , L}, which implies that at the

global minimizer of the regularized loss, the (unregularized) train loss is of order N− 2
2+r̃max and the

complexity measure R(f̂1, . . . , f̂L) is of order N
1
2−

2
2+r̃max which implies that the test error will be

of order N− 2
2+r̃max as well.

(2) Let us now focus on the R̃(θ) regularizer instead. Taking the same approximation f̃L:1, we see
that the global minimum f̂L:1 of the R̃-regularized loss is upper bounded by(

ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓϵℓ +

√
8B2

− log p

N

)2

+ λ
√
2d (L∗ + (L− L∗)min{d∗0, . . . , d∗L∗})

L∗∏
ℓ=1

CℓRℓϵ
2−r̃ℓ

2

ℓ .

where we used the bound ∥Wℓ∥op∥Vℓ∥op ≤ ∥fℓ∥F1
.

Choosing ϵℓ = N− 2
2+r̃sum for r̃sum = 2 +

∑
ℓ(r̃ℓ − 2) and λ = N− 1

N is upper bounded by(
ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓN
− 1

2+r̃sum +

√
8B2

− log p

N

)2

+
√
2d (L∗ + (L− L∗)min{d∗0, . . . , d∗L∗})

[
L∗∏
ℓ=1

CℓRℓ

]
N− 2

2+r̃sum .
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Which implies that both the train error is of order N− 2
2+r̃sum and the regularization term is of order

N
1
2−

2
2+r̃sum .

And since the R̃-regularized loss bounds the R-regularized loss, the test error will be of order
N− 2

2+r̃sum .

Note that if there is at a most one ℓ where r̃ℓ > 2 then the rate is the same for both regularizers.

E.2 LEMMAS ON APPROXIMATING SOBOLEV FUNCTIONS

Now we present the lemmas used in this proof above that concern the approximation errors and
Lipschitz constants of Sobolev functions and compositions of them. We will bound the F2-norm and
note that the F2-norm is larger than the F1-norm, cf. (Bach, 2017, Section 3.1).
Lemma 14 (Approximation for Sobolev function with bounded error and Lipschitz constant). Sup-
pose g : Sd → R is an even function with bounded Sobolev norm ∥g∥W ν,2 ≤ R with 2ν ≤ d + 2,
with inputs on the unit d-dimensional sphere. Then for every ϵ > 0, there is ĝ ∈ G2 with small
approximation error ∥g − ĝ∥L2(Sd) = C(d, ν)Rϵ, bounded Lipschitzness Lip(ĝ) ≤ C ′(d)Lip(g),
and bounded norm

∥ĝ∥F2 ≤ C ′′(d, ν)Rϵ−
d+3−2ν

2ν .

Proof. Given our assumptions on the target function g, we may decompose g(x) =
∑∞

k=0 gk(x)
along the basis of spherical harmonics with g0(x) =

∫
Sd g(y)dτd(y) being the mean of g(x) over the

uniform distribution τd over Sd. The k-th component can be written as

gk(x) = N(d, k)

∫
Sd

g(y)Pk(x
T y)dτd(y)

with N(d, k) = 2k+d−1
k

(
k+d−2
d−1

)
and a Gegenbauer polynomial of degree k and dimension d+ 1:

Pk(t) = (−1/2)k
Γ(d/2)

Γ(k + d/2)
(1− t2)(2−d)/2 dk

dtk
(1− t2)k+(d−2)/2,

known as Rodrigues’ formula. Given the assumption that the Sobolev norm ∥g∥2W ν,2 is upper
bounded, we have ∥f∥2L2(Sd) ≤ C0(d, ν)R for f = ∆ν/2g where ∆ is the Laplacian on Sd (Evans,
2022; Bach, 2017). Note that gk are eigenfunctions of the Laplacian with eigenvalues k(k + d− 1)
(Atkinson & Han, 2012), thus

∥gk∥2L2(Sd) = ∥fk∥2L2(Sd)(k(k + d− 1))−ν ≤ ∥fk∥2L2(Sd)k
−2ν ≤ C0(d, ν)R

2k−2ν (1)

where in the last inequality holds we use ∥f∥2L2(Sd) =
∑

k≥0 ∥fk∥2L2(Sd). Note using the Hecke-Funk
formula, we can also write gk as scaled pk for the underlying density p of the F1 and F2-norms:

gk(x) = λkpk(x)

where λk = ωd−1

ωd

∫ 1

−1
σ(t)Pk(t)(1 − t2)(d−2)/2dt = Ω(k−(d+3)/2) (Bach, 2017, Appendix D.2)

and ωd denotes the surface area of Sd. Then by definition of ∥ · ∥F2
, for some probability density p,

∥g∥2F2
=

∫
Sd

|p|2dτ(v) = ∥p∥2L2(Sd) =
∑
0≤k

∥pk∥2L2(Sd) =
∑
0≤k

λ−2
k ∥gk∥2L2(Sd).

Now to approximate g, consider function ĝ defined by truncating the “high frequencies” of g, i.e.
setting ĝk = 1[k ≤ m]gk for some m > 0 we specify later. Then we can bound the norm with

∥ĝ∥2F2
=

∑
0≤k:λk ̸=0

λ−2
k ∥ĝk∥2L2(Sd) =

∑
0≤k≤m
λk ̸=0

λ−2
k ∥gk∥2L2(Sd)

(a)

≤ C1(d, ν)
∑

0≤k≤m

∥fk∥2L2(Sd)k
d+3−2ν

≤ C1(d, ν)m
d+3−2ν

∑
0≤k≤m

∥fk∥2L2(Sd)

≤ C2(d, ν)R
2md+3−2ν
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where (a) uses Eq 1 and λk = Ω(k−(d+3)/2).

To bound the approximation error,

∥g − ĝ∥2L2(Sd) =

∥∥∥∥∥∑
k>m

gk

∥∥∥∥∥
2

L2(Sd)

≤
∑
k>m

∥gk∥2L2(Sd)

≤
∑
k>m

∥fk∥2L2(Sd)k
−2ν

≤ C0(d, ν)R
2m−2ν since

∑
k>m

∥fk∥2L2(Sd) ≤ ∥f∥2L2(Sd).

Finally, choosing m = ϵ−
1
ν , we obtain ∥g − ĝ∥L2(Sd) ≤ C(d, ν)Rϵ and

∥ĝ∥F2
≤ C ′(d, ν)Rϵ−

d+3−2ν
2ν .

Then it remains to bound Lip(ĝ) for our constructed approximation. By construction and by (Dai,
2013, Theorem 2.1.3), we have ĝ = g ∗ h with now

h(t) =

m∑
k=0

hkPk(t), t ∈ [−1, 1]

by orthogonality of the Gegenbauer polynomial Pk’s and the convolution is defined as

(g ∗ h)(x) := 1

ωd

∫
Sd

g(y)h(⟨x, y⟩)dy.

The coefficients for 0 ≤ k ≤ m given by (Dai, 2013, Theorem 2.1.3) are

hk
(a)
=

ωd+1

ωd

Γ(d− 1)

Γ(d− 1 + k)
Pk(1)

k!(k + (d− 1)/2)Γ((d− 1)/2)2

π22−dΓ(d− 1 + k)

(b)
= O

(
k

Γ(d− 1 + k)

)
where (a) follows from the (inverse of) weighted L2 norm of Pk; (b) plugs in the unit constant
Pk(1) = Γ(k+d−1)

Γ(d−1)k! and suppresses the dependence on d. Note that the constant factor Γ(d−1)
Γ(d−1+k)

comes from the difference in the definitions of the Gegenbauer polynomials here and in (Dai, 2013).
Then we can bound

∥∇ĝ(x)∥op ≤
∫
Sd

∥∇g(y)∥op|h(⟨x, y⟩)|dy

≤ Lip(g)

∫
Sd

|h(⟨x, y⟩)|dy

≤
√
ωdLip(g)

(∫
Sd

h(⟨x, y⟩)2dy
)1/2

by Cauchy-Schwartz

=
√
ωdLip(g)

 m∑
k,j=0

∫
Sd

hkhjPk(⟨x, y⟩)Pj(⟨x, y⟩)dy

1/2

=
√
ωdLip(g)

 m∑
k,j=0

∫ 1

−1

hkhjPk(t)Pj(t)(1− t2)
d−2
2 dt

1/2

by (Dai, 2013, Eq A.5.1)

=
√
ωdLip(g)

(
m∑

k=0

h2
k

∫ 1

−1

Pk(t)
2(1− t2)

d−2
2 dt

)1/2

by orthogonality of Pk’s w.r.t. this measure

=
√
ωdLip(g)

(
m∑

k=0

h2
k

π22−dΓ(d− 1 + k)

k!(k + (d− 1)/2)Γ((d− 1)/2)2

)1/2

=
√
ωdLip(g)

(
O(1) +

m∑
k=1

O

(
k

Γ(d− 1 + k)k!

))1/2

=
√
ωdLip(g)C(d)

for some constant C(d) that only depends on d. Hence Lip(ĝ) = C ′(d)Lip(g).
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The next lemma adapts Lemma 14 to inputs on balls instead of spheres following the construction in
(Bach, 2017, Proposition 5).

Lemma 15. Suppose f : B(0, b) → R has bounded Sobolev norm ∥f∥W ν,2 ≤ R with ν ≤ (d+2)/2
even, where B(0, b) = {x ∈ Rd : ∥x∥2 ≤ b} is the radius-b ball. Then for every ϵ > 0 there exists
fϵ ∈ F2 such that ∥f − fϵ∥L2(B(0,b)) = C(d, ν)bνRϵ, Lip(fϵ) ≤ C ′(d)Lip(f), and

∥fϵ∥F2
≤ C ′′(d, ν)bνRϵ−

d+3−2ν
2ν

Proof. Define g(z, a) = f
(
2bz
a

)
a on (z, a) ∈ Sd with z ∈ Rd and 1√

2
≤ a ∈ R. One may

verify that unit-norm (z, a) with a ≥ 1√
2

is sufficient to cover B(0, b) by setting x = bz
a and

solve for (z, a). Then we have bounded ∥g∥W ν,2 ≤ bνR and may apply Lemma 14 to get ĝ with
∥g − ĝ∥L2(Sd) ≤ C(d, ν)bνRϵ. Letting fϵ(x) = ĝ

(
ax
b , a

)
a−1 for the corresponding

(
ax
b , a

)
∈ Sd

gives the desired upper bounds.

Lemma 16. Suppose f : B(0, b) → R has bounded Sobolev norm ∥f∥W ν,2 ≤ R with ν ≥ (d+3)/2
even. Then f ∈ F2 and ∥f∥F2 ≤ C(d, ν)bνR.

In particular, W ν,2 ⊆ F2 for ν ≥ (d+ 3)/2 even.

Proof. This lemma reproduces (Bach, 2017, Proposition 5) to functions with bounded Sobolev L2

norm instead of L∞ norm. The proof follows that of Lemma 14 and Lemma 15 and noticing that by
Eq 1,

∥g∥2F2
=

∑
0≤k:λk ̸=0

λ−2
k ∥gk∥2L2(Sd)

≤
∑
0≤k

kd+3−2ν∥(∆ν/2g)k∥2L2(Sd)

≤ ∥∆ν/2g∥2L2(Sd)

≤ C1(d, ν)∥g∥2W ν,2

≤ C1(d, ν)R
2.

Finally, we remark that the above lemmas extend straightforward to functions f : B(0, b) → Rd′

with multi-dimensional outputs, where the constants then depend on the output dimension d′ too.

E.3 LEMMA ON APPROXIMATING COMPOSITIONS OF SOBOLEV FUNCTIONS

With the lemmas given above and the fact that the F2-norm upper bounds the F1-norm, we can find
infinite-width DNN approximations for compositions of Sobolev functions, which is also pointed out
in the proof of Theorem 5.

Lemma 17. Assume the target function f : Ω → Rdout , with Ω ⊆ B(0, b) ⊆ Rdin , satisfies:

• f = gk ◦ · · · ◦ g1 a composition of k Sobolev functions gi : Rdi → Rdi+1 with bounded
norms ∥gi∥2W νi,2

≤ R for i = 1, . . . , k, with d1 = din;

• f is Lipschitz, i.e. Lip(gi) < ∞ for i = 1, . . . , k.

If νi ≤ (di + 2)/2 for any i, i.e. less smooth than needed, for depth L ≥ k and any ϵ > 0, there is an
infinite-width DNN f̃ such that

• Lip(f̃) ≤ C1

∏k
i=1 Lip(gi);

• ∥f̃ − f∥L2
≤ C2b

νmax
2 R

1
2 ϵ;
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with νmax = maxi=1,...,k νi, the constants C1 depends on all of the input dimensions di (to gi) and
dout, and C2 depends on di, dout, νi, k, and Lip(gi) for all i.

If otherwise νi ≥ (di + 3)/2 for all i, we can have f̃ = f where each layer has a parameter norm
bounded by C3b

νmax
2 R

1
2 , with C3 depending on di, dout, and νi.

Proof. Note that by Lipschitzness,

(gi ◦ · · · ◦ g1)(Ω) ⊆ B

0, b

i∏
j=1

Lip(gj)

 ,

i.e. the pre-image of each component lies in a ball. By Lemma 15, for each gi, if νi ≤ (di + 2)/2,
we have an approximation ĝi on a slightly larger ball b′i = b

∏i−1
j=1 C

′′(dj , dj+1)Lip(gj) such that

• ∥gi − ĝi∥L2
≤ C(di, di+1, νi)(b

′
i)

νi
2 R

1
2 ϵ;

• ∥ĝi∥F2
≤ C ′(di, di+1, νi)(b

′
i)

νi
2 R

1
2 ϵ

di+3−2νi
2νi ;

• Lip(ĝi) ≤ C ′′(di, di+1)Lip(gi);

where di is the input dimension of gi. Write the constants as Ci, C ′
i, and C ′′

i for notation simplicity.
Note that the Lipschitzness of the approximations ĝi’s guarantees that, when they are composed,
(ĝi−1 ◦ · · · ◦ ĝ1)(Ω) lies in a ball of radius b′i = b

∏i−1
j=1 C

′′
j Lip(gj), hence the approximation error

remains bounded while propagating. While each ĝi is a (infinite-width) layer, for the other L − k
layers, we may have identity layers5.

Let f̃ be the composed DNN of these layers. Then we have

Lip(f̃) ≤
k∏

i=1

C ′′
i Lip(gi) = C ′′(d1, . . . , dk, dout)

k∏
i=1

Lip(gi)

and approximation error

∥f̃ − f∥L2 ≤
k∑

i=1

Ci(b
′
i)

νi
2 R

1
2 ϵ
∏
j>i

C ′′
j Lip(gj) = O(b

νmax
2 R

1
2 ϵ)

where νmax = maxi νi, the last equality suppresses the dependence on di, dout, νi, k, and Lip(gi)
for i = 1, . . . , k.

In particular, by Lemma 16, if νi ≥ (di+3)/2 for any i = 1, . . . , k, we can take ĝi = gi. If this holds
for all i, then we can have f̃ = f while each layer has a F2-norm bounded by O(b

νmax
2 R

1
2 ).

F TECHNICAL RESULTS

Here we show a number of technical results regarding the covering number.

First, here is a bound for the covering number of Ellipsoids, which is a simple reformulation of
Theorem 2 of (Dumer et al., 2004):
Theorem 18. The d-dimensional ellipsoid E = {x : xTK−1x ≤ 1} with radii

√
λi for λi the i-th

eigenvalue of K satisfies logN2 (E, ϵ) = Mϵ (1 + o(1)) for

Mϵ =
∑

i:
√
λi≥ϵ

log

√
λi

ϵ

if one has log
√
λ1

ϵ = o
(

M2
ϵ

kϵ log d

)
for kϵ =

∣∣{i : √λi ≥ ϵ
}∣∣

5Since the domain is always bounded here, one can let the bias translate the domain to the first quadrant and
let the weight be the identity matrix, cf. the construction in (Wen & Jacot, 2024, Proposition B.1.3).
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For our purpose, we will want to cover a unit ball B = {w : ∥w∥ ≤ 1} w.r.t. to a non-isotropic norm
∥w∥2K = wTKw, but this is equivalent to covering E with an isotropic norm:

Corollary 19. The covering number of the ball B = {w : ∥w∥ ≤ 1} w.r.t. the norm ∥w∥2K = wTKw
satisfies logN (B, ∥·∥K , ϵ) = Mϵ (1 + o(1)) for the same Mϵ as in Theorem 18 and under the same
condition.

Furthermore, logN (B, ∥·∥K , ϵ) ≤ TrK
2ϵ2 (1 + o(1)) as long as log d = o

(√
TrK
ϵ

(
log

√
TrK
ϵ

)−1
)

.

Proof. If Ẽ is an ϵ-covering of E w.r.t. to the L2-norm, then B̃ = K− 1
2 Ẽ is an ϵ-covering of B

w.r.t. the norm ∥·∥K , because if w ∈ B, then
√
Kw ∈ E and so there is an x̃ ∈ Ẽ such that∥∥∥x−

√
Kw

∥∥∥ ≤ ϵ, but then w̃ =
√
K

−1
x covers w since ∥w̃ − w∥K =

∥∥∥x−
√
Kw

∥∥∥
K

≤ ϵ.

Since λi ≤ TrK
i , we have K ≤ K̄ for K̄ the matrix obtained by replacing the i-th eigenvalue λi of

K by TrK
i , and therefore N (B, ∥·∥K , ϵ) ≤ N (B, ∥·∥K̄ , ϵ) since ∥·∥K ≤ ∥·∥K̄ . We now have the

approximation logN (B, ∥·∥K̄ , ϵ) = M̄ϵ (1 + o(1)) for

M̄ϵ =

k̄ϵ∑
i=1

log

√
TrK√
iϵ

k̄ϵ =

⌊
TrK

ϵ2

⌋
.

We now have the simplification

M̄ϵ =

kϵ∑
i=1

log

√
TrK√
iϵ

=
1

2

k̄ϵ∑
i=1

log
k̄ϵ
i

=
k̄ϵ
2
(

∫ 1

0

log
1

x
dx+ o(1)) =

k̄ϵ
2
(1 + o(1))

where the o(1) term vanishes as ϵ ↘ 0. Furthermore, this allows us to check that as long as

log d = o

( √
TrK

4ϵ log
√

TrK
ϵ

)
, the condition is satisfied

log

√
TrK

ϵ
= o

(
k̄ϵ

4 log d

)
= o

(
M̄2

ϵ

k̄ϵ log d

)
.

Second we prove how to obtain the covering number of the convex hull of a function set F :

Theorem 20. Let F be a set of B-uniformly bounded functions, then for all ϵK = B2−K

√
logN2(ConvF , 2ϵK) ≤

√
18

K∑
k=1

2K−k
√
logN2(F , B2−k).

Proof. Define ϵk = B2−k and the corresponding ϵk-coverings F̃k (w.r.t. some measure π). For any
f , we write f̃k[f ] for the function f̃k[f ] ∈ F̃k that covers f . Then for any functions f in ConvF , we
have

f =

m∑
i=1

βifi =

m∑
i=1

βi

(
fi − f̃K [fi]

)
+

K∑
k=1

m∑
i=1

βi

(
f̃k[fi]− f̃k−1[fi]

)
+ f̃0[fi].

We may assume that f̃0[fi] = 0 since the zero function ϵ0-covers the whole F since ϵ0 = B.

We will now use the probabilistic method to show that the sums
∑m

i=1 βi

(
f̃k[fi]− f̃k−1[fi]

)
can

be approximated by finite averages. Consider the random functions g̃(k)1 , . . . , g̃
(k)
mk sampled iid with
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P
[
g̃
(k)
j =

(
f̃k[fi]− f̃k−1[fi]

)]
= βi. We have E[g̃(k)j ] =

∑m
i=1 βi

(
f̃k[fi]− f̃k−1[fi]

)
and

E

∥∥∥∥∥∥
K∑

k=1

1

mk

mk∑
j=1

g̃
(k)
j −

K∑
k=1

m∑
i=1

βi

(
f̃k[fi]− f̃k−1[fi]

)∥∥∥∥∥∥
2

π

≤
K∑

k=1

1

m2
k

mk∑
j=1

E
∥∥∥g̃(k)j

∥∥∥2
π

=

K∑
k=1

1

mk

m∑
i=1

βi

∥∥∥f̃k[fi]− f̃k−1[fi]
∥∥∥2
π

≤
K∑

k=1

32ϵ2k
mk

,

where we used the fact that
∥∥∥f̃k[fi]− f̃k−1[fi]

∥∥∥
π
≤ ϵk + ϵk−1 = 3ϵk.

If we choose mk = 1
ak
( 3ϵkϵK

)2 with
∑

ak = 1 we know that there must exist a choice of g̃(k)j s such
that ∥∥∥∥∥∥

K∑
k=1

1

mk

mk∑
j=1

g̃
(k)
j −

K∑
k=1

m∑
i=1

βi

(
f̃k[fi]− f̃k−1[fi]

)∥∥∥∥∥∥
π

≤ ϵK .

This implies that the finite set C̃ =
{∑K

k=1
1

mk

∑mk

j=1 g̃
(k)
j : g̃

(k)
j ∈ F̃k − F̃k−1

}
is an 2ϵK covering

of C = ConvF , since we know that for all f =
∑m

i=1 βifi there are g̃
(k)
j such that∥∥∥∥∥∥

K∑
k=1

1

mk

mk∑
j=1

g̃
(k)
j −

m∑
i=1

βifi

∥∥∥∥∥∥
π

≤

∥∥∥∥∥
m∑
i=1

βi

(
fi − f̃K [fi]

)∥∥∥∥∥
π

+

K∑
k=1

∥∥∥∥∥∥ 1

mk

mk∑
j=1

g̃
(k)
j −

m∑
i=1

βi

(
f̃k[fi]− f̃k−1[fi]

)∥∥∥∥∥∥
π

≤ 2ϵK .

Since
∣∣∣C̃∣∣∣ =∏K

k=1

∣∣∣F̃k

∣∣∣mk
∣∣∣F̃k−1

∣∣∣mk

, we have

logNp(Conv(F), 2ϵK) ≤
K∑

k=1

1

ak
(
3ϵk
ϵK

)2 (logNp(F , ϵk) + logNp(F , ϵk−1))

≤ 18

K∑
k=1

1

ak
22(K−k) logN2(F , ϵk).

This is minimized for the choice

ak =
2(K−k)

√
logN2(F , ϵk)∑

2(K−k)
√

logN2(F , ϵk)
,

which yields the bound√
logNp(C, 2ϵK) ≤

√
18

K∑
k=1

2K−k
√
logN2(F , ϵk)
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