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ABSTRACT

Fine-tuning large-scale pre-trained models often improves in-distribution (ID)
performance at the cost of out-of-distribution (OOD) generalization due to over-
fitting to ID-specific features. To mitigate this, we propose PCA Dropout, a
novel fine-tuning strategy that suppresses ID-specific feature dependencies by
leveraging Principal Component Analysis (PCA). Our method identifies dominant
feature components that contribute the most to ID variance and applies structured
dropout to reduce their influence, encouraging the model to learn more general-
izable representations. We evaluate PCA Dropout on DomainNet and iWildCam
using CLIP-based models, demonstrating consistent improvements in OOD ro-
bustness over state-of-the-art fine-tuning methods while maintaining strong ID
accuracy. Ablation studies further confirm that structured dropout at the feature
level outperforms unstructured feature suppression and random dropout strategies.

1 INTRODUCTION

Fine-tuning large-scale pre-trained models has become the standard approach for adapting foun-
dation models (FMs) to specific downstream tasks. However, a persistent challenge is balancing
in-distribution (ID) performance with out-of-distribution (OOD) generalization. While fine-tuning
improves accuracy on ID data, it often results in overfitting, making the model overly reliant on
dataset-specific patterns that do not transfer well to unseen domains. This issue is particularly evident
in vision-language models (VLMs) such as CLIP Radford et al. (2021), where fine-tuning can alter
pre-trained representations and reduce robustness Kumar et al. (2022). To address this, there is a
need for fine-tuning strategies that retain high ID accuracy while mitigating reliance on spurious
correlations, ultimately improving OOD generalization.

Recent approaches to robust fine-tuning have focused on regularization techniques in both parameter
space and representation space. Parameter-based methods such as L2-SP Xuhong et al. (2018) and
FTP Tian et al. (2024) constrain parameter deviations from pre-trained weights, preventing excessive
adaptation to ID-specific patterns. Representation-based methods, such as WiSE-FT Wortsman et al.
(2022), improve generalization by interpolating between the zero-shot model and the fine-tuned model.
Inspired by these efforts, we propose an alternative approach that directly suppresses ID-specific
feature dependencies to encourage learning more transferable representations.

In this work, we introduce PCA Dropout, a novel fine-tuning strategy designed to improve OOD
generalization by suppressing features that predominantly capture ID-specific variations. Our method
is motivated by the observation that dominant principal components in feature representations are
often over-aligned with the ID distribution, leading to poor generalization on OOD data. To address
this, we first apply Principal Component Analysis (PCA) to quantify the contribution of each feature
to the ID-specific variance. We then selectively suppress high-contribution features via a structured
dropout mechanism, reducing their influence during fine-tuning. This encourages the model to rely
on alternative, more generalizable feature representations.

∗Corresponding author: Fei Bo 20216764@stu.neu.edu.cn

1



Published as a conference paper at ICLR 2025

We evaluate PCA Dropout on two benchmark datasets, DomainNet Peng et al. (2019) and iWild-
Cam Koh et al. (2021), using CLIP-based models. Our results demonstrate that PCA Dropout
improves OOD generalization without sacrificing ID accuracy. On DomainNet, our method achieves
an OOD accuracy of 41.40%, surpassing prior state-of-the-art approaches such as FTP Tian et al.
(2024). Similarly, on iWildCam, PCA Dropout attains the highest OOD macro F1-score of 36.8%,
outperforming competitive baselines.

Our key contributions are as follows:

• We propose PCA Dropout, a feature-suppression method that mitigates overfitting by
selectively removing ID-specific features identified through PCA analysis.

• We introduce a novel feature importance scoring mechanism that quantifies ID-specific
reliance, enabling dynamic dropout mask generation during training.

• We conduct extensive experiments on DomainNet and iWildCam, demonstrating that PCA
Dropout improves OOD robustness while maintaining ID accuracy, surpassing prior state-
of-the-art fine-tuning strategies.

2 METHOD

2.1 PROBLEM DEFINITION

Fine-tuning pre-trained models for downstream tasks involves adapting a model f (e.g., CLIP Radford
et al. (2021)) using training data sampled from an in-distribution PID. The objective is to learn a
function f : Rd → Y that maps input features x ∈ Rd to corresponding labels y ∈ Y , optimizing the
supervised loss:

Lsup(f, PID) = E(x,y)∼PID [ℓ(f(x), y)] . (1)

However, direct fine-tuning on PID often leads to overfitting, causing the model to rely on features
that do not generalize well to out-of-distribution (OOD) data POOD. This results in a significant
performance drop under distribution shifts. The goal is to maintain high accuracy on PID while
enhancing robustness to unseen distributions.

2.2 IDENTIFYING ID-SPECIFIC FEATURES VIA PCA-GUIDED SCORING

Neural networks often rely on spurious correlations present in the in-distribution (ID) data, leading
to overfitting and degraded generalization to out-of-distribution (OOD) samples. To characterize
ID-specific variations, we leverage Principal Component Analysis (PCA) to quantify the contribution
of each feature to the dominant patterns in the data. The key intuition is that features highly aligned
with principal components that explain the majority of variance in the data are more likely to be
specific to the ID distribution.

Given an input feature matrix X ∈ RN×D, where N represents the number of samples and D is the
feature dimension, we first perform feature standardization by subtracting the mean of each feature
to ensure a zero-mean distribution:

Xcenter = X− X̄, where X̄ =
1

N

N∑
i=1

Xi. (2)

Next, we apply Principal Component Analysis (PCA) using Singular Value Decomposition (SVD) to
extract the principal directions:

Xcenter = USV⊤. (3)

Here, U ∈ RN×D contains the left singular vectors, S ∈ RD×D is a diagonal matrix of singular
values that represent the variance captured by each principal component, and V ∈ RD×D contains
the right singular vectors, where each column corresponds to a principal component.
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To quantify the ID-specific contribution of each feature, we compute a feature importance score
based on its alignment with the top R principal components:

si =

R∑
j=1

V 2
ij , i = 1, . . . , D. (4)

The number of retained principal components R is determined adaptively based on the explained
variance. Specifically, we select the smallest R such that the cumulative variance explained satisfies:

∑R
j=1 S

2
jj∑D

j=1 S
2
jj

≥ 1− ϵth, (5)

where ϵth is a threshold controlling the proportion of discarded variance. In our experiments, we set
ϵth = 10−3, ensuring that components capturing less than 0.1% of the variance are discarded. This
selection criterion prevents insignificant principal components from affecting feature importance
estimation.

By ranking features based on their importance scores, we can analyze their relative contributions to
ID-specific variations and identify patterns that predominantly characterize the training distribution.

2.2.1 FEATURE-SPECIFIC DROPOUT BASED ON PRINCIPAL COMPONENT CONTRIBUTIONS

To mitigate over-reliance on ID-specific features, we introduce a dropout mechanism that selectively
removes highly influential features based on their contribution scores. Given the computed feature
contribution scores si, we construct a binary dropout mask M ∈ {0, 1}D to suppress features with
the highest scores.

Let p be the dropout rate, which determines the proportion of features to be masked out. We first
rank all features in descending order based on si and select the top p×D features with the highest
contribution scores for suppression. The dropout mask is then defined as:

Mi =

{
0, if feature i is among the top p×D ranked features,
1, otherwise.

(6)

During training, the mask is applied element-wise to the input feature matrix:

Xdropout = X⊙M, (7)

where ⊙ denotes element-wise multiplication. This operation ensures that the most ID-specific
features, as determined by their alignment with dominant principal components, are effectively
removed from the learning process. By enforcing this structured dropout, the model is encouraged to
rely on alternative, more generalizable features, thereby improving robustness to distributional shifts.

2.3 TRAINING PROCEDURE WITH FEATURE-SPECIFIC DROPOUT

To enhance model robustness and mitigate reliance on ID-specific features, we integrate feature-
specific dropout within the training pipeline. This dropout mechanism is dynamically updated at
each epoch based on the principal component contributions of feature activations. The overall
training procedure consists of four key stages: First, during each forward pass, feature activations
are computed and stored in a feature bank. At the end of each epoch, Principal Component Analysis
(PCA) is applied to these stored activations to identify the dominant feature components. Using the
computed feature contribution scores, a dropout mask is generated to suppress the most influential
features, ensuring that the model does not overly depend on ID-specific patterns. This mask is
then applied in subsequent training iterations. Finally, standard gradient-based optimization is
performed using the masked feature activations. The complete training process is formally described
in Algorithm 1.
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Algorithm 1 Training Procedure with Feature-Specific Dropout

Require: Pre-trained model f , training data PID, dropout rate p, number of epochs T
1: for epoch t = 1 to T do
2: Forward Propagation: Compute feature activations for each layer and store them in the

feature bank.
3: PCA Computation: Perform PCA on stored feature activations.
4: Compute feature contribution scores si =

∑R
j=1 V

2
ij .

5: Dropout Mask Generation: Identify the top p ×D features with the highest scores and
mask them.

6: Apply the dropout mask to feature activations: Xdropout = X⊙M.
7: Backward Propagation: Update model parameters via gradient descent.

3 EXPERIMENTS

3.1 DATASETS

To evaluate the effectiveness of our approach in both in-distribution (ID) and out-of-distribution
(OOD) settings, we adopt widely used benchmarks from prior studies Goyal et al. (2022); Tian et al.
(2024). These datasets provide diverse domain shifts, enabling a comprehensive assessment of model
generalization.

DomainNet Peng et al. (2019) is a large-scale dataset designed for domain adaptation research. It
consists of six domains: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch, each exhibiting
distinct visual styles. This dataset is particularly suitable for evaluating a model’s ability to generalize
across different visual distributions.

iWildCam (Koh et al., 2021) is a classification dataset featuring 182 animal species captured in
varying environmental conditions. The ID and OOD splits are determined based on differences in
camera sources and background attributes such as illumination and habitat variability.

3.2 IMPLEMENTATION DETAILS

Baselines. We compare our approach against state-of-the-art fine-tuning methods, including LP-
FT Kumar et al. (2022), MARS-SP Gouk et al. (2021), WiSE-FT Wortsman et al. (2022), FLPY Goyal
et al. (2022), FTP Tian et al. (2024), TPGM Tian et al. (2023), and L2-SP Xuhong et al. (2018). These
baselines represent a diverse set of strategies for enhancing model robustness during fine-tuning.

Models and Optimization. Our experiments are conducted on two architectures: CLIP ResNet-50
for DomainNet and CLIP ViT-B/16 for iWildCam. For CLIP ResNet-50, training is performed using
Stochastic Gradient Descent (SGD) with a learning rate of 0.01, momentum of 0.9, and a batch size of
32. For CLIP ViT-B/16, we use AdamW as the optimizer along with a cosine learning rate scheduler,
setting the learning rate to 1× 10−5, weight decay to 0.2, and batch size to 64.

3.3 RESULTS

DomainNet. On the DomainNet dataset, the proposed PCA Dropout method demonstrates strong
performance in both in-distribution (ID) and out-of-distribution (OOD) settings, as shown in Table 1.
PCA Dropout achieves an ID accuracy of 84.48%, surpassing prior methods such as FTP (84.22%)
and L2-SP (82.07%). In terms of OOD generalization, PCA Dropout consistently outperforms
baseline approaches, particularly in challenging domains such as Clipart (48.94%) and Painting
(47.17%), leading to an overall OOD average of 41.40%. This represents a notable improvement
over FTP (39.94%) and TPGM (39.65%), demonstrating PCA Dropout’s ability to mitigate overfitting
to ID-specific features while improving robustness across diverse visual distributions.

iWildCam. On the iWildCam dataset, PCA Dropout also achieves competitive results. The method
attains an ID macro F1-score of 49.5%, performing on par with leading methods such as FLPY
(51.4%) and LP-FT (49.7%). More importantly, PCA Dropout exhibits superior OOD robustness,
achieving the highest OOD macro F1-score at 36.8%, outperforming baselines like FTP (35.8%)
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Table 1: DomainNet Results using CLIP pre-trained ResNet50. Note that the results of baselines are
adopted from FTP Tian et al. (2024).

ID OOD StatisticsMethods Real Sketch Painting Infograph Clipart OOD Avg.

Vanilla FT 80.93 31.81 41.02 20.29 43.59 34.18
Linear Prob. 52.56 20.05 24.92 19.18 21.15 21.33

L2-SP Xuhong et al. (2018) 82.07 36.67 45.62 22.97 47.78 38.26
MARS-SP Gouk et al. (2021) 77.19 25.33 33.43 14.81 39.20 28.19

LP-FT Kumar et al. (2022) 80.82 34.85 44.03 22.23 46.13 36.81
TPGM Tian et al. (2023) 83.64 38.78 43.11 28.70 48.01 39.65

FTP Tian et al. (2024) 84.22 37.66 46.11 28.33 47.67 39.94

PCA Dropout 84.48 39.63 47.17 29.85 48.94 41.40

Table 2: iWildCam Results using CLIP pre-trained ViT B/16. Following common practice, we
report macro F1-score. Note that the results of baselines are adopted from FLPY Goyal et al. (2022).
†indicates our reproduced result.

Methods iWildCam
ID OOD

Zeroshot 8.7 11.0
Linear Prob. 44.5 31.1
Vanilla FT 48.1 35.0

L2-SP Xuhong et al. (2018) 48.6 35.3
LP-FT Kumar et al. (2022) 49.7 34.7

WiSE-FT Wortsman et al. (2022) 48.1 35.0
FTP Tian et al. (2024) † 47.3 35.8

FLPY Goyal et al. (2022) † 51.4 35.2

PCA Dropout 49.5 36.8

and WiSE-FT (35.0%). These results highlight PCA Dropout’s effectiveness in handling real-world
distribution shifts, particularly those caused by variations in environmental conditions and camera
perspectives, reinforcing its potential for robust fine-tuning in natural image classification tasks.

3.4 ABLATION STUDY

To better understand the effect of PCA Dropout, we conduct a series of ablation experiments on the
iWildCam dataset using CLIP ViT-B/16. Specifically, we analyze the impact of dropout on different
architectural components, the choice of layers for dropout, the effect of varying dropout rates, and
the influence of randomly selecting layers for dropout. The results are summarized in Table 3.

Effect of Dropout on Attention and MLP Layers. We first examine how dropout applied to the
Attention module, MLP module, or both affects performance when applied to layer 9 with a dropout
rate of 0.3. Table 3 shows that dropping the MLP or Attention module alone yields similar results,
with MLP achieving a slightly higher ID F1-score (47.6% vs. 46.9%). Further, applying dropout
to both improves ID performance to 49.3% and OOD generalization to 36.0%, demonstrating a
combined benefit.

Effect of Dropout on Different Layers. Next, we analyze the impact of dropout at different layers
while keeping the dropout rate at 0.3 and applying it to both Attention and MLP modules. When
applied to layer 3, the model achieves ID: 48.4% and OOD: 35.1%, whereas dropout at layer 6 yields
ID: 47.4%, but the highest OOD performance of 36.5%. Dropout at layer 9 leads to ID: 49.3% and
OOD: 36.0%, while applying dropout at layer 12 results in the highest ID score of 50.1% but the
lowest OOD generalization at 34.2%. These results indicate that dropout at intermediate layers (e.g.,
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Table 3: Abation Experiment in iWildCam using CLIP pre-trained ViT B/16. We report macro
F1-score.

Training Configuration iWildCam

Attention MLP Dropout Rate Layer Random ID (%) OOD (%)

✓ 0.3 9 46.9 34.5
✓ 0.3 9 47.6 34.4

✓ ✓ 0.3 3 48.4 35.1
✓ ✓ 0.3 6 47.4 36.5
✓ ✓ 0.3 9 49.3 36.0
✓ ✓ 0.3 12 50.1 34.2

✓ ✓ 0.1 9 49.5 36.8
✓ ✓ 0.1 6,9 48.5 35.6
✓ ✓ 0.1 3,6,9 48.7 34.3
✓ ✓ 0.1 3,6,9,12 45.2 34.1

✓ ✓ 0.1 6,9 ✓ 49.9 36.0
✓ ✓ 0.1 3,6,9 ✓ 49.7 35.8

layer 6 and 9) enhances OOD robustness, whereas dropout at deeper layers primarily benefits ID
accuracy.

Effect of Dropout Rate. To understand the influence of the dropout rate, we compare results when
applying dropout at layer 9 with rates of 0.1 and 0.3. At a dropout rate of 0.3, the model attains
ID: 49.3% and OOD: 36.0%, whereas lowering the dropout rate to 0.1 yields ID: 49.5% and OOD:
36.8%. The results suggest that reducing the dropout rate slightly improves OOD generalization
while maintaining similar ID performance.

Effect of Dropout Across Multiple Layers. We further investigate whether dropping multiple layers
simultaneously improves generalization by applying dropout at layers 3, 6, 9, and 12 with a rate of
0.1. Compared to dropout at only layer 9 (ID: 49.5%, OOD: 36.8%), applying dropout to all four
layers degrades ID accuracy to 45.2% and OOD performance to 34.1%. Similarly, applying dropout
to layers 3, 6, and 9 leads to ID: 48.7% and OOD: 34.3%, and at layers 6 and 9, the model achieves
ID: 48.5% and OOD: 35.6%. These results indicate that aggressive dropout across multiple layers
negatively impacts both ID and OOD performance, likely due to excessive feature suppression.

Effect of Randomly Selecting Dropout Layers. Finally, we evaluate whether randomly selecting
a layer for dropout instead of applying dropout to predefined layers improves generalization. With
dropout at layers 3, 6, and 9, selecting a layer randomly achieves ID: 49.7% and OOD: 35.8%, which
is slightly better than manually selecting these layers (ID: 48.7%, OOD: 34.3%). Similarly, for
dropout at layers 6 and 9, random selection results in ID: 49.9% and OOD: 36.0%, compared to ID:
48.5% and OOD: 35.6% for fixed layer selection. These results suggest that introducing randomness
in layer selection can improve generalization by preventing the model from adapting too strongly to
specific dropout patterns.

4 CONCLUSION

We propose PCA Dropout, a fine-tuning strategy that suppresses ID-specific features to enhance
out-of-distribution (OOD) generalization while maintaining strong in-distribution (ID) performance.
By leveraging Principal Component Analysis (PCA) to identify dominant ID-specific features, our
method applies structured dropout to encourage reliance on more transferable representations. Unlike
parameter-based regularization, PCA Dropout operates at the feature level, offering a complemen-
tary approach to improving robustness. Experiments on DomainNet and iWildCam show that
PCA Dropout consistently outperforms state-of-the-art fine-tuning methods in OOD generaliza-
tion. Suppressing dominant ID-specific features effectively mitigates overfitting, leading to stronger
generalization.
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Limitations and Future Work While PCA Dropout improves OOD robustness, its effectiveness
should be validated on larger-scale datasets and across different modalities beyond vision. Our current
study focuses on CLIP ViT-B/16, and further investigation is needed to assess its adaptability to other
model architectures. Additionally, the choice of hyperparameters, such as which layer to dropout, is
model-dependent. Future work will explore more adaptive and hyperparameter-light strategies to
enhance the general applicability of PCA Dropout across diverse architectures and tasks.
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A APPENDIX

B RELATED WORKS

B.1 ROBUST FINE-TUNING

Ensuring both in-distribution (ID) accuracy and out-of-distribution (OOD) robustness when fine-
tuning large-scale models remains a key challenge, as excessive adaptation to ID data often leads
to overfitting. A prominent strategy to mitigate this issue is ensembling, as demonstrated by WiSE-
FT Wortsman et al. (2022), which blends predictions from the original zero-shot model with those
from a fine-tuned model. This approach balances generalization and task-specific adaptation by
preserving pre-trained knowledge while allowing controlled fine-tuning adjustments.

Another line of work constrains the degree of fine-tuning to maintain the model’s pre-trained gen-
eralization properties. For instance, FLYP Goyal et al. (2022) encourages a training process that
mimics pre-training dynamics to avoid excessive specialization. Similarly, LP-FT Kumar et al. (2022)
restricts updates to the classifier layer, ensuring that the feature extractor remains unchanged to
preserve the model’s transferability.

Beyond structural constraints, explicit regularization has been employed to limit divergence from
pre-trained parameters. L2-SP Xuhong et al. (2018) applies an L2 penalty to prevent drastic shifts
in weight space, while approaches like FTP Tian et al. (2024) and TPGM Tian et al. (2023) impose
gradient projections to control updates within constrained subspaces. These techniques regulate
model adaptation to improve generalization without compromising ID performance. Our method
builds upon this paradigm by introducing a feature-level regularization mechanism that selectively
suppresses ID-specific components, mitigating over-reliance on spurious correlations and enhancing
robustness under distributional shifts.

B.2 DOMAIN GENERALIZATION

Domain generalization (DG) aims to train models that can generalize to unseen distributions without
access to target domain data. Traditional Empirical Risk Minimization (ERM) (Vapnik, 1998)
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minimizes the expected loss across training domains but does not explicitly encourage robustness to
domain shifts. To improve generalization, various methods have been proposed, including invariant
representation learning (Arjovsky et al., 2019; Liu et al., 2021), adversarial perturbations (Xu et al.,
2019; Li et al., 2021), domain adaptation via adversarial training (Ganin et al., 2016), feature
distribution alignment (Sun & Saenko, 2016), and meta-learning (Liu et al., 2022; 2023; Mittal
et al., 2020). Additionally, SWAD (Cha et al., 2021) demonstrated that flatter loss landscapes lead to
improved domain generalization, ensuring more stable performance across shifts.

Our approach connects to DG by focusing on suppressing ID-specific feature dependencies during
fine-tuning, a complementary perspective to domain-invariant learning. By introducing a selective
dropout mechanism based on principal component analysis, we reduce reliance on features that
are overly adapted to the training distribution, improving OOD generalization while preserving ID
performance.
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