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Abstract
The rapid proliferation of large language models
(LLMs), such as GPT-4 and Gemini, underscores
the intense demand for resources during their
training processes, posing significant challenges
due to substantial computational and environ-
mental costs. In this paper, we introduce a
novel checkpoint merging strategy aimed at
making efficient use of intermediate checkpoints
during LLM pretraining. This method utilizes
intermediate checkpoints with shared training
trajectories, and is rooted in an extensive search
space exploration for the best merging weight via
Bayesian optimization. Through various exper-
iments, we demonstrate that: (1) Our proposed
methodology exhibits the capacity to augment
pretraining, presenting an opportunity akin to
obtaining substantial benefits at minimal cost;
(2) Our proposed methodology, despite requiring
a given held-out dataset, still demonstrates
robust generalization capabilities across diverse
domains, a pivotal aspect in pretraining.

1. Introduction
With the rapid development of LLMs, such as GPT-3 (Ope-
nAI, 2023), GPT-4 (OpenAI et al., 2023), PaLM (Chowd-
hery et al., 2023) and Gemini (Team et al., 2023), which
boasts tens to hundreds of billions of parameters, the
demand for new LLMs and the research aimed at enhancing
their capabilities have significantly increased. But we
should note that the training requirements for these LLMs
are substantial, not only in terms of computational resources,
human resources, and capital resources, but also regarding
energy consumption and environmental impact. For
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Figure 1: Overview of the Bayesian optimization framework
for checkpoint merging in LLM pretraining. The framework
operates by linearly combining intermediate checkpoints Θt−1

and Θt with optimized merging weights λt. Through iterative
Bayesian optimization, the method identifies performance "sweet
spots" in the loss landscape that enhance model efficacy without
much additional computational resources, effectively transforming
intermediate checkpoints into improved models.

instance, training the LLaMA2 70B model with 2T tokens
necessitates 1,720,320 GPU hours (Touvron et al., 2023),
and the development of a transformer with 213 million
parameters through neural architecture search can lead to
environmental burdens equivalent to the lifetime CO2 emis-
sions of five cars over their entire lifespans (Strubell et al.,
2019; Faiz et al., 2023). Consequently, making efficient use
of checkpoints and the intermediate stages of the pretraining
process has emerged as a key challenge in this field.

In response to this challenge, researchers have adopted
various strategies in LLM pretraining, including mixed-
precision training (Shoeybi et al., 2019), zero-redundancy
optimizer (Rajbhandari et al., 2020), continuous retrain-
ing (Qin et al., 2022), pipeline parallelism (Liu et al., 2023),
and depth up-scaling methods (Kim et al., 2023). Although
these approaches contribute to efficient pretraining by
optimizing model architecture and processes, they primarily
focus on structural or optimization improvements rather
than directly enhancing the utilization of intermediate
checkpoints in the pretraining phase (Hou et al., 2022).

Unlike these studies, we focus on the model merging strat-
egy, a classic topic in machine learning (Utans, 1996; Chen
et al., 2017; Wortsman et al., 2022; Akiba et al., 2024; Li
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Score Comparison Perspective

Figure 2: Performance landscape of pairwise checkpoint merg-
ing using the Greedy Soup method on the C-Eval benchmark
across 11 Baichuan2 checkpoints spanning 200B to 2640B to-
kens. The heatmap reveals that merging adjacent checkpoints
(near the diagonal) generally yields superior performance, while
merging distant checkpoints results in significant performance
degradation.

et al., 2023b; Yang et al., 2023b), to enhance LLM pretrain-
ing in this paper. In particular, we employ checkpoints saved
during pretraining and average these checkpoint parame-
ters to improve pretraining without requiring substantial re-
sources, since merged checkpoints can reduce the variance
of the combined output relative to the output of the individ-
ual checkpoint while not increasing the bias (Utans, 1996).

However, conducting checkpoint merging is not trivial in
pretraining, because different local minima may be found
in averaging parameters (Utans, 1996; Chen et al., 2017).
Therefore it is important to investigate the basic characters
of checkpoint merging and wisely determine the merging
weight.

Our Approach. To this end, we make the following effort:
(1) we conduct some pilot experiments to explore the
characters of checkpoint merging; (2) Based on the findings
in the pilot experiments, we propose a method rooted in
Bayesian optimization to find the optimal or near-optimal
merging weight. In detail, we first explore two research
questions: Which checkpoints in the pretraining trajectory
should be merged? and How to merge checkpoint? via
various pilot experiments. Then, based on findings in
pilot experiments, we leverage Bayesian optimization to
optimize the expensive, black-box, and derivative-free
objective function of checkpoint merging, and determine
the checkpoint merging weight.

Through various experiments, we mainly find that:

(a) Our proposed approach has the potential to enhance

pretraining by efficiently utilizing intermediate check-
points;

(b) Besides superior performance, the merged soup 1, deter-
mined by a specific held-out dataset same as Wortsman
et al. (2022); Matena & Raffel (2022), still exhibits
strong generalization capabilities across various do-
mains, a crucial aspect in pretraining.

Contributions: In summary, the contribution of this paper
is threefold:
(a) We propose merging checkpoints in the pretraining

trajectory to make efficient use of checkpoints, offering
substantial improvements without additional resource
requirements.

(b) To find the optimal merging weight, we leverage
Bayesian optimization, which excels at optimizing ex-
pensive black-box derivative-free objective functions.

(c) Through various experiments, we denote our method
exhibits superior performance and the newly merged
checkpoint maintains strong generalization across dif-
ferent domains.

2. Pilot Experiments
We conducted comprehensive pilot experiments to address
two fundamental research questions that guide our check-
point merging strategy:

RQ1: Which checkpoints along the pretraining tra-
jectory should be merged?
RQ2: How should these checkpoints be merged opti-
mally?

2.1. Experimental Setup
To systematically investigate these research questions, we se-
lected eleven representative checkpoints from the Baichuan2
model (Yang et al., 2023a), spanning a comprehensive range
from 200B to 2640B tokens during pretraining. We eval-
uated the merged checkpoints using C-Eval (Huang et al.,
2023), a rigorous benchmark encompassing 52 subjects
across four difficulty levels, providing comprehensive cov-
erage of language understanding capabilities. All merging
experiments employed the greedy soup strategy (Wortsman
et al., 2022), where checkpoints are combined sequentially,
with each checkpoint added only if it demonstrates measur-
able improvement in accuracy on a held-out development
set.
2.2. RQ1: Strategic Identification of Mergeable

Checkpoints
To systematically address RQ1, we conducted an exhaus-
tive exploration of all pairwise combinations among the

1According to Wortsman et al. (2022), the merged result is
called “soup”.
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Figure 3: Impact of varying merging weights on model perfor-
mance when combining two representative checkpoint pairs:
Baichuan2-1540B with Baichuan2-1760B and Baichuan2-2200B
with Baichuan2-2420B. The graph illustrates accuracy on the C-
Eval dataset as a function of uniformly sampled merging weights
ranging from 0 to 1. The results demonstrate distinct patterns:
for checkpoints with performance gaps, optimal weights favor
the stronger model, while for similarly performing checkpoints, a
broad range of weights (76%) can yield improvements, highlight-
ing the complexity of the optimization landscape.

eleven Baichuan2 checkpoints, yielding 55 distinct merg-
ing scenarios. The performance of these merged models
was rigorously evaluated on the C-Eval test set, with results
visualized in Figure 2 .

Key Findings. Our analysis reveals that merges involv-
ing adjacent checkpoints in the pretraining trajectory
consistently led to substantial performance improvements
compared to individual models. Most notably, merging
Baichuan2-1980B with Baichuan2-2200B achieved an ac-
curacy of 56.65%, significantly outperforming Baichuan2-
2200B alone (54.98%). Remarkably, this merged model
surpassed even the final checkpoint, Baichuan2-2420B
(54.82%), by a substantial margin of 1.83%. These encour-
aging trends were consistently observed across the CMMLU
benchmark (detailed analysis in Appendix J ).

Conversely, merging distant checkpoints often resulted
in severe performance degradation. For instance, com-
bining the early-stage Baichuan2-220B with the mature
Baichuan2-2200B yielded an accuracy of merely 25.26%,
only marginally exceeding the undertrained Baichuan2-
220B baseline (23.89%), indicating destructive interference
between disparate training states.

2.3. RQ2: Optimal Strategies for Merging Checkpoints

To explore RQ2, we examined the impact of varying merg-
ing weights when combining two representative pairs of
checkpoints: Baichuan2-1540B with Baichuan2-1760B, and
Baichuan2-2200B with Baichuan2-2420B. For each pair, we
uniformly sampled 100 weights from the interval [0, 1] and
evaluated each merged model on C-Eval, as illustrated in
Figure 7 .

Results for Distant Checkpoints. When merging check-
points with a substantial performance gap, such as
Baichuan2-1540B and Baichuan2-1760B, the accuracy in-
creased smoothly as the weight on the stronger checkpoint
(Baichuan2-1760B) increased. Notably, 13% of the tested
weights resulted in improvements beyond the stronger base
model.

Results for Similar Checkpoints. In contrast, when merg-
ing two similarly strong checkpoints (Baichuan2-2200B
and Baichuan2-2420B), the relationship between merging
weight and performance did not follow a strict monotonic
pattern. Instead, a broad range of weights 76% led to
performance improvements over the stronger checkpoint.
A similar pattern was observed in experiments merging
DeepSeek’s 7B checkpoints (DeepSeek-AI et al., 2024) at
1800B and 2000B tokens (see Appendix F ).

Summary Our pilot experiments provide valuable in-
sights into the strategies for merging model checkpoints.
Specifically, merging adjacent checkpoints along the pre-
training trajectory generally enhances performance, while
merging distant checkpoints can be detrimental. Addition-
ally, the choice of merging weights plays a crucial role,
especially when combining checkpoints of similar strength,
where a wide range of weights can yield performance gains.
These findings inform our approach to checkpoint merging
in subsequent methods.

Additional Analyses Further analyses on the CMMLU
benchmark and DeepSeek’s checkpoints are provided in
Appendix J and Appendix F , respectively, demonstrating
the generalizability of our findings across different evalua-
tion metrics and model configurations.

3. A Bayesian Approach to Checkpoint
Merging in LLM Pretraining

In this section, we present our novel framework for check-
point merging during the pretraining of large language mod-
els (LLMs). We begin by formally defining the checkpoint
merging process. Next, we introduce our optimized ap-
proach that leverages Bayesian optimization to determine
the optimal merging weights. Finally, we explore the advan-
tages of our method in generalization, with detailed proofs
provided in Appendix A .
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Algorithm 1 Checkpoint Merging via Bayesian Optimization

1: Input: Initial checkpoints Θt−1, Θt, validation dataset D, search bounds [α, 1], number of iterations N
2: Evaluate initial merging weights λ(i)

t (e.g., λ(1)
t = α, λ(2)

t = 1) and collect observations O = {(λ(i)
t , f(λ

(i)
t ))}k0

i=1

3: for k = k0 + 1 to N do
4: Fit a Gaussian Process (GP) to the current observations O
5: Select the next merging weight λ(k)

t = argmaxλt∈[α,1] A(λt) using the acquisition function A

6: Merge checkpoints: Θ̃(k)
t = λ

(k)
t Θt + (1− λ

(k)
t )Θt−1

7: Evaluate the performance f(λ
(k)
t ) of Θ̃(k)

t on the validation dataset D
8: Update the observations: O = O ∪ {(λ(k)

t , f(λ
(k)
t ))}

9: end for
10: Output: Optimal merging weight λ∗

t = argmaxλt
{f(λt) | (λt, f(λt)) ∈ O}

3.1. Checkpoint Merging
During the pretraining of LLMs, the model periodically
saves checkpoints denoted as {Θ1,Θ2, . . . ,Θt}, represent-
ing the model parameters at various training iterations. A
straightforward strategy to enhance model performance in-
volves linearly combining these checkpoints in the parame-
ter space, a technique commonly referred to as Checkpoint
Soup. This can be mathematically expressed as:

Θ̃t =

t∑
i=1

λiΘi s.t.
t∑

i=1

λi = 1 (1)

where λi are the merging weights assigned to each check-
point.
However, as the number of checkpoints increases, efficiently
utilizing them becomes increasingly challenging due to the
high-dimensional optimization problem that emerges from
the growing number of weighting coefficients {λi}. In
the general scenario, merging t checkpoints necessitates
the optimization of t weights {λ1, λ2, . . . , λt} subject to
the constraint

∑t
i=1 λi = 1. This constitutes a (t − 1)-

dimensional optimization problem, which rapidly escalates
in complexity as t grows. The exponential expansion of
the search space renders exhaustive search and grid search
methods computationally impractical for large t. And we
empirically validate the efficacy of the pairwise merging
strategy, which show in Appendix 5.3 .
To address this, we adopt a pairwise merging strategy, which
significantly simplifies the optimization landscape by re-
stricting the merging process to only the two most recent
checkpoints at each step. This approach effectively reduces
the problem to a one-dimensional search over the merg-
ing weight λt, thereby enhancing computational efficiency
and scalability. Formally, the pairwise merging process is
defined as:

Θ̃t = λtΘt + (1− λt)Θt−1 (2)

where λt ∈ [α, 1] and α ∈ (0, 1) serves as a lower bound to
constrain the search space.

Empirical evidence indicates that the merged checkpoint Θ̃t

can outperform the most recent checkpoint Θt when an op-
timal or near-optimal λt is selected. The primary challenge
lies in accurately determining this optimal merging weight
λt, which we address by leveraging Bayesian optimization
to maximize the effective utilization of intermediate check-
points in the subsequent subsection.
Furthermore, our theoretical analysis ( Appendix A ) pro-
vides insights into why checkpoint merging can enhance
model performance and convergence. Under realistic as-
sumptions about the neural network loss landscape (such
as smoothness, quadratic approximation near local minima,
and bounded Hessians), we derive tighter bounds on the
performance of the merged model Θ̃t. Specifically, we
establish that:

f(Θ̃t) ≈ λtf(Θt) + (1− λt)f(Θt−1)±∆t (3)

where f(Θ) denotes the expected performance metric (e.g.,
accuracy), and ∆t captures higher-order terms related to the
curvature of the loss landscape and the distance between
checkpoints.
Besides, our convergence analysis ( Appendix B ) demon-
strates that checkpoint merging can influence the conver-
gence behavior of gradient-based optimization algorithms.
By interpolating between consecutive checkpoints, merging
can effectively perform larger steps in parameter space, po-
tentially accelerating convergence under certain conditions.
Additionally, merging can smooth out fluctuations in the op-
timization trajectory caused by stochastic gradients, leading
to more stable convergence.

3.2. Bayesian Optimization for Determining Merging
Weights

Accurately determining the optimal merging weight λt that
maximizes the model’s performance is the central challenge
in checkpoint merging. To address this, we employ Bayesian
optimization, an effective global optimization strategy for
functions that are expensive to evaluate or lack closed-form
expressions (Frazier, 2018).
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Optimization Objective We formulate the optimization
problem as:

λ∗
t = arg max

λt∈[α,1]
f
(
Θ̃t(λt)

)
(4)

where f
(
Θ̃t(λt)

)
represents the performance of the merged

model on a validation dataset as a function of the merg-
ing weight λt. The performance metric could be accuracy,
perplexity, or any relevant evaluation metric for LLMs.

Search Space Constraint By setting λt ∈ [α, 1], we
constrain the search space to merging weights that retain a
significant contribution from the latest checkpoint Θt. This
aligns with practical observations that heavily weighting Θt

often leads to better performance, as it captures the most
recent training progress.

Gaussian Process Regression We model the objective
function f(λt) using Gaussian process (GP) regression (Ras-
mussen, 2003), which provides a probabilistic framework
for modeling unknown functions. The GP defines a prior
over functions, characterized by a mean function µ0(λt)
and a covariance function k(λt, λ

′
t). We assume:

f(λt) ∼ GP (µ0(λt), k(λt, λ
′
t)) (5)

where µ0(λt) is the prior mean (often set to zero), and
k(λt, λ

′
t) is the kernel function encoding assumptions about

the smoothness of f(λt).

We collect a set of observations Dobs = {(λ(i)
t , f (i))}Ni=1 by

evaluating the performance at N different merging weights.
The GP posterior mean µN (λt) and variance σ2

N (λt) are
updated based on these observations:

µN (λt) = µ0(λt) + k⊤(λt)K
−1(f − µ0), (6)

σ2
N (λt) = k(λt, λt)− k⊤(λt)K

−1k(λt) (7)

where k(λt) = [k(λt, λ
(1)
t ), . . . , k(λt, λ

(N)
t )]⊤, K is the

covariance matrix of the observations with elements Kij =

k(λ
(i)
t , λ

(j)
t ), and f , µ0 are vectors of observed performance

values and prior means, respectively.
Our theoretical analysis ( Appendix C ) demonstrates that
using GP-based Bayesian optimization can efficiently con-
verge to the optimal merging weight λ∗

t . By capturing the
function’s behavior, including any non-convexities or multi-
modalities, GPs enable the discovery of λt values that yield
better performance than those found via grid or random
search.

Acquisition Function Selection The acquisition function
determines the next merging weight λt to evaluate by bal-
ancing exploration of the search space and exploitation of
known high-performing regions. We consider three acqui-
sition functions: Expected Improvement (EI), Probability

of Improvement (PI), and Upper Confidence Bound (UCB).
These are formally defined as:

Ai(λt) =


Ek

[
max(f(λt)− fk

∗ , 0)
]
, for EI

P(f(λt) > fk
∗ ), for PI

µk(λt) + β · σk(λt), for UCB
(8)

where Ai(λt) represents the acquisition function used to
select the next weight λ(k+1)

t , fk
∗ is the best observed per-

formance up to iteration k, µk and σk denote the mean
and standard deviation of the posterior distribution at λt,
respectively, and β is a tunable parameter controlling the
exploration-exploitation trade-off.

To dynamically select the most promising acquisition func-
tion, we employ the GP-Hedge strategy, which combines
multiple acquisition functions based on their past perfor-
mance. At each iteration k, GP-Hedge updates the cumula-
tive reward Ri(k) for each acquisition function i:

AGP-Hedge(λt) =

M∑
i=1

exp(ηRi(k))∑M
j=1 exp(ηRj(k))

·Ai(λt) (9)

where M is the number of acquisition functions (here,
M = 3), Ai(λt) represents the individual acquisition func-
tions (EI, PI, or UCB), Ri(k) is the cumulative reward for
acquisition function i at iteration k, and η controls the learn-
ing rate. This strategy allows the acquisition function to
adapt dynamically, leveraging the strengths of each compo-
nent based on their historical performance.

The overall procedure is summarized in Algorithm 1 . We
begin with initial observations (e.g., evaluating λt = α and
λt = 1) and iteratively select new merging weights using
Bayesian optimization until convergence or a predefined
budget of evaluations.

3.3. Impact on Model Generalization
Checkpoint merging aims not only to improve performance
on the validation set but also to enhance generalization to
unseen data. Our analysis ( Appendix D ) employs the PAC-
Bayesian framework to derive a generalization bound for
the merged model Θ̃t.

PAC-Bayesian Generalization Bound We define the
prior distribution P and posterior distribution Q over the
model parameters as follows:

P = N
(
Θt−1, σ

2
P I
)
, Q = N

(
Θ̃t, σ

2
P I
)

(10)

where N (µ,Σ) denotes a Gaussian distribution, and I is the
identity matrix. The KL divergence between Q and P is:

DKL(Q ∥P ) =
λ2
t

2σ2
P

∥Θt −Θt−1∥2 (11)
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Table 1: Comprehensive performance comparison of different checkpoint merging methods applied to Baichuan2 and DeepSeek
models across multiple benchmark datasets. The table evaluates four checkpoint pairs using various merging strategies: Uniform Soup,
Greedy Soup, Fisher Weighted Averaging, RegMean, and our proposed Bayesian Optimization-based method. Underlined scores indicate
the highest performance achieved by baseline methods within each model pair. Red highlighted improvements demonstrate our method’s
consistent superiority, achieving average improvements across different model pairs and maintaining robust performance across diverse
evaluation metrics.

Dataset Baichuan2-1980B Baichuan2-2200B Uniform Soup Greedy Soup Fisher RegMean Ours

C-Eval(5-shot) 55.63 54.98 53.00 55.63 55.73 55.21 56.17(+0.44)
CMMLU(5-shot) 55.68 56.29 54.20 56.29 56.13 55.21 56.88(+0.59)
MMLU(5-shot) 54.00 51.27 54.30 55.39 54.25 54.77 55.44(+0.05)
GSM8K(4-shot) 23.28 21.99 23.96 23.28 20.92 23.73 24.02(+0.29)

Average 47.15 46.13 46.37 47.65 46.76 47.23 48.13(+0.48)

Dataset Baichuan2-2200B Baichuan2-2420B Uniform Soup Greedy Soup Fisher RegMean Ours

C-Eval(5-shot) 54.98 54.82 54.93 55.64 54.44 54.55 56.23(+0.59)
CMMLU(5-shot) 56.29 56.78 56.71 56.78 56.62 56.46 56.97(+0.19)
MMLU(5-shot) 51.27 53.97 54.62 54.82 54.16 54.77 54.56(-0.26)
GSM8K(4-shot) 19.64 21.00 20.92 21.92 22.44 23.88 24.32(+0.44)

Average 45.55 46.64 46.80 47.29 46.92 47.42 48.02(+0.50)

Dataset DeepSeek-1400B DeepSeek-1600B Uniform Soup Greedy Soup Fisher RegMean Ours

C-Eval(5-shot) 38.80 39.40 41.26 40.70 40.24 39.55 41.79(+0.55)
CMMLU(5-shot) 40.27 40.94 42.18 42.25 41.76 41.80 42.55(+0.30)
MMLU(5-shot) 41.94 42.60 43.87 43.88 43.95 43.27 43.85(-0.03)
GSM8K(4-shot) 11.30 13.27 14.18 14.03 15.39 15.04 15.70(+0.41)

Average 33.08 34.05 35.37 35.22 35.34 34.92 35.97(+0.53)

Dataset DeepSeek-1800B DeepSeek-2000B Uniform Soup Greedy Soup Fisher RegMean Ours

C-Eval(5-shot) 43.05 44.36 44.61 44.70 44.81 43.95 45.82(+1.01)
CMMLU(5-shot) 45.31 46.82 46.84 46.82 46.49 47.12 47.15(+0.03)
MMLU(5-shot) 47.68 49.29 49.02 49.29 48.73 49.07 49.43(+0.14)
GSM8K(4-shot) 16.60 18.88 17.82 18.88 18.73 18.56 19.04(+0.22)

Average 38.16 39.84 39.57 39.92 39.69 39.68 40.36(+0.44)

Using the PAC-Bayesian generalization bound (McAllester,
1998), it holds with probability at least 1− δ:

EΘ∼Q [LD(Θ)] ≤ LS(Q) +

√√√√DKL(Q ∥P ) + ln
(

2
√
n

δ

)
2n

(12)
where LD(Θ) is the expected loss on the data distribution,
LS(Q) is the empirical loss on the training set, and n is the
number of training samples.

Since λt ≤ 1, the KL divergence in (Eq. (11)) is reduced
compared to using Θt alone. This leads to a tighter gen-
eralization bound in (Eq. (12)), indicating that checkpoint
merging can improve generalization by effectively regular-
izing the model.

4. Experiments
Setup
• Datasets & LLM Checkpoints. We evaluate our method
using multiple pretraining checkpoints and a broad range of
datasets. For models, we follow previous Baichuan2 (Yang
et al., 2023a) 7B, DeepSeek (DeepSeek-AI et al., 2024) 7B
and Pythia (Biderman et al., 2023), ranging from 70M to
6.9B parameters models. For benchmarks, we evaluate on
C-Eval (Huang et al., 2023), CMMLU (Li et al., 2023a),

MMLU (Hendrycks et al., 2020), and GSM8K (Cobbe
et al., 2021), PIQA (Bisk et al., 2020), WinoGrand (Sak-
aguchi et al., 2021), SciQ (Welbl et al., 2017), and ARC-
Easy (Clark et al., 2018).

• Baseline Merging Methods. We compare against strong
baseline merging methods, including Uniform Soup and
Greedy Soup (Wortsman et al., 2022), Fisher Weighted
Averaging (Matena & Raffel, 2022), and RegMean (Jin et al.,
2022). Uniform Soup evenly averages model parameters.
Greedy Soup incrementally adds checkpoints that improve
performance on a held-out set.

4.1. Main Results

Table 1 presents the comprehensive results of our merg-
ing experiments, highlighting two strategically selected
checkpoint combinations that yield substantial performance
enhancements. By merging the Baichuan2-1980B and
Baichuan2-2200B checkpoints, our method achieves a re-
markable 0.59% improvement on the CMMLU dataset com-
pared to the Baichuan2-2200B checkpoint alone. Simi-
larly, merging the Baichuan2-2200B and Baichuan2-2420B
checkpoints results in a significant 0.59% improvement
on the C-Eval dataset compared to the Baichuan2-2420B
checkpoint. These results underscore the efficacy of our
approach in enhancing model performance during the mid
to late stages of pretraining.
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Comparison with Baseline Methods. Beyond surpass-
ing individual baseline checkpoints, our method signifi-
cantly outperforms existing merging baselines across di-
verse datasets. Specifically, on the CMMLU dataset, merg-
ing the Baichuan2-1980B and Baichuan2-2200B check-
points using our approach leads to improvements of 2.68%,
0.59%, 0.75%, and 1.67% over Uniform Soup, Greedy
Soup, Fisher Weighted Averaging, and RegMean, respec-
tively. A consistent trend is observed on the C-Eval dataset,
where our method outperforms the baselines by substantial
margins, demonstrating superior effectiveness in checkpoint
merging optimization.
Cross-Architecture Generalizability. To validate the ro-
bustness and broad applicability of our proposed method, we
applied it to the DeepSeek 7B architecture. The results, pre-
sented in Table 1 , demonstrate that our method consistently
enhances model performance across different pretraining
stages and model architectures. This highlights the univer-
sal generalizability of our approach beyond the Baichuan2
family, establishing its effectiveness as a model-agnostic
optimization strategy.
4.2. Generalization to Unseen Domains
To rigorously assess the generalization capabilities of
merged checkpoints to unseen domains, we evaluated the
out-of-domain (OOD) performance of various merging
methods. Although merging weights were determined using
the C-Eval dataset (in-domain, IND), we tested the merged
models on three diverse OOD datasets: CMMLU, MMLU,
and GSM8K.

Table 2 summarizes the results, revealing two critical in-
sights:
(a) Cross-Lingual Generalization: Despite determining

merging weights using a Chinese dataset (C-Eval), the
merged checkpoints consistently perform well on En-
glish datasets such as MMLU and GSM8K. This indi-
cates that merging pretraining checkpoints in parameter
space preserves the models’ ability to generalize across
languages effectively.

(b) Superior Stability and Cross-Domain Performance:
Our proposed method outperforms Greedy Soup and
Fisher Weighted Averaging by exhibiting the small-
est average absolute difference (∆) between IND and
OOD performance. Specifically, our method achieves a
∆ of 0.87, compared to 2.01 and 2.38 for Greedy Soup
and Fisher Weighted Averaging, respectively. This
demonstrates that our Bayesian optimization approach
identifies merging weights that are more optimal across
different domains.

4.3. Performance Across Different Model Sizes
To evaluate whether our proposed merging method main-
tains effectiveness across LLMs with varying parameter
sizes, we conducted comprehensive experiments on Pythia

Table 2: Out-of-domain generalization analysis of merged
checkpoint soups across language and task boundaries. Merg-
ing weights are optimized using the C-Eval dataset (Chinese, in-
domain), then evaluated on out-of-domain datasets: CMMLU,
MMLU, and GSM8K. The IND/OOD format shows in-domain ver-
sus out-of-domain performance. The ∆ metric quantifies the total
absolute performance difference across domains, where lower val-
ues indicate superior generalization stability. Our method achieves
the smallest ∆ (0.87), demonstrating robust cross-lingual and
cross-task generalization capabilities compared to baseline ap-
proaches.

Dataset Greedy Soup
(IND/OOD)

Fisher
(IND/OOD)

Ours
(IND/OOD)

CMMLU 56.78/56.78 56.62/56.72 56.97/56.91
MMLU 54.82/54.54 54.16/54.54 54.56/55.29
GSM8K 21.92/23.65 22.44/24.34 24.32/24.40

∆(↓) 2.01 2.38 0.87

models ranging from 70M to 6.9B parameters. We assessed
performance on PIQA, WinoGrande, SciQ, and ARC-Easy
datasets, with detailed PIQA results presented in Table 7 .
Key Findings. Across all parameter sizes, our method
consistently outperforms baseline merging approaches. For
the Pythia 70M model, our method achieves a PIQA score
of 60.18%, surpassing the best-performing baseline (Reg-
Mean) by 1.22%. Similar improvements are observed
across larger models:

(a) Pythia 410M: Our method achieves 68.85%, outper-
forming the best baseline by 0.53%.

(b) Pythia 1.4B: A score of 71.84% is achieved, which is
0.80% higher than RegMean.

(c) Pythia 2.8B: Our method attains 75.71%, an improve-
ment of 0.74% over the best baseline.

(d) Pythia 6.9B: A consistent improvement is observed
with 76.56%, surpassing the best baseline by 0.12%.

These results demonstrate that our merging method main-
tains effectiveness across diverse model scales, ensuring
robust performance improvements regardless of the under-
lying LLM architecture size.

4.4. Efficiency in Determining Optimal Merging
Weights

To evaluate the efficiency of our proposed method in iden-
tifying optimal merging weights, we compared it against
various search strategies, including Random Search (Zabin-
sky et al., 2009), Greedy Search, and Grid Search. Table 10
presents the results of merging Baichuan2-1980B with
Baichuan2-2200B across multiple datasets using different
search methods.
Performance Analysis. Our Bayesian Optimization
(BayesOpt) based method consistently achieves the highest
scores across all evaluated datasets:
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Table 3: Scalability analysis of checkpoint merging methods across Pythia models of varying parameter sizes (70M to 6.9B)
evaluated on the PIQA dataset. The table demonstrates the consistent effectiveness of our Bayesian optimization approach across
different model scales, with improvements over the best baseline methods. The results validate that our merging strategy maintains
its effectiveness independent of model size, ensuring robust performance improvements across the entire spectrum of modern LLM
architectures.

PIQA (5-shot) Pythia 70M Pythia 410M Pythia 1.4B Pythia 2.8B Pythia 6.9B

Training step-142000 58.00 68.06 70.95 74.81 75.30
Training step-143000 58.54 68.06 70.89 74.31 76.44

Unifrom Soup 58.71 68.06 70.78 74.97 75.68
Greedy Soup 58.71 68.06 70.57 74.76 76.01
Fisher 58.69 68.14 70.87 74.65 75.94
RegMean 58.96 68.32 71.04 74.72 75.87

Ours 60.18 (+1.22) 68.85 (+0.53) 71.84 (+0.80) 75.71 (+0.74) 76.56 (+0.12)

Table 4: Efficiency comparison of different search strategies for determining optimal merging weights when combining Baichuan2-
1980B with Baichuan2-2200B checkpoints. The evaluation compares Random Search, Greedy Search, Grid Search, and our Bayesian
Optimization approach across four benchmark datasets. Our method consistently outperforms all baseline search strategies, achieving
improvements over the best alternative methods, while requiring significantly fewer function evaluations due to the principled exploration-
exploitation balance of Gaussian Process-based optimization.

Baichuan2-1980B&2200B Random Search Greedy Search Grid Search Ours

C-Eval(5-shot) 55.64 55.49 55.51 56.73(+1.09)
CMMLU(5-shot) 55.67 56.74 55.51 57.05(+0.31)
MMLU(5-shot) 54.16 54.45 54.35 54.77(+0.32)
GSM8K(4-shot) 20.56 21.83 20.85 22.17(+0.34)

Average 46.51 47.13 46.56 47.68(+0.55)

(a) C-Eval (5-shot): 56.73% (+1.09%) compared to Ran-
dom Search (55.64%).

(b) CMMLU (5-shot): 57.05% (+0.31%) outperforming
Greedy Search (56.74%).

(c) MMLU (5-shot): 54.77% (+0.32%) surpassing
Greedy Search (54.45%).

(d) GSM8K (4-shot): 22.17% (+0.34%) exceeding
Greedy Search (21.83%).

Overall, our method achieves an average score of 47.68%,
outperforming Random Search (46.51%), Greedy Search
(47.13%), and Grid Search (46.56%). This demonstrates
that our Bayesian optimization approach effectively explores
the search space and iteratively refines the search to identify
optimal merging weights.

5. Ablation Study
5.1. Impact of Held-out Dataset Size on Checkpoint

Merging
Following established practices (Wortsman et al., 2022;
Matena & Raffel, 2022), our proposed method requires
a validation set to determine optimal merging weights. We
investigate the impact of held-out dataset size variations by
extracting different fractions of the C-Eval validation data
and testing merging performance for Baichuan2-2200B and
Baichuan2-2420B checkpoints.

Results presented in Table 5 demonstrate that held-out
dataset size exerts minimal influence on our method’s ef-
ficacy, maintaining robust performance even with limited

validation data. Performance remains stable across dataset
fractions (56.61% to 56.08%), indicating that our Bayesian
optimization approach can effectively determine optimal
merging weights with modest validation requirements, en-
hancing practical applicability.
5.2. Impact of Merging Weight Search Space Size
Our merging strategy involves hyperparameter α controlling
the merging weight search space size, as defined in Eq. (2).
We assess α’s impact by setting values to 0.5, 0.7, and 0.9.
Figure 4 illustrates performance as a function of search
space size. Key observations include:
(a) Optimal α Values: Setting α to 0.5 or 0.7 yields

optimal performance, converging to merging weights
within (0.87, 0.89).

(b) Excessive Constraint Detriment: Setting α to 0.9
leads to noticeable accuracy decline, indicating overly
restrictive search spaces dilute optimization effective-
ness.

(c) Performance Gap Consideration: For significant per-
formance gaps between checkpoints, narrower search
spaces (lower α) prove beneficial. Conversely, for
similar-performing checkpoints, broader search spaces
allow greater flexibility in weight allocation.

5.3. Empirical Analysis of Multi-Checkpoint Merging
Building upon our pilot experiments, we investigated perfor-
mance effects when combining varying numbers of check-
points during pretraining. Using the C-Eval dataset, we
employed the greedy soup strategy (Wortsman et al., 2022)
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Table 5: Robustness analysis of our checkpoint merging method
with respect to held-out validation dataset size. The experi-
ment evaluates merging performance of Baichuan2-2200B and
Baichuan2-2420B checkpoints on the C-Eval dataset using differ-
ent fractions (1/4, 1/2, 3/4, full) of the validation data for weight
optimization. Results demonstrate minimal sensitivity to dataset
size variations, indicating that our Bayesian optimization approach
can effectively determine optimal merging weights even with lim-
ited validation data, enhancing the practical applicability of our
method.

C-Eval 1/4 1/2 3/4 1

Ours 56.61 56.08 55.80 56.23

55.63

54.40

1980B

1760B

55.9055.87

55.30

A
cc
ur
ac
y

Figure 4: Effect of merging weight search space boundaries on
the performance of merged Baichuan2-1760B and Baichuan2-
1980B models evaluated on the C-Eval dataset. The figure
illustrates how varying the lower bound parameter α (set to 0.5,
0.7, and 0.9) influences accuracy outcomes in our Bayesian op-
timization framework. Results show that moderate search space
constraints (α = 0.5 or 0.7) yield optimal performance, while
overly restrictive bounds (α = 0.9) lead to performance degrada-
tion.

to merge adjacent three or four checkpoints across different
pretraining stages.

Results presented in Figure 5 reveal that pairwise merging
consistently outperforms multi-checkpoint combinations.
For instance, merging Baichuan2-1320B with Baichuan2-
1540B achieves 53.06% (+2.14), while merging three
checkpoints (Baichuan2-1100B, Baichuan2-1320B, and
Baichuan2-1540B) yields 51.76% (+0.84), and four check-
points result in further reduced performance of 51.01%
(+0.09). This validates our pairwise merging strategy’s com-
putational efficiency and performance optimality.

6. Conclusion
In this paper, to alleviate the huge computational cost of pre-
training LLM, we propose merging checkpoints in the pre-
training trajectory. Specifically, we first conduct some pilot
experiments to explore the characters of checkpoint merg-
ing. Then, based on the findings in the pilot experiments,
we propose a method rooted in Bayesian optimization to
find the optimal or near-optimal merging weight. Through

23.89

46.35

49.4

50.53 50.92

54.4
55.63

54.98
54.82

26.40

25.25

48.47

50.62

52.65
53.06

54.40

56.02
56.65 56.60

22.57

22.49

47.7

49.66

51.76

54.09 53.88

54.65

55.6

22.26
22.98

48.55

51.01
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52.47 52.73

55.44

25
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55
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 Merging Three Checkpoints
 Merging Four Checkpoints
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Figure 5: Empirical comparison of merging strategies across
different numbers of adjacent checkpoints using the Greedy
Soup method on the C-Eval dataset. The analysis compares
performance when merging two, three, and four consecutive
Baichuan2 checkpoints across various training stages (200B to
2640B tokens). Results demonstrate that pairwise merging consis-
tently outperforms multi-checkpoint combinations, with diminish-
ing returns as more checkpoints are included.

various experiments, we find that: our proposed approach
has the potential to enhance pretraining, offering nearly a
free lunch Besides superior performance, the merged result
still exhibits a strong generalization capability across vari-
ous domains, which means our proposed method does not
compromise the generalization of pretraining checkpoints.
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A. Bounds for Linear Checkpoint Merging
In this section, we establish more realistic and insightful theoretical bounds on the performance of merged model checkpoints.
Considering two consecutive checkpoints Θt−1 and Θt from the training of a large language model (LLM), we define the
merged parameters Θ̃t as a convex combination of these checkpoints:

Θ̃t = λtΘt + (1− λt)Θt−1, λt ∈ [α, 1], (13)

where α ∈ [0, 1) specifies the minimum weight assigned to Θt.

Let f(Θ) denote the expected performance metric (e.g., accuracy) of the model with parameters Θ evaluated on a validation
dataset D. Our goal is to derive theoretical bounds on f(Θ̃t) that align with realistic properties of neural network loss
landscapes and provide deeper insights into the effects of linear checkpoint merging.

A.1. Assumptions

To enhance the theoretical framework, we adopt assumptions that reflect the practical characteristics of neural networks
more closely.

Assumption 1 (Smoothness of the Performance Function) . The performance function f(Θ) is differentiable, and its
gradient ∇f(Θ) is Lipschitz continuous with constant Lg > 0:

∥∇f(Θa)−∇f(Θb)∥ ≤ Lg∥Θa −Θb∥, ∀Θa,Θb. (14)

Assumption 2 (Non-Convexity and Quadratic Approximation) . While f(Θ) is generally non-convex, in the
neighborhood of Θt−1 and Θt, it can be approximated by a quadratic function. Specifically, for Θ = Θt +∆, where
∥∆∥ is small, we have

f(Θ) ≈ f(Θt) +∇f(Θt)
⊤∆+ 1

2∆
⊤Ht∆, (15)

where Ht is the Hessian matrix at Θt.

Assumption 3 (Bounded Hessian) . The eigenvalues of the Hessian matrices at Θt−1 and Θt are bounded:

λminI ⪯ Ht, Ht−1 ⪯ λmaxI, (16)

where λmin ≥ 0 and λmax > 0 are constants, and I is the identity matrix.

A.2. Proof Performance Bounds

Proof. Under the assumptions, we derive tighter bounds on f(Θ̃t). The derivation is broken down into the following steps:

Step 1: Quadratic Approximation from Θt.

Expand f(Θ̃t) around Θt using the quadratic approximation (15) with ∆ = Θ̃t −Θt = (1− λt)(Θt−1 −Θt):

f(Θ̃t) ≈ f(Θt) +∇f(Θt)
⊤∆+ 1

2∆
⊤Ht∆

= f(Θt) + (1− λt)∇f(Θt)
⊤(Θt−1 −Θt) +

1
2 (1− λt)

2(Θt−1 −Θt)
⊤Ht(Θt−1 −Θt). (17)

Step 2: Quadratic Approximation from Θt−1.

Similarly, expand f(Θ̃t) around Θt−1 with ∆ = Θ̃t −Θt−1 = λt(Θt −Θt−1):

f(Θ̃t) ≈ f(Θt−1) +∇f(Θt−1)
⊤∆+ 1

2∆
⊤Ht−1∆

= f(Θt−1) + λt∇f(Θt−1)
⊤(Θt −Θt−1) +

1
2λ

2
t (Θt −Θt−1)

⊤Ht−1(Θt −Θt−1). (18)

Step 3: Combining the Approximations.
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Take a convex combination of (17) and (18), weighting each by λt and (1 − λt) respectively, to obtain an averaged
approximation:

f(Θ̃t) ≈ λtf(Θt) + (1− λt)f(Θt−1)

+ λt(1− λt) [∇f(Θt)−∇f(Θt−1)]
⊤
(Θt−1 −Θt)

+ 1
2

[
λ2
t (Θt −Θt−1)

⊤Ht−1(Θt −Θt−1) + (1− λt)
2(Θt−1 −Θt)

⊤Ht(Θt−1 −Θt)
]
. (19)

Note that Θt−1 −Θt = −(Θt −Θt−1).

Step 4: Bounding the Gradient Difference.

Using the smoothness assumption (14), bound the gradient difference:

∥∇f(Θt)−∇f(Θt−1)∥ ≤ Lg∥Θt −Θt−1∥. (20)

Therefore, the term [∇f(Θt)−∇f(Θt−1)]
⊤
(Θt−1 −Θt) can be bounded as:∣∣∣[∇f(Θt)−∇f(Θt−1)]

⊤
(Θt−1 −Θt)

∣∣∣ ≤ ∥∇f(Θt)−∇f(Θt−1)∥ · ∥Θt−1 −Θt∥

= ∥∇f(Θt)−∇f(Θt−1)∥ · ∥Θt −Θt−1∥
≤ Lg∥Θt −Θt−1∥2. (21)

Step 5: Bounding the Hessian Terms.

Using (16), bound the quadratic terms:

(Θt −Θt−1)
⊤Ht−1(Θt −Θt−1) ≤ λmax∥Θt −Θt−1∥2,

(Θt −Θt−1)
⊤Ht(Θt −Θt−1) ≤ λmax∥Θt −Θt−1∥2. (22)

Step 6: Final Bound.

Substitute the bounds from (21) and (22) into (19) to obtain:

f(Θ̃t) ≥ λtf(Θt) + (1− λt)f(Θt−1)

− λt(1− λt)Lg∥Θt −Θt−1∥2 − 1
2

[
λ2
t + (1− λt)

2
]
λmax∥Θt −Θt−1∥2. (23)

Similarly, using the upper bounds for the performance function, we approximate:

f(Θ̃t) ≤ λtf(Θt) + (1− λt)f(Θt−1)

+ λt(1− λt)Lg∥Θt −Θt−1∥2 + 1
2

[
λ2
t + (1− λt)

2
]
λmax∥Θt −Θt−1∥2. (24)

Step 7: Combining Lower and Upper Bounds.

Combining (23) and (24), the performance of the merged checkpoint satisfies:

f(Θ̃t) ≈ λtf(Θt) + (1− λt)f(Θt−1)±
(
λt(1− λt)Lg +

1
2 [λ

2
t + (1− λt)

2]λmax

)
∥Θt −Θt−1∥2. (25)

B. Effect of Checkpoint Merging on Convergence
In this section, we analyze how linear checkpoint merging influences the convergence behavior of gradient-based optimization
algorithms. Our goal is to provide a theoretical framework that explains the potential benefits of merging on convergence
rates and the attainment of optimal performance.
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B.1. Convergence in Standard Gradient-Based Training

In standard gradient-based training, model parameters are iteratively updated to minimize a loss function L(Θ) over the
parameter space Θ ∈ Rn. The updates are typically given by:

Θt = Θt−1 − η∇L(Θt−1), (26)

where η > 0 is the learning rate, and ∇L(Θt−1) is the gradient of the loss function evaluated at Θt−1. The convergence
behavior depends on factors such as the properties of the loss function (e.g., convexity, smoothness), the optimization
algorithm, and hyperparameters like the learning rate.

Let Θ∗ denote a local or global minimizer of L(Θ), corresponding to the optimal performance f∗ = f(Θ∗). The goal of
training is to find Θ∗ or parameters close to it.

B.2. Impact of Checkpoint Merging on Convergence

Checkpoint merging introduces a mechanism whereby parameters from different iterations are linearly combined. This
process can impact convergence in several ways. By interpolating between consecutive checkpoints, merging can effectively
perform larger steps in parameter space, potentially accelerating convergence under certain conditions. Merging can also
smooth out fluctuations in the optimization trajectory caused by stochastic gradients, leading to more stable convergence.
Additionally, merging may help the optimization trajectory enter flatter regions of the loss landscape, which are associated
with better generalization performance. Linear combinations of parameters can aid in escaping saddle points or shallow
local minima by moving the parameters to regions with lower loss.

B.3. Convergence Analysis

We analyze the impact of checkpoint merging on the convergence of the loss function and the performance metric f(Θ).
Consider the following setting: let {Θt}Tt=0 be the sequence of parameters obtained from standard gradient updates. At each
step t, we merge checkpoints to obtain Θ̃t via

Θ̃t = λtΘt + (1− λt)Θt−1, λt ∈ [α, 1], α ∈ [0, 1). (27)

We define the performance improvement due to merging as

∆ft = f(Θ̃t)− f(Θt). (28)

Our goal is to analyze ∆ft and understand how it influences convergence towards the optimal performance f∗.

B.3.1. ASSUMPTIONS

To facilitate the analysis, we make the following assumptions:

Assumption 4 (Smoothness of the Loss Function) . The loss function L(Θ) is twice continuously differentiable, and its
gradient ∇L(Θ) is Lipschitz continuous with constant L > 0:

∥∇L(Θa)−∇L(Θb)∥ ≤ L∥Θa −Θb∥, ∀Θa,Θb. (29)

Assumption 5 (Polyak-Łojasiewicz (PL) Condition) . The loss function satisfies the PL condition, i.e., there exists a
constant µ > 0 such that

1
2∥∇L(Θ)∥2 ≥ µ (L(Θ)− L∗) , ∀Θ, (30)

where L∗ = L(Θ∗) is the minimal loss value.

Assumption 6 (Bounded Gradient Norms) . The gradients have bounded norms:

∥∇L(Θt)∥ ≤ Gmax, ∀ t. (31)
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B.3.2. ANALYSIS OF ∆ft

We analyze the performance improvement ∆ft due to merging. Since f(Θ) is related to L(Θ) (e.g., higher performance
corresponds to lower loss), we can express f(Θ) as a function of L(Θ). For the purpose of analysis, we assume that f(Θ)
decreases monotonically with L(Θ) so that a decrease in loss corresponds to an improvement in performance.

Proof. Step 1: Taylor Expansion of the Loss Function.
Consider the Taylor expansion of L(Θ) at Θt for ∆Θ = Θ̃t −Θt:

L(Θ̃t) = L(Θt) +∇L(Θt)
⊤(Θ̃t −Θt) +

1
2 (Θ̃t −Θt)

⊤∇2L(Θt)(Θ̃t −Θt) +R, (32)

where R represents the higher-order remainder terms.
Since Θ̃t is a convex combination of Θt and Θt−1, we have

Θ̃t −Θt = (1− λt)(Θt−1 −Θt). (33)

Substituting into the Taylor expansion, we get

L(Θ̃t) = L(Θt) + (1− λt)∇L(Θt)
⊤(Θt−1 −Θt)

+ 1
2 (1− λt)

2(Θt−1 −Θt)
⊤∇2L(Θt)(Θt−1 −Θt) +R. (34)

Step 2: Bounding the Remainder Term.
Under the assumption of Lipschitz continuity of the Hessian (i.e., the third-order derivatives are bounded), the remainder
term R can be bounded as:

|R| ≤ M

6
∥Θ̃t −Θt∥3, (35)

where M is the Lipschitz constant for the Hessian. For sufficiently small ∥Θt − Θt−1∥, the remainder term becomes
negligible.
Step 3: Expected Improvement.
Taking expectations over the stochasticity in Θt−1 and Θt (due to stochastic gradients), and neglecting the remainder term,
we have

E[L(Θ̃t)] ≈ E[L(Θt)] + (1− λt)E
[
∇L(Θt)

⊤(Θt−1 −Θt)
]

+ 1
2 (1− λt)

2E
[
(Θt−1 −Θt)

⊤∇2L(Θt)(Θt−1 −Θt)
]
. (36)

The term E
[
∇L(Θt)

⊤(Θt−1 −Θt)
]

can be related to the expected progress in gradient descent.
Step 4: Relation to Gradient Descent Steps.
From the gradient update (26), we have

Θt−1 −Θt = −η∇L(Θt−1). (37)

Assuming ∇L(Θt−1) ≈ ∇L(Θt) for small learning rates or smooth loss landscapes, we can write

Θt−1 −Θt ≈ −η∇L(Θt). (38)

Substituting back into (36), we obtain

E[L(Θ̃t)] ≈ E[L(Θt)]− (1− λt)ηE[∥∇L(Θt)∥2] + 1
2 (1− λt)

2η2E
[
∇L(Θt)

⊤∇2L(Θt)∇L(Θt)
]
. (39)

Step 5: Simplifying the Second-Order Term.
Assuming that ∇2L(Θt) is positive semi-definite (which holds for convex functions and in regions near local minima), we
have

∇L(Θt)
⊤∇2L(Θt)∇L(Θt) ≥ λmin∥∇L(Θt)∥2, (40)

where λmin ≥ 0 is the smallest eigenvalue of ∇2L(Θt). Substituting back, we get

E[L(Θ̃t)] ≤ E[L(Θt)]− η(1− λt)E[∥∇L(Θt)∥2] + 1
2η

2(1− λt)
2λmaxE[∥∇L(Θt)∥2], (41)
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where λmax ≥ 0 is the largest eigenvalue of ∇2L(Θt).

Step 6: Net Expected Improvement.

Combining terms, the net expected reduction in the loss due to merging is

E[L(Θt)− L(Θ̃t)] ≥ η(1− λt)
(
1− 1

2η(1− λt)λmax

)
E[∥∇L(Θt)∥2]. (42)

For sufficiently small learning rates and (1− λt) values, the term in parentheses is positive, ensuring a net reduction in the
expected loss.

Step 7: Improvement in Performance.

Assuming that the performance metric f(Θ) improves as the loss decreases, we have

E[f(Θ̃t)] ≥ E[f(Θt)] + δt, (43)

where δt > 0 corresponds to the expected improvement in performance due to the reduction in loss.

B.3.3. CONVERGENCE TOWARDS OPTIMAL PERFORMANCE

Under the PL condition (30), we can relate the squared gradient norm to the suboptimality in loss:

∥∇L(Θt)∥2 ≥ 2µ (L(Θt)− L∗) . (44)

Substituting into (42), we obtain

E[L(Θt)− L(Θ̃t)] ≥ 2ηµ(1− λt)
(
1− 1

2η(1− λt)λmax

)
E [L(Θt)− L∗] . (45)

This shows that the expected reduction in loss is proportional to the current suboptimality E [L(Θt)− L∗], indicating that
the merging process influences the convergence rate.

Step 8: Convergence Rate.

Defining
ρt = 1− 2ηµ(1− λt)

(
1− 1

2η(1− λt)λmax

)
, (46)

we have
E[L(Θ̃t)− L∗] ≤ ρt E[L(Θt)− L∗]. (47)

For convergence, we require ρt < 1. Since η, µ, λmax, and (1 − λt) are positive, this condition can be satisfied with an
appropriate choice of η and λt.

Step 9: Accumulated Performance Improvement.

Over multiple merging steps, the accumulated suboptimality after T steps is

E[L(Θ̃T )− L∗] ≤

(
T∏

t=1

ρt

)
(L(Θ0)− L∗) . (48)

Assuming ρt = ρ (constant), we obtain exponential convergence:

E[L(Θ̃T )− L∗] ≤ ρT (L(Θ0)− L∗) . (49)

Similarly, the performance metric converges towards the optimal performance f∗:

E
[
f∗ − f(Θ̃T )

]
≤ γT (f∗ − f(Θ0)) , (50)

where γ < 1 depends on ρ and the relation between f(Θ) and L(Θ).
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C. Acceleration through Gaussian Process Optimization
In this section, we analyze how Gaussian Process (GP) optimization accelerates convergence to the optimal merging weight
in checkpoint merging and potentially surpasses the reachability upper bound of standard training.
Gaussian Processes provide a flexible, non-parametric Bayesian approach to modeling unknown functions. In the context of
checkpoint merging, we model the performance function f(λt) as a GP:

f(λt) ∼ GP (µ0(λt), k(λt, λ
′
t)) , (51)

where µ0(λt) is the mean function (often assumed to be zero), and k(λt, λ
′
t) is the covariance (kernel) function encoding

our assumptions about the smoothness and structure of f(λt).

C.1. Efficient Convergence to the Optimal Merging Weight
Bayesian Optimization leverages Gaussian Processes to sequentially select λt values expected to improve the performance
f(λt), balancing exploration and exploitation. The selection is guided by an acquisition function α(λt), such as Expected
Improvement (EI), Upper Confidence Bound (UCB), or Probability of Improvement (PI). Under certain conditions, Bayesian
Optimization with GPs can achieve convergence to the global optimum of f(λt).
By incorporating prior knowledge and uncertainty, Gaussian Processes enable Bayesian Optimization to identify promising
regions of λt with fewer evaluations compared to grid or random search. The cumulative regret RT after T iterations, defined
as the sum of the differences between the optimal performance fmax and the performance at each iteration, is sublinear in T
under mild assumptions. Specifically, for GP optimization with a bounded kernel function, we have

RT = O
(√

T (γT + 1)
)
, (52)

where γT is the maximum information gain from T observations (Srinivas et al., 2009; Chowdhury & Gopalan, 2017). The
sublinear regret implies that the average regret RT /T decreases to zero as T → ∞, ensuring convergence to the global
optimum.

C.2. Breaking Through the Reachability Upper Bound
Standard training may converge to suboptimal performance due to factors like local minima or limited exploration of the
parameter space. GP-based Bayesian Optimization in checkpoint merging can potentially surpass this limit. Gaussian
Processes capture the function’s behavior, including any non-convexities or multimodalities, enabling the discovery of λt

values that yield better performance than those found via convex combination alone. Checkpoints Θt−1 and Θt may have
learned complementary features; an optimal λt can exploit these synergies to improve generalization and performance
beyond the convex combination’s average. The acquisition function directs the search toward regions where the GP predicts
higher potential gains, even if these regions are not suggested by local convexity assumptions.

C.3. Proof of Convergence
We formalize the convergence properties of GP-based checkpoint merging.

Theorem 1 (Convergence of GP-based Checkpoint Merging) . Under the assumptions of Lipschitz continuity and
local convexity of f(λt), and assuming bounded observation noise, the GP-based Bayesian optimization approach for
checkpoint merging converges almost surely to a merging weight λ∗

t that maximizes f(Θ̃t), such that

lim
T→∞

f(Θ̃
(T )
t ) = f(Θ̃∗

t ) = max
λt∈[α,1]

f(λt). (53)

Proof. Step 1: Establishing Continuity and Existence of the Optimum.
Under the Lipschitz continuity assumption, f(λt) satisfies

|f(λt)− f(λ′
t)| ≤ L|λt − λ′

t|, ∀λt, λ
′
t ∈ [α, 1], (54)

with Lipschitz constant L > 0. This ensures that f(λt) is continuous over the compact interval [α, 1]. By the Extreme Value
Theorem, there exists λ∗

t ∈ [α, 1] such that
f(λ∗

t ) = max
λt∈[α,1]

f(λt). (55)
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Step 2: Posterior Convergence of Gaussian Processes.

Bayesian Optimization with GP priors updates the posterior distribution of f(λt) after each observation. The GP posterior
mean µT (λt) and variance σ2

T (λt) at iteration T incorporate all previous evaluations. As T → ∞, the GP posterior
converges to the true function f(λt) at the observed points. Given that the observation noise is bounded or zero, the
uncertainty (posterior variance) at these points decreases to zero.

Step 3: Acquisition Function and Selection of Next Point.

The acquisition function αT (λt) selects the next point λ(T+1)
t by balancing exploration and exploitation:

λ
(T+1)
t = arg max

λt∈[α,1]
αT (λt), (56)

where αT (λt) depends on µT (λt) and σT (λt). For example, the Upper Confidence Bound (UCB) acquisition function is

αUCB
T (λt) = µT (λt) + βTσT (λt), (57)

with βT > 0 controlling the trade-off between exploration and exploitation.

Step 4: Regret Analysis.

Under suitable choices of βT , the cumulative regret RT of the GP-UCB algorithm satisfies

RT =

T∑
t=1

(
f(λ∗

t )− f(λ
(t)
t )
)
= O

(√
T (γT + 1)

)
, (58)

where γT is the maximum information gain from T observations, typically logarithmic in T (Srinivas et al., 2009; Chowdhury
& Gopalan, 2017). A sublinear cumulative regret implies that

lim
T→∞

1

T
RT = 0, (59)

meaning the average regret per iteration decreases to zero, and the sequence {λ(T )
t } approaches λ∗

t .

Step 5: Almost Sure Convergence to the Optimal Weight.

By the convergence properties of GP-UCB algorithms, we have

lim
T→∞

λ
(T )
t = λ∗

t , almost surely. (60)

Therefore, the performance of the merged model converges to

lim
T→∞

f(Θ̃
(T )
t ) = f(λ∗

t ), (61)

which is the maximum achievable performance via merging in the interval [α, 1]. If fideal is achievable within the merging
interval—that is, if there exists λ∗

t such that f(λ∗
t ) = fideal—then

lim
T→∞

f(Θ̃
(T )
t ) = f(ideal). (62)

D. Impact on Generalization and Derivation of Generalization Bounds
In this section, we analyze how linear checkpoint merging affects the generalization performance of neural networks. We
derive theoretical bounds that quantify this impact, leveraging the PAC-Bayesian framework. This analysis provides a
deeper understanding of the benefits of checkpoint merging on generalization and offers theoretical insights into its practical
advantages.
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D.1. Generalization Improvement through Flat Minima
Flat minima in the loss landscape are associated with better generalization performance because small perturbations in the
model parameters lead to minimal changes in the loss function (Hochreiter & Schmidhuber, 1997). Checkpoint merging
facilitates convergence to flatter regions by averaging parameters from different checkpoints, effectively smoothing the loss
landscape and enhancing the model’s robustness to unseen data.
By merging checkpoints Θt−1 and Θt to obtain Θ̃t, we perform parameter averaging, which can be interpreted as moving
towards flatter minima. This process reduces the model’s sensitivity to parameter perturbations and contributes to improved
generalization.

D.2. PAC-Bayesian Generalization Bound
We employ the PAC-Bayesian framework to derive a generalization bound for the merged model Θ̃t. The PAC-Bayesian
theorem provides probabilistic bounds on the generalization error of stochastic classifiers based on the Kullback-Leibler
(KL) divergence between a posterior distribution Q over hypotheses (models) and a prior distribution P .

D.2.1. DEFINITIONS

Let:

• H be the hypothesis space (set of all possible model parameters Θ).

• P be a prior distribution over H.

• Q be a posterior distribution over H after observing the data.

• ℓ(Θ, z) be the loss incurred by hypothesis Θ on data point z.

• D be the data distribution.

• S = {zi}ni=1 be the training set consisting of n i.i.d. samples from D.

• LD(Q) = EΘ∼QEz∼D[ℓ(Θ, z)] be the expected loss (true risk) of Q.

• LS(Q) = EΘ∼Q
1
n

∑n
i=1 ℓ(Θ, zi) be the empirical loss (empirical risk) of Q.

D.2.2. PAC-BAYESIAN GENERALIZATION BOUND

Theorem 2 (PAC-Bayesian Generalization Bound) . For any prior distribution P over H, any δ ∈ (0, 1), and any
distribution D over the data, with probability at least 1− δ over the choice of the training set S, the following holds for
all posterior distributions Q over H:

LD(Q) ≤ LS(Q) +

√√√√DKL(Q ∥P ) + ln
(

2
√
n

δ

)
2n

. (63)

Proof. We provide a step-by-step proof of the PAC-Bayesian generalization bound, following the methodology in McAllester
(1998).
Step 1: McAllester’s PAC-Bayesian Inequality
McAllester’s PAC-Bayesian inequality states that for any δ ∈ (0, 1), with probability at least 1− δ over the choice of the
training set S:

EΘ∼Q [LD(Θ)] ≤ EΘ∼Q [LS(Θ)] +

√√√√DKL(Q ∥P ) + ln
(

2
√
n

δ

)
2n

. (64)

This inequality can be derived using concentration inequalities and the Donsker-Varadhan change of measure formula.
Step 2: Deriving the Bound
Let us consider the moment-generating function of the empirical loss:
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ES∼Dn exp (s (LD(Θ)− LS(Θ))) ≤ exp

(
s2

2n

)
, (65)

for all s ∈ R, due to the boundedness of the loss function (assuming ℓ(Θ, z) ∈ [0, 1]).

By integrating over Q and applying Fubini’s theorem, we have:

ES∼DnEΘ∼Q exp (s (LD(Θ)− LS(Θ))) ≤ exp

(
s2

2n

)
. (66)

Using Markov’s inequality and applying a union bound over Θ ∈ H, we can obtain a high-probability bound.

Step 3: Applying Donsker-Varadhan’s Inequality
We utilize the Donsker-Varadhan change of measure inequality:

EΘ∼Q[ϕ(Θ)] ≤ ln (EΘ∼P [exp(ϕ(Θ))]) +DKL(Q ∥P ), (67)

for any measurable function ϕ.

Let ϕ(Θ) = s (LD(Θ)− LS(Θ)), then:

EΘ∼Q [s (LD(Θ)− LS(Θ))] ≤ ln (EΘ∼P [exp (s (LD(Θ)− LS(Θ)))]) +DKL(Q ∥P ). (68)

Since the expected value over P is bounded by exp
(

s2

2n

)
, we have:

EΘ∼Q [LD(Θ)− LS(Θ)] ≤
DKL(Q ∥P ) + s2

2n

s
. (69)

Step 4: Optimizing over s

To obtain the tightest bound, we optimize the right-hand side with respect to s. Setting the derivative with respect to s to
zero:

∂

∂s

(
DKL(Q ∥P ) + s2

2n

s

)
= 0. (70)

Solving for s, we find:

s∗ =
√

2nDKL(Q ∥P ). (71)

Substituting back, we obtain:

EΘ∼Q [LD(Θ)− LS(Θ)] ≤
DKL(Q ∥P ) + s∗2

2n

s∗

=
DKL(Q ∥P ) +DKL(Q ∥P )√

2nDKL(Q ∥P )

=

√
2DKL(Q ∥P )

n
. (72)

Step 5: Conversion to High-Probability Statement
Using Markov’s inequality, we can convert the expectation into a high-probability statement. Specifically, for any δ ∈ (0, 1),
with probability at least 1− δ over the choice of S:
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EΘ∼Q [LD(Θ)] ≤ EΘ∼Q [LS(Θ)] +

√
2DKL(Q ∥P ) + 2 ln

(
1
δ

)
2n

. (73)

Simplifying, we obtain:

EΘ∼Q [LD(Θ)] ≤ EΘ∼Q [LS(Θ)] +

√
DKL(Q ∥P ) + ln

(
1
δ

)
2n

. (74)

Step 6: Finalizing the Bound

Adjusting for the discretization of the parameter space and covering numbers, as in McAllester (1998), we account for the
additional term ln (2

√
n). Thus, with probability at least 1− δ, we have:

LD(Q) ≤ LS(Q) +

√√√√DKL(Q ∥P ) + ln
(

2
√
n

δ

)
2n

. (75)

D.3. PAC-Bayesian to Checkpoint Merging

We apply the PAC-Bayesian bound to the merged model Θ̃t obtained via checkpoint merging.

D.3.1. SETTING THE PRIOR AND POSTERIOR

We define the prior distribution P and posterior distribution Q as:

P = N (Θt−1, σ
2
P I), Q = N (Θ̃t, σ

2
QI). (76)

where N (µ,Σ) denotes a Gaussian distribution with mean µ and covariance matrix Σ, and I is the identity matrix. Here,
σ2
P and σ2

Q are variance parameters controlling the spread of the distributions.

D.3.2. COMPUTING THE KL DIVERGENCE

Since P and Q are Gaussian distributions with covariance matrices σ2
P I and σ2

QI , respectively, the KL divergence between
Q and P is:

DKL(Q ∥P ) =
1

2

(
tr(σ−2

P σ2
QI) + (Θt−1 − Θ̃t)

⊤σ−2
P (Θt−1 − Θ̃t)− n

1
+ ln

(
det(σ2

P I)

det(σ2
QI)

))

=
1

2

(
nσ2

Q

σ2
P

+
∥Θ̃t −Θt−1∥2

σ2
P

− n+ n ln

(
σ2
P

σ2
Q

))
. (77)

Assuming that σ2
P = σ2

Q = σ2, the divergence simplifies to:

DKL(Q ∥P ) =
1

2σ2
∥Θ̃t −Θt−1∥2. (78)
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D.3.3. EXPRESSING Θ̃t

Since Θ̃t is a convex combination of Θt and Θt−1:

Θ̃t = λtΘt + (1− λt)Θt−1, (79)

we have:

Θ̃t −Θt−1 = λt(Θt −Θt−1), ∥Θ̃t −Θt−1∥2 = λ2
t∥Θt −Θt−1∥2. (80)

Substituting back into the KL divergence:

DKL(Q ∥P ) =
λ2
t

2σ2
∥Θt −Θt−1∥2. (81)

D.3.4. EFFECT OF CHECKPOINT MERGING ON THE KL DIVERGENCE

Compared to directly using Θt without merging, the divergence would be:

DKL(QΘt ∥P ) =
1

2σ2
∥Θt −Θt−1∥2. (82)

Since λt ≤ 1, it follows that:

DKL(Q ∥P ) = λ2
tDKL(QΘt ∥P ) ≤ DKL(QΘt ∥P ). (83)

Thus, checkpoint merging reduces the KL divergence between the posterior and the prior, leading to a tighter generalization
bound.

D.4. Combining Performance and Generalization

We aim to connect the empirical performance and the generalization bound to obtain an overall bound on the expected
performance of the merged model on unseen data.

D.4.1. RELATION BETWEEN PERFORMANCE AND LOSS

Assuming that higher performance corresponds to lower loss (e.g., accuracy is inversely related to error rate), we can define
the performance metric f(Θ) as:

f(Θ) = fmax − L(Θ), (84)

where fmax is the maximum attainable performance, and L(Θ) is the generalization loss.

D.4.2. EXPECTED PERFORMANCE ON TEST DATA

Let:

ftest(Q) = EΘ∼Q[ftest(Θ)] = fmax − LD(Q), (85)
ftrain(Q) = EΘ∼Q[ftrain(Θ)] = fmax − LS(Q). (86)
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D.4.3. DERIVING THE COMBINED BOUND

From the PAC-Bayesian bound (63), we have:

LD(Q) ≤ LS(Q) + ϵ, (87)

where:

ϵ =

√√√√DKL(Q ∥P ) + ln
(

2
√
n

δ

)
2n

. (88)

Substituting into (85):

ftest(Q) = fmax − LD(Q)

≥ fmax − (LS(Q) + ϵ)

= (fmax − LS(Q))− ϵ

= ftrain(Q)− ϵ. (89)

Thus, we have:

ftest(Q) ≥ ftrain(Q)−

√√√√DKL(Q ∥P ) + ln
(

2
√
n

δ

)
2n

. (90)

E. Related Work
Model Merging in LLM: Model merging focuses on the unification of several models into one coherent entity, aiming to
harness the collective strengths and mitigate the individual weaknesses of each model (Jolicoeur-Martineau et al., 2023),
and has recently emerged as a significant trend in the research of Large Language Models. In detail, (Wortsman et al., 2022)
proposes model soup to improve accuracy without increasing inference time by averaging weights of multiple fine-tuned
models. (Jin et al., 2022; Yu et al., 2024; Wan et al., 2024) investigate the problem of merging individual LM fine-tuned on
different datasets to obtain a single model that performs well both across all dataset domains or obtain new capabilities.
(Ramé et al., 2024) proposes using model merging to obtain a reliable and robust reward model in RLHF. However, we find
that conducting model merging during pretraining receives little attention.

Bayesian Optimization in NLP: Bayesian Optimization (BayesOpt) can efficiently optimize objective functions that
take a long time to evaluate and are widely applied in NLP. In detail, (Yogatama et al., 2015) leverage BayesOpt for Text
Representations. (Ruder & Plank, 2017) learn data selection measures using BayesOpt in transfer learning for sentiment
analysis and parsing. (Simpson et al., 2020) proposes using BayesOpt for community QA and summarization, demonstrating
its superiority in tasks requiring nuanced feedback interpretation. Besides, (Brochu et al., 2010; Liaw et al., 2018) find
that Gaussian process preference learning enables rapid, efficient inference, making it suitable for interactive applications
requiring quick user feedback processing. In this paper, unlike previous work, we use BayesOpt to obtain the merging
weight for checkpoint merging in LLM pretraining.

F. Performance on DeepSeek
In our initial experiments, we delve into the possibility of boosting performance through strategic
checkpoint merging within the Baichuan pre-trained model, focusing on the checkpoint pairs 1540B
and 1760B, along with 2200B and 2420B, in the advanced stages of pretraining. This exploration

26



Maximizing Checkpoint Value with Bayesian Optimization

Dataset Chekpoint-220B Checkpoint-440B Uniform Soup Greedy Soup Fisher RegMean

C-Eval 23.89 34.12 24.10 34.12 26.68 26.37
CMMLU 25.54 37.11 25.78 37.11 27.46 25.23
MMLU 23.85 33.29 23.1 33.29 23.15 23.33
GSM8K 6.82 9.10 8.04 9.10 8.16 5.46

Table 6: The results of merging baichuan2-220B with baichuan2-440B across various benchmark datasets.

WinoGrand (5-shot) Pythia 70M Pythia 410M Pythia 1.4B Pythia 2.8B Pythia 6.9B

Training step-142000 52.25 53.51 57.77 60.62 63.85
Training step-143000 51.07 53.51 57.38 60.93 63.61

Unifrom Soup 51.07 53.83 56.99 61.09 63.61
Greedy Soup 51.07 53.83 57.06 60.85 63.77
Fisher 52.08 53.88 57.96 60.57 63.84
RegMean 51.97 53.76 58.03 60.89 63.55

Ours 52.35 (+0.10) 53.96 (+0.08) 58.72 (+0.69) 62.04 (+0.95) 64.46 (+0.61)

Table 7: The results of merging various parameter sizes of Pythia models using different merging methods on the WinoGrande datasets.

2000B

1800B

44.36

43.05

Figure 6: Validation of checkpoint merging effec-
tiveness on DeepSeek models: merging DeepSeek-
1800B and DeepSeek-2000B checkpoints with uni-
formly sampled weights from [0,1] on the C-Eval
dataset. The performance curve demonstrates that 69%
of the tested merging weight combinations result in
performance enhancements beyond the superior base
model (DeepSeek-2000B).

aims to uncover patterns of improvement that could be applied across
different models. However, our analysis has not extended to other
models like DeepSeek. To bridge this gap, we undertake a detailed
examination of DeepSeek by evaluating the merging of checkpoints
1800B and 2000B, assessing 100 merging weight points distributed
evenly within the [0, 1] interval. Our objective is to ascertain if
the trend of performance enhancement through merging observed
in Baichuan is also evident in other pre-trained models, specifically
through the lens of weight combination efficacy.

The pivotal question guiding our research is: Do similar patterns of
performance improvement emerge in other pre-trained models, such as
DeepSeek, when applying strategic checkpoint merging, as observed
in the Baichuan model?

Our research confirms this hypothesis, revealing that: Specifically,
an impressive 70% of the tested merging weight combinations for
DeepSeek’s checkpoints 1800B and 2000B result in performance
enhancements.

This finding indicates that the strategy of merging checkpoints to
enhance performance is not unique to the Baichuan model but is also
applicable to other pre-trained models like DeepSeek. The consistency
of this pattern across different models highlights the potential of
checkpoint merging as a universally effective method for optimizing
pre-trained model performance during their later training phases.

G. All the results of baichuan2-220B with baichuan2-440B across various benchmark datasets.

As outlined in our pilot experiments, performing weight merging on checkpoints of LLMs during the early stages of
pre-training leads to a degradation in performance. In the Table 6, we present our experimental results on weight merging
between baichuan2-220B and baichuan2-440B models. We use Uniform Soup, Greedy Soup, Fisher, and RegMean to
conduct merging and measure the post merging performance. Without exception, none of the outcomes show performance
surpassing that of the superior base model (baichuan2-440B). This evidence suggests that conducting checkpoint merging in
the early pre-training phase is not a viable strategy.
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SciQ(5-shot) Pythia70M Pythia410M Pythia1.4B Pythia2.8B Pythia6.9B

Training step-142000 56.30 88.70 92.50 94.10 94.60
Training step-143000 58.20 89.40 92.30 93.60 94.90

Unifrom Soup 57.40 89.10 92.10 94.60 94.60
Greedy Soup 57.40 89.10 92.50 94.10 95.00
Fisher 58.10 88.70 92.90 93.90 94.50
RegMean 57.40 88.90 92.70 94.00 94.60

Ours 58.30 (+0.10) 89.20 (-0.20) 93.10 (+0.20) 94.80 (+0.70) 95.30 (+0.30)

Table 8: The results of merging various parameter sizes of Pythia models using different merging methods on the SciQ datasets.

ARC-Easy(5-shot) Pythia70M Pythia410M Pythia1.4B Pythia2.8B Pythia6.9B

Training step-142000 35.86 54.97 62.88 66.79 69.74
Training step-143000 36.57 54.76 63.01 67.00 69.87

Unifrom Soup 36.70 54.67 63.05 67.00 70.12
Greedy Soup 36.70 54.67 62.96 67.17 69.95
Fisher 36.27 55.10 63.04 66.87 69.89
RegMean 36.14 55.21 62.98 67.01 70.22

Ours 36.58 (-0.12) 55.77 (+0.56) 63.13 (+0.08) 68.05 (+0.88) 70.82 (+0.60)

Table 9: The results of merging various parameter sizes of Pythia models using different merging methods on the ARC-Easy datasets.

Baichuan2-1980B&2200B EI MPI LCB GP-hedge

C-Eval(5-shot) 56.69 56.53 56.14 56.73(+0.04)
CMMLU(5-shot) 56.88 56.89 56.50 57.05(+0.16)
MMLU(5-shot) 54.60 54.54 54.62 54.77(+0.15)
GSM8K(4-shot) 22.07 21.98 21.76 22.17(+0.10)

Average 47.56 47.49 47.26 47.68(+0.12)

Table 10: The results of the ablation study for different acquisition strategies when merging Baichuan2-1980B with Baichuan2-2200B.

H. The table of different model size on Varying datasets
I. Acquisition Functions
We conduct an ablation study on different acquisition functions and find that using GP-hedge yields better results compared
to individual acquisition functions. For instance, in the C-Eval (5-shot) task, GP-hedge achieves the highest performance
with a score of 56.73%, which is an improvement of 0.04% over the best individual acquisition function, EI, which scores
56.69%. Similarly, in the CMMLU (5-shot) task, GP-hedge outperforms the others with a score of 57.05%, marking an
improvement of 0.16% over the best individual acquisition function, MPI, which scores 56.89%. For the MMLU (5-shot)
task, GP-hedge again shows superior performance with a score of 54.77%, surpassing the best individual function, LCB, by
0.15%. Lastly, in the GSM8K (4-shot) task, GP-hedge scores 22.17%, an improvement of 0.10% over EI, which scores
22.07%. On average, GP-hedge shows a significant improvement with an average score of 47.68%, which is 0.12% higher
than the best individual acquisition function, EI, which averages 47.56%.

J. Pilot Experiments performance on CMMLU Dataset
In this section, we describe the performance of merging checkpoints on the CMMLU dataset.

In accordance with the research question outlined in pilot experiments, we extended our analysis to the CMMLU dataset
to corroborate the findings from the C-Eval dataset. Utilizing the same methodology, we evaluated all possible pairwise
merging, totaling 55 combinations (C2

11). Employing the greedy soup strategy as outlined by (Wortsman et al., 2022),
checkpoints are sequentially incorporated into the soup if they demonstrate an improvement in accuracy on the development
data.

The analysis yields observations that are consistent with those obtained from the C-Eval dataset, reinforcing the generality
of our findings. Specifically, we observe that:
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Figure 7: Performance comparison of pairwise
checkpoint merging using the Greedy Soup method
on the CMMLU benchmark across all possible com-
binations of 11 Baichuan2 checkpoints. This heatmap
visualization corroborates findings from the C-Eval
dataset, showing that adjacent checkpoint merging
(diagonal region) consistently yields performance im-
provements, while distant checkpoint combinations re-
sult in substantial performance degradation.

(1) Adjacent checkpoint merging yields superior performance: Echo-
ing the C-Eval dataset’s findings, merging two checkpoints from
consecutive training phases in the CMMLU dataset generally led to
performance enhancements over individual checkpoints. Notably,
merging Baichuan2-1980B with Baichuan2-2200B achieved an ac-
curacy of 56.57% on the CMMLU dataset, surpassing the 56.29%
accuracy of Baichuan2-2200B when assessed independently. This
not only highlights the effectiveness of adjacent checkpoint merging
but also indicates a significant improvement over the final checkpoint,
Baichuan-2420B (with an accuracy of 56.78%), by elevating the test
accuracy by 0.10%.
(2) Merging distant checkpoints leads to performance deterioration:
In line with the C-Eval dataset observations, merging significantly dis-
parate checkpoints, such as Baichuan2-220B with Baichuan2-2200B,
resulted in a notable performance decline, with accuracy dropping
to 25.26% on the CMMLU dataset. This outcome closely mirrors
the performance of the lesser-trained checkpoint, Baichuan2-220B,
which has an accuracy of 25.54%, underscoring the negative impact
of merging widely separated checkpoints.
The CMMLU dataset findings reinforce the C-Eval dataset’s results,
highlighting the critical importance of strategic checkpoint merging
for enhanced model performance across diverse datasets.
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