
Homeostasis-aware Direct Spike Encoding
for Deep Spiking Neural Networks

Yechan Kang12∗ Mingyeong Seo1∗ Jeonghee Jo1 Hyun Jae Jang1 Jongkil Park1

Jaewook Kim1 Suyoun Lee1 Jinkyu Kim2 Seongsik Park1†
1Center for Semiconductor Technology, Korea Institute of Science and Technology, Korea

2Department of Computer Science and Engineering, Korea University, Korea
{kyccj,mgseo,jh.jo2,hjjang,jongkil,jaewookk,slee_eels}@kist.re.kr

jinkyukim@korea.ac.kr, seong.sik.park@kist.re.kr

Abstract

Deep spiking neural networks (SNNs), gaining attention as the next generation
of artificial neural networks, have been successfully applied to many applications
thanks to the development of various algorithms, such as spike encoding. Spike
encoding represents input information as discrete spikes, significantly influencing
the performance and efficiency of deep SNNs. Most state-of-the-art deep SNN mod-
els have greatly improved their performance by using direct encoding. However,
performance and efficiency have been limited by the lack of consideration for the
brain’s efficiency mechanisms, such as homeostasis. To overcome this limitation,
we propose H-Direct, a spike encoding technique designed to balance both effec-
tiveness and efficiency, based on a comprehensive analysis of conventional direct
encoding. Furthermore, experimental results confirm that our proposed encoding
surpasses traditional direct encoding in both performance and efficiency across
multiple image classification benchmarks.

1 Introduction

Deep learning has improved AI performance but comes with high computational and energy costs [1,
2]. Neuromorphic computing, inspired by the brain, offers a more energy-efficient solution using
spiking neural networks (SNNs) [3–5]. Recently, deep SNNs, which merge the structure of DNNs
with the energy-efficient nature of SNNs, are expected to be the next-generation artificial neural
networks for energy-efficient AI that can simultaneously achieve high learning performance and
low-energy operation. To maximize the advantages of deep SNNs, an efficient neural coding scheme
is essential, particularly for input spike encoding, which greatly impacts performance and efficiency.
Direct encoding, used in most state-of-the-art deep SNN models, preserves more input information
and learns from data, offering superior performance. However, the existing direct encoding does
not adequately consider the efficacy and efficiency of spike encoding, which restricts the overall
performance and efficiency of deep SNNs. For optimal results, spikes should be encoded at an
appropriate firing rate with dynamically determined features based on input.

In this work, to overcome the aforementioned limitation, we first investigated conventional direct
spike encoding. Based on a comprehensive analysis of the observed phenomena and inspired by the
human brain, we propose H-Direct, which promotes dynamic feature selection while suppressing
both over- and under-firing. First, we define homeostasis in H-Direct and propose a dynamic feature
encoding loss that normalizes the input distribution of each channel in the encoding neurons to
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Figure 1: (a) The direct encoding converts input into spikes. (b) Each feature can be categorized into
four types. (c) Proportions of each categorized encoding. Our encoding achieves this with three main
modules: (d) adaptive threshold, (e) feature diversity loss, and (f) dynamic feature encoding loss.

improve homeostasis. Next, to suppress over- and under-firing, we introduce an adaptive threshold
and feature diversity loss to the encoding neurons to maximize the entropy of encoded features.
Our experiments demonstrate that these mechanisms improve both the learning performance and
efficiency of deep SNNs.

2 Preliminaries and Related Work

2.1 Deep Spiking Neural Networks

SNNs, which mimic the operation of the brain, have been considered the next generation of artificial
neural networks [6]. SNNs propagate information using spikes through a network of neurons and
synapses, enabling energy-efficient operations with asynchronous event-driven computing. Deep
SNNs can simultaneously achieve high learning ability and energy-efficient operation by integrating
the synaptic topology of DNNs with the event-based operation of SNNs [7]. Leaky integrate-and-fire
(LIF) neurons are widely used in deep SNNs due to their low computational cost. The integration
process of LIF neurons is explained in more detail in Sec. A.1 Recently, various deep learning
applications and models have been implemented with deep SNNs [8–15]. Most of these SOTA
deep SNN models adopted spatio-temporal back-propagation (STBP) with surrogate gradient [16],
threshold-dependent batch normalization (tdBN) [17], and direct spike encoding [17–20]. Despite
these advancements, performance gaps between DNNs and deep SNNs persist. Despite efforts
to reduce these gaps, such as improving learning algorithms [19, 21], and addressing gradient
mismatch [22, 23], spike encoding has not received sufficient attention.

2.2 Spike Encoding

Spike encoding transforms input signals into spikes, allowing SNNs to process data [24]. This process
significantly impacts the performance and efficiency of SNNs. Previous research has proposed various
encoding schemes such as rate [25] and temporal encoding, including phase [26, 27], and time-to-
first-spike (TTFS) [28–31] for the efficient processing of input in deep SNNs, but these methods
limited the performance due to the loss of input information. SOTA deep SNN models address this
issue by adopting direct encoding [13, 14, 18], designating the first layer as the encoding layer and
training it end-to-end. While effective across various datasets and models [13, 17–20], this method is
limited by the lack of sufficient consideration for SNN characteristics.

2.3 Homeostasis in SNNs

Homeostasis is essential for maintaining stability in biological systems [32], and its absence degrades
information processing and efficiency [33–35]. Thus, the learning process of the neural network
should incorporate homeostatic mechanisms to maintain appropriate firing rate [36]. Few studies have
introduced the biological efficiency of homeostasis on SNNs. In [37], homeostasis was introduced
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via an adaptive threshold to improve training but could not be applied to deep SNNs. Another recent
study demonstrated adversarial robustness through homeostasis with an adaptive threshold, but it
focused only on stability and didn’t address improvements in information processing [38]. Hence, it
is imperative to investigate methods for enhancing training performance and efficiency of deep SNNs
with homeostasis.

3 Analysis of Conventional Direct Encoding

To improve spike encoding, we analyzed the conventional direct encoding used in deep SNNs, which
employs the first layer for feature extraction and encoding into spikes [8, 13–15, 17]. The direct
encoding extracts features from input data and encodes them into spikes in a channel-wise manner
according to the time step t, as shown in Fig. 1-(a). The accumulated encoded spikes during a total
time step T are depicted in Fig. 1-(b). From an encoding perspective, we found that the encoded
features (channels) can be categorized into four types. Over- and under-fired encoding (OFE and
UFE, respectively) are caused by an inadequate firing rate during the encoding process. These
inappropriately encoded channels cannot encode any features because all neurons in the channel are
fired with the same value. As in many other studies [39, 40], such inappropriate encoding should be
avoided since it limits the training ability of deep SNNs. Persistent encoding (PE) consistently converts
the extracted features into spikes regardless of input, as in DNNs. In this case, the generation of
encoded spikes in every input results in inefficient deep SNNs which rely on event-driven computing.
Dynamically selective encoding (DSE), however, encodes only essential features based on the input,
reducing spike count and improving energy efficiency. As illustrated in Fig. 1-(b), such selective
encoding according to inputs can reduce the number of spikes, thereby improving the energy efficiency
of deep SNNs. Fig. 1-(c) shows the ratio of the four encoding types, with PE being the most common
and inappropriate channels also present. This indicates that conventional direct encoding needs
improvement. To enhance deep SNN performance and efficiency, the encoding layer must maintain
an appropriate firing rate and selectively encode features.

4 Homeostasis-aware Direct Spike Encoding

To enhance spike encoding efficiency and effectiveness, we propose a homeostasis-aware direct
spike encoding. Homeostasis in H-Direct pertains to the constancy of a feature channel across
different inputs, highlighting the importance of selective feature encoding. To improve this, we
introduce dynamic feature encoding loss. Additionally, we introduce an adaptive threshold to suppress
under-firing. And we introduce feature diversity loss to maximize the entropy of encoded features.
The proposed encoding is applied to training the encoding layer, which is the first layer as in the
conventional direct encoding.

4.1 Dynamic Feature Encoding Loss

Firstly, we introduce a method to enhance homeostasis, which denotes the consistency enabling a
channel to maintain a suitable firing rate across inputs. This can be achieved through DSE, which was
identified in our analysis. We confirmed that each encoding type defined in Fig. 1-(b) has a distinct
distribution, and each these types can be defined by the ratio of the shift parameter (β) to the scale
parameter (γ) in tdBN in the encoding layer. Inspired by this, we propose a dynamic feature encoding
loss, which is stated as

LDFE =
∑
c

∥∥∥∥ βc

γc + ϵ
− α

∥∥∥∥
2

, (1)

where c, α, and ϵ are the channel index, the target value of the ratio(β/γ), and a small positive number
for the numerical stability, respectively. This loss encourages the ratio to be trained to the target value
α at which DSE channels are likely to occur. The gradients of each parameter for the loss and more
detailed derivation are Sec. A.3. This loss dynamically selects essential features to be encoded as
spikes based on the input, improves homeostasis by adjusting the firing rate across channels, and
thereby enhances the efficiency and performance of deep SNNs.
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Table 1: Experimental results for various models and datasets configurations.
Accuracy (%) # of total spikes (K) # of encoded spikes (K)

Datasets Architecture Baseline Ours ∆ Baseline Ours ∆ Baseline Ours ∆

CIFAR10
VGG16 93.47±0.14 93.67±0.06 0.21 148±8.0 144±6.0 -3.00% 59±2.00 52±0.8 -12.00%

ResNet19 95.61±0.03 95.72±0.18 0.12 825±12.0 781±11.0 -5.30% 190±0.04 188±0.8 -1.05%
ResNet20 94.99±0.02 95.09±0.04 0.11 480±11.0 463±5.0 -3.54% 92±1.20 83±0.9 -9.78%

CIFAR100
VGG16 69.03±0.13 69.29±0.05 0.38 160±0.6 151±1.0 -6.00% 64±1.00 57±0.9 -11.00%

ResNet19 76.86±0.05 77.07±0.10 0.23 1003±8.0 987±7.0 -1.60% 222±2.00 217±0.6 -2.30%
ResNet20 74.92±0.03 75.13±0.12 0.28 629±5.0 624±0.8 -0.78% 121±0.60 118±0.5 -2.29%

ImageNet ResNet18 64.07±0.08 64.30±0.03 0.36 2175±15.0 2051±7.0 -5.70% 872±8.00 722±5.0 -17.20%
CIFAR10-DVS VGG16 75.10±0.16 76.15±0.62 1.40 413±1.2 273±1.8 -33.90% 146±0.50 18±0.2 -87.74%

4.2 Adaptive Threshold in Encoding Neurons

As we discussed in the previous section, the conventional direct encoding leads to UFE due to an
improper firing rate, limiting the encoding layer’s performance. To overcome this, we introduce an
adaptive threshold in encoding neurons as follows:

Vth,c(t) =

{
ηVth,c(t− 1) if

∑
{i∈Channelc} si[t] = 0

Vth,c(0) otherwise , (2)

where c, η, and Vth(0) denote channel index, adjust rate, and initial threshold, respectively. The
proposed threshold is adjusted in a channel-wise manner to ensure computational efficiency and
precise adjustment. This adjustment can be cumulative, but once firing occurs, the threshold is
restored to its initial value for the subsequent time steps. This method enables the encoding layer to
fully utilize its potential by promoting the encoding of non-firing channels.

4.3 Feature Diversity Loss

In contrast to DNNs, SNNs output binary spikes, limiting feature diversity, further constrained by
inadequate encodings like OFE and UFE. To address this issue, we propose an entropy-based feature
diversity loss, which fits the feature with a probability density function (PDF) and trains the encoding
layer’s weights to maximize entropy. The general form of the proposed loss can be represented as

LFD = −
∑
k

p(xk) log p(xk), (3)

where xk and p(xk) denote the feature and PDF, respectively. We used each neuron’s accumulated
spikes as the feature to reduce the distortion of PDF fitting. In order for the proposed loss to be
compatible with a gradient-based training algorithm, the PDF must be differentiable. Thus, we used
a normal distribution N (µ, σ) as the PDF, where µ and σ are the mean and standard deviation of
accumulated spikes. Details on the gradient of the encoding layer for feature diversity loss are in
Sec. A.4. This method improves encoding performance by encouraging diverse feature encoding.

Our overall loss function including cross-entropy loss for the image classification is as follows:

L = λCELCE + λDFELDFE + λFDLFD, (4)

where λCE, λDFE, and λFD denote the weighting factors of LCE, LDFE, and LFD, respectively.

5 Experiments

Effectiveness and Efficiency For details about experiments please refer to Sec. A.5. We in-
vestigated the impact of improved homeostasis on the training performance of deep SNNs, fo-
cusing on test accuracy and the number of spikes. As shown in Table 1, the proposed encod-
ing method improves accuracy and reduces spike counts by up to 34% compared to the base-
line. The deviation in the number of encoding spikes is drastically reduced, leading to a reduc-
tion in the variation of spike firing in the entire neural network. This suggests that enhancing
the homeostasis in the spike encoding contributes to improved stability in deep SNNs. Through
this section, we validate that the proposed homeostasis-based encoding can achieve higher accu-
racy with fewer spikes. Figs. 6 and 7 illustrate the spike feature maps produced by our method.

4



(b) Integration noise(a) Input noise

0.925

0.9275

0.93

0.9367 

0.9347 

0.9325

0.1 0.3 0.5 0.7

Baseline
Ours
Baseline (noise) 
Ours (noise)

0.89

0.9

0.91

0.92

0.9367 
0.93

0.1 0.3 0.5 0.7

Baseline
Ours
Baseline (noise) 
Ours (noise)

σ σ

Figure 2: Accuracy of baseline and ours.

Noise Robustness Noise robustness in the
encoding layer impacts neural network perfor-
mance. Thus, we evaluated the noise robustness
of the proposed encoding with input and inte-
gration noise, occurring before the encoding
layer and in the neurons’ membrane potential.
We injected Gaussian noise N (0, σ) to input
and membrane potential (u in Eq. 5). Fig. 2
demonstrates that our homeostasis-based encod-
ing method, with VGG16 on CIFAR10, is robust
to both types of noise, confirming that homeostasis improves training efficiency and noise robustness.

Compatibility Our encoding method is compatible with models and training algorithms from other
studies, allowing for improved performance when applied to the latest models. To prove this, we
experimentally demonstrated improvements in performance and efficiency by applying our encoding
method to two latest models [18, 41]. For detailed experimental results, please refer to Tab. 5 and 6.

5.1 Ablation Studies

Table 2: Ablation study results with and without the proposed method.
Methods Accuracy (%) # of total spikes (K) # of encoded spikes (K)

Baseline 93.47±0.14 148±8.0 59±2.0

w/ DFE 93.53±0.11 135±4.0 48±1.0
w/ AT+FD 93.60±0.10 147±4.0 67±5.0

w/ AT+FD+DFE 93.67±0.06 144±6.0 52±0.8

We conducted ablation
studies with CIFAR10 on
VGG16 and ResNet20
to determine how each
proposed method affects
the spike encoding and
training performance. The
cases included baseline,
homeostasis (DFE), maximize the entropy of encoded feature (AT+FD), and proposed encoding
(AT+FD+DFE). Results in Tab. 2 show that DFE improves accuracy and reduces spikes in VGG16.
AT and FD enhance accuracy but reduce efficiency. The proposed method shows the most significant
enhancement in accuracy with improved efficiency. There is a slight difference in trend in ResNet20,
but our method improves performance and efficiency. Detailed results for ResNet20 are in Tab. 7.

Figure 3: (a) Proportion and (b) distributions of
spike counts of encoding neurons and channels,
respectively (VGG16, CIFAR10).

To understand in more detail the impact of the
proposed method on spike encoding, we inves-
tigated encoding patterns of neurons in the en-
coding layer. As shown in Fig. 3-(a), DFE re-
duces the proportion of neurons with low spike
counts (1 or 2) and increases the proportion of
non-spiking neurons. This shows that the dy-
namic selectivity proposed to improve home-
ostasis only affects low-firing neurons. In con-
trast, AT and FD increase spike diversity. Our
proposed method expands the application of se-
lective encoding, which is caused by homeosta-
sis, to high-firing neurons with a spike count of
three. This can be interpreted as an enhancement
of the feature selectivity due to the maximiza-
tion of the entropy of encoded features. As shown in Fig. 3-(b), DFE suppresses low-firing features,
while entropy maximization promotes diverse features with balanced frequencies(Fig. 4-(c)). Com-
pared to the baseline, our proposed method promotes low-firing features and prevents high-firing
features (Fig. 3-(b)). Additionally, we measured the correlation between features [42], the average
number of channels used for encoding, and the proportion of each channel type. For details, refer to
Sec. A.7. Through these studies, we confirm that the proposed methods work together, enabling the
encoding layer to learn efficient and effective spike encoding.

5.2 Comparisons with Other Works

We compared the training performance with other related works to evaluate the proposed encoding
method. For detailed comparisons, please refer to Tab. 8. We omitted the comparisons for spike count
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because most studies do not report them. While some encoding methods show lower accuracy with
longer time steps, our method, which only modifies the baseline encoding, achieves performance
comparable to SOTA-level studies using direct encoding.

6 Conclusion

In this work, we proposed H-direct, which is a homeostasis-aware direct spike encoding to improve
the efficiency and effectiveness of encoding based on an analysis of conventional direct encoding.
Experiments on several models and datasets showed that our method improved the efficiency and
stability of spike encoding. In addition, we demonstrate that it is compatible with various models
and performances through experiments. The proposed method demonstrates that a brain-inspired
mechanism can improve the performance and efficiency of deep SNNs.
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A Appendix / supplemental material

A.1 Leaky Integrate-and-Fire (LIF) Neuron Model

Leaky integrate-and-fire (LIF) neurons are widely used in deep SNNs due to their low computational
cost. The integration process of LIF neurons can be described as

ul
i[t] = 1/τ(vli[t− 1] +

∑
j
wijs

l−1
j [t]), (5)

where u, v, w, and s indicate the neuron’s internal state, called membrane potential, intermediate
state, synaptic weight, and input spike, respectively. The layer index is l, and the neuron indices are i
and j. The time constant and time step are represented in τ and t, respectively. A spike is generated
when the membrane potential exceeds the threshold as

sli[t] = H(ul
i[t]− Vth), (6)

where H and Vth are the Heaviside step function and a threshold voltage, respectively. When a neuron
fires a spike, its membrane potential is reset through the intermediate state, which can be stated as

vli[t] = (ul
i[t]− sli[t])s

l
i[t] + ul

i[t](1− sli[t]). (7)

A.2 threshold dependent Batch Normalization (tdBN)

tdBN is a batch normalization method designed specifically for SNNs [17] and it can be expressed as
follows:

xc[t] = W ⊗ sc +B, (8)

x̂c =
ξ Vth(xc − E[xc])√

V ar[xc] + ϵ
, (9)

yc = γcx̂c + βc, (10)

where xc[t] represents the inputs at timestep t, xc = (xc[1],xc[2],···,xc[T ]), and x̂c represents nor-
malized xc. ξ is a weight factor, and ϵ is a small positive number. γc and βc are the scale and shift
parameters at c-th channel, respectively. tdBN successfully adjusts the firing rate of the following
spiking neurons, considering their thresholds.

A.3 Dynamic Feature Encoding Loss

The gradients of each parameter for the loss are presented as

∂LDFE

∂βc
=

χc

∥χc − α∥2
1

(γc + ϵ)
,

∂LDFE

∂γc
= − χ2

c

∥χc − α∥2
1

(γc + ϵ)
, (11)

where χc =
βc

(γc+ϵ) . The more detailed derivation is provided below.

Let χc =
βc

(γc+ϵ) ,

∂LDFE

∂χc
=

∂(∥χc − α∥2)
∂χc

=
χc

∥χc − α∥2
, (12)

Thus,
∂LDFE

∂βc
=

∂LDFE

∂χc

∂χc

∂βc
=

χc

∥χc − α∥2
1

(γc + ϵ)
, (13)

∂LDFE

∂γc
=

∂LDFE

∂χc

∂χc

∂γc
= − χ2

c

∥χc − α∥2
1

(γc + ϵ)
. (14)
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Table 3: Hyperparameters in experiments

Datasets Architecture η α λCE λFD λDFE
(Eq. 2) (Eq. 1) (Eq. 4) (Eq. 4) (Eq. 4)

CIFAR10
VGG16 0.8 -1.0 1.0 5.00E-6 1.00E-4

ResNet19 0.8 -0.3 1.0 3.00E-3 1.00E-4
ResNet20 0.2 -0.4 1.0 3.00E-3 1.00E-3

CIFAR100
VGG16 0.8 -0.8 1.0 5.00E-6 1.00E-4

ResNet19 0.8 -0.4 1.0 3.00E-3 1.00E-4
ResNet20 0.8 -0.3 1.0 3.00E-3 1.00E-4

ImageNet ResNet18 0.8 -1.0 1.0 3.00E-3 1.00E-3

CIFAR10-DVS VGG16 0.8 -1.0 1.0 5.00E-6 1.00E-3
A.4 Feature Diversity Loss

The gradient of the encoding layer for the feature diversity loss can be stated as

∂LFD

∂W
≈
∑
k

− log(p(xk)− 1)p′(xk)
∑
t

I[t]/τ , (15)

where I is the input. And more detailed derivation is provided below.

∂LFD

∂W
=
∑
k

{
∂LFD

∂p(xk)

∂p(xk)

∂xk

∑
t

(
∂xk

∂s[t]

∂s[t]

∂u[t]

∂u[t]

∂W

)}
(16)

≈
∑
k

− log(p(xk)− 1)p′(xk)
∑
t

I[t]/τ , (17)

where I is the input, and p(x) is a probability density function.

A.5 Experimental Settings

To evaluate the proposed encoding, we set a baseline method as STBP and tdBN, which are widely
used training methods for deep SNNs. We experimented on both static datasets (CIFAR10/100,
ImageNet) and a neuromorphic dataset (CIFAR10-DVS) with various model architectures including
VGG16, ResNet18, ResNet19, and ResNet20. To ensure fair and accurate experiments, we repeated
the experiment four times for each configuration and compared the results with the average value. As
in other works, we use LIF neurons with a soft reset (Eq. 7) and set the time step to four.

Experimental Setup. The input size of the model is set to 32x32 for CIFAR10/100, 224x224 for
ImageNet and 48x48 for CIFAR10-DVS. For CIFAR10/100 and CIFAR10-DVS, we trained each
model for 300 epochs with SGD using a step-decay learning rate schedule (0.1 times every 100
epochs). The initial learning rate is 0.1 (0.01 for CIFAR10-DVS), and the optimizer includes L2
regularization with a lambda of 1e-4. For CIFAR10/100 and CIFAR10-DVS, the batch size was set to
100. While for ImageNet, it is set to 200 for 90 training epochs. For data augmentation, CutMix [43]
was applied to static datasets, while random crop and random flip (horizontal and vertical) were
used for the neuromorphic dataset. During training, the time step for all datasets was set to four.
Additionally, the initial leak constant τ and threshold Vth(0) are set to 1/0.9 and 0.5. The experiments
were conducted using an NVIDIA A6000 GPU. The training times for 300 epochs were approximately
6-7 hours for VGG16 on CIFAR10 and CIFAR100 and about 20 hours for VGG16 on CIFAR10-DVS.
For ResNet models, ResNet19 took around 23 hours on CIFAR10 and 20 hours on CIFAR100, while
ResNet20 required roughly 12 hours on CIFAR10 and 11 hours on CIFAR100. For ImageNet, training
ResNet18 for 90 epochs with 2 GPUs took about 8 days.

How to set hyper parameters? In our experiments, we used four types of hyperparameters: adjust
rate η in AT, λFD that is the weight factor of LFD, α that is a ratio of β/γ in tdBN of the encoding
layer, and λDFE that is the weight factor of LDFE. We set η empirically by varying the value between
0.1 and 1.0 in increments of 0.1. In addition, we derived α from the parameters (β and γ) of DSE
channels in the baseline case. We set α to the average value of β/γ in the DSE channels. The weight
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Figure 4: Distributions of each channel’s spike counts on (a) baseline, (b) DFE, (c) AT+FD, and (d)
ours (VGG16, CIFAR10)

Figure 5: Distributions of each channel’s spike counts on (a) baseline, (b) DFE, (c) AT+FD, and (d)
ours (ResNet20, CIFAR10)
factors of total loss (λCE, λFD, and λDFE) also were determined empirically. The values of hyper
parameters we used in this work are shown in Tab. 3.

A.6 Spike Counts Distributions of Each Channel

Fig. 4 and Fig. 5 show the distribution of each channels’ spike counts during inference on CIFAR10
using VGG16 and ResNet20 architectures, respectively. Each histogram utilizes a logarithmic scale
on the y-axis to elucidate data trends. First, in Fig. 4-(b), compared to Fig. 4-(a), there is an overall
reduction in spike counts of channels, but the number of channels with spike counts greater than about
2K increases. For samples that do not require many fired channels, neurons of DSE channels exhibit
reduced firing. This results in a decrease in the number of channels with spike counts less than about
2K. Conversely, in cases requiring more features, the neurons of DSE channels tend to fire, which
leads to the increment of channels with spike counts above about 2K. In Fig. 4-(c), as a result of the
influence of AT, the number of channels with high spike counts, especially around 4K, increases,
deteriorating the encoding efficiency. Additionally, due to FD, the cumulative spike values tend to be
diverse, resulting in a relatively even distribution compared to other cases. In Fig. 4-(d), by applying
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Table 4: Ablation studies to compare variants of our method with and without AT (adaptive
threshold), FD (feature diversity loss), and DFE (dynamic feature encoding loss). Data: CIFAR10.

Model Methods Cross-
correlation

# of
channels

Proportions (in %)

OFE UFE DSE PE

VGG16

Baseline 0.231 51.55 0.39 10.16 50.00 39.06

w/ DFE 0.203 56.77 0.00 0.00 66.80 33.20
w/ AT+FD 0.274 57.83 0.39 4.30 50.00 45.31
w/ AT+FD+DFE (ours) 0.218 59.51 0.00 0.00 62.89 37.11

ResNet20

Baseline 0.433 62.07 0.00 2.34 47.66 50.00

w/ DFE 0.320 63.61 0.00 0.00 71.48 28.52
w/ AT+FD 0.515 63.71 0.39 0.00 33.98 65.63
w/ AT+FD+DFE (ours) 0.363 63.85 0.00 0.00 51.56 48.44

all the proposed methods, we can resolve the limitations observed in previous graphs. The results in
Fig. 5 show similar trends to those in Fig. 4. In conclusion, the most efficient encoding is achieved
when all the proposed methods are applied, resulting in fewer spikes and improved performance.

A.7 Cross Correlation

We measured the correlation between features as in [42]. The cross-correlation is defined as follows:

ρ(sc) =
1

NbNc

Nc∑
c=0

Nb∑
b=0

|s′Tc,bs′c,b|
∥s′c,b∥2∥s′c,b∥2

, (18)

where sc ∈ Rf×f×Nc represents the features in the c-th channel of the encoding layer. s′c denotes
the reshaped features of sc into s′c ∈ Rf2×Nc . Nb represents the b-th sample in the batch and s′c,b
denotes s′c for the b-th sample. A smaller cross-correlation value indicates fewer redundant features,
suggesting more efficient encoding.

For further analysis, we measured the correlation between features [42], the average number of
channels used for encoding, and the proportions of each channel type, which are presented in Tab. 4.
When only DFE is applied, cross-correlation is the lowest, but the accuracy improvement is not
significant due to the small number of channels used for encoding, which is caused by excessive
feature selection. On the contrary, the proposed method improves training performance by utilizing
the encoding layer’s capacity properly, which indicates the highest number of channels used in
encoding with lower correlation. The feature maps of ablations are presented in Sec. A.8. Through
these studies, we can confirm that our method allows the encoding layer to learn how to encode spikes
efficiently and effectively.

A.8 Feature Maps of Encoded Spikes

Fig. 6 and Fig. 7 show the encoded feature maps and the proportion of each categorized encoding
from ablation studies using VGG16 and ResNet20 architectures on CIFAR10 dataset, respectively.
In the case of VGG16 (Fig. 6), OFE, UFE, DSE, and PE appear in the baseline, whereas in the
model to which DFE is applied, OFE and UFE disappear and the proportion of DSE increases about
16.8% compared to the baseline. In addition, in the model with AT and FD, it can be seen that UFE
decreases by about 5.9% and PE increases by about 12.1%. In Ours, OFE and UFE disappear, and
DSE accounts for the largest portion among all types (about 62.9%). In the case of ResNet20 (Fig. 7),
UFE, DSE, and PE appear in baseline. When DFE is applied, UFE disappears, and the proportion of
DSE increases by about 23.8%. In addition, PE increases by about 15.6% in the model with AT and
FD. In ours, UFE disappears, and DSE accounts for the largest portion (about 51.6%) of all types.
The result tends to be similar to VGG16, which indicates the effectiveness and compatibility of our
methods across model architectures.
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Figure 6: (a) Examples of encoded feature maps and (b) the average proportion of each categorized
encoding in ablation studies (VGG16, CIFAR10).
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Figure 7: (a) Examples of encoded feature maps and (b) the average proportion of each categorized
encoding in ablation studies (ResNet20, CIFAR10).
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Table 5: Comparisons of accuracy and the number of spikes between baseline and our model with
IM-Loss (* is our implementation)

Datasets Architectures Methods Time steps Accuracy (%) # of total spikes (K)

CIFAR10

VGG16
IM-Loss [41] 5 93.85±0.11 -
IM-Loss* 4 93.73±0.03 142±1
IM-Loss + H-Direct 4 93.89±0.01 137±6

ResNet19
IM-Loss [41] 4 95.40±0.08 -
IM-Loss* 4 95.76±0.06 1116±13
IM-Loss + H-Direct 4 95.78±0.14 1075±26

ResNet20 IM-Loss* 4 95.16±0.13 752±18
IM-Loss + H-Direct 4 95.23±0.06 646±7

CIFAR100

VGG16
IM-Loss [41] 5 70.18±0.09 -
IM-Loss* 4 69.68±0.05 174±3
IM-Loss + H-Direct 4 69.74±0.17 161±2

ResNet19 IM-Loss* 4 76.94±0.11 1309±11
IM-Loss + H-Direct 4 77.15±0.23 1284±9

ResNet20 IM-Loss* 4 74.94±0.16 797±8
IM-Loss + H-Direct 4 75.41±0.08 764±2

CIFAR10-DVS
ResNet19 IM-Loss [41] 10 72.60±0.08 -

VGG16 IM-Loss* 4 75.48±0.56 423±2
IM-Loss + H-Direct 4 75.68±0.33 280±2

Table 6: Comparisons of accuracy and the number of spikes between baseline and our model with
RMP-Loss (* is our implementation)

Datasets Architectures Methods Time steps Accuracy (%) # of total spikes (K)

CIFAR10

VGG16
RMP-Loss [18] 4 93.33±0.07 -
RMP-Loss * 4 93.59±0.03 155±2
RMP-Loss + H-Direct 4 93.69±0.05 133±7

ResNet19
RMP-Loss [18] 4 95.51±0.08 -
RMP-Loss * 4 95.23±0.13 963±29
RMP-Loss + H-Direct 4 95.30±0.08 955±26

ResNet20
RMP-Loss [18] 4 91.89±0.05 -
RMP-Loss * 4 94.77±0.07 619±14
RMP-Loss + H-Direct 4 94.79±0.10 586±20

CIFAR100

VGG16
RMP-Loss [18] 4 72.55±0.08 -
RMP-Loss * 4 69.35±0.13 180±2
RMP-Loss + H-Direct 4 69.49±0.14 157±2

ResNet19
RMP-Loss [18] 4 78.28±0.1 -
RMP-Loss * 4 76.13±0.08 1147±13
RMP-Loss + H-Direct 4 76.43±0.07 1104±8

ResNet20
RMP-Loss [18] 4 66.65±0.10 -
RMP-Loss * 4 74.38±0.16 715±5
RMP-Loss + H-Direct 4 74.60±0.25 703±7

CIFAR10-DVS

ResNet19 RMP-Loss [18] 10 76.20±0.20 -

ResNet20 RMP-Loss [18] 10 75.60±0.30 -

VGG16 RMP-Loss * 4 75.15±0.86 423±1
RMP-Loss + H-Direct 4 75.23±0.49 295±1

Table 7: Ablation studies on accuracy and the number of spikes to compare variants of our method
with and without the proposed method. Data: CIFAR10
Architecture Methods Accuracy (%) # of total spikes (K) # of encoded spikes (K)

ResNet20

Baseline 94.99±0.02 480±11.0 92±1.0

w/ DFE 94.83±0.02 470±15.0 62±1.0
w/ AT+FD 94.89±0.02 507±1.0 115±3.0
w/ AT+FD+DFE (ours) 95.09±0.04 463±5.5 83±0.9
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Table 8: Comparisons with other works on various models and datasets. Abbr.: H-Direct: Homeostasis-
aware direct encoding (ours), Direct: Direct encoding, Phase: Phase encoding, TTFS: Time-to-first-
spike encoding, Rate: Rate encoding.

Datasets Architecture Method Input encoding Time steps Accuracy

CIFAR10

VGG16

ANN2SNN [27] Phase 1500 91.41%
T2FSNN [28] TTFS 680 91.43%
DTA-TTFS [44] TTFS 160 93.05%
BNTT [45] Rate 25 90.05%
Diet-SNN [19] Direct 5 92.70%
RMP-Loss [18] Direct 4 93.33%±0.07
Ours H-Direct 4 93.67%±0.01

ResNet19

STBP-tdBN [17] Direct 4 92.92%
TET [20] Direct 4 94.44%±0.08
RecDis-SNN [46] Direct 4 95.53%±0.05
RMP-Loss [18] Direct 4 95.51%±0.08
Ours H-Direct 4 95.72%±0.20

ResNet20
Diet-SNN [19] Direct 5 91.78%
RMP-Loss [18] Direct 4 91.89%±0.05
Ours H-Direct 4 95.09%±0.04

CIFAR100

VGG16

ANN2SNN [27] Phase 1500 68.69%
T2FSNN [28] TTFS 680 68.79%
DTA-TTFS [44] TTFS 160 69.66%
BNTT [45] Rate 50 66.60%
Diet-SNN [19] Direct 5 69.97%
RecDis-SNN [46] Direct 4 69.88%±0.08
RMP-Loss [18] Direct 4 72.55%±0.08
Ours H-Direct 4 69.29%±0.05

ResNet19

TET [20] Direct 4 74.47%±0.15
RecDis-SNN [46] Direct 4 74.10%±0.13
RMP-Loss [18] Direct 4 78.28%±0.10
Ours H-Direct 4 77.07%±0.10

ResNet20
Diet-SNN [19] Direct 5 64.07%
RMP-Loss [18] Direct 4 66.65%±0.10
Ours H-Direct 4 75.13%±0.12

ImageNet
ResNet34 STBP-tdBN [17] Direct 6 63.72%

ResNet18 RMP-Loss [18] Direct 4 63.03%±0.07
Ours H-Direct 4 64.30%±0.03

CIFAR10-DVS
CifarNet Tandem learning [47] Direct 20 65.59%

ResNet19 STBP-tdBN [17] Direct 10 67.80%

VGG16 Ours H-Direct 4 76.15%±0.31
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