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ABSTRACT

With the proliferation of large pre-trained models in various domains, transfer
learning has gained prominence where intermediate representations from these
models can be leveraged to train better (target) task-specific models, with pos-
sibly limited labeled data. Although transfer learning can be beneficial in many
cases, it can also transfer undesirable information to target tasks that may severely
curtail its performance in the target domain or raise ethical concerns related to
privacy and/or fairness. In this paper, we propose a novel approach for controlling
the transfer of user-determined semantic concepts (viz. color, glasses, etc.) in
intermediate source representations to target tasks without the need to retrain the
source model which can otherwise be expensive or even infeasible. Notably, this
is also a bigger challenge than blocking concepts in the input representation as a
given intermediate source representation is biased towards the source task it was
originally trained to solve, thus possibly further entangling the desired concepts.
We qualitatively and quantitatively evaluate our approach in the visual domain
showcasing its efficacy for classification and generative source models.

1 INTRODUCTION

Deep neural networks (DNN) have achieved unprecedented performance in various computer vision,
natural language (NLP) problems such as image classification (Sun et al., 2017; Mahajan et al.,
2018), object detection (Girshick, 2015; Ren et al., 2015), segmentation (Long et al., 2015; He
et al., 2017), question answering (Min et al., 2017; Chung et al., 2017), and machine translation
(Zoph et al., 2016; Wang et al., 2018) etc. One of their strengths is the ability to learn task-specific
hidden representations rather than relying on predefined image features. In an ideal scenario, there
is an abundance of labeled training samples to learn a good hidden representation. However, it is
often expensive, time-consuming, or unrealistic to collect sufficient training data. In such scenarios,
transfer learning (Pan & Yang, 2009) has emerged as one of the promising learning paradigms.
Transfer learning utilizes knowledge from information-rich source tasks to learn a specific (often
information-poor) target task.

One of the most widely used approaches for transfer learning is fine-tuning (Sharif Razavian et al.,
2014) where the target DNN being trained is initialized with the weights of a source DNN that
has been pre-trained on a large dataset from a related task. Another popular approach involves
matching/combining the hidden representation or the gradient of the output of the target model with
that of the source model (Jang et al., 2019; Li et al., 2018; Murugesan et al., 2022). These approaches
are extensively used in improving prediction performance and robustness of many vision and NLP
tasks (Hendrycks et al., 2019; Devlin et al., 2018), while reducing training time and resources.
However, transferring from large pre-trained models (fine-tuning or representation transfer) could
propagate undesirable concepts encoded in source models to downstream tasks. For example, a
source model, trained to classify cats vs dogs, with most cat images in gray-scale and dog images in
color, could incorrectly associate the concept of color to the images of the dog and pass this biased
knowledge to downstream tasks. In real-world applications, this could have serious consequences.
Among several examples, (Steed & Caliskan, 2021) showed that embeddings extracted from pre-
trained image models exhibit racial and gender bias that they learn from training datasets. Similarly,
(Kennedy et al., 2020) demonstrated that hate speech classifiers finetuned from BERT (Devlin et al.,
2018) resulted in frequent false positives when certain group identifiers (e.g., Muslim, black) were
mentioned in the text.
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Figure 1: Illustration of our proposed approach on rotated-MNIST dataset. We show how the rotation con-
cept is blocked from the image before transferring it to the target task. First, hidden representation zs from a
pre-trained source network is factorized using IIN into zsk, k ∈ K = {digit, rotation, residue}. To block the
rotation concept, the factor for zsrotation is set to a rotation prototype, pr generated using a few sample im-
ages with no rotation. Now the IIN is used to invert the modified factors to z̃s which can either be directly used
Controllable Concept Transfer-source (CCT-s) or concatenated with the target representation zT Controllable
Concept Transfer-concatenate (CCT-cat) to train the target task.

While there are several approaches to mitigate the impact of unintended knowledge transfer in target
models, ranging from data augmentation that balances target datasets (Park et al., 2018; Dixon et al.,
2018) to adversarial training for generating robust hidden representations against certain spurious
concepts (Zhang et al., 2018; Wang et al., 2020; Fan et al., 2021), the controllable transfer using
the intermediate representation of the source model has been largely unexplored. Typically, large
pretrained (source) models are learned with imbalanced/biased data, and retraining these models to
remove undesirable concepts might not be ideal. Our work takes a novel concept-based knowledge
transfer approach to address this problem where we address the following question:

How can we most effectively control the intermediate representation of a source model by
blocking a specific concept while keeping other concepts (largely) intact before transferring to
downstream tasks?

Towards this goal, we propose a transfer learning method, Controllable Concept Transfer (CCT), to
block the undesirable concepts in the hidden representation of the source model before transferring
to a downstream task. Note that this is a challenging problem than simply blocking concepts directly
in the input representation since the intermediate source representation and the concepts extracted
from it could be biased towards the source task. To address this problem, we propose a novel ap-
proach using Invertible Interpretable Network (IIN) (Esser et al., 2020) to disentangle the concepts
in the source representation and adapt them to the target task, which to the best of our knowledge,
has not been previously done in transfer learning. We propose two transfer learning settings and
demonstrate our approach to image classification tasks using two real-world datasets. In both these
settings, we find that our approach successfully blocks concepts from the source intermediate repre-
sentation.

Figure 1 illustrates our approach to block the concept of rotation from the source model using IIN
explained later. We evaluate the performance of controllable concept transfer both qualitatively and
quantitatively. In addition to the accuracy for evaluation of target task performance, we adopt a
mutual information-based metric based on MINE (Belghazi et al., 2018) to quantify the measure of
concept removal. Our qualitative analysis presents decoded images with different blocked concepts.
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2 RELATED WORK

Transfer Learning from a large pretrained source model is a well-known approach to learning target
tasks with limited labels (Pan & Yang, 2009). One of the most common transfer learning techniques
is fine-tuning a pretrained source model (Sharif Razavian et al., 2014), where network layers from
the source model are frozen, and a new classifier head is trained for the target task. Recent works
align the source and target features to transfer relevant knowledge - either by matching network
weights (Xuhong et al., 2018; Jang et al., 2019), attention maps (Li et al., 2018; Zagoruyko &
Komodakis, 2016), Jacobians (Srinivas & Fleuret, 2018) or model reprogramming (Chen, 2022).
Another line of work uses the source model to better guide the target network by transferring feature
maps automatically to improve the target task performance (Murugesan et al., 2022). In all the above
methods, the transferred knowledge is typically not interpretable. To understand what knowledge is
being transferred from source and target networks, a few methods use attention maps to visualize
the key features from the source model useful for the target task (Murugesan et al., 2022; Jang et al.,
2019) or a series of experimental analyses on the finetuned target model to study the importance of
transferred knowledge (Neyshabur et al., 2020). In this paper, we take a different approach to transfer
learning and propose a principled way of controlling what semantically meaningful concepts can be
transferred from the source model to the target task.

With an increasing interest in Model Interpretability, several approaches have been proposed to
understand the inner workings of deep neural classifiers, specifically through human understandable
high-level concepts as activation vectors (Kim et al., 2018; Zhou et al., 2018; Chen et al., 2020),
or individual neurons (Erhan et al., 2009; Olah et al., 2017; Zeiler & Fergus, 2014; Bau et al.,
2017). However, the representation of the semantic concepts is distributed across the hidden layers
of the network (Fong & Vedaldi, 2018) and none of these methods can (confidently) claim that
the features (i.e. neurons) identified from intermediate representations are associated only with the
specific concept and are largely independent of other concepts (Montavon et al., 2017; Yosinski et al.,
2015). A related line of work trains the models that explicitly encode concepts in their intermediate
representations (Koh et al., 2020; Chen et al., 2020; Losch et al., 2019). However, this approach
alters the network architecture and typically deteriorates overall performance (Zhou et al., 2016).
Unlike these works, we propose a novel approach to transfer learning by blocking or allowing the
relevant concepts transferred from the source model to the target network for better interpretability.

Unlike DNNs, Generative Models are trained with the explicit goal to produce images from samples
of a specific distribution. Variational auto-encoders (Kumar et al., 2018; Higgins et al., 2017) re-
construct images from a representation whose marginal distribution is matched to a standard normal
distribution. Generative Adversarial Networks (GAN) (Goodfellow et al., 2020; Hoang et al., 2018)
map samples from a standard normal distribution to realistic images as judged by a discriminator.
While these approaches are invertible, they are not interpretable, limited to representations with a
linear structure, and cannot be applied to arbitrary representations from a source network. This mo-
tivates our choice of Invertible Neural Networks (Dinh et al., 2014; Jacobsen et al., 2018; Kingma
& Dhariwal, 2018; Esser et al., 2020) for our transfer learning problem setup as they can identify
disentangled concepts for interpretability, invert them and map them back to relevant features in the
intermediate representations of the source model.

3 CONTROLLABLE CONCEPT TRANSFER METHOD

It has been widely observed that machine learning models learn context-specific correlations in
datasets. For example, a model trained to classify different indoor scenes would learn to associate
the presence of a bed to the output class of “bedroom” vs couch to the output class of “living-room”.
It is postulated that such high-level semantic concepts or representations are useful to differentiate
them (Neyshabur et al., 2020), and it is further possible to reuse these learned patterns to generalize
to new (related) tasks by transferring representations to downstream tasks. However, spurious asso-
ciations in the transferred knowledge could hinder the performance of a target task. For instance,
an accent chair could be exclusively associated with “living-room” and when the model encounters
a novel environment where it is present in “bedroom”, the source representation could be biased to
classify the input as “living-room”. The transfer learning method to modify the source intermedi-
ate representation to block a certain concept would prove useful in such situations. The canonical
way to block a certain concept from hidden representation would be to retrain the model with new
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images that satisfy the desired constraint. However, it is hard to predict how the retraining affects
other related concepts. The goal of our work is to tackle this problem directly and modify the hid-
den representation of the source model in a targeted manner. For instance, in our earlier example,
we would ideally want to block the concept of accent chair without affecting other concepts in the
hidden representation of the source model before transferring it to the downstream task. Next, we
provide a brief overview of the Invertible Neural Network and a recent work by Esser et al. (2020)
which motivates our framework, after which we detail our work. Throughout this paper, we use the
terms “intermediate representation” and “hidden representation” interchangeably.

3.1 BACKGROUND: DISENTANGLING SEMANTIC CONCEPTS IN INTERMEDIATE
REPRESENTATION

Let f be the given neural network with L layers that maps the input image x ∈ Rh×w×c1

through a series of hidden layers to the final output f(x). Often, intermediate representation
E(x) ∈ RH×W×C2 at a hidden layer does not convey any semantic meaning knowledge. Often
the mapping from the intermediate representation to semantically meaningful representation is well-
defined, whereas the inverse is not straightforward. In this paper, we are interested in invertible
representation learning that maps intermediate representation to a semantically meaningful concepts
and vice verse. Esser et al. (Esser et al., 2020) developed an approach titled Invertible Interpretable
Network (IIN) to factorize the hidden representation from a model into user-defined semantic con-
cepts. Specifically, they map arbitrary representations into a space of interpretable representations
– a non-linear mapping between the two domains. This mapping is invertible, i.e., any modification
in the domain of semantic concepts concurrently alters the original representation. In this scenario,
it takes the flattened version of E(x), denoted z ∈ RN (where N = H ·W ·C), and factorize it into
z̃ = (z̃k)

K
k=0 ∈ RN , where each of the K + 1 factors of z̃k ∈ RNk with

∑K
k=0 Nk = N represents

an interpretable concept that is normally distributed N (z̃k|0,1). Calling this transformation I , we
have z̃ = I(z).

To encode semantic representation into each factor z̃k, they constrain (i) each factor z̃k to vary
with exactly one interpretable concept and (ii) z̃k to be invariant to all other variations. This is
ensured through training pairs (xa, xb), which specify semantics through similarity, i.e. image pairs
that both have a semantic concept of accent chair in them. Each semantic concept, indexed by
F ∈ {1, ...,K}, has image pairs (xa, xb) ∼ p(xa, xb|F ) to the corresponding factor z̃F . To capture
the remaining variability that is not captured by the K concepts, a residual concept z̃0 is introduced.
This ensures that any change made to the factorized semantic concept z̃k is reflected in the original
representation space. Calling this transformation I−1, we have I−1(z̃) = z. Intuitively, the goal
is to have a bijective mapping so that modifications of the disentangled semantic factors correctly
translate back to the original representation. Please refer to Algorithm 2 and (Esser et al., 2020) for
further details.

3.2 CONCEPT BLOCKING AND TRANSFER

In this section, we focus our attention on controlling the concept transfer by blocking undesirable
concepts in the hidden representation of the source classifier and transferring relevant concepts to the
downstream task. To describe our approach, let’s take a simple example of rotation concept added to
MNIST images (LeCun et al., 1998). At the high level, the goal is to take the hidden representation
at a layer L of the pre-trained model and block the rotation concept without affecting other concepts.

How to block a concept? Let us assume that we have a pre-trained source network fs that takes
input images x from a target task and produces hidden representation at layer L− 1, fs

L−1(x) = zs,
i.e., the layer before classifier head csL. Let us define two semantic concepts specific to the target
task as digit and rotation. We first train the IIN I to take the hidden representation zs and factorize
it according to concepts such that z̃sk = (I(zs))k, where k ∈ {digit, rotation, residue}. Training
is done using pairs of images that contain a common concept, i.e., the same digit to map z̃sdigit or
the same rotation for z̃srotation. In addition, there is a residue factor z̃sresidue that encodes all other
variations unaccounted by these concepts. Since the IIN imposes a one-to-one mapping from the

1Where h,w, c are height, width and channel dimensions of input image
2Where H,W,C are height, width, and channel dimensions of intermediate representation

4



Under review as a conference paper at ICLR 2023

original representation space (zs) to a factorized space (z̃s), we can edit the factorized representation
z̃srotation without affecting the other factors. Given the IIN I , suppose one wants to block the rotation
concept. We sample a few example images {r1, ..., rn} which are not rotated and pass them through
our pre-trained source network and IIN to obtain their rotation embedding and take the mean to
create a prototype embedding, pr = 1

n

∑n
i=1(I(f

s
L−1(ri))rotation), which is indicative of absence

of the rotation concept.

How to transfer? Next, we proceed to training the target model f t that takes as input images x and
maps to a hidden representation at layer L−1, f t

L−1(x) = zt, the layer before classifier head ctL. The
input image is also passed through the source model to get the source intermediate representation,
which is then fed to IIN. The rotation concept is blocked by replacing the corresponding factor
z̃srotation with the prototype, pr. The updated hidden representation I−1(z̃s) is then transferred to
the target classifier ctL. We consider two variations of transferring knowledge from the source model
to the target task,

1. Controllable Concept Transfer - source (CCT-s) where we freeze the layers up to L − 1 of
source network, attach a classifier head for target task ctL and train the classifier head for the
target task with updated source representation, ctL(I

−1(z̃s)).
2. Controllable Concept Transfer - concatenate (CCT-cat) where we concatenate the updated

source representation with that of the pre-trained target network before passing it through the
target classifier, ctL([I

−1(z̃s)⊕ zt]) where ⊕ represents concatenation operation.

The entire pipeline is presented in Figure 1 and Algorithm 1 as CCT-cat (CCT-s follows similarly but
would remove the target network f t and combination operation in Step 15). Note that this approach
works for multiple concepts by simply generating each prototype, pi and editing the corresponding
factorized representation z̃si for concept i.

Algorithm 1 Controllable Concept Transfer - concatenate (CCT-cat) method

1: Inputs: Target training dataset DT ; Target classifier loss Lct(·); Combination operation
⊕

; Seed weight
parameters: Wct [0]; Source pre-trained network fs, Target pre-trained network f t; Number of Epochs E,
Layer L, Concepts K to block.

2: I ← TRAIN-IIN
3: for concept ∈ [1 : K] do
4: Randomly sample n images {r1, r2, ...rn} without concept.
5: pconcept ← 1

n

∑n
j=1 (I(f

s
L(rj))concept)

6: end for
7: Randomly shuffle DT .
8: for epoch ∈ [1 : E] do
9: for batch ∈ DT do

10: x← DT [batch].
11: z̃s ← I(fs

L(x))
12: for concept ∈ [1 : K] do
13: z̃sconcept ← pconcept
14: end for
15: Wct [batch]←Wct [batch− 1]− ηbatch∇Wct

Lct(f
t
L(x)

⊕
I−1(z̃s))

16: end for
17: end for
18: Output: Trained model ctL with last iterate ofWct

4 EVALUATION ON CLASSIFICATION TASKS

In this section, we consider how concept blocking affects the performance of a target model. In
particular, we present two scenarios of image classification tasks: (i) Transfer from the rotated-
EMNIST trained source model to the rotated-MNIST classification task, and (ii) Transfer between
CelebFaces attribute classifiers. For both experiments, we use a deeper 6-layer convolutional neural
network (CNN) for the source model and a 3-layer CNN for the target model. Additional details
about the experimental setup and datasets can be found in Appendix A.3. For each experiment, we
consider two variants of transfer: Controllable Concept Transfer - source (CCT-s) and Controllable
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Table 1: Mean accuracy (over three runs) for rotated-EMNIST to rotated-MNIST transfer task. Experiments
are conducted by varying the proportion (%) of rotated samples {90, 180, 270} in the training dataset from 1%
to 75%. We compare the performance of three models: Target only (TG), CCT-s and CCT-cat. For CCT-s and
CCT-cat we conduct experiments without blocking any concept (noedit) vs blocking rotation (edit).

Method Fraction (%) of rotated images in target task dataset
1 2 3 4 5 6 7 8 9 10 25 50 75

TG 0.52 0.58 0.62 0.65 0.68 0.70 0.71 0.73 0.74 0.75 0.84 0.88 0.90
CCT-s(noedit) 0.57 0.59 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.75 0.80 0.81
CCT-cat(noedit) 0.61 0.65 0.68 0.70 0.72 0.73 0.75 0.76 0.77 0.78 0.86 0.90 0.91
CCT-s(edit) 0.68 0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.70 0.70 0.73 0.75 0.77
CCT-cat(edit) 0.64 0.68 0.71 0.73 0.74 0.76 0.76 0.77 0.78 0.79 0.85 0.89 0.90

Concept Transfer - concatenate (CCT-cat) and compare the performance against training the target
model independently (TG).

4.1 TRANSFER BETWEEN HETEROGENEOUS DATASETS

In this experiment, we study the effect of blocking the concept of rotation in a rotated-EMNIST
trained source model to a rotated-MNIST transfer task. First, we pre-train the source model with the
rotated-EMNIST dataset, where the goal is to classify 26 different English letters. Next, we train the
IIN to factorize the concepts of digit and rotation using layer L−1 representation of the pre-trained
source model by probing it with rotated-MNIST images as inputs. Finally, we train the target task of
classifying 10 digits without blocking any concepts, termed CCT-s(noedit) and CCT-cat(noedit), and
compare the performance to rotation blocked transfer, termed CCT-s(edit) and CCT-cat(edit). To
force the target model to rely on the source model for the rotation concept, we vary the amount of
rotated training samples in the target dataset from 1% to 75%. We assume that, at lower percentages
of rotated training samples in the target dataset, the target model relies on the source model for a
good representation of the rotation concept. Top-1 accuracy for these experiments is presented in
Table 1 with maximum accuracy in bold for each column. Each experiment is repeated thrice and
the mean accuracy is presented. As expected, at lower percentages of rotated samples (≤ 10), we
see that blocking the concept of rotation boosts the performance of transfer with CCT-s(edit) and
CCT-cat(edit) performing best. As the percentage of rotated samples in the training data increases,
the target model learns a better representation of the rotation concept and relies less on the source
model. This is evidenced by TG and CCT-cat(noedit) having comparable performance.

4.2 EVALUATION ON CELEBFACES ATTRIBUTES

Blocked concept
Wearing Heavy High Both

Method Smiling Lipstick Makeup Cheekbones Makeup
TG 0.9432
CCT-s (noedit) 0.9313
CCT-cat (noedit) 0.9466
CCT-s (edit) 0.9210 0.6113 0.8761 0.9210 0.5984
CCT-cat (edit) 0.9462 0.9401 0.9444 0.9461 0.9401

Table 2: Mean accuracy (over three runs) for CelebA transfer task. Ex-
periments are conducted by blocking concepts Smiling, Wearing Lipstick,
Heavy Makeup, High Cheekbones one at a time and blocking both Wear-
ing Lipstick, Heavy Makeup at once (Both Makeup). As before we com-
pare the performance of three models: TG, CCT-s, and CCT-cat. For
CCT-s and CCT-cat we perform experiments with (edit) and without
(noedit) concept blocking.

In this experiment, we consider
a homogeneous setup where
the transfer is done between
two CelebA tasks. We train the
source model to identify 4 dif-
ferent concepts, Smiling, Wear-
ing Lipstick, Heavy Makeup,
and High Cheekbones, based
on a multi-label classifier. We
then train an IIN to factorize
these concepts using layer
L − 1 representation of the
source network. Finally, we
train the target binary classi-
fication task to identify if the
given image is labelled Male or Not Male. Specifically, we train several models with/without
blocking concepts, CCT-s(noedit), CCT-cat(noedit), CCT-s(edit), and CCT-cat(edit), and compare
against an independently trained target model (TG).

As seen in Table 2, just using the source model CCT-s(noedit) gives a similar performance to the in-
dependently trained target model (TG). Blocking the concepts of Smiling and High Cheekbones
do not have a big impact on CCT-s(edit) performance suggesting that these concepts are less relevant
to the target task. However, blocking Wearing Lipstick and Heavy Makeup individually causes
a drop in CCT-s(edit) performance. Next, we blocked both concepts simultaneously and found that
the performance dropped further. This suggests that the target classifier is relying on concepts such
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as Wearing Lipstick and Heavy Makeup for classifying Male vs Not Male, and for fairness
purposes, we need to block these concepts from being transferred to the target model.

5 HOW WELL DOES CONCEPT BLOCKING WORK?

In the previous section, we showed that blocking concepts influence the performance of the target
task. Here, we explore how well the concepts are blocked from source hidden representation. In
particular, we consider two sets of experiments. (i) In the quantitative experiments, we adopt mutual
information (MI) based metric (Belghazi et al., 2018) to measure the MI between concept and hidden
representation before and after blocking a concept. In both cases, we edit the model using a single
prototype to block one concept at a time. (ii) In the qualitative experiments, we use an autoencoder
architecture as a source model, which facilitates visualization of concept blocking by decoding IIN
edited hidden representations to human understandable images.

5.1 QUANTITATIVE EXPERIMENTS USING MUTUAL INFORMATION

The goal of this experiment is to quantitatively assess whether information about undesired concepts
is contained or ‘hiding’ in transferred representations. In order to formally evaluate the performance
of concept blocking in this scenario, we employ an information-theoretic analysis of the transferred
representations. Specifically, we measure the mutual information between a specific concept and
the hidden representations. To compute mutual information between concepts and neural network
representations, we adapt the mutual information based neural estimator (MINE) proposed by Bel-
ghazi et al. (2018), where the authors present a way to estimate mutual information between high
dimensional random variables using a trainable neural network that they term a statistics network.
In simple words, given two random variable X and Z, the authors propose a neural information mea-
sure defined as,

IΘ(X,Z) = sup
θ∈Θ

EPXZ [Tθ]− log(EPX
⊗

PZ [e
Tθ ])

where the expectations are estimated using samples drawn from PXZ and PX

⊗
PZ while the

objective is maximized by gradient ascent. Please refer to (Belghazi et al., 2018) for more details.

In the original paper, Belghazi et al. (2018) used X to represent the input image and Z to repre-
sent the latent representation. For our purposes, we are interested in estimating the mutual infor-
mation (MI) between the concept of a random variable and the hidden representation. In partic-
ular, we estimate the MI between the concept C and original hidden representation zs, I(C, zs),
and compare with the MI between concept C and edited hidden representation z̃s, I(C, z̃s). We
start with a heterogeneous setup where the source model is trained on the rotated-colored-EMNIST
dataset (Cohen et al., 2017), where each colored image is rotated by a random angle drawn from
r ∈ {90, 180, 270}. However, we probe the source model with the rotated-colored-MNIST dataset
for MI estimation. Here, MI is measured for color, rotation and digit with respect to hidden rep-
resentations – before and after blocking color and rotation concepts. To estimate MI, we use the
color RGB vector, and angle of rotation as proxy concept random variables C. These results are
presented in Figure 2(a). We see that the MI for digit does not change much when blocking the
other two concepts. However, the MI for color and rotation drop significantly when the respective
concepts are blocked.

We proceed to conduct experiments on the CelebA (Liu et al., 2015) dataset, where the
source model is trained on a multi-label classification task to identify 4 different concepts
{Smiling,Wearing Lipstick,Heavy Makeup,High Cheekbones}. Next, each concept is
blocked and MI is measured for every concept. To estimate MI, we use the binary value of the
presence/absence of each concept as a proxy random variable. Results are presented in Figure 2(b).
As demonstrated by the plots, the MI for the blocked concept reduces (almost) to zero in most cases.
These findings suggest that the selected concept is blocked from the updated hidden representation
without significantly affecting the other concepts. Additionally, our choice of blocking concepts by
editing the final layers in the source is also justified by looking at Figure 3, where we see that more
complex concepts appear only in the later layers of the source network.

5.2 COMPARING AGAINST CONCEPT ACTIVATION BASED BLOCKING (CAB)

To test the need for IINs to block concepts in hidden representations, we conduct an experiment
with concept activation-based blocking (CAB) motivated by previous works (Kim et al., 2018; Zhou
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Figure 2: Experiments on mutual information (MI) between concepts and intermediate representa-
tion. Each group of bars represents a concept and the color of the bars represents the blocked
concept. MI for rotated-colored-MNIST dataset digit, color, and rotation concepts when color
and rotation are blocked using (a) CCT method and (b) CAB method. MI for CelebA dataset
where source model is trained on a multi-label classification task to identify 4 different concepts
{Smiling,Wearing Lipstick,Heavy Makeup,High Cheekbones}. Each concept is then blocked in-
dividually and MI is reported for all concepts using the (c) CCT method and (d) CAB method.

et al., 2018; Chen et al., 2020). In this experiment, for each concept, we train a linear classifier
based on logistic regression where the hidden representation from the source network is used as
input and each model predicts if the concept is present/absent. We then identify the top neurons
for each concept based on model coefficients and use them to create the prototypes, pi, for each
concept. To block a concept i, we just set those candidate neurons to the corresponding pi during
transfer. We tested this approach in rotated-colored-MNIST and CelebA by measuring MI values
similar to previous experiments. Results are presented in Figure 2(b, d). As demonstrated, the MI
for all concepts remains high even after using CAB to block them. This suggests that the information
about the concept is still transferred after directly blocking in the hidden representation space. On
the other hand, blocking through the factorized representation of IIN leads to much less information
transfer.

5.3 QUALITATIVE EXPERIMENTS USING AUTOENCODER ARCHITECTURE

To visually evaluate concept blocking, we replace the source model with an autoencoder. Consider
that fs takes the input image x ∈ Rh×w×c and encodes it into the hidden representation z = fs(x) ∈
RN , N = H ·W · C. A decoder ds is then used to map the hidden representation back to original
image space x̃ = ds(z) ∈ Rh×w×c. First we consider a simple dataset where we add the concept
of color to the MNIST dataset (colored-MNIST) (LeCun et al., 1998). This is done by multiplying
RGB values in gray-scale MNIST images. A source model is trained to reconstruct the input images
and IIN is trained to disentangle the concepts of digit and color. We then edit the color factor of
a few randomly drawn sample images with the prototype pc of color as depicted in Figure 4(a).
Next, we consider a more realistic dataset, CelebA (Liu et al., 2015), which is a large-scale dataset
of celebrity faces with attributes. We train the source model to reconstruct CelebA images and then
train the IIN to disentangle 3 concepts – Eyeglasses, No Beard, and Smiling. We then proceed to
edit these concepts by using corresponding prototypes, pi. Results for blocking the Eyeglasses
concept in a few randomly drawn sample images are presented in Figure 4(b). Additional figures
for blocking concept of Smiling and No Beard are presented in Figure 8. As demonstrated in
Figure 4(a), our method is able to block the concept of color without affecting the digit concept. In
Figure 4(b), we see that the concept of Eyeglasses is successfully blocked from sample images,
demonstrating that this approach can be used to block complicated concepts.
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Figure 3: Experiment comparing concept blocking using hidden representations from different layers for the
rotated-colored-MNIST dataset. As can be seen the color concept is learned first followed by digit and
rotation. It is thus best to intervene (i.e. block) in the final layer (i.e. layer 6) where the model has learned the
critical concepts such as digit which we want to transfer.

Figure 4: Visualization of concept blocking using an autoencoder as source network. (a) In the first row, we
present randomly drawn colored-MNIST images. We then proceed to block the concept of color from these
images and show them in the second row. (b) For CelebA dataset, we consider randomly drawn samples with
the Eyeglasses attribute and proceed to block them. Examples of other concepts being blocked are in the
appendix.

6 DISCUSSION

We have seen in this paper how one can effectively block certain semantic concepts from being
transferred from a source model to a target model while allowing other concepts and information to
be transferred. While we were (largely) successful in this endeavor, there may be situations where
it is difficult to block a certain concept, while allowing others to pass. The reason for this is that
concepts can be (statistically or causally) correlated and so blocking one will lead to also (at least
partially) blocking the other. For instance, it may be impossible to block the Smiling concept while
allowing High Cheekbones to be transferred. In the future, it would be interesting to consider such
cases where the user not only determines which concepts to block but also which to specifically
pass and to arrive at a strategy that best satisfies these requirements. The strategy may also involve
informing the user that the constraints are impossible to satisfy. We blocked concepts by setting
the corresponding latent vector in the IIN disentangled representation to mean/median values based
on images lacking that concept and then inverting back to the source intermediate representation.
However, there may be other ways to set these values, possibly taking inspiration from the explain-
able AI and fairness literature (Došilović et al., 2018; Mehrabi et al., 2021), where for methods
such as SHAP (Lundberg & Lee, 2017) and MACEM (Dhurandhar et al., 2019), there are different
ways to determine null/base values indicative of no information. To summarize, we have provided
a novel approach to block desired semantically meaningful concepts in the transfer learning setting
with applications to interpretability, fairness, and privacy. We have evaluated our approach both
qualitatively, through intuitive visual examples, and quantitatively, based on an (adapted) mutual
information metric, highlighting our method’s efficacy.
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ETHICS AND REPRODUCIBILITY STATEMENT

Transfer learning is a very well-studied research area and yet the clear understanding of what, where,
and how the knowledge is transferred from a source task to a target task is still largely unexplored.
With the wide adoption of deep learning technologies, explaining or understanding the reasons
behind their decisions has become extremely important in many critical applications (Arya et al.,
2019). This work sheds some light on explaining what knowledge is transferred from the source
network to the target task by controlling it via human-understandable concepts. Of course, our
method may not be perfect in blocking these concepts and some information leakage is possible.
Nonetheless, we provide a human-in-the-loop avenue for controlling what semantically meaningful
information may get transferred.

Experimental details are provided in Sections 4 and 5 of the main paper and Appendix A.3. All
datasets are public. Code will be provided during the discussion phase through an anonymized link.

REFERENCES

Vijay Arya, Rachel KE Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C Hoff-
man, Stephanie Houde, Q Vera Liao, Ronny Luss, Aleksandra Mojsilović, et al. One expla-
nation does not fit all: A toolkit and taxonomy of ai explainability techniques. arXiv preprint
arXiv:1909.03012, 2019.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6541–6549, 2017.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and R Devon Hjelm. Mine: mutual information neural estimation. arXiv preprint
arXiv:1801.04062, 2018.

Pin-Yu Chen. Model reprogramming: Resource-efficient cross-domain machine learning. arXiv
preprint arXiv:2202.10629, 2022.

Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition.
Nature Machine Intelligence, 2(12):772–782, 2020.

Yu-An Chung, Hung-Yi Lee, and James Glass. Supervised and unsupervised transfer learning for
question answering. arXiv preprint arXiv:1711.05345, 2017.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp.
2921–2926. IEEE, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Amit Dhurandhar, Tejaswini Pedapati, Avinash Balakrishnan, Kartik Ahuja Pin-Yu Chen,
Karthikeyan Shanmugam, and Ruchir Puri. Model agnostic contrastive explanations for struc-
tured data. https://arxiv.org/abs/1906.00117, 2019.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Measuring and miti-
gating unintended bias in text classification. In Proceedings of the 2018 AAAI/ACM Conference
on AI, Ethics, and Society, pp. 67–73, 2018.
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