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ABSTRACT

We propose a game-based formulation for learning dimensionality-reducing rep-
resentations of feature vectors, when only a prior knowledge on future prediction
tasks is available. In this game, the first player chooses a representation, and then
the second player adversarially chooses a prediction task from a given class, rep-
resenting the prior knowledge. The first player aims to minimize, and the second
player to maximize, the regret: The minimal prediction loss using the represen-
tation, compared to the same loss using the original features. We consider the
canonical setting in which the representation, the response to predict and the pre-
dictors are all linear functions, and the loss function is the mean squared error.
We derive the theoretically optimal representation in pure strategies, which shows
the effectiveness of the prior knowledge, and the optimal regret in mixed strate-
gies, which shows the usefulness of randomizing the representation. For general
representation, prediction and loss functions, we propose an efficient algorithm to
optimize a randomized representation. The algorithm only requires the gradients
of the loss function, and is based on incrementally adding a representation rule to
a mixture of such rules.

1 INTRODUCTION

Commonly, data of unlabeled feature vectors {xi} ⊂ X is collected without a knowledge of the
specific downstream prediction task it will be used for. When a prediction task becomes of inter-
est, labels yi ∈ Y are also collected, and a learning algorithm is trained on {(xi,yi)}. Modern
sources, such as high-definition images or genomic sequences, have high dimensionality, and this
necessitates dimensionality-reduction, either for better generalization (Goodfellow et al., 2016), for
storage/communication savings (Tsitsiklis, 1989; Nguyen et al., 2009; Duchi et al., 2018), or for
interpretability (Schapire and Freund, 2012). The goal is thus to find a low-dimensional represen-
tation z = R(x) ∈ Rr, that preserves the relevant part of the features, without a full knowledge of
the downstream prediction task. In this paper, we propose a game-theoretic framework for this goal,
by assuming that the learner has prior knowledge on the class of downstream prediction tasks.

Unsupervised methods for dimensionality reduction, such as principal component analysis (PCA)
(Pearson, 1901; Jolliffe, 2005; Cunningham and Ghahramani, 2015; Johnstone and Paul, 2018), and
non-linear extensions such as kernel PCA (Schölkopf et al., 1998) and auto-encoders (AE) (Kramer,
1991; Hinton and Salakhutdinov, 2006; Lee et al., 2011; Goodfellow et al., 2016), aim that the rep-
resentation z will maximally preserve the variation in x, and thus ignore any prior knowledge on
future prediction tasks. This prior knowledge may indicate, e.g., that highly varying directions in
the feature space are, in fact, irrelevant for downstream prediction tasks. From the supervised learn-
ing perspective, the information bottleneck (IB) principle (Tishby et al., 2000; Chechik et al., 2003;
Slonim et al., 2006; Harremoës and Tishby, 2007) was used to postulate that efficient supervised
learning necessitates representations that are both low-complexity and relevant (Tishby and Za-
slavsky, 2015; Shwartz-Ziv and Tishby, 2017; Shwartz-Ziv, 2022; Achille and Soatto, 2018a;b) (see
Appendix A). To corroborate this claim, Dubois et al. (2020) proposed a game-theoretic formulation
(based on a notion of usable information, introduced by Xu et al. (2020)), in which Alice selects a
prediction problem of y given x, and then Bob selects the representation z. The pay-off is the min-
imal risk possible using this representation. Dubois et al. (2020) showed that ideal generalization is
obtained for representations that solve the resulting decodable IB problem.
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In this paper, we assume the learner collected unlabeled feature vectors, and has a prior knowledge
that the downstream prediction problem belongs to a class F of response functions. We propose
a game different from that of Dubois et al. (2020): First, the representation player chooses a rule
R to obtain z = R(x) ∈ Rr. Second, the response function player chooses y = f(x) where
f ∈ F is possibly random. The payoff for (R, f) is the regret: The minimal prediction loss of y
based on z compared to the minimal prediction loss based on x. The goal of the representation
player (resp. response function player) is to minimize (resp. maximize) the payoff, and the output
of this game is the saddle-point representation. Compared to Dubois et al. (2020), the representation
is chosen based only on the class of response functions, rather than a specific one. The minimax
regret measures the worst-case regret (over functions in F) of a learner that uses the saddle-point
representation. We derive the minimax representation both in pure strategies and in mixed strategies
(Owen, 2013). Mixed strategies use randomized representation rules, whose utilization is illustrated
as follows: Assume that routinely collected images are required to be compressed. There are two
compression (representation) methods. The first smoothens the images, and the second preserves
their edges; exclusively using the first method would hinder any possibility of making predictions
reliant on the image’s edges. This is prevented by randomly alternating the use of both methods.

The class F manifests the prior knowledge on the downstream prediction tasks that will use the
represented features, and may stem from domain specific considerations; imposed by privacy or
fairness constraints; or emerge from transfer or continual learning settings; see Appendix B for an
extended discussion. The resulting formulation encompasses an entire spectrum of possibilities: (1)
Supervised learning: F = {f} is a singleton, and thus known to the learner. (2) Multitask learn-
ing (Baxter, 2000; Maurer et al., 2016; Tripuraneni et al., 2020; 2021): F = {f1, f2, · · · , ft} is a
finite set of functions. (3) Prior expert knowledge: F represents a continuous, yet restricted set of
functions. For example, the response functions in F may be more sensitive to certain features than
others. (4) No supervision: F is the class of all possible response functions, which is essentially an
unsupervised learning problem, since no valuable information is known. We focus on the intermedi-
ate regimes of partial supervision, in which the learner should (and can) optimize its representation
to be jointly efficient for all tasks in F . In this respect, multitask learning (case 2) is a generalization
of supervised learning, since the learner can simulate the t functions in F . Prior knowledge (case 3)
is more similar to unsupervised learning, since the learner will not be able to efficiently do so.

Theoretical contribution We address the fundamental setting in which the representation, the re-
sponse, and the prediction are all linear functions, under the mean squared error (MSE) loss (Section
3). The class is FS = {∥f∥S≤ 1} for a known symmetric matrix S. Combined with the covari-
ance matrix of the features, they both determine the relevant directions of the function in the feature
space, in contrast to just the features variability, as in standard unsupervised learning. We establish
the optimal representation and regret in pure strategies, which shows the utility of the prior informa-
tion, and in mixed strategies, which shows that randomizing the representation yields strictly lower
regret. We prove that randomizing between merely ℓ∗ different representation rules suffices, where
r + 1 ≤ ℓ∗ ≤ d is a precisely characterized effective dimension.

Algorithmic contribution We develop an algorithm for optimizing mixed representations (Sec-
tion 4) for general representations/response/predictors and loss functions, based only on their gra-
dients. Similarly to boosting (Schapire and Freund, 2012), the algorithm operates incrementally.
At each iteration it finds the response function in F that is most poorly predicted by the current
mixture of representation rules. An additional representation rule is added to the mixture, based
on this function and the ones from previous iterations. The functions generated by the algorithm
can be considered a “self-defined signals”, similarly to self-supervised learning (Oord et al., 2018;
Shwartz-Ziv and LeCun, 2023). To optimize the weights of the representation, the algorithm solves
a two-player game using the classic multiplicative weights update (MWU) algorithm (Freund and
Schapire, 1999) (a follow-the-regularized-leader algorithm (Shalev-Shwartz, 2012; Hazan, 2016)).

Related work In Appendix A we discuss: The IB principle and compare the game of Dubois et al.
(2020) with ours; The generalization error bounds of Maurer et al. (2016); Tripuraneni et al. (2020)
for multi-task learning and learning-to-learn, and how our regret bound complements these results;
The use of randomization in representation learning, similarly to our mixed strategies solution; It-
erative algorithms for solving minimax games, and specifically the incremental algorithm approach
for learning mixture models (Schapire and Freund, 2012; Tolstikhin et al., 2017), which we adopt.
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2 PROBLEM FORMULATION

Notation conventions are mostly standard, and are detailed in Appendix C. Specifically, the eigen-
values of S ∈ Sd+ are denoted as λmax(S) ≡ λ1(S) ≥ · · · ≥ λd(S) = λmin(S) and vi(S) denotes
an eigenvector corresponding to λi(S) such that V = V (S) := [v1(S), v2(S), · · · , vd(S)] ∈ Rd×d

and S = V (S)Λ(S)V ⊤(S) is an eigenvalue decomposition. Wi:j := [wi, . . . , wj ] ∈ R(j−i+1)×d is
the matrix comprised of the columns of W ∈ Rd×d indexed by {i, . . . , j}. The probability law of a
random variable x is denoted as L(x).

Let x ∈ X be a random feature vector, with probability law Px := L(x). Let y ∈ Y be a corre-
sponding response drawn according to a probability kernel y ∼ f(· | x = x), where for brevity, we
will refer to f as the response function (which can be random). It is known that f ∈ F for some
given class F . Let z := R(x) ∈ Rr be an r-dimensional representation of x where R:X → Rr is
chosen from a class R of representation functions, and let Q:X → Y be a prediction rule from a
class QX , with the loss function loss:Y × Y → R+. The pointwise regret of (R, f) is

regret(R, f | Px) := min
Q∈QRr

E [loss(y, Q(R(x)))]− min
Q∈QX

E [loss(y, Q(x))] . (1)

The minimax regret in mixed strategies is the regret of the worst case response function in F to an
optimal random representation, given by

regretmix(R,F | Px) := min
L(R)∈P(R)

max
f∈F

E [regret(R, f | Px)] , (2)

where P(R) is a set of probability measures on the possible set of representations R. The minimax
regret in pure strategies restricts P(R) to degenerated measures (deterministic), and so the expec-
tation in (2) is removed. Our main goal is to determine the optimal representation strategy, either
in pure R∗ ∈ R or mixed strategies L(R∗) ∈ P(R). To this end, we will also utilize the maximin
version of (2). Specifically, let P(F) denote a set of probability measures supported on F , and
assume that for any R ∈ R, there exists a measure in P(R) that puts all its mass on R. Then, the
minimax theorem (Owen, 2013, Chapter 2.4) (Sion, 1958) implies that

regretmix(R,F | Px) = max
L(f)∈P(F)

min
R∈R

E [regret(R,f | Px)] . (3)

The right-hand side of (3) is the maximin regret in mixed strategies, and the maximizing prob-
ability law L(f∗) is known as the least favorable prior. In general, regretmix(R,F | Px) ≤
regretpure(R,F | Px), and the inequality can be strict. We focus on the representation aspect,
and thus assumed that Px is known and that sufficient labeled data will be provided to the learner
from the subsequent prediction task. We also note that, as common in game-theory, the mixed min-
imax regret is achieved for repeating representation games (Owen, 2013), which fits the scenario in
which routinely collected data is to be represented. By contrast, the pure minimax regret guarantee
is valid for a single representation, and thus more conservative from this aspect.

3 THE LINEAR SETTING UNDER MSE LOSS

In this section, we focus on linear classes and the MSE loss function. The response function class
F is characterized by a quadratic constraint specified by a matrix S ∈ Sd++, which represents the
relative importance of each direction in the feature space in determining y.
Definition 1 (The linear MSE setting). Assume that X = Rd, that Y = R and a squared error loss
function loss(y1, y2) = |y1 − y2|2. Assume that E[x] = 0 and let Σx := E[xxT ] ∈ Sd++ be its
invertible covariance matrix. The classes of representations, response functions, and predictors are
all linear, that is: (1) The representation is z = R(x) = R⊤x for R ∈ R := Rd×r where d > r; (2)
The response function is f ∈ F ⊂ Rd , and y = f⊤x + n ∈ R, where n ∈ R is a heteroscedastic
noise that satisfies E[n | x] = 0, and given some specified S ∈ Sd++, it holds that

f ∈ FS :=
{
f ∈ Rd: ∥f∥2S≤ 1

}
, (4)

where ∥f∥S := ∥S−1/2f∥2= (f⊤S−1f)1/2 is the Mahalanobis norm; (3) The predictor is Q(z) =
q⊤z ∈ R for q ∈ Rr. Since the regret will depend on Px only via Σx, we will abbreviate the
notation of the pure (resp. mixed) minimax regret to regretpure(F | Σx) (resp. regretmix(F | Σx)).
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In Appendix E.1 we show that standard PCA can be similarly formulated, by assuming that F
is a singleton containing the noiseless identity function, so that y = x surely holds, and x̂ =
Q(z) ∈ Rd. Proposition 15 therein shows that the pure and mixed minimax representations are both
R = V1:r(Σx), and so randomization is unnecessary. We begin with the pure minimax regret.
Theorem 2. For the linear MSE setting (Definition 1)

regretpure(FS | Σx) = λr+1

(
Σ1/2

x SΣ1/2
x

)
. (5)

A minimax representation matrix is

R∗ := Σ−1/2
x · V1:r

(
Σ1/2

x SΣ1/2
x

)
, (6)

and the worst case response function is

f∗ := S1/2 · vr+1

(
Σ1/2

x SΣ1/2
x

)
. (7)

The optimal representation thus whitens the feature vector x, and then projects it on the top r

eigenvectors of the adjusted covariance matrix Σ
1/2
x SΣ

1/2
x , which reflects the prior knowledge that

f ∈ FS . The proof in Appendix E.2 has the following outline: Plugging the optimal predictor
into the regret results a quadratic form in f ∈ Rd, determined by a matrix which depends on the
subspace spanned by the representation R. The worst-case f is the determined via the Rayleigh
quotient theorem, and the optimal R is found via the Courant–Fischer variational characterization
(see Appendix D for a summary of these results). We next consider the mixed minimax regret, which
turns out to be more involved:
Theorem 3. For the linear MSE setting (Definition 1), let λi ≡ λi(S

1/2ΣxS
1/2) for i ∈ [d] and

λd+1 ≡ 0, and let ℓ∗ be any member of{
ℓ ∈ [d]\[r]: (ℓ− r) · λ−1

ℓ ≤
ℓ∑

i=1

λ−1
i ≤ (ℓ− r) · λ−1

ℓ+1

}
. (8)

• The minimax regret in mixed strategies is

regretmix(FS | Σx) =
ℓ∗ − r∑ℓ∗

i=1 λ
−1
i

. (9)

• The covariance matrix of the least favorable prior of f is

Σ∗
f :=

V ⊤Λ−1
ℓ∗ V∑ℓ∗

i=1 λ
−1
i

. (10)

where Λℓ := diag(λ1, . . . , λℓ∗ , 0, · · · , 0), and V ≡ V (S1/2ΣxS
1/2).

• The probability law of the minimax representation: Let A ∈ {0, 1}ℓ
∗×(ℓ

∗
r ) be a matrix whose

columns are the members of the set A := {a ∈ {0, 1}ℓ∗ : ∥a∥1= ℓ∗ − r} (in some order). Let
b = (b1, . . . , bℓ∗)

⊤ be such that

bi = (ℓ∗ − r) · λ−1
i∑ℓ∗

j=1 λ
−1
j

. (11)

Then, there exists a solution p ∈ [0, 1](
ℓ∗
r ) toAp = b with support size at most ℓ∗+1. For j ∈ [

(
ℓ∗

r

)
],

let Ij := {i ∈ [ℓ∗]:Aij = 0} be the zero indices on the jth column of A, and let VIj denote the r
columns of V whose index is in Ij . A minimax representation is R∗ = Σ

−1/2
x VIj with probability

pj , for j ∈ [
(
ℓ∗

r

)
].

The proof of Theorem 3 is also in Appendix E.2, and is substantially more complicated than for
the pure regret. The reason is that directly maximizing over L(R) is challenging, and so we take a
two-step indirect approach. The outline is as follows: First, we solve the maximin problem (3), and
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find the least favorable prior L(f∗). Second, we propose a probability law for the representation
L(R), and show that its regret equals the maximin value, and thus also the minimax. With more
detail, in the first step, we show that the regret only depends on L(f) via Σf = E[ff⊤], and
we explicitly construct L(f) that is supported on FS and has this covariance matrix. This reduces
the problem from optimizing L(f) to optimizing Σf , whose solution (Lemma 17) results the least
favorable Σ∗

f , and then the maximin value. In the second step, we construct a representation that
achieves the maximin regret. Concretely, we construct representation matrices that use r of the ℓ∗

principal components of Σ1/2
x SΣ

1/2
x , where ℓ∗ > r. The defining property of ℓ∗ (8), established in

the maximin solution, is utilized to find proper weights on the
(
ℓ∗

r

)
possible representations, which

achieve the maximin solution, and thus also the minimax. The proof then uses Carathéodory’s
theorem (see Appendix D) to establish that the optimal {pj} is supported on at most ℓ∗+1 matrices,
much less than the potential support size of

(
ℓ∗

r

)
. We next make a few comments:

1. Computing the mixed minimax probability: This requires solving A
⊤
p = b for a probability

vector p. This is a linear-program feasibility problem, which is routinely solved (Bertsimas and
Tsitsiklis, 1997). For illustration, if r = 1 then pj = 1− (ℓ∗− 1)λ−1

j /(
∑ℓ∗

i=1 λ
−1
i ) for j ∈ [ℓ∗], and

if ℓ∗ = r+ 1 then pj = (λ−1
j )/(

∑ℓ∗

j′=1 λ
−1
j′ ) on the first ℓ∗ standard basis vectors. Nonetheless, the

dimension of p is
(
ℓ∗

r

)
and thus increases fast as Θ((ℓ∗)r), which is infeasible for high dimensions.

In this case, the algorithm of Section 4 can be used. As we empirically show it approximately
achieves the optimal regret, with slightly more than ℓ∗ + 1 atoms (see Example 6 henceforth).
2. The rank of Σ∗

f : The rank of the covariance matrix of the least favorable prior is an effective
dimension, satisfying (see (9))

ℓ∗ = argmax
ℓ∈[d]\[r]

1− (r/ℓ)
1
ℓ

∑ℓ
i=1 λ

−1
i

. (12)

By convention, {λ−1
i }i∈[d] is a monotonic non-decreasing sequence, and so is the partial Cesàro

mean ψ(ℓ) := 1
ℓ

∑ℓ
i=1 λ

−1
i . For example, if λi = i−α with α > 0 then ψ(ℓ) = Θ(ℓα). So, if, e.g.,

ψ(ℓ) = ℓα, then it is easily derived that ℓ∗ ≈ min{α+1
α r, d}. Hence, if α ≥ r

d−r is large enough and
the decay rate of {λi} is fast enough then ℓ∗ < d, but otherwise ℓ∗ = d. As the decay rate of {λi}
becomes faster, the rank of Σ∗

f decreases from d to r + 1. Importantly, ℓ∗ ≥ r + 1 always holds,
and so the optimal mixed representation is not deterministic even if S1/2ΣxS

1/2 has less than r
significant eigenvalues (which can be represented by a single matrix R ∈ Rd×r). Hence, the mixed
minimax regret is always strictly lower than the pure minimax regret. Thus, even when S = Id, and
no valuable prior knowledge is known on the response function, the mixed minimax representation
is different from the standard PCA solution of top r eigenvectors of Σx.
3. Uniqueness of the optimal representation: Since one can always post-multiply R⊤x by some
invertible matrix, and then pre-multiply z = R⊤x by its inverse, the following holds: If R and Q
are not further restricted, then if R is a minimax representation, and W (R) ∈ Rr×r is an invertible
matrix, then R ·W (R) is also a minimax representation.
4. Infinite-dimensional features: Theorems 2 and 3 assume a finite dimensional feature space. We
show in Appendix F that the results can be generalized to an infinite dimensional Hilbert space X ,
in the more restrictive setting that the noise n is statistically independent of x.
Example 4. Assume S = Id, and denote, for brevity, V ≡ V (Σx) := [v1, . . . , vd] and Λ ≡
Λ(Σx) := diag(λ1, . . . , λd). The optimal minimax representation in pure strategies (Theorem 2) is

R∗ = Σ−1/2
x · V1:r = V Λ−1/2

x V ⊤V1:r = V Λ−1/2
x · [e1, . . . , er] =

[
λ
−1/2
1 · v1, . . . , λ−1/2

r · vr
]
,

(13)

which is comprised of the top r eigenvectors of Σx, scaled so that v⊤i x has unit variance. By
Comment 3 above, V1:r is also an optimal minimax representation. The worst case response is
f = vr+1(Σx) and, as expected, since R uses the first r principal directions

regretpure(F | Σx) = λr+1. (14)
The minimax regret in mixed strategies (Theorem 3) is different, and given by

regretmix(F | Σx) =
ℓ∗ − r∑ℓ∗

i=1 λ
−1
i

, (15)

5



Published as a conference paper at ICLR 2024

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9
10

-3

30

35

40

45

50

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
10

-4

38

40

42

44

46

48

50

Figure 1: Left: Pure and mixed minimax regret and ℓ∗ for Example 4, for d = 50, r = 25, with
λi = σ2

i ∝ i−α. Right: Pure and mixed minimax regret and ℓ∗ for Example 5, for d = 50, r = 25,
with σ2

i ∝ i−α and si ∝ i2. The trend of ℓ∗ is reversed for α > 2.

where ℓ∗ is determined by the decay rate of the eigenvalues of Σx (see (8)). The least favorable
covariance matrix is given by (Theorem 3)

Σ∗
f =

[
ℓ∗∑
i=1

λ−1
i

]−1

· V diag
(
λ−1
1 , . . . , λ−1

ℓ∗ , 0, · · · , 0
)
· V ⊤. (16)

Intuitively, Σ∗
f equalizes the first ℓ∗ eigenvalues of ΣxΣ

∗
f (and nulls the other d − ℓ∗), to make the

representation indifferent to these ℓ∗ directions. As evident from the regret, the “equalization” of
the ith eigenvalue adds a term of λ−1

i to the denominator, and if λi is too small then vi is not chosen
for the representation. This agrees with Comment 2, which states that a fast decay of {λi} reduces
ℓ∗ away from d. A derivation similar to (13) shows that the mixed minimax representation sets

R∗ = Σ−1/2
x · VIj

=
[
λ
−1/2
ij,1

· vij,1 , . . . , λ
−1/2
ij,r

· vij,r
]

(17)

with probability pj , where Ij ≡ {ij,1, . . . , ij,r}. Thus, the optimal representation chooses a random
subset of r vectors from {v1, . . . , vℓ∗}. See the left panel of Figure 1 for a numerical example.
Example 5. To demonstrate the effect of prior knowledge on the response function, we assume
Σx = diag(σ2

1 , . . . , σ
2
d) and S = diag(s1, . . . , sd), where σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

d (but {si}i∈[d]

are not necessarily ordered). Letting f = (f1, . . . , fd), the class of response functions is FS :=

{f ∈ Rd:
∑d

i=1(f
2
i /si) ≤ 1}, and so coordinates i ∈ [d] with a large si have large influence on

the response. Let (i(1), . . . , i(d)) be a permutation of [d] so that σ2
i(j)si(j) it the jth largest value of

(σ2
i si)i∈[d]. The pure minimax regret is (Theorem 2)

regretpure(F | Σx) = σ2
ir+1

sir+1
. (18)

The optimal representation is R = [ei(1) , ei(2) , . . . , ei(r) ], that is, uses the most influential coordi-
nates, according to {si}, which may be different from the r principal directions of Σx. For the
minimax regret in mixed strategies, Theorem 3 results

regretmix(F | Σx) =
ℓ∗ − r∑ℓ∗

j=1(sijσ
2
ij
)−1

(19)

for ℓ∗ ∈ [d]\[r] satisfying (8), and the covariance matrix of the least favorable prior is given by

Σ∗
f =

∑ℓ∗

j=1 σ
−2
ij
· eije⊤ij∑ℓ∗

j=1(sijσ
2
ij
)−1

. (20)

That is, the matrix is diagonal, and the kth term on the diagonal is Σ∗
f (k, k) ∝ σ−2

k if k = ij for
some j ∈ [ℓ∗] and Σ∗

f (k, k) = 0 otherwise. As in Example 4, Σ∗
f equalizes the first ℓ∗ eigenvalues

of ΣxΣf (and nulls the other d− ℓ∗). However, it does so in a manner that chooses them according
to their influence on the response f⊤x. The minimax representation in mixed strategies is

R∗ =
[
σ−1
ij,1
· eij,1 , . . . , σ−1

ij,r
· eij,r

]
(21)

with probability pj . Again, the first ℓ∗ coordinates are used, and not just the top r. See the right
panel of Figure 1 for a numerical example. Naturally, in the non-diagonal case, the minimax regret
will also depend on the relative alignment between S and Σx.
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4 AN ALGORITHM FOR GENERAL CLASSES AND LOSS FUNCTIONS

In this section, we propose an iterative algorithm for optimizing the representation in mixed strate-
gies, i.e., solving (2) for general classes and loss functions. The algorithm will find a finite mixture
of m representations, and so we let R = R(j) ∈ R with probability p(j) for j ∈ [m] (this suffices
for the linear MSE setting of Section 3, but possibly sub-optimal in general). The main idea is to
incrementally add representations R(j) to the mixture. Loosely speaking, the algorithm is initialized
with a single representation rule R(1). Then, the response function in F which is most poorly pre-
dicted when x is represented by R(1)(x) is found. The added representation component R(2) aims
to allow for accurate prediction of this function. At the next iteration, the function in F which is
most poorly predicted by a mixed representation that randomly uses either R(1) or R(2) is found,
and R(3) is then optimized to reduce the regret for this function, and so on.

The actual algorithm is more complicated, since it also finds proper weights {p(j)}j∈[m] for the
representation rules, and also randomizes the response player. Thus we set f = f (i) ∈ F with
probability o(i) where i ∈ [m], and m = m0 + m for some m0 ≥ 0. The resulting optimization
problem then becomes

min
{p(j),R(j)∈R}

max
{o(i),f(i)∈F}

∑
j∈[m]

∑
i∈[m]

p(j) · o(i) · regret(R(j), f (i) | Px), (22)

where {p(j)}j∈[m] and {o(i)}i∈[m] are probability vectors. The ultimate goal of solving (22) is just
to extract the optimal randomized representation R, given by {(R(j), p(j))}j∈[m].

Henceforth, the index k ∈ [m] will denote the current number of representations. Initialization
requires a representation R(1), as well as a set of functions {f (i)}i∈m0

, so that the final support size
of f will be m = m0+m. Finding this initial representation and the set of functions is based on the
specific loss function and the set of representations/predictors (see Appendix G for examples). The
algorithm has two phases for each iteration. In the first phase, a new adversarial function is added
to the set of functions, as the worse function for the current random representation. In the second
phase, a new representation atom is added to the set of possible representations. This representation
is determined based on the given set of functions. Concretely, at iteration k:

• Phase 1 (Finding adversarial function): Given k representations {R(j)}j∈(k) with weights
{p(j)}j∈[k], the algorithm determines f (m0+k) as the worst function, by solving

regk := regretmix({R(j), p(j)}j∈[k],F | Px) := max
f∈F

∑
j∈[k]

p(j) · regret(R(j), f | Px), (23)

and f (m0+k) is set to be the maximizer. This simplifies (22) in the sense that m is replaced by k,
that the random representation R is kept fixed, and that f ∈ F is optimized as a pure strategy (the
previous functions {f (i)}i∈[m0+k−1] are ignored).

• Phase 2 (Adding a representation atom): Given fixed {f (j)}j∈[m0+k] and {R(j)}j∈[k], a new
representation R(k+1) is found as the most incrementally valuable representation atom, by solving

min
R(k+1)∈R

regretmix({R(j1)}, {f (j2)} | Px) :=

min
R(k+1)∈R

min
{p(j1)}

max
{o(j2)}

∑
j1

∑
j2

p(j1) · o(j2) · regret(R(j1), f (j2) | Px) (24)

where j1 ∈ [k + 1] and j2 ∈ [m0 + k], the solution R(k+1) is added to the representations, and
the weights are updated to the optimal {p(j1)}. Compared to (22), the response functions and first k
representations are kept fixed, and only the weights {p(j1)} {o(j2)} and R(k+1) are optimized.

The procedure is described in Algorithm 1, where, following the main loop,m∗ = argmink∈[m] regk

representation atoms are chosen and the output is {R(j), p(j)}j∈[m∗]. Algorithm 1 relies on solvers
for the Phase 1 (23) and Phase 2 (24) problems. In Appendix G we propose two algorithms for these
problems, which are based on gradient steps for updating the adversarial response (assuming F is
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a continuous class) and the new representation, and on the MWU algorithm (Freund and Schapire,
1999) for updating the weights. In short, the Phase 1 algorithm updates the response function f
via a projected gradient step of the expected loss, and then adjusts the predictors {Q(j)} to the
updated response function f and the current representations {R(j)}j∈[k]. The Phase 2 algorithm
only updates the new representation R(k+1) via projected gradient steps, while keeping {R(j)}j∈[k]

fixed. Given the representations {R(j)}j∈[k+1] and the functions {f (i)}i∈[m0+k], a predictor Q(j,i)

is then fitted to each representation-function pair, which also determines the loss for this pair. The
weights {p(j)}j∈[k+1] and {o(i)}i∈[m0+k] are updated towards the equilibrium of the two-player
game determined by the loss of the predictors {Q(j,i)}j∈[k+1],i∈[m0+k] via the MWU algorithm. In
a multi-task learning setting, in which the class F is finite, the Phase 1 solver can be replaced by a
performing a simple maximization over the functions.

Algorithm 1 Solver of (22): An iterative algorithm for learning mixed representations.
1: input Px,R,F ,Q, d, r,m,m0 ▷ Feature distribution, classes, dimensions and parameters
2: input R(1) , {f (j)}j∈[m0] ▷ Initial representation and initial function (set)
3: begin
4: for k = 1 to m do
5: phase 1: f (m0+k) is set by a solver of (23) and: ▷ Solved using Algorithm 2

regk ← regretmix({R(j), p(j)}j∈[k],F | Px) (25)

6: phase 2: R(k+1), {p(j)k }j∈[k+1] is set by a solver of (24) ▷ Solved using Algorithm 3
7: end for
8: set m∗ = argmink∈[m] regk
9: return {R(j)}j∈[m∗] and pm∗ = {p(j)k }j∈[m∗]

Since Algorithm 1 aims to solve a non convex-concave minimax game, deriving theoretical bounds
on its convergence seems to be elusive at this point (see Appendix A for a discussion). We next
describe a few experiments with the algorithm (See Appendix H for details).
Example 6. We validated Algorithm 1 in the linear MSE setting (Section 3), for which a closed-
form solution exists. We ran Algorithm 1 on randomly drawn diagonal Σx, and computed the ratio
between the regret obtained by the algorithm to the theoretical value. The left panel of Figure 2
shows that the ratio is between 1.15 − 1.2 in a wide range of d values. Algorithm 1 is also useful
for this setting since finding an (ℓ∗ +1)-sparse solution to Ap = b is computationally difficult when(
ℓ∗

r

)
is very large (e.g., in the largest dimension of the experiment

(
d
r

)
=
(
19
5

)
= 11, 628).

Our next example pertains to a logistic regression setting, under the cross-entropy loss function.
Definition 7 (The linear cross-entropy setting). Assume that X = Rd, that Y = {±1} and that
E[x] = 0. Assume that the class of representation is linear z = R(x) = R⊤x for some R ∈ R :=
Rd×r where d > r. Assume that a response function and a prediction rule determine the probability
that y = 1 via logistic regression modeling, as f(y = ±1 | x) = 1/[1 + exp(∓f⊤x)]. Assume
the cross-entropy loss function, where given that the prediction that y = 1 with probability q results
the loss loss(y, q) := − 1

2 (1 + y) log q − 1
2 (1− y) log(1 − q). The set of predictor functions is

Q :=
{
Q(z) = 1/[1 + exp(−q⊤z)], q ∈ Rr

}
. As for the linear case, we assume that f ∈ FS for

some S ∈ Sd++. The regret is then given by the expected binary Kullback-Leibler (KL) divergence

regret(R, f | Px) = min
q∈Rr

E
[
DKL

(
[1 + exp(−f⊤x)]−1 || [1 + exp(−q⊤R⊤x)]−1

)]
. (26)

Example 8. We drawn empirical distributions of features from an isotropic normal distribution,
in the linear cross-entropy setting. We ran Algorithm 1 using the closed-form regret gradients from
Appendix H. The right panel of Figure 2 shows the reduced regret obtained by increasing the support
size m of the random representation, and thus the effectiveness of mixed representations.

The last example compares the optimized representation with that of PCA.
Example 9 (Comparison with PCA for multi-label classification). We constructed a dataset of im-
ages, each containing 4 shapes randomly selected from a dictionary of 6 shapes. The class F is

8
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Figure 2: Results of Algorithm 1. Left: r = 5, varying d. The ratio between the regret achieved by
Algorithm 1 and the theoretical regret in the linear MSE setting. Right: r = 3, varying d. The regret
achieved by Algorithm 1 in the linear cross-entropy setting, various m.

Figure 3: Results on the dataset of images. Comparison between optimized minimax representation
(simplified version of Algorithm 1) vs. PCA. Worst-case function in blue, and average-case function
in orange. Left: Cross entropy loss. Right: Accuracy.

finite and contains the t = 6 binary classification functions given by indicators for each shape. The
representation is linear and the predictor is based on logistic regression. In this setting, Algorithm 1
can be simplified; See Appendix H.3 for details (specifically Definition 23 of the setting and Figure
6 for an image example). We ran the simplified version of Algorithm 1 on a dataset of 1000 images,
and compared the cross-entropy loss and the accuracy of optimized representation to that of PCA on
a fresh dataset of 1000 images. The results in Figure 3 show that the regret of PCA is much larger,
not only for the worse-case function but also for the average-case function. For example, using the
representation obtained by the algorithm with r = 3 < t = 6 is as good as PCA with at least r = 12.

5 CONCLUSION

We proposed a game-theoretic formulation for learning feature representations when prior knowl-
edge on the class of downstream prediction tasks is available. Interestingly, our formulation links
between the problem of finding jointly efficient representations for multiple prediction tasks, and
the problem of finding saddle points of non-convex/non-concave games. The latter is a challeng-
ing problem and is under active research (see Appendix A). So, any advances in that domain can
be translated to improve representation learning. Similarly to our problem, foundation models also
adapt to wide range of downstream prediction tasks, however, efficient learning is achieved therein
without explicit prior knowledge on the class of downstream tasks, albeit using fine-tuning. It is
interesting to incorporate minimax formulations into the training procedure of foundation models,
or to explain them using similar game formulations.

For future research it would be interesting: (1) To generalize the class FS = {f : ∥f∥S≤ 1} used for
linear functions to the class FSx

:= E[∥∇xf(x)∥2Sx
] ≤ 1 for non-linear functions, where {Sx}x∈Rd

is now locally specified (somewhat similarly to the regularization term used in contractive AE (Rifai
et al., 2011), though for different reasons). (2) To efficiently learn S from previous experience, e.g.,
improving S from one episode to another in a meta-learning setup (Hospedales et al., 2021). (3) To
evaluate the effectiveness of the learned representation in our formulation, as an initialization for fur-
ther optimization when labeled data is collected. One may postulate that our learned representation
may serve as a universal initialization for such training.
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ETHICS STATEMENT

The research described in this paper is foundational, and does not aim for any specific application.
Nonetheless, the learned representation is based on a prior assumption on the class of response func-
tions, and the choice of this prior may have positive or negative impacts: For example, a risk of this
choice of prior is that the represented features completely ignore a viable feature for making down-
stream predictions. A benefit that can stem from choosing a proper prior is that the representation
will null the effect of features that lead to unfair advantages for some particular group in downstream
predictions. Anyhow, the results presented in the paper are indifferent to such future utilization, and
any usage of these results should take into account the aforementioned possible implications.

REPRODUCIBILITY STATEMENT

For the theoretical statements, full proofs appear in Appendices E and F. In order to ease the reader,
a summary of the main mathematical results used appears in Appendix D. For the experimental re-
sults, a detailed description of the algorithm and experiments appears in Appendix H. This descrip-
tion includes an accurate description of the Phase 1 and 2 solvers, initialization methods, explicit
formulas for the gradients used, algorithm parameters, details on the generation of the dataset, and
implementations details. The code for the experiments is available at this link.
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The outline of the supplementary material is as follows. In Appendix A, we review additional related
work. In Appendix B, we discuss in detail the origin of prior knowledge of classes of prediction
problems. In Appendix C, we set our notation conventions. In Appendix D, we summarize a few
mathematical results that are used in later proofs. In Appendix E, we show that PCA can be cast as a
degenerate setting of our formulation, and provide the proofs of the main theorems in the paper (the
linear MSE setting). In Appendix F, we generalize these results to an infinite dimensional Hilbert
space. In Appendix G, we provide two algorithms for solving the Phase 1 and Phase 2 problems
in Algorithm 1. In Appendix H, we provide details on the examples for the experiments with the
iterative algorithm, and additional experiments.

A ADDITIONAL RELATED WORK

The information bottleneck principle The IB principle is a prominent approach to feature rel-
evance in the design of representations (Tishby et al., 2000; Chechik et al., 2003; Slonim et al.,
2006; Harremoës and Tishby, 2007), and proposes to optimize the representation in order to maxi-
mize its relevance to the response y. Letting I(z;y) and I(x; z) denote the corresponding mutual
information terms (Cover and Thomas, 2006), the IB principle aims to maximize the former while
constraining the latter from above, and this is typically achieved via a Lagrangian formulation (Boyd
et al., 2004). The resulting representation, however, is tailored to the joint distribution of (x,y), i.e.,
to a specific prediction task. In practice, this is achieved using a labeled dataset (generalization
bounds were derived by Shamir et al. (2010)). As in our mixed representation approach, the use of
randomized representation dictated by a probability kernel z ∼ f(· | x = x) is inherent to the IB
principle.

A general observation made from exploring deep neural networks (DNNs) (Goodfellow et al., 2016)
used for classification, is that practically good predictors in fact first learn an efficient representation
z of the features, and then just train a simple predictor from z to the response y = f(x). This is
claimed to be quantified by the IB where low mutual information I(x; z) indicates an efficient rep-
resentation, and high mutual information I(z;y) indicates that the representation allows for efficient
prediction. This idea has been further developed using the IB principle, by hypothesizing that mod-
ern prediction algorithms must intrinsically include learning an efficient representation (Tishby and
Zaslavsky, 2015; Shwartz-Ziv and Tishby, 2017; Shwartz-Ziv, 2022; Achille and Soatto, 2018a;b)
(this spurred a debate, see, e.g., (Saxe et al., 2019; Geiger, 2021)).

However, this approach is inadequate in our setting, since the prediction task is not completely spec-
ified to the learner, and in the IB formulation the optimal representation depends on the response
variable (so that labeled data should be provided to the learner). In addition, as explained by Dubois
et al. (2020), while the resulting IB solution provides a fundamental limit for the problem, it also
suffers from multiple theoretical and practical issues. The first main issue is that the mutual infor-
mation terms are inherently difficult to estimate from finite samples (Shamir et al., 2010; Nguyen
et al., 2010; Poole et al., 2018; Wu et al., 2020; McAllester and Stratos, 2020), especially at high di-
mensions, and thus require resorting to approximations, e.g., variational bounds (Chalk et al., 2016;
Alemi et al., 2016; Belghazi et al., 2018; Razeghi et al., 2022). The resulting generalization bounds
(Shamir et al., 2010; Vera et al., 2018) are still vacuous for modern settings (Rodriguez Galvez,
2019). The second main issue is that the IB formulation does not constrain the complexity of the
representation and the prediction rule, which can be arbitrarily complex. These issues were ad-
dressed by Dubois et al. (2020) using the notion of usable information, previously introduced by Xu
et al. (2020): The standard mutual information I(z;y) can be described as the log-loss difference
between a predictor for z which does not use or does use y (or vice-versa, since mutual infor-
mation is symmetric). Usable information, or F-information IF (z → y), restricts the predictor
to a class F , which is computationally constrained. Several desirable properties were established
in Xu et al. (2020) for the F-information, e.g., probably approximate correct (PAC) bounds via
Rademacher-complexity based bounds (Bartlett and Mendelson, 2002) (Wainwright, 2019, Chapter
5)(Shalev-Shwartz and Ben-David, 2014, Chapters 26-28).

Dubois et al. (2020) used the notion of F-information to define the decodable IB problem, with
the goal of assessing the generalization capabilities of this IB problem, and shedding light on the
necessity of efficient representation for generalization. To this end, a game was proposed, in which
the data available to the learner are feature-response pairs (x,y) (in our notation y = f(x)). In
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the game proposed by Dubois et al. (2020), Alice chooses a prediction problem f(·), i.e., a feature-
response pair (x;y), and Bob chooses a representation z = R(x). For comparison, in this paper,
we assume that the learner is given features x and a class F of prediction problems. We ask how
to choose the representation R if it is only known that the response function Y = f(X) can be
chosen adversarially from F . In our formulated game, the order of plays is thus different. First, the
representation player chooses R, and then the adversarial function player chooses f ∈ F . Beyond
those works, the IB framework has drawn a significant recent attention, and a remarkable number of
extensions and ramifications have been proposed (Sridharan and Kakade, 2008; Amjad and Geiger,
2019; Kolchinsky et al., 2019; Strouse and Schwab, 2019; Pensia et al., 2020; Asoodeh and Calmon,
2020; Ngampruetikorn and Schwab, 2021; Yu et al., 2021; Ngampruetikorn and Schwab, 2022;
Gündüz et al., 2022; Razeghi et al., 2022; Ngampruetikorn and Schwab, 2023). An IB framework
for self-supervised learning was recently discussed in (Ngampruetikorn et al., 2020).

Multitask learning and learning-to-learn In the problem of multitask learning and learning-to-
learn (Baxter, 2000; Argyriou et al., 2006; Maurer et al., 2016; Du et al., 2020; Tripuraneni et al.,
2020; 2021), the goal of the learner is to jointly learn multiple downstream prediction tasks. The
underlying implicit assumption is that the tasks are similar in some way, specifically, that they share a
common low dimensional representation. In the notation of this paper, a class F = {f1, f2, · · · , ft}
of t prediction task is given, and a predictor from R:Rd → Y is decomposed as Qi(R(x)), where
the representation z = R(x) ∈ Rr is common to all tasks. The learner is given a dataset for each
of the tasks, and its goal is to learn the common representation, as well as the t individual predictors
in the multitask setting. In the learning-to-learn setting, the learner will be presented with a new
prediction tasks, and so only the representation is retained.

Maurer et al. (2016) assumed that the representation is chosen from a classR and the predictors from
a classQ (in our notation), and generalization bounds on the average excess risk for an empirical risk
minimization (ERM) learning algorithm were derived, highlighting the different complexity mea-
sures associated with the problem. In the context of learning-to-learn, the bound in (Maurer et al.,
2016, Theorem 2) scales as O(1/

√
t) + O(1/

√
m), where m is the number of samples provided

to the learner from the new task. In practice, it is often the case that learning-to-learn is efficient
even for small t, which implies that this bound is loose. It was then improved by Tripuraneni et al.
(2020), whose main statement is that a proper notion of task diversity is crucial for generalization.
They then proposed an explicit notion of task diversity, controlled by a term ν and obtained a bound

of the form Õ( 1ν

(√
C(R)+tC(Q)

nt +
√

C(Q)
m

)
) (in our notation), where C(R) and C(Q) are com-

plexity measures for the representation class and the prediction class. For comparison, in this paper
we focus on finding the optimal representation, either theoretically (in the fundamental linear MSE
setting) or algorithmically, rather than relying on a generic ERM. To this end we side-step the gen-
eralization error, and so the regret we define can be thought of as an approximation error. One
direct consequence of this difference is that in our case task diversity (rich F) leads to a large regret,
whereas in (Tripuraneni et al., 2020) task diversity leads to low generalization bound. From this
aspect, our results complement those of Tripuraneni et al. (2020) to the non-realizable case (that is,
when the prediction tasks cannot be decomposed as a composition f(x) = Q(R(x)).

Randomization in representation learning Randomization is classically used in data represen-
tation, most notably, utilizing the seminal Johnson-Lindenstrauss Lemma Johnson (1984) or more
generally, sketching algorithms (e.g., (Vempala, 2005; Mahoney et al., 2011; Woodruff et al., 2014;
Yang et al., 2021)). Our use of randomization is different and is inspired by the classical Nash equi-
librium (Nash Jr, 1950). Rather than using a single deterministic representation that was randomly
chosen, we consider randomizing multiple representation rules. Such randomization is commonly
used in the face of future uncertainty, which in our setting is the downstream prediction task.

Game-theoretic formulations in statistics and machine-learning The use of game-theoretic for-
mulations in statistics, between a player choosing a prediction algorithm and an adversary choosing
a prediction problem (typically Nature), was established by Wald (1939) in his classical statistical
decision theory (see, e.g., (Wasserman, 2004, Chapter 12)). It is a common approach both in classic
statistics and learning theory (Yang and Barron, 1999; Grünwald and Dawid, 2004; Haussler and
Opper, 1997; Farnia and Tse, 2016), as well as in modern high-dimensional statistics (Wainwright,
2019). The effect of the representation (quantizer) on the consistency of learning algorithms when
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a surrogate convex loss function replaces the loss function of interest was studied in (Nguyen et al.,
2009; Duchi et al., 2018; Grünwald and Dawid, 2004) (for binary and multiclass classification, re-
spectively). A relation between information loss and minimal error probability was recently derived
by Silva and Tobar (2022).

Iterative algorithms for the solution of minimax games have drawn much attention in the last few
years due to their importance in optimizing generative adversarial networks (GANs) (Goodfellow
et al., 2020; Creswell et al., 2018), adversarial training (Madry et al., 2017), and robust optimization
(Ben-Tal et al., 2009). The notion of convergence is rather delicate, even for the basic convex-
concave two-player setting (Salimans et al., 2016). While the value output by the MWU algorithm
(Freund and Schapire, 1999), or improved versions (Daskalakis et al., 2011; Rakhlin and Sridharan,
2013) converges to a no-regret solution, the actual strategies used by the players are, in fact, repelled
away from the equilibrium point to the boundary of the probability simplex (Bailey and Piliouras,
2018). For general games, the gradient descent ascent (GDA) is a natural and practical choice, yet
despite recent advances, its theory is still partial (Zhang et al., 2022). Various other algorithms have
been proposed, e.g., (Schäfer and Anandkumar, 2019; Mescheder et al., 2017; Letcher et al., 2019;
Gidel et al., 2019; Zhang and Wang, 2021).

Incremental learning of mixture models Our proposed Algorithm 1 operates iteratively, and
each main iteration adds a representation rule as a new component to the existing mixture of rep-
resentation rules. More broadly, the efficiency of algorithms that follow this idea is based on two
principles: (i) A powerful model can be obtained from a mixture of a few weak models; (ii) Mix-
ture models can be efficiently learned by a gradual addition of components to the mixture, if the
new component aims to address the most challenging problem instance. As a classic example, this
idea is instantiated by the boosting method (Schapire and Freund, 2012) for classification, and was
adapted for generative models by Tolstikhin et al. (2017) for GANs. In boosting, the final classifier
is a mixture of simpler classifiers. Large weights are put on data points which are wrongly classified
with the current mixture of classifiers, and the new component (classifier) is trained to cope with
these samples. In GANs, the generated distribution is a mixture is of generative models. Large
weights are put on examples which are easily discerned by the discriminator of the true and gen-
erated distributions, and the new component (generative distribution) optimizes the GAN objective
on this weighted data. In our setting, the final representation is a mixture of representation rules.
Weights are put on adversarial functions that cannot be accurately predicted with the current repre-
sentation matrices. The new representation component aims to allow for accurate prediction of these
functions. Overall, the common intuitive idea is very natural: The learning algorithm sees what is
most lacking in the current mixture, and adds a new component that directly aims to minimize this
shortage. We refer the reader to (Tolstikhin et al., 2017) for a more in-depth exposition of this idea.
As mentioned by Tolstikhin et al. (2017), this idea dates back to the use of boosting for density
estimation (Welling et al., 2002).

Unsupervised pretraining From a broader perspective, our method is essentially an unsupervised
pretraining method, similar to the methods which currently enable the recent success in natural
language processing. Our model is much simplified compared to transformer architecture (Vaswani
et al., 2017), but the unsupervised training aspect used for prediction tasks (Devlin et al., 2018)
is common, and our results may shed light on these methods. For example, putting more weight
on some words compared to others during training phase that uses the masked-token prediction
objective.

B CLASSES OF RESPONSE FUNCTIONS

Our approach to optimal representation is based on the assumption that a class F of downstream
prediction tasks is known. This assumption may represent prior knowledge or constraints on the
response function, and can stem from various considerations. To begin, it might be hypothesized
that some features are less relevant than others. As a simple intuitive example, the outer pixels in
images are typically less relevant to the classification of photographed objects, regardless of their
variability (which may stem from other effects, such as lighting conditions). Similarly, non-coding
regions of the genotype are irrelevant for predicting phenotype. The prior knowledge may encode
softer variations in relevance. Moreover, such prior assumption may be imposed on the learned
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function, e.g., it may be assumed that the response function respects the privacy of some features, or
only weakly depends on features which provide an unfair advantage. In domain adaptation (Mansour
et al., 2009), one may solve the prediction problem for feature distribution Px obtaining a optimal
response function f1. Then, after a change of input distribution toQx, the response function learned
for this feature distribution f2 may be assumed to belong to functions which are “compatible” with
f1. For example, if Px and Qx are supported on different subsets of Rd, the learned response
function f1(x) and f2(x) may be assumed to satisfy some type of continuity assumptions. Similar
assumptions may hold for the more general setting of transfer learning (Ben-David et al., 2010).
Furthermore, such assumptions may hold in a continual learning setting (Zenke et al., 2017; Nguyen
et al., 2017; Van de Ven and Tolias, 2019; Aljundi et al., 2019), in which a sequence of response
functions is learned one task at a time. Assuming that catastrophic forgetting is aimed to be avoided,
then starting from the second task, the choice of representation may assume that the learned response
function is accurate for all previously learned tasks.

C NOTATION CONVENTIONS

For an integer d, [d] := {1, 2, . . . , d}. For p ≥ 1, ∥x∥p:= (
∑d

i=1|xi|p)1/p is the ℓp norm of
x ∈ Rd. The Frobenius norm of the matrix A is denoted by ∥A∥F=

√
Tr[ATA] . The non-

negative (resp. positive) definite cone of symmetric matrices is given by Sd+ (resp. Sd++). For a
given positive-definite matrix S ∈ Sd++, the Mahalanobis norm of x ∈ Rd is given by ∥x∥S :=
∥S−1/2x∥2= (x⊤S−1x)1/2, where S1/2 is the symmetric square root of S. The matrix W :=
[w1, . . . , wr] ∈ Rd×r is comprised from the column vectors {wi}i∈[r] ⊂ Rd. For a real symmetric
matrix S ∈ Sd, λi(S) is the ith largest eigenvalue, so that λmax(S) ≡ λ1(S) ≥ λ2(S) ≥ · · · ≥
λd(S) = λmin(S), and in accordance, vi(S) denote an eigenvector corresponding to λi(S) (these
are unique if there are no two equal eigenvalues, and otherwise arbitrarily chosen, while satisfying
orthogonality v⊤i vj = ⟨vi, vj⟩ = δij). Similarly, Λ(S) := diag(λ1(S), λ2(S), · · · , λd(S)) and
V (S) := [v1(S), v2(S), · · · , vd(S)], so that S = V (S)Λ(S)V ⊤(S) is an eigenvalue decomposition.
For j ≥ i, Vi:j := [vi, . . . , vj ] ∈ R(j−i+1)×d is the matrix comprised of the columns indexed by
{i, . . . , j}. The vector ei ∈ Rd is the ith standard basis vector, that is, ei := [0, . . . 0︸ ︷︷ ︸

i−1 terms

, 1, 0, . . . 0︸ ︷︷ ︸
d−i terms

]⊤.

Random quantities (scalars, vectors, matrices, etc.) are denoted by boldface letters. For example,
x ∈ Rd is a random vector that takes values x ∈ Rd and R ∈ Rd×r is a random matrix. The
probability law of a random element x is denoted by L(x). The probability of the event E in some
given probability space is denoted by P[E ] (typically understood from context). The expectation
operator is denoted by E[·]. The indicator function is denoted by 1{·}, and the Kronecker delta is
denoted by δij := 1{i = j}. We do not make a distinction between minimum and infimum (or
maximum and supremum) as arbitrarily accurate approximation is sufficient for the description of
the results in this paper. The binary KL divergence between p1, p2 ∈ (0, 1) is denoted as

DKL(p1 || p2) := p1 log
p1
p2

+ (1− p1) log
1− p1
1− p2

. (27)

D USEFUL MATHEMATICAL RESULTS

In this section we provide several simplified versions of mathematical results that are used in the
proofs. The following well-known result is about the optimal low-rank approximation of a given
matrix:
Theorem 10 (Eckart-Young-Mirsky (Wainwright, 2019, Example 8.1) (Vershynin, 2018, Section
4.1.4)). For a symmetric matrix S ∈ Sd

∥Sk − S∥F ≤ min
S′∈Sd:rank(S′)≤k

∥S − S′∥F (28)

where
Sk =

∑
i∈[k]

λi(S) · vi(S)v⊤i (S) (29)

(more generally, this is true for any unitarily invariant norm).
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We next review a simplified version of variational characterizations of eigenvalues of symmetric
matrices:
Theorem 11 (Rayleigh quotient (Horn and Johnson, 2012, Theorem 4.2.2)). For a symmetric matrix
S ∈ Sd

λ1(S) = max
x ̸=0

x⊤Sx

∥x∥22
. (30)

Theorem 12 (Courant–Fisher variational characterization (Horn and Johnson, 2012, Theorem
4.2.6)). For a symmetric matrix S ∈ Sd, k ∈ [d], and a subspace T of Rd

λk(S) = min
T :dim(T )=k

max
x∈T\{0}

x⊤Sx

∥x∥22
= max

T :dim(T )=d−k+1
min

x∈T\{0}

x⊤Sx

∥x∥22
. (31)

Theorem 13 (Fan’s variational characterization (Horn and Johnson, 2012, Corollary 4.3.39.)). For
a symmetric matrix S ∈ Sd and k ∈ [d]

λ1(S) + · · ·+ λk(S) = min
U∈Rd×k:U⊤U=Ik

Tr[U⊤SU ] (32)

and
λd−k+1(S) + · · ·+ λd(S) = max

U∈Rd×k:U⊤U=Ik
Tr[U⊤SU ]. (33)

We will use the following celebrated result from convex analysis.
Theorem 14 (Carathéodory’s theorem (Bertsekas et al., 2003, Prop. 1.3.1)). Let A ⊂ Rd be non-
empty. Then, any point a in the convex hull of A can be written as a convex combination of at most
d+ 1 points from A.

E THE LINEAR MSE SETTING: ADDITIONS AND PROOFS

E.1 THE STANDARD PRINCIPAL COMPONENT SETTING

In order to highlight the formulation proposed in this paper, we show, as a starting point, that the
well known PCA solution of representing x ∈ Rd with the top r eigenvectors of the covariance
matrix of x can be obtained as a specific case of the regret formulation. In this setting, we take
F = {Id}, and so y = x with probability 1. In addition, the predictor class Q is a linear function
from the representation dimension r back to the features dimension d.
Proposition 15. Consider the linear MSE setting, with the difference that the response is y ∈ Rd,
the loss function is the squared Euclidean norm loss(y1, y2) = ∥y1 − y2∥2, and the predictor is
Q(z) = Q⊤z ∈ Rd for Q ∈ Rr×d. Assume F = {Id} so that y = x with probability 1. Then,

regretpure(F | Σx) = regretmix(F | Σx) =

d∑
i=r+1

λi(Σx), (34)

and an optimal representation is R = V1:r(Σx).

The result of Proposition 15 verifies that the minimax and maximin formulations indeed generalize
the standard PCA formulation. The proof is standard and follows from the Eckart-Young-Mirsky
theorem, which determines the best rank r approximation in the Frobenius norm.

Proof of Proposition 15. Since F = {Id} is a singleton, there is no distinction between pure and
mixed minimax regret. It holds that

regret(R, f) = E
[
∥x−Q⊤R⊤x∥2

]
(35)

where A = Q⊤R⊤ ∈ Rd×d is a rank r matrix. For any A ∈ Rd×d

E
[
∥x−Ax∥2

]
= E

[
x⊤x− x⊤Ax− x⊤A⊤x+ x⊤A⊤Ax

]
(36)

= Tr
[
Σx −AΣx −A⊤Σx +A⊤AΣx

]
(37)

=
∥∥∥Σ1/2

x − Σ1/2
x A

∥∥∥2
F

(38)
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=
∥∥∥Σ1/2

x −B
∥∥∥2
F
, (39)

where B := Σ
1/2
x A. By the classic Eckart-Young-Mirsky theorem (Wainwright, 2019, Example 8.1)

(Vershynin, 2018, Section 4.1.4) (see Appendix D), the best rank r approximation in the Frobenius
norm is obtained by setting

B∗ =

r∑
i=1

λi(Σ
1/2
x ) · viv⊤i =

r∑
i=1

√
λi(Σx) · viv⊤i (40)

where vi ≡ vi(Σ1/2
x ) = vi(Σx) is the ith eigenvector of Σ1/2

x (or Σx). Then, the optimal A is

A∗ =

r∑
i=1

√
λi(Σx) · Σ−1/2

x viv
⊤
i =

r∑
i=1

√
λi(Σx) · Σ−1/2

x viv
⊤
i =

r∑
i=1

viv
⊤
i , (41)

since vi is also an eigenvector of Σ
−1/2
x . Letting R = U(R)Σ(R)V ⊤(R) and Q =

U(Q)Σ(Q)V ⊤(Q) be the singular value decomposition of R and Q, respectively, it holds that

Q⊤R⊤ = V (Q)Σ⊤(Q)V (Q)V (R)Σ⊤(R)U⊤(R). (42)

Setting V (Q) = V (R) = Ir, and Σ⊤(Q) = Σ(R) ∈ Rd×r to have r ones on the diagonal (and all
other entries are zero), as well as U(Q) = U(R) to be an orthogonal matrix whose first r columns
are {vi}i∈[r] results that Q⊤R⊤ = A∗, as required.

E.2 PROOFS OF PURE AND MIXED MINIMAX REPRESENTATIONS

Before the proof of Theorem 2, we state a simple and useful lemma, which provides the pointwise
value of the regret and the optimal linear predictor for a given representation and response.
Lemma 16. Consider the representation z = R⊤x ∈ Rr. It then holds that

regret(R, f | Px) = min
q∈Rr

E
[(
f⊤x+ n− q⊤z

)2]
(43)

= E
[
E[n2 | x]

]
+ f⊤

(
Σx − ΣxR(R

⊤ΣxR)
−1R⊤Σx

)
f. (44)

Proof. The orthogonality principle states that

E
[(
f⊤x+ n− q⊤z

)
· z⊤] = 0 (45)

must hold for the optimal linear estimator. Using z = R⊤x and taking expectations leads to the
ordinary least-squares (OLS) solution

qLS = (R⊤ΣxR)
−1RTΣxf, (46)

assuming that R⊤ΣxR is invertible (which we indeed assume as if this is not the case, the represen-
tation can be reduced to a dimension lower than r in a lossless manner). The resulting regret of R is
thus given by

regret(R, f | Px) = E
[(
f⊤x+ n− q⊤LSz

)2]
(47)

(a)
= E

[(
f⊤x+ n

)⊤ (
f⊤x+ n− q⊤LSz

)]
(48)

= E
[(
f⊤x+ n

)2 − (f⊤x+ n
)⊤
q⊤LSz

]
(49)

(b)
= E

[
E[n2 | x]

]
+ f⊤Σxf − E

[
x⊤fq⊤LSR

⊤x
]

(50)

= E
[
E[n2 | x]

]
+ f⊤Σxf − Tr

[
fq⊤LSR

⊤Σx

]
(51)

= E
[
E[n2 | x]

]
+ f⊤Σxf − q⊤LSR

⊤Σxf (52)
(c)
= E

[
E[n2 | x]

]
+ f⊤

(
Σx − ΣxR(R

⊤ΣxR)
−1R⊤Σx

)
f, (53)

where (a) follows from the orthogonality principle in (45), (b) follows from the tower property of
conditional expectation and since E[xn] = E[x · E[n | x]] = 0, and (c) follows by substituting qLS
from (46).

21



Published as a conference paper at ICLR 2024

We may now prove Theorem 2.

Proof of Theorem 2. For any given f , the optimal predictor based on x ∈ Rd achieves average loss
of

regret(R = Id, f | Px) = min
q∈Rd

E
[(
f⊤x+ n− q⊤x

)2]
= E

[
E[n2 | x]

]
(54)

(obtained by setting R = Id in Lemma 16 so that z = x). Hence, the resulting regret of R over an
adversarial choice of f ∈ FS is

max
f∈FS

regret(R, f) =max
f∈F

E
[∣∣f⊤x+ n− q⊤LSz

∣∣2]− E
[
E[n2 | x]

]
(a)
= max

f∈FS

f⊤
(
Σx − ΣxR(R

⊤ΣxR)
−1R⊤Σx

)
f (55)

(b)
= max

f̃ :∥f̃∥2
2≤1

f̃⊤
(
S1/2ΣxS

1/2 − S1/2ΣxR(R
⊤ΣxR)

−1R⊤ΣxS
1/2
)
f̃

(56)
(c)
= λ1

(
S1/2ΣxS

1/2 − S1/2ΣxR(R
⊤ΣxR)

−1R⊤ΣxS
1/2
)

(57)

= λ1

[
S1/2Σ1/2

x

(
Id − Σ1/2

x R(R⊤ΣxR)
−1R⊤Σ1/2

x

)
Σ1/2

x S1/2
]

(58)

(d)
= λ1

[
S1/2Σ1/2

x

(
Id − R̃(R̃⊤R̃)−1R̃⊤

)
Σ1/2

x S1/2
]

(59)

(e)
= λ1

[(
Id − R̃(R̃⊤R̃)−1R̃⊤

)
Σ1/2

x SΣ1/2
x

(
Id − R̃(R̃⊤R̃)−1R̃⊤

)]
, (60)

where (a) follows from Lemma 16, (b) follows by letting f̃ := S−1/2f and recalling that any
f ∈ F must satisfy ∥f∥2S≤ 1, (c) follows from the Rayleigh quotient theorem (Horn and Johnson,
2012, Theorem 4.2.2) (see Appendix D), (d) follows by letting R̃ := Σ

1/2
x R, and (e) follows since

Id − R̃(R̃⊤R̃)−1R̃⊤ is an orthogonal projection (idempotent and symmetric matrix) of rank d− r.

Now, to find the minimizer of maxf∈FS
regret(R, f) over R, we note that

λ1

[(
Id − R̃(R̃⊤R̃)−1R̃⊤

)
Σ1/2

x SΣ1/2
x

(
Id − R̃(R̃⊤R̃)−1R̃⊤

)]
(a)
= max

u:∥u∥2=1
u⊤
(
Id − R̃(R̃⊤R̃)−1R̃⊤

)
Σ1/2

x SΣ1/2
x

(
Id − R̃(R̃⊤R̃)−1R̃⊤

)
u (61)

(b)
= max

u:∥u∥2=1, R̃⊤u=0
u⊤Σ1/2

x SΣ1/2
x u (62)

(c)

≥ min
S:dim(S)=d−r

max
u:∥u∥2=1, u∈S

u⊤Σ1/2
x SΣ1/2

x u (63)

(d)
= λr+1

(
Σ1/2

x SΣ1/2
x

)
, (64)

where (a) follows again from the Rayleigh quotient theorem (Horn and Johnson, 2012, Theorem
4.2.2), (b) follows since Id − R̃(R̃⊤R̃)−1R̃⊤ is an orthogonal projection matrix, and so we may
write u = u⊥ + u∥ so that ∥u⊥∥2+∥u∥∥2= 1 and R̃⊤u⊥ = 0; Hence replacing u with u⊥ only
increases the value of the maximum, (c) follows by setting S to be a d − r dimensional subspace
of Rd, and (d) follows by the Courant–Fischer variational characterization (Horn and Johnson,
2012, Theorem 4.2.6) (see Appendix D). The lower bound in (c) can be achieved by setting the r
columns of R̃ ∈ Rd×r to be the top eigenvectors {vi(Σ1/2

x SΣ
1/2
x )}i∈[r]. This leads to the minimax

representation R̃∗. From (60), the worst case f̃ is the top eigenvector of(
Id − R̃∗((R̃)∗⊤R̃∗)−1(R̃)∗⊤

)
Σ1/2

x SΣ1/2
x

(
Id − R̃∗((R̃)∗⊤R̃∗)−1(R̃)∗⊤

)
. (65)

This is a symmetric matrix, whose top eigenvector is the (r + 1)th eigenvector vr+1(Σ
1/2
x SΣ

1/2
x ).
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We next prove Theorem 3.

Proof of Theorem 3. We follow the proof strategy mentioned after the statement of the theorem.
We assume that n ≡ 0 with probability 1, since, as for the pure minimax regret, this unavoidable
additive term of E

[
E[n2 | x]

]
to the loss does not affect the regret.

The minimax problem – a direct computation: As in the derivations leading to (60), the minimax
regret in (2) is given by

regretmix(FS | Σx)

= min
L(R)∈P(R)

max
f∈FS

E [regret(R, f | Σx)] (66)

= min
L(R)∈P(R)

max
f̃ :∥f̃∥2

2≤1
E
[
f̃⊤
(
S1/2ΣxS

1/2 − S1/2ΣxR(R⊤ΣxR)−1R⊤ΣxS
1/2
)
f̃
]

(67)

= min
L(Σ

−1/2
x R̃)∈P(R)

max
f̃ :∥f̃∥2

2≤1
f̃⊤S1/2Σ1/2

x E
[
Id − R̃(R̃

⊤
R̃)−1R̃

⊤]
Σ1/2

x S1/2f̃ (68)

= min
L(Σ

−1/2
x R̃)∈P(R)

λ1

(
S1/2Σ1/2

x E
[
Id − R̃(R̃

⊤
R̃)−1R̃

⊤]
Σ1/2

x S1/2
)
, (69)

where R̃ = Σ
1/2
x R. Determining the optimal distribution of the representation directly from this

expression seems to be intractable. We thus next solve the maximin problem, and then return to the
maximin problem (69), set a specific random representation, and show that it achieves the maximin
value. This, in turn, establishes the optimality of this choice.

The maximin problem: Let an arbitrary L(f) be given. Then, taking the expectation of the regret
over the random choice of f , for any given R ∈ R,

E [regret(R,f)]
(a)
= E

[
Tr
[(
S1/2ΣxS

1/2 − S1/2ΣxR(R
⊤ΣxR)

−1R⊤ΣxS
1/2
)
f̃ f̃

⊤]]
(70)

(b)
= Tr

[(
S1/2ΣxS

1/2 − S1/2ΣxR(R
⊤ΣxR)

−1R⊤ΣxS
1/2
)
Σ̃f

]
(71)

= Tr
[
Σ̃

1/2
f

(
S1/2ΣxS

1/2 − S1/2ΣxR(R
⊤ΣxR)

−1R⊤ΣxS
1/2
)
Σ̃

1/2
f

]
(72)

(c)
= Tr

[
Σ̃

1/2
f S1/2Σ1/2

x

(
Id − R̃(R̃⊤R̃)−1R̃⊤

)
Σ1/2

x S1/2Σ̃
1/2
f

]
(73)

= Tr
[(
I − R̃(R̃⊤R̃)−1R̃⊤

)
Σ1/2

x S1/2Σ̃fS
1/2Σ1/2

x

]
(74)

(d)
= Tr

[(
I − R̃(R̃⊤R̃)−1R̃⊤

)
Σ1/2

x S1/2Σ̃fS
1/2Σ1/2

x

(
I − R̃(R̃⊤R̃)−1R̃⊤

)]
(75)

(e)

≥ min
W∈Rd×(d−r):W⊤W=Id−r

Tr
[
W⊤Σ1/2

x S1/2Σ̃fS
1/2Σ1/2

x W
]

(76)

(f)
=

d∑
i=r+1

λi(Σ
1/2
x S1/2Σ̃fS

1/2Σ1/2
x ) (77)

=

d∑
i=r+1

λi

(
Σ̃fS

1/2ΣxS
1/2
)
, (78)

where (a) follows from Lemma 16 and setting f̃ := S−1/2f , (b) follows by setting Σ̃f ≡ Σf̃ =

E[f̃ f̃
⊤
], (c) follows by setting R̃ := Σ

1/2
x R, (d) follows since I − R̃(R̃⊤R̃)−1R̃⊤ is an orthogo-

nal projection (idempotent and symmetric matrix) of rank d − r, (e) follows since any orthogonal
projection can be written as WW⊤ where W ∈ Rd×(d−r) is an orthogonal matrix W⊤W = Id−r,
(f) follows from Fan’s variational characterization (Fan, 1949)(Horn and Johnson, 2012, Corollary
4.3.39.) (see Appendix D). Equality in (e) can be achieved by letting R̃ be the top r eigenvectors of
Σ

1/2
x S1/2Σ̃fS

1/2Σ
1/2
x .
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The next step of the derivation is to maximize the expected regret over the probability law of f

(or f̃ ). Evidently, E[regret(R,f)] =
∑d

i=r+1 λi(Σ̃fS
1/2ΣxS

1/2) only depends on the random
function f̃ via Σ̃f . The covariance matrix Σ̃f is constrained as follows. Recall that f is supported
on FS := {f ∈ Rd: ∥f∥2S≤ 1} (see (4)), and let Σf = E[ff⊤] be its covariance matrix. Then, it
must hold that Tr[S−1Σf ] ≤ 1. Then, it also holds that

1 ≥ Tr[S−1Σf ] = Tr
[
E[S−1ff⊤]

]
(79)

= E
[
f⊤S−1f

]
(80)

= E
[
f̃
⊤
f̃
]

(81)

= Tr
[
Σ̃f

]
(82)

where Σ̃f = S−1/2ΣfS
−1/2. Conversely, given any covariance matrix Σ̃f ∈ Sd++ such that

Tr[Σ̃f ] ≤ 1 there exists a random vector f supported on FS such that

E[ff⊤] = S1/2Σ̃fS
−1/2. (83)

We show this by an explicit construction. Let Σ̃f = Ṽf Λ̃f Ṽ
⊤
f be the eigenvalue decomposition of

Σ̃f , and, for brevity, denote by λ̃i ≡ λi(Σ̃f ) the diagonal elements of Λ̃f . Let {qi}i∈[d] be a set
of independent and identically (IID) distributed random variables, so that qi is Rademacher, that is
P[qi = 1] = P[qi = −1] = 1/2. Define the random vector

g :=

(
q1 ·

√
λ̃1, · · · , qd ·

√
λ̃d

)⊤

. (84)

The constraint Tr[Σ̃f ] ≤ 1 implies that
∑
λ̃i ≤ 1 and so ∥g∥2=

∑d
i=1 λ̃i ≤ 1 with probability 1.

Then, letting f̃ = Ṽfg it also holds that ∥f̃∥22= ∥g∥22≤ 1 with probability 1, and furthermore,

E
[
f̃ f̃

⊤]
= ṼfE

[
gg⊤] Ṽ ⊤

f = Ṽf Λ̃f Ṽ
⊤
f = Σ̃f . (85)

Consequently, letting f = S1/2f assures that ∥f∥S= ∥f̃∥2≤ 1 and E[ff⊤] = S1/2Σ̃fS
−1/2, as

was required to obtain. Therefore, instead of maximizing over probability laws on P(FS), we may
equivalently maximize over Σ̃f ∈ Sd++ such that Tr[Σ̃f ] ≤ 1, i.e., to solve

regretmix(FS | Σx) = max
Σ̃f :Tr[Σ̃f ]≤1

d∑
i=r+1

λi(Σ̃fS
1/2ΣxS

1/2). (86)

The optimization problem in (86) is solved in Lemma 17, and is provided after this proof. Setting
Σ = S1/2ΣxS

1/2 in Lemma 17, and letting λi ≡ λi(S1/2ΣxS
1/2), the solution is given by

ℓ∗ − r∑ℓ∗

i=1
1
λi

(87)

where ℓ∗ ∈ [d]\[r] satisfies

ℓ∗ − r
λℓ∗

≤
ℓ∗∑
i=1

1

λi
≤ ℓ∗ − r
λℓ∗+1

. (88)

Lemma 17 also directly implies that an optimal Σ̃f is given as in (10). The value in (87) is exactly
regretmix(FS | Σx) claimed by the theorem, and we next show it is indeed achievable by a properly
constructed random representation.

The minimax problem – a solution via the maximin certificate: Given the value of the regret game in
mixed strategies found in (87), we may also find a minimax representation in mixed strategies. To
this end, we return to the minimax expression in (69), and propose a random representation which
achieves the maximin value in (87). Note that for any given R̃, the matrix Id− R̃(R̃⊤R̃)−1R̃⊤ is an
orthogonal projection, that is, a symmetric matrix whose eigenvalues are all either 0 or 1, and it has at
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most r eigenvalues equal to zero. We denote its eigenvalue decomposition by Id−R̃(R̃⊤R̃)−1R̃⊤ =

UΩU⊤. Then, any probability law on R̃ induces a probability law on U and Ω (and vice-versa).
To find the mixed minimax representation, we propose setting U = V (Σ

1/2
x SΣ

1/2
x ) ≡ V with

probability 1, that is, to be deterministic, and thus only randomize Ω. With this choice, and by
denoting, for brevity, Λ ≡ Λ(Σ

1/2
x SΣ

1/2
x ) = Λ(S1/2ΣxS

1/2), the value of the objective function in
(69) is given by

λ1

(
S1/2Σ1/2

x V · E [Ω] · V ⊤Σ1/2
x S1/2

)
= λ1

(
E [Ω] · V ⊤Σ1/2

x SΣ1/2
x V

)
(89)

= λ1 (E [Ω] · Λ) . (90)

Now, the distribution of Ω is equivalent to a distribution on its diagonal, which is supported on
the finite set A := {a ∈ {0, 1}d: ∥a∥1≥ d − r}. Our goal is thus to find a probability law on a,
supported on A, which solves

min
L(Ω)

max
i∈[d]

λ1 (E [Ω] · Λ) = min
L(a)

max
i∈[d]

E[ai]λi (91)

where λi ≡ λi(S
1/2ΣxS

1/2) are the diagonal elements of Λ. Consider ℓ∗, the optimal dimension
of the maximin problem, which satisfies (88). We then set aℓ∗+1 = · · · = ad = 1 to hold with
probability 1, and so it remains to determine the probability law of a := (a1, . . . ,aℓ∗), supported
on Ã := {a ∈ {0, 1}ℓ∗ : ∥a∥1≥ ℓ∗ − r}. Clearly, reducing ∥a∥1 only reduces the objective function
maxi∈[d] E[aiλi], and so we may in fact assume that a is supported on A := {a ∈ {0, 1}ℓ∗ : ∥a∥1=
ℓ∗ − r}, a finite subset of cardinality

(
ℓ∗

r

)
. Suppose that we find a probability law L(a) supported

on A such that

E[ai] = (ℓ∗ − r) · 1/λi∑ℓ∗

i=1 1/λi
:= bi, (92)

for all i ∈ [ℓ∗]. Then, since E[ai] = 1 for i ∈ [d]\[ℓ∗]

max
i∈[d]

E[ai]λi = max

{
ℓ∗ − r∑ℓ∗

i=1
1
λi

, λℓ∗+1, · · · , λd

}
(93)

= max

{
ℓ∗ − r∑ℓ∗

i=1
1
λi

, λℓ∗+1

}
(94)

(∗)
=

ℓ∗ − r∑ℓ∗

i=1
1
λi

, (95)

where (∗) follows from the condition on ℓ∗ in the right inequality of (88). This proves that such
probability law achieves the minimax regret in mixed strategies. This last term is regretmix(FS | Σx)
claimed by the theorem. It remains to construct L(a) which satisfies (92). To this end, note that the
set

C :=
{
c ∈ [0, 1]ℓ

∗
: ∥c∥1= ℓ∗ − r

}
(96)

is convex and compact, and A is the set of its extreme points (C is the convex hull of A). Letting
b = (b1, . . . , bℓ∗)

⊤ as denoted in (92), it holds that bi ≥ 0 and {bi}ℓ
∗

i=1 is a non-decreasing sequence.
Using the condition on ℓ∗ in the left inequality of (88), it then holds that

b1 ≤ · · · ≤ bℓ∗ = (ℓ∗ − r) · 1/λℓ∗∑ℓ∗

i=1 1/λi
≤ 1. (97)

Hence, b ∈ C. By Carathéodory’s theorem (Bertsekas et al., 2003, Prop. 1.3.1) (see Appendix D),
any point inside a convex compact set in Rℓ∗ can be written as a convex combination of at most
ℓ∗ + 1 extreme points. Thus, there exists {pa}a∈A such that pa ∈ [0, 1] and

∑
a∈A pa = 1 so that

b =
∑

a∈A pa·a, and moreover the support of pa has cardinality at most ℓ∗+1. LetA ∈ {0, 1}ℓ∗×|A|

be such that its jth column is given by the jth member of A (in an arbitrary order). Let p ∈ [0, 1]|A|
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be a vector whose jth element corresponds to the jth member of A. Then, p is the solution to
Ap = b, and as claimed above, such a solution with at most ℓ∗ + 1 nonzero entries always exists.
Setting a = (a, 1 . . . , 1︸ ︷︷ ︸

d−ℓ∗ terms

) with probability pa then assures that (92) holds, as was required to be

proved.

Given the above, we observe that setting R̃ as in the theorem induces a distribution on Ω for which
the random entries of its diagonal a satisfy (92), and thus achieve regretmix(FS | Σx).

We next turn to complete the proof of Theorem 3 by solving the optimization problem in (86).
Assume that Σ ∈ Sd++ is a strictly positive covariance matrix Σ ≻ 0, and consider the optimization
problem

v∗r = max
Σ̃f∈Sd+

d∑
i=r+1

λi(Σ̃fΣ)

subject to Tr[Σ̃f ] ≤ 1 (98)

for some r ∈ [d−1]. Note that the objective function refers to the maximization of the d−r minimal
eigenvalues of Σ1/2Σ̃fΣ

1/2.
Lemma 17. Let

aℓ :=
ℓ− r∑ℓ
i=1

1
λi(Σ)

. (99)

The optimal value of (98) is v∗ = max[d]\[r] aℓ and ℓ∗ ∈ argmax[d]\[r] aℓ iff

ℓ∗ − r
λℓ∗(Σ)

≤
ℓ∗∑
i=1

1

λi(Σ)
≤ ℓ∗ − r
λℓ∗+1(Σ)

. (100)

An optimal solution is

Σ̃∗
f =

[
ℓ∗∑
i=1

1

λi(Σ)

]−1

· V (Σ) diag

(
1

λ1(Σ)
, . . . ,

1

λℓ∗(Σ)
, 0, · · · , 0

)
· V (Σ)⊤. (101)

Proof. Let Σf = Σ1/2Σ̃fΣ
1/2, let Σf = UfΛfU

⊤
f be its eigenvalue decomposition, and, for

brevity, denote λi ≡ λi(Σf ). Then, the trace operation appearing in the constraint of (98) can be
written as

Tr[Σ̃f ] = Tr
[
Σ−1/2ΣfΣ

−1/2
]

(102)

= Tr
[
Σ−1/2UfΛfU

⊤
f Σ

−1/2
]

(103)

= Tr

[
Σ−1/2

(
d∑

i=1

λiuiu
⊤
i

)
Σ−1/2

]
(104)

=

d∑
i=1

λi ·
(
u⊤i Σ

−1ui
)

(105)

=

d∑
i=1

ciλi, (106)

where ui = vi(Uf ) (that is, the ith column of Uf ), and ci := u⊤i Σ
−1ui (which satisfies ci >

0). Thus, the optimization problem in (98) over Σ̃f is equivalent to an optimization problem over
{λi, ui}i∈[d], given by

v∗r = max
{ui,λi}i∈[d]

d∑
i=r+1

λi
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subject to

d∑
i=1

ciλi ≤ 1,

ci = u⊤i Σ
−1ui,

u⊤i uj = δij ,

λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. (107)
To solve the optimization problem (107), let us fix feasible {ui}i∈[d], so that {ci}i∈[d] are fixed too.
This results the problem

v∗r ({ui}) ≡ v∗r ({ci}) = max
{λi}i∈[d]

d∑
i=r+1

λi

subject to

d∑
i=1

ciλi ≤ 1,

λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. (108)

The objective function of (108) is linear in {λi}i∈[d] and its constraint set is a convex bounded
polytope. So the solution to (108) must be obtained on the boundary of the constraint set. Clearly,
the optimal value satisfies v∗r ({ci}) ≥ 0, and thus the solution {λ∗i }i∈[d] must be obtained when the
constraint

∑d
i=1 ciλi ≤ 1 is satisfied with equality. Indeed, if this is not the case then one may scale

all λ
∗
i by a constant larger than 1, and obtain larger value of the objective, while still satisfying the

constraint.

To find the optimal solution to (108), we consider feasible points for which ℓ := max{i ∈ [d]:λi >

0) is fixed. Let {λ∗i }i∈[d] be the optimal solution of (108), under the additional constraint that
λℓ+1 = · · · = λd = 0. We next prove that λ

∗
1 = · · · = λ

∗
ℓ must hold. To this end, assume by

contradiction that there exists j ∈ [ℓ] so that λ
∗
j−1 > λ

∗
j > 0. There are two cases to consider,

to wit, whether j − 1 < r + 1 and so only λj appears in the objective of (108), or, otherwise,
j − 1 ≥ r + 1 and then λj−1 + λj appears in the objective of (108). Assuming the first case, let
α = λ

∗
j−1cj−1 + λ

∗
jcj and consider the optimization problem

max
λ̂j−1,λ̂j

λ̂j

subject to λ̂j−1cj−1 + λ̂jcj = α,

λ̂j−1 ≥ λ̂j > 0. (109)

It is easy to verify that the optimum of this problem is λ̂∗j−1 = λ̂∗j = α
cj−1+cj

. Thus, if λ
∗
j−1 > λ

∗
j

then one can replace this pair with λ
∗
j−1 = λ

∗
j = λ̂∗j−1 = λ̂∗j so that the value of the constraint∑d

i=1 λici remains the same, and thus (λ
∗
1, · · · , λ̂∗j−1, λ̂

∗
j , λ

∗
j+1, . . . λ

∗
d) is a feasible point, while the

objective function value of (108) is smaller; a contradiction. Therefore, it must hold for the first
case that λ

∗
j−1 = λ

∗
j . For the second case, in a similar fashion, let now α = λ

∗
j−1cj−1 + λ

∗
jcj , and

consider the optimization problem

max
λ̂j−1,λ̂j

λ̂j + λ̂j−1

subject to λ̂j−1cj−1 + λ̂jcj = α,

λ̂j−1 ≥ λ̂j > 0. (110)
The solution for this optimization problem is at one of the two extreme points of the feasible interval
for λ̂j . Since λ∗j > 0 was assumed it therefore must hold that λ̂∗j−1 = λ̂∗j , and hence also λ

∗
j−1 = λ

∗
j .

Thus, λ∗j−1 < λ∗j leads to a contradiction. From the above, we deduce that the optimal solution of
(108) under the additional constraint that λℓ+1 = · · · = λd = 0 is

λ
∗
1 = · · · = λ

∗
ℓ =

1∑ℓ
i=1 ci

(111)
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λ
∗
ℓ+1 = · · · = λ

∗
d = 0, (112)

and that the optimal value is ℓ−r∑ℓ
i=1 ci

. Since ℓ ∈ [d]\[r] can be arbitrarily chosen, we deduce that the
value of (108) is

v∗({ci}) = max
ℓ∈[d]\[r]

ℓ− r∑ℓ
i=1 ci

. (113)

For any given ℓ ∈ [d]\[r], we may now optimize over {ui}, which from (113) is equivalent to
minimizing

∑ℓ
i=1 ci. It holds that

min
{ui}

ℓ∑
i=1

ci = min
{ui:u⊤

i uj=δij}

ℓ∑
i=1

u⊤i Σ
−1ui (114)

= min
{ui:u⊤

i uj=δij}
Tr

[
Σ−1

ℓ∑
i=1

uiu
⊤
i

]
(115)

(a)
= min

Ù∈Rd×ℓ:Ù⊤Ù=Iℓ

Tr
[
Σ−1Ù Ù⊤

]
(116)

= min
Ù∈Rd×ℓ:Ù⊤Ù=Iℓ

Tr
[
Ù⊤Σ−1Ù

]
(117)

(b)
=

ℓ∑
i=1

1

λi(Σ)
, (118)

where in (a) Ù ∈ Rd×ℓ whose ℓ columns are {ui}i∈[ℓ] and Ù⊤Ù = Iℓ, and in (b) we have used Fan
(1949)’s variational characterization (Horn and Johnson, 2012, Corollary 4.3.39.) (see Appendix
D). Substituting back to (113) results that

v∗r = max
ℓ∈[d]\[r]

ℓ− r∑ℓ
i=1

1
λi(Σ)

= max
ℓ∈[d]\[r]

aℓ. (119)

Let us denote that maximizer index by ℓ∗. Then, Fan’s characterization is achieved by setting
Uf = V (so that the ℓ∗ columns of Ù are the ℓ∗ eigenvectors vi(Σ), corresponding to the ℓ∗ largest
eigenvalues of Σ), so that

Σ
∗
f =

[
ℓ∗∑
i=1

1

λi(Σ)

]−1

· V · diag

1, . . . , 1︸ ︷︷ ︸
ℓ∗ terms

, 0, · · · , 0

 · V ⊤, (120)

and then
Σ̃∗

f = Σ−1/2Σ
∗
fΣ

−1/2 (121)

=

[
ℓ∗∑
i=1

1

λi(Σ)

]−1

· V Λ−1/2V ⊤V · diag (1, . . . , 1, 0, · · · , 0)V ⊤V Λ−1/2V ⊤ (122)

=

[
ℓ∗∑
i=1

1

λi(Σ)

]−1

· V · diag
(

1

λ1(Σ)
, . . . ,

1

λℓ∗(Σ)
, 0, · · · , 0

)
· V ⊤ (123)

as claimed in (101).

To complete the proof, it remains to characterize ℓ∗, which belongs to the set possible indices max-
imizing {aℓ}ℓ∈[d]\[r]. Since ℓ∗ maximizes aℓ it must be a local maximizer, that is, it must hold that
aℓ∗−1 ≤ aℓ∗ ≥ aℓ∗+1. By simple algebra, these conditions are equivalent to those in (100). It
remains to show that any ℓ ∈ [d]\[r] which satisfies (100) has the same value, and thus any local
maxima is a global maxima. We will show this by proving that the sequence {aℓ}dℓ=r is unimodal,
as follows. Let ∆ℓ := aℓ+1 − aℓ be the discrete derivative of {aℓ}ℓ∈[d], and consider the sequence
{∆ℓ}ℓ∈[d]\[r]. We show that as ℓ increases from r to d, {∆ℓ}ℓ∈[d]\[r] is only changing its sign at
most once. To this end, we first note that

∆ℓ =
ℓ+ 1− r∑ℓ+1
i=1

1
λi(Σ)

− ℓ− r∑ℓ
i=1

1
λi(Σ)

=

∑ℓ
i=1

1
λi(Σ) − (ℓ− r) 1

λℓ+1(Σ)[∑ℓ+1
i=1

1
λi(Σ)

] [∑ℓ
i=1

1
λi(Σ)

] . (124)
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Since the denominator of (124) is strictly positive, it suffices to prove that the sequence comprised
of the numerator of (124), to wit {ζℓ}ℓ∈[d]\[r] with

ζℓ :=

ℓ∑
i=1

1

λi(Σ)
− (ℓ− r) 1

λℓ+1(Σ)
, (125)

is only changing its sign at most once. Indeed, this claim is true because ζr =
∑ℓ

i=1
1

λi(Σ) > 0 and
because {ζℓ}ℓ∈[d]\[r] is a monotonic non-increasing sequence,

ζℓ − ζℓ+1 = (ℓ− r + 1)

[
1

λℓ+2(Σ)
− 1

λℓ+1(Σ)

]
≥ 0. (126)

Therefore, {ζℓ}ℓ∈[d]\[r] has at most a single sign change (its has a positive value at ℓ = r and is
monotonically non-increasing with ℓ up to ℓ = d), and so is {∆ℓ}dℓ=r. The single sign change
property of the finite difference {∆ℓ}dℓ=r is equivalent to the fact that {aℓ}dℓ=r is unimodal. Thus,
any local maximizer of aℓ is also a global maximizer.

F THE HILBERT SPACE MSE SETTING

In this section, we show that the regret expressions in Section 3 can be easily generalized to an
infinite dimensional Hilbert space, for responses with noise that is statistically independent of the
features. We still assume the MSE loss function (Y = R , and loss(y1, y2) = (y1 − y2)2), and that
the predictor is a linear function. However, we allow the the representation and response function to
be functions in a Hilbert space. As will be evident, the resulting regret is not very different from the
finite-dimensional case. Formally, this is defined as follows:
Definition 18 (The Hilbert space MSE setting). Assume that x ∼ Px is supported on a compact
subsetX ⊂ Rd, and let L2(Px) be the Hilbert space of functions fromX → R such that E[f2(x)] =∫
X f

2(x) · dPx <∞, with the inner product,

⟨f, g⟩ :=
∫
X
f(x)g(x) · dPx (127)

for f, g ∈ L2(Px). Let {ϕj(x)}∞j=1 be an orthonormal basis for L2(Px).

A representation is comprised of a set of functions {ψi}i∈[r] ⊂ L2(Px), ψi:X → R, so that

R := {R(x) = (ψ1(x), . . . , ψr(x))
⊤ ∈ Rr}. (128)

Let {λj}j∈N be a positive monotonic non-increasing sequence for which λj ↓ 0 as j → ∞, and let
F be the set of functions from X → R such that given f ∈ F , the response is given by

y = f(x) + n ∈ R (129)

where

f ∈ F{λj} :=

f(x) =
∞∑
j=1

fjϕj(x): {fj}j∈N ∈ ℓ2(N),
∞∑
j=1

f2j
λj
≤ 1

 , (130)

where n ∈ R is a homoscedastic noise that is statistically independent of x and satisfies E[n] = 0.
Infinite-dimensional ellipsoids such as F{λj} naturally arise in reproducing kernel Hilbert spaces
(RKHS) (Wainwright, 2019, Chapter 12) (Shalev-Shwartz and Ben-David, 2014, Chapter 16), in
which {λj} is the eigenvalues of the kernel. In this case, the setF{λi} = {f : ∥f∥H≤ 1}where ∥·∥H
is the norm of the RKHS H. For example, H could be the first-order Sobolev space of functions
with finite first derivative energy.

Let the set of predictor functions be the set of linear functions from Rd → R, that is

Q := {Q(z) = q⊤z =

r∑
i=1

qi · ψi(x), q ∈ Rr}. (131)

We denote the pure (resp. mixed) minimax regret as regretpure(R,F{λj} | Px) (resp.
regretmix(R,F{λj} | Px)). We begin with pure strategies.
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Theorem 19. For the Hilbert space MSE setting (Definition 18)

regretpure(R,F{λj} | Px) = λr+1. (132)

A minimax representation is
R∗(x) = (ϕ1(x), . . . , ϕr(x))

⊤, (133)

and the worst case response function is f∗ =
√
λr+1 · ϕr+1.

We now turn to the minimax representation in mixed strategies.

Theorem 20. For the Hilbert space MSE setting (Definition 18)

regretmix(R,F{λj} | Px) =
ℓ∗ − r∑ℓ∗

i=1
1
λi

, (134)

where ℓ∗ is defined as (8) of Theorem 3 (with the replacement d → N+). Let {bj}∞i=1 be an IID
sequence of Rademacher random variables, P[bi = 1] = P[bi = −1] = 1/2. Then, a least
favorable prior f∗ is

f∗
i =

bi · 1√∑ℓ∗
i=1

1
λi

, 1 ≤ i ≤ ℓ∗

0, i ≥ ℓ∗ + 1
, (135)

and a law of minimax representation is to choose

R∗(x) = {ϕIj
(x)}rj=1 (136)

with probability pj , j ∈ [
(
ℓ∗

r

)
], defined as in Theorem 3.

Discussion Despite having countably infinite possible number of representations, the optimal rep-
resentation only utilizes a finite set of orthogonal functions, as determined by the radius of F{si}.
The proof of Theorems 19 and 20 is obtained by reducing the infinite dimensional problem to a d-
dimensional problem via an approximation argument, then showing the the finite dimensional case
is similar to the problem of Section 3, and then taking limit d ↑ ∞.

F.1 PROOFS

Let us denote the d-dimensional slice of F{λj} by

F (d)
{λj} :=

{
f(x) ∈ F{λj}: fj = 0 for all j ≥ d+ 1

}
. (137)

Further, let us consider the restricted representation class, in which the representation functions
ψi(t) belong to the span of the first d basis functions, that is

R(d) := {R(x) ∈ R: = ψi(x) ∈ span({ϕi}i∈[d]) for all i ∈ [r]}. (138)

The following proposition implies that the regret in the infinite-dimensional Hilbert space is obtained
as the limit of finite-dimensional regrets, as the one characterized in Section 3:

Proposition 21. It holds that

regretpure(R,F{λj} | Px) = lim
d↑∞

regretpure(R(d),F (d)
{λj} | Px) (139)

and
regretmix(R,F{λj} | Px) = lim

d↑∞
regretmix(R(d),F (d)

{λj} | Px). (140)

Proof. Let {cij}j∈N be the coefficients of the orthogonal expansion of ψi, i ∈ [r], that is, ψi =∑∞
j=1 cijϕj . With a slight abuse of notation, we also let ci := (ci1, ci2 . . .) ∈ ℓ2(N). We use a

sandwich argument. On one hand,

regretpure(R,F{λj} | Px) = min
R∈R

max
f∈F{λj}

regret(R, f) (141)

30



Published as a conference paper at ICLR 2024

≥ min
R∈R

max
f∈F(d)

{λj}

regret(R, f) (142)

(∗)
= min

R∈R(d)
max

f∈F(d)

{λj}

regret(R, f) (143)

= regretpure(R(d),F (d)
{λj} | Px), (144)

where (∗) follows from the following reasoning: For any (R ∈ R, f ∈ F (d)
{λj}),

regret(R, f) = min
q∈Rr

E


 d∑

j=1

fjϕj(x) + n−
∞∑
j=1

r∑
i=1

qicijϕj(x)

2
− E

[
n2
]

(145)

(a)
= min

q∈Rr
E

 d∑
j=1

fjϕj(x)−
∞∑
j=1

r∑
i=1

qicijϕj(x)

 (146)

(b)
= min

q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

+

∞∑
j=d+1

(
r∑

i=1

qicij

)2

, (147)

where here (a) follows since the noise n is independent of x, and since, similarly to the finite-
dimensional case (Section 3), the prediction loss based on the features x ∈ X is E[n2], for any
given f ∈ F , (b) follows from Parseval’s identity and the orthonormality of {ϕj}j∈N. So,

min
R∈R

max
f∈F(d)

{λj}

regret(R, f)

= min
{cij}i∈[r],j∈N

max
f∈F(d)

{λj}

min
q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

+

∞∑
j=d+1

(
r∑

i=1

qicij

)2

. (148)

Evidently, since
∑∞

j=d+1(
∑r

i=1 qicij)
2 ≥ 0, an optimal representation may satisfy that cij = 0 for

all j ≥ d+ 1. Thus, the optimal representation belongs toR(d).

On the other hand,

regretpure(R,F{λj} | Px) = min
R∈R

max
f∈F{λj}

regret(R, f) (149)

≤ min
R∈R(d)

max
f∈F{λj}

regret(R, f) (150)

(∗)
≤ min

R∈R(d)
max

f∈F(d)

{λj}

regret(R, f) + λd+1 (151)

= regretpure(R(d),F (d)
{λj} | Px) + λd+1, (152)

where (∗) follows from the following reasoning: For any (R ∈ R(d), f ∈ F{λj}),

regret(R, f) = min
q∈Rr

E


 ∞∑

j=1

fjϕj(x) + n−
∞∑
j=1

r∑
i=1

qicijϕj(x)

2
− E[n2] (153)

(a)
= min

q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

+

∞∑
j=d+1

f2j (154)

(b)

≤ min
q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

+ λd+1, (155)
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where (a) follows similarly to the analysis made in the previous step, and (b) follows since for any
f ∈ F{λj} it holds that

∞∑
j=d+1

f2j ≤ λd+1

∞∑
j=d+1

f2j
λj
≤ λd+1

∞∑
j=1

f2j
λj
≤ λd+1. (156)

Combining (144) and (152) and using λd+1 ↓ 0 completes the proof for the pure minimax regret.
The proof for the mixed minimax is analogous and thus is omitted.

We also use the following simple and technical lemma.

Lemma 22. For R ∈ R(d) and f ∈ F (d)1

regret(R, f) = f⊤
(
Id −R⊤(RR⊤)−1R

)
f, (157)

where R ∈ Rr×d is the matrix of coefficients of the orthogonal expansion of ψi =
∑d

j=1 cijϕj for
i ∈ [r], so that R(i, j) = cij .

Proof. It holds that

regret(R, f) = min
q∈Rr

E


 d∑

j=1

fjϕj(x) + n−
r∑

i=1

qi

d∑
j=1

cijϕj(x)

2
− E

[
n2
]

(158)

= min
q∈Rr

E

 d∑
j=1

(
fj −

r∑
i=1

qicij

)
ϕj(x)

 (159)

= min
q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

(160)

= min
q∈Rr

d∑
j=1

[
f2j − 2fj

r∑
i=1

qicij +

r∑
i1=1

r∑
i2=1

qi1ci1jqi2ci2j

]
(161)

= min
q∈Rr

f⊤f − 2q⊤Rf + q⊤RR⊤q (162)

= f⊤
(
Id −R⊤(RR⊤)−1R

)
f, (163)

where the last equality is obtained by the minimizer q∗ = (RR⊤)−1Rf .

Proof of Theorems 19 and 20. By Proposition 21, we may first consider the finite dimensional case,
and then take the limit d ↑ ∞. By Lemma 22, in the d-dimensional case (for both the representation
and the response function), the regret is formally as in the linear setting under the MSE of Theorem
2, by setting therein Σx = Id, and S = diag(λ1, . . . , λd) (c.f. Lemma 16). The claim of the
Theorem 19 then follows by taking d ↑ ∞ and noting that λd+1 ↓ 0. The proof of Theorem 20 is
analogous and thus omitted.

G ITERATIVE ALGORITHMS FOR THE PHASE 1 AND PHASE 2 PROBLEMS

In this section, we describe our proposed algorithms for solving the Phase 1 and Phase 2 problems
of Algorithm 1. Those algorithms are general, and only require providing gradients of the regret
function (1) and an initial representation and a set of adversarial functions. These are individually
determined for each setting. See Appendix H for the way these are determined in Examples 6 and 8.

1Note that any f ∈ F (d) may be uniquely identified with a d-dimensional vector f ∈ Rd. With a slight
abuse of notation we do not distinguish between the two.
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G.1 PHASE 1: FINDING A NEW ADVERSARIAL FUNCTION

We propose an algorithm to solve the Phase 1 problem (23), which is based on an iterative algorithm.
We denote the function’s value at the tth iteration by f(t). The proposed Algorithm 2 operates as
follows. At initialization, the function f(1) ∈ F is arbitrarily initialized (say at random), and then
the optimal predictor Q(j) is found for each of the k possible representations R(j), j ∈ [k]. Then,
the algorithm iteratively repeats the following steps, starting with t = 2: (1) Updating the function
from f(t−1) to f(t) based on a gradient step of∑

j∈[k]

p(j) · E
[
loss(f(t−1)(x), Q

(j)(R(j)(x)))
]
, (164)

that is, the weighted loss function of the previous iteration function, which is then followed by a
projection to the feasible class of functions F , denoted as ΠF (·) (2) Finding the optimal predictor
Q(j) for the current function f(t) and the given representations {R(j)}j∈[k], and computing the
respective loss for each representation,

L(j) := E
[
loss(f(t)(x), Q

(j)(R(j)(x)))
]
. (165)

This loop iterates for Tf iterations, or until convergence.

Algorithm 2 A procedure for finding a new function via the solution of (23)

1: procedure PHASE 1 SOLVER({R(j), p(j)}j∈[k],F ,Q, d, r, Px)
2: begin
3: initialize Tf ▷ Number of iterations parameters
4: initialize ηf ▷ Step size parameter
5: initialize f(1) ∈ F ▷ Function initialization, e.g., at random
6: for j = 1 to k do
7: set Q(j) ← argminQ∈Q E

[
loss(f(1)(x), Q(R(j)(x)))

]
8: end for
9: for t = 2 to Tf do

10: update f(t−1/2) = f(t−1) + ηf ·
∑

j∈[k] p
(j)
(t−1) · ∇fE

[
loss(f(t−1)(x), Q

(j)(R(j)(x)))
]

▷ A gradient update of the function
11: project f(t) = ΠF (f(t−1/2)) ▷ Projection on the class F
12: for j = 1 to k do
13: set Q(j) ← argminQ∈Q E

[
loss(f(t)(x), Q(R(j)(x)))

]
▷ Update of predictors

14: set L(j) ← E
[
loss(f(t)(x), Q

(j)(R(j)(x)))
]
▷ Compute loss of each representation

15: end for
16: end for
17: return f(T ) and the regret

∑
j∈[k] p

(j) · L(j)

18: end procedure

Design choices and possible variants of the basic algorithm At initialization, we have chosen a
simple random initialization for f(1), but it may also be initialized based on some prior knowledge
of the adversarial function. For the update of the predictors, we have specified a full computation of
the optimal predictor, which can be achieved in practice by running another iterative algorithm such
as stochastic gradient descent (SGD) until convergence. If this is too computationally expensive,
the number of gradient steps may be limited. The update of the function is done via projected SGD
with a constant step size ηf , yet it is also possible to modify the step size with the iteration, e.g., the
common choice ηf/

√
t at step t (Hazan, 2016). Accelerated algorithms, e.g., moment-based, may

also be deployed.

Convergence analysis A theoretical analysis of the convergence properties of the algorithm ap-
pears to be challenging. Evidently, this is a minimax game between the response player and a player
cooperating with the representation player, which optimizes the prediction rule in order to mini-
mize the loss. This is, however, not a concave-convex game. As described in Appendix A, even
concave-convex games are not well understood at this point. We thus opt to validate this algorithm
numerically.
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Running-time complexity analysis Algorithm 2 runs for a fixed number of iterations Tf , accepts
k representations, and makes kTf updates. Each update is comprised from a gradient step of for the
adversarial function (cost C1), and optimization of the predictor (cost C2). So the total computation
complexity is kTf · (C1 + C2). The most expensive part is the optimization of the predictor C2,
and this can be significantly reduced by running a few gradients steps of the predictor instead of a
full optimization. If we take g gradient steps then C2 is replaced by C1g and the total computational
cost is kTf (g + 1)C1.

G.2 PHASE 2: FINDING A NEW REPRESENTATION

We propose an iterative algorithm to solve the Phase 2 problem (24), and thus finding a new repre-
sentation R(k+1). To this end, we first note that the objective function in (24) can be separated into
a part that depends on existing representations and a part that depends on the new one, specifically,
as ∑

j1∈[k]

∑
j2∈[m0+k]

p(j1) · o(j2) · E
[
loss(f (j2)(x), Q(j1,j2)(R(j1)(x)))

]
+

∑
j2∈[m0+k]

p(k+1) · o(j2) · E
[
loss(f (j2)(x), Q(k+1,j2)(R(k+1)(x)))

]
=
∑

j1∈[k]

∑
j2∈[m0+k]

p(j1) · o(j2) · L(j1,j2)

+
∑

j2∈[m0+k]

p(k+1) · o(j2) · E
[
loss(f (j2)(x), Q(k+1,j2)(R(k+1)(x)))

]
, (166)

where
L(j1,j2) := E

[
loss(f (j2)(x), Q(j1,j2)(R(j2)(x)))

]
, (167)

and the predictors {Q(j1,j2)}j1∈[k],j2∈[m0+k] can be optimized independently of the new representa-
tion R(k+1). We propose an iterative algorithm for this problem, and denote the new representation
at the tth iteration of the algorithm by R(k+1)

(t) . The algorithm’s input is a set of m0 + k adver-
sarial functions {f (i)}i∈[m0+k], and the current set of representations {R(j)}j∈[k]. Based on these,
the algorithm may find the optimal predictor for f (j2) based on the representation R(j1), and thus
compute the loss

L
(j1,j2)
∗ := min

Q∈Q
E
[
loss(f (j2)(x), Q(R(j1)(x)))

]
(168)

for j1 ∈ [k] and j2 ∈ [m0 + k]. In addition, the new representation is arbitrarily initialized (say, at
random) asR(k+1)

(1) , and the predictors {Q(k+1,j2)
(1) }j2∈[m0+k] are initialized as the optimal predictors

for f (j2) given the representation R(k+1)
(1) . The algorithm keeps track of weights for the represen-

tations (including the new one), which are initialized uniformly, i.e., p(j1)(1) = 1
k+1 for j1 ∈ [k + 1]

(including a weight for the new representation). The algorithm also keeps track of weights for the
functions, which are also initialized uniformly as o(j2)(1) = 1

m0+k for j2 ∈ [m0 + k]. Then, the
algorithm iteratively repeats the following steps, starting with t = 2: (1) Updating the new represen-
tation from R

(k+1)
(t−1) to R(k+1)

(t) based on a gradient step of the objective function (24) as a function of
R(k+1). Based on the decomposition in (166) the term of the objective which depends on R(k+1) is

p
(k+1)
(t−1)

∑
j2∈[m0+k]

o
(j2)
(t−1) · E

[
loss(f (j2)(x), Q(k+1,j2)(R(k+1)(x)))

]
, (169)

that is, the loss function of the previous iteration new representation, weighted according to the
current function weights o(j2)(t−1). Since the multiplicative factor p(k+1)

(t−1) is common to all terms, it is
removed from the gradient computation (this aids in the choice of the gradient step). This gradient
step is then possibly followed by normalization or projection, which we denote by the operator
ΠR(·). For example, in the linear case, it make sense to normalize R(k+1) to have unity norm (in
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some matrix norm of choice). After updating the new representation to R(k+1)
(t) , optimal predictors

are found for each function, the loss is computed

L
(k+1,j2)
(t) := min

Q∈Q
E
[
loss(f (j2)(x), Q(R

(k+1)
(t) (x)))

]
(170)

for all j2 ∈ [m0 + k], and the optimal predictor is updated to {Q(k+1,j2)
(t) }j2∈[m0+k] based on this

solution. (2) Given the current new representation R(k+1)
(t) , the loss matrix

{L(j1,j2)
(t) }j1∈[k],j2∈[m0+k] (171)

is constructed where for j1 ∈ [k] it holds that L(j1,j2)
(t) = L(j1,j2) for all t (i.e., the loss of previous

representations and functions is kept fixed). This is considered to be the loss matrix of a two-player
zero-sum game between the representation player and the function player, where the representation
player has k + 1 possible strategies and the function player has m0 + k strategies. The weights
{p(j1)(t) }j1∈[k+1] and {o(j2)(t) }j2∈[m0+k] are then updated according to the MWU rule. Specifically, for
an inverse temperature parameter β (or a regularization parameter), the update is given by

p
(j)
(t) =

p
(j)
(t−1) · β

L(j)∑
j̃∈[k] p

(j̃)
(t−1) · βL(j̃)

(172)

for the representation weights and, analogously, by

o
(j)
(t) =

o
(j)
(t−1) · β

−L(j)∑
j̃∈[k] o

(j̃)
(t−1) · β−L(j̃)

(173)

for the function weights (as the function player aims to maximize the loss). This can be consid-
ered as a regularized gradient step on the probability simplex, or more accurately, a follow-the-
regularized-leader (Hazan, 2016). The main reasoning of this algorithm is that at each iteration
the weights {p(j)}j∈[k+1] and {o(j)}j∈[m0+k] are updated towards the solution of the two-player
zero-sum game with payoff matrix {−L(j1,j2)

(t) }j1∈[k+1],j2∈[m0+k]. In turn, based only on the func-

tion weights {o(j)}j∈[m0+k], the new representation is updated to R(k+1)
(t) , which then changes the

pay-off matrix at the next iteration. It is well known that the MWU solved two-player zero-sum
game (Freund and Schapire, 1999), in which the representation player can choose the weights and
the function player can choose the function.

This loop iterates for Tstop iterations, and then the optimal weights are given by the average over the
last Tavg iterations (Freund and Schapire, 1999), i.e.,

p
(j)
∗ =

1

Tavg

Tstop∑
t=Tstop−Tavg+1

p
(j)
(t) , (174)

and

o
(j)
∗ =

1

Tavg

Tstop∑
t=Tstop−Tavg+1

o
(j)
(t) . (175)

In the last TR − Tstop iterations, only the representation R(k+1)
(t) and the predictors are updated. The

algorithm then outputs R(k+1)
(T ) as the new representation and the weights {p(j)∗ }j∈[k+1].

Design choices and possible variants of the basic algorithm At initialization, we have cho-
sen a simple random initialization for R(k+1)

(1) , but it may also be initialized based on some prior

knowledge of the desired new representation. The initial predictors {Q(k+1,j2)
(1) }j2∈[m0+k] will then

be initialized as the optimal predictors for R(k+1)
(1) and {f (j2)}j2∈[m0+k]. We have initialized the
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Algorithm 3 A procedure for finding a new representation R(k+1) via the solution of (24)

1: procedure PHASE 2 SOLVER({R(j1)}j∈[k], {f (j2)}j2∈[m0+k],R,F ,Q, d, r, Px)
2: begin
3: initialize TR, Tstop, Tavg ▷ Number of iterations parameters
4: initialize ηR ▷ Step size parameter
5: initialize β ∈ (0, 1) ▷ Inverse temperature parameter
6: initialize f(1) ∈ F ▷ Function initialization, e.g., at random
7: initialize p(j)(1) ← 0 for j ∈ [k] and p(k+1)

(1) ← 0 ▷ A uniform weight initialization for the
representations

8: initialize o(j2)(1) ←
1

m0+k for j2 ∈ [k] ▷ A uniform weight initialization for the functions
9: for j1 = 1 to k do

10: for j2 = 1 to m0 + k do
11: set Q(j1,j2) ← argminQ∈Q E

[
loss(f (j2)(x), Q(R(j1)(x)))

]
▷ Optimal predictors for existing representations and input functions

12: set L(j1,j2) ← minQ∈Q E
[
loss(f (j2)(x), Q(j1,j2)(R(j1)(x)))

]
▷ The minimal loss

13: end for
14: end for
15: for j2 = 1 to m0 + k do
16: initialize R(k+1)

(1) ▷ Arbitrarily, e.g., at random

17: set Q(k+1,j2)
(1) ← argminQ∈Q E

[
loss(f (j2)(x), Q(R(k+1)(x)))

]
for j2 ∈ [m0 + k]

▷ Optimal predictors for new representation and input functions
18: end for
19: for t = 2 to TR do
20: update ▷ A gradient update of the new representation

R
(k+1)
(t−1/2) = R

(k+1)
(t−1) + ηR ·

∑
j2∈[m0+k]

o
(j2)
(t−1) ·∇R(k+1)E

[
loss(f (j2)(x), Q(k+1,j2)(R

(k+1)
(t−1) (x)))

]
(176)

21: project R(k+1)
(t) = ΠR(R

(k+1)
(t−1/2)) ▷ Standardization based on the classR

22: for j = 1 to k do
23: set Q(k+1,j2) ← argminQ∈Q E

[
loss(f (j2)(x), Q(R

(k+1)
(t) (x)))

]
▷ Update of predictors for the new representation

24: L
(k+1,j2)
(t) ← E

[
loss((f (j2)(x), Q(k+1,j2)(R

(k+1)
(t) (x)))

]
▷ Compute loss

25: end for
26: set L(j1,j2)

(t) ← L(j1,j2) for j1 ∈ [k] and j2 ∈ [m0 + k]

27: if t < Tstop then

28: update p(j)(t) ←
p
(j)

(t−1)
·βL(j)

∑
j̃∈[k] p

(j̃)

(t−1)
·βL(j̃)

for j ∈ [k] ▷ A MWU

29: update o(j)(t) ←
o
(j)

(t−1)
·β−L(j)

∑
j̃∈[m0+k] o

(j̃)

(t−1)
·β−L(j̃)

for j ∈ [m0 + k] ▷ A MWU

30: else if t = Tstop then
31: update p(j)(t) = p

(j)
(t) ←

1
Tavg

∑Tstop
t=Tstop−Tavg+1 p

(j)
(t) for j ∈ [k]

▷ Optimal weights by averaging last Tavg iterations
32: update o(j)(t) ←

1
Tavg

∑Tstop
t=Tstop−Tavg+1 o

(j)
(t) for j ∈ [m0 + k]

▷ Optimal weights by averaging last Tavg iterations
33: else
34: update p(j)(t) ← p

(j)
(t−1) for j ∈ [k] ▷ No update for the last T − Tstop iterations

35: update o(j)(t) ← o
(j)
(t−1) for j ∈ [m0 + k] ▷ No update for the last T − Tstop iterations

36: end if
37: return R(k+1)

(T ) and {p(j)(TR)}j∈[k+1]

38: end for
39: end procedure
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Table 1: Hardware details
CPU RAM GPU

Intel i9 13900k 64GB RTX 3090 Ti

representation and function weights uniformly. A possibly improved initialization for the function
weights is to put more mass on the more recent functions, that is, for large values of j2, or to use
the minimax strategy of the function player in the two-player zero-sum game with payoff matrix
{−L(j1,j2)

(t) }j1∈[k],j2∈[m0+k] (that is, a game which does not include the new representation). As
in the Phase 1 algorithm, the gradient update of the new representation can be replaced by a more
sophisticated algorithm, the computation of the optimal predictors can be replaced with (multiple)
update steps, and the step size may also be adjusted. For the MWU update, we use the proposed
scaling proposed by Freund and Schapire (1999)

β =
1

1 +
√

c lnm
T

(177)

for some constant c. It is well known that using the last iteration of a MWU algorithm may fail
(Bailey and Piliouras, 2018), while averaging the weights value of all iterations provides the optimal
value of a two-player zero-sum games (Freund and Schapire, 1999). For improved accuracy, we
compute the average weights over the last Tavg iterations (thus disregarding the initial iterations).
We then halt the weights update and let the function and predictor update to run for T − Tstop

iterations in order to improve the convergence of R(k+1). Finally, the scheduling of the steps may
be more complex, e.g., it is possible that running multiple gradient steps follows by multiple MWU
steps may improve the result.

Running-time complexity analysis Algorithm 3 is more complicated than Algorithm 2, but the
computational complexity analysis is similar. It runs for TR iterations and the total cost is roughly
on the order of TRk2gC1 (taking g gradient steps for the predictor optimization; k2 is the number of
representations, and is controlled by the learner; C1 is determined by the computer, and g should be
large enough to assure quality results).

H DETAILS FOR THE EXAMPLES OF ALGORITHM 1 AND ADDITIONAL
EXPERIMENTS

As mentioned, the solvers of the Phase 1 and Phase 2 problems of Algorithm 1 require the gradients
of the regret (1) as inputs, as well as initial representation and set of adversarial functions. We next
provide these details for the examples in Section 4. The code for the experiments was written in
Python 3.6 and is available at this link. The optimization of hyperparameters was done using
the Optuna library. The hardware used is standard and detailed appear in Table 1.

H.1 DETAILS FOR EXAMPLE 6: THE LINEAR MSE SETTING

In this setting, the expectation over the feature distribution can be carried out analytically, and the
regret is given by

regret(R, f | Σx) = E
[(
f⊤x− q⊤R⊤x

)2]
(178)

= f⊤Σxf − 2q⊤R⊤Σxf + q⊤R⊤Rq. (179)

The regret only depends on the feature distribution Px via Σx. For each run of the algorithm, the co-
variance matrix Σx was chosen to be diagonal with elements drawn from a log-normal distribution,
with parameters (0, σ0), and S = Id.

Regret gradients The gradient of the regret w.r.t. the function f is given by

∇fE
[(
f⊤x− q⊤R⊤x

)2]
= 2f⊤Σx − 2q⊤R⊤Σx (180)
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Table 2: Parameters for linear MSE setting example
Parameter βr βf ηr ηf

Value 0.94 0.653 0.713 0.944

Parameter TR Tf Tavg Tstop

Value 100 until convergence 10 80

and the projection on FS is

ΠF (f) =

{
f

∥f∥S
, ∥f∥S≥ 1

f, ∥f∥S< 1
. (181)

However, we may choose to normalize by f
∥f∥S

even if ∥f∥S≤ 1 since in this case the regret is

always larger if f is replaced by f
∥f∥S

(in other words, the worst case function is obtained on the
boundary of FS). The gradient w.r.t. the predictor q is given by

∇qE
[(
f⊤x− q⊤R⊤x

)2]
=
[
−2f⊤ΣxR+ 2q⊤R⊤ΣxR

]
. (182)

Finally, to derive the gradient w.r.t. R, let us denote R := [R1, R2, . . . , Rr] ∈ Rd×r where Ri ∈ Rd

is the ith column (i ∈ [r]), and q⊤ = (q1, q2, . . . , qr). Then, q⊤R⊤x =
∑

i∈[d] qiR
⊤
i x and the loss

function is

E
[(
f⊤x− q⊤R⊤x

)2]
= E


f⊤x−∑

i∈[d]

qix
⊤Ri

2
 (183)

= f⊤Σxf − 2q⊤R⊤Σxf + q⊤R⊤ΣxRq. (184)

The gradient of the regret w.r.t. Rk is then given by

∇Rk

{
E
[(
f⊤x− q⊤R⊤x

)2]}
= −2E

[(
f⊤x− q⊤R⊤x

)
· qkx⊤] (185)

= −2qk
(
f⊤Σx − q⊤R⊤Σx

)
, (186)

hence, more succinctly, the gradient w.r.t. R is

∇R

{
E
[(
f⊤x− q⊤R⊤x

)2]}
= −2q

(
f⊤Σx − q⊤R⊤Σx

)
. (187)

We remark that in the algorithm these gradients are multiplied by weights. We omit this term when-
ever the weight is common to all terms in order to keep the effective step size constant.

Initialization Algorithm 1 requires an initial representation R(1) and an initial set of functions
{f (j)}j∈[m0]. In the MSE setting, each function f ∈ Rd is also a single column of a representation
matrix R ∈ Rd×r. A plausible initialization matrix R(1) ∈ Rd×r is therefore the worst r functions.
These, in turn, can be found by running Algorithm (1) to obtain m̃ = r functions, by setting r̃ = 1. A
proper initialization for this run is simply an all-zero representation R̃(1) = 0 ∈ Rd×1. The resulting
output is then {R̃(j)

(T )}j∈[r] which can be placed as the r columns of R(1). This initialization is then
used for Algorithm 1.

Algorithm parameters The algorithm parameters used for Example 6 are shown in Table 2. The
parameters were optimally tuned for σ0 = 1.

Additional results The learning curve for running Algorithm 1 for Example 6 is shown in Figure
4, which shows the improvement in regret in each iteration, for which an additional matrix is added
to the set of representations. It can be seen that mixing roughly 10 matrices suffice to get close to the
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Figure 4: The learning curve for Algorithm 1 in the linear MSE setting: d = 20, r = 3, σ = 1.

Figure 5: The ratio between the regret achieved by Algorithm 1 and the theoretical regret in the
linear MSE setting. Left: d = 20, σ0 = 1, varying r. Right: r = 5, d = 20, varying σ0.

minimal regret attained by the algorithm, compared to the potential number of
(
d
r

)
=
(
20
3

)
= 1140

representation matrices determined by A.

Additional results of the accuracy of the Algorithm 1 in the linear MSE setting are displayed in
Figure 5. The left panel of Figure 5 shows that the algorithm output is accurate for small values
of r, but deteriorates as r increases. This is because when r increases then so is ℓ∗ and so is the
required number of matrices in the support of the representation rule (denoted by m). Since the
algorithm gradually adds representation matrices to the support, an inaccurate convergence at an
early iteration significantly affects later iterations. One possible way to remedy this is to run each
iteration multiple times, and choose the best one, before moving on to the next one. Another reason
is that given large number of matrices in the support (large m), it becomes increasingly difficult
for the the MWU to accurately converge. Since the iterations of the MWU do not converge to the
equilibrium point, but rather their average (see discussion in Appendix A) this can only be remedied
by allowing more iterations for convergence (in advance) for large values of m. The right panel of
Figure 5 shows that the algorithm output is accurate for a wide range of the condition number of
the covariance matrix. This condition number is determined by the choice of σ0, where low values
typically result covariance matrices with condition number that is close to 1, while high values will
typically result large condition number. The right panel shows that while the hyperparameters were
tuned for σ0 = 1, the result is fairly accurate for a wide range of σ0 values, up to σ0 ≈ 5. Since for
Z ∼ N(0, 1) (standard normal) it holds that P[−2 < Z < 2] ≈ 95%, the typical condition number
of a covariance matrix drawn with σ0 = 5 is roughly e2σ0

e−2σ0
≈ 4.85 · 108, which is a fairly large

range.
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H.2 DETAILS FOR EXAMPLE 8: THE LINEAR CROSS-ENTROPY SETTING

In this setting,

regret(R, f | Px) = min
q∈Rr

E
[
DKL

(
[1 + exp(−f⊤x)]−1 || [1 + exp(−q⊤R⊤x)]−1

)]
, (188)

and the expectation over the feature distribution typically cannot be carried out analytically. We thus
tested Algorithm 1 on empirical distributions of samples drawn from a high-dimensional normal
distribution. Specifically, for each run, B = 1000 feature vectors were drawn from an isotropic
normal distribution of dimension d = 15. The expectations of the regret and the corresponding
gradients were then computed with respect to (w.r.t.) the resulting empirical distributions.

Regret gradients We use the facts that

∂

∂p1
DKL(p1 || p2) = log

p1(1− p2)
p2(1− p1)

(189)

and
∂

∂p2
DKL(p1 || p2) =

p2 − p1
p2(1− p2)

. (190)

For brevity, let us next denote

p1 :=
1

1 + exp(−f⊤x)
(191)

and

p2 :=
1

1 + exp(−q⊤R⊤x)
. (192)

We next repeatedly use the chain rule for differentiation. First,

∇fp1 = ∇f

[
1

1 + exp(−f⊤x)

]
=

exp(−f⊤x) · x
[1 + exp(−f⊤x)]2

= p1(1− p1) · x· (193)

and

∇qp2 = ∇q

[
1

1 + exp(−q⊤R⊤x)

]
=

exp(−q⊤R⊤x) ·R⊤x

[1 + exp(−q⊤R⊤x)]
2 = p2(1− p2) ·R⊤x· (194)

So, assuming that Px is such that the order of differentiation and expectation may be interchanged
(this can be guaranteed using dominated/monotone convergence theorems), the gradient of the regret
w.r.t. f is

∇f regret(R, f | Px) = E
[
∂

∂p1
DKL(p1 || p2)×∇fp1

]
(195)

= E
[
log

(
p1(1− p2)
p2(1− p1)

)
· p1(1− p1) · x

]
(196)

= E

[
(f⊤ − q⊤R⊤)x

exp(−f⊤x)
[1 + exp(−f⊤x)]2

· x

]
(197)

= E

[
exp(−f⊤x)

[1 + exp(−f⊤x)]2
· x⊤(f −Rq)x

]
. (198)

Next, under similar assumptions, the gradient of the regret w.r.t. the predictor q is

∇qregret(R, f | Px) = E
[
∂

∂p2
DKL(p1 || p2)×∇qp2

]
(199)

= E
[(

1

1 + exp(−q⊤R⊤x)
− 1

1 + exp(−f⊤x)

)
·R⊤x

]
. (200)
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Table 3: Parameters for linear cross entropy setting example
Parameter βr βf ηr ηf

Value 0.9 0.9 10−3 10−1

Parameter TR Tf Tavg Tstop

Value 100 1000 25 50

Finally, as for the MSE case, to derive the gradient w.r.t. R, we denote R := [R1, R2, . . . , Rr] ∈
Rd×r where Ri ∈ Rd is the ith column (i ∈ [r]), and q⊤ = (q1, q2, . . . , qr). Then, q⊤R⊤x =∑

i∈[d] qiR
⊤
i x and

p2 =
1

1 + exp(−
∑

i∈[d] qiR
⊤
i x)

. (201)

Then, the gradient of p2 w.r.t. Rk is then given by

∇Rk
p2 = p2(1− p2) · qix, (202)

hence, more succinctly, the gradient w.r.t. R is

∇Rp2 = p2(1− p2) · xq⊤. (203)

Hence,

∇Rregret(R, f | Px) = E
[
∂

∂p2
DKL(p1 || p2)×∇Rp2

]
(204)

= E
[
(p2 − p1) · xq⊤

]
(205)

= E
[(

1

1 + exp(−q⊤R⊤x)
− 1

1 + exp(−f⊤x)

)
· xq⊤

]
. (206)

Initialization Here the initialization is similar to the linear MSE setting, except that since a column
of the representation cannot ideally capture even a single adversarial function, the initialization
algorithm only searches for a single adversarial function (m̃ = 1). This single function is then used
to produce R(1) as the initialization of Algorithm 1.

Algorithm parameters The algorithm parameters used for Example 8 are shown in Table 3.

H.3 DETAILS FOR EXAMPLE 9: AN EXPERIMENT WITH A MULTI-LABEL CLASSIFICATION OF
IMAGES AND A COMPARISON TO PCA

We next present the setting of Example 9, which shows that large reduction in the representation
dimension can be obtained if the function is known to belong to a finite class.

Definition 23 (The multi-label classification setting). Assume that X = R
√
d×

√
d where d = 625,

and x represents an image. The distribution Px is such that x contains 4 shapes selected from a
dictionary of 6 shapes in different locations, chosen with a uniform probability; see Figure 6. The
output is a binary classification Y = {±1} of the image. Assume that the class of representation is
linear z = R(x) = R⊤x for some R ∈ R := Rd×r where d > r. The response function belongs to
a class of 6 different functions F = {f1, . . . f6}, where fj : X → Y indicates whether the ith shape
appears in the image or not. Assume the cross-entropy loss function, where given that the prediction
that y = 1 with probability q results the loss loss(y, q) := − 1

2 (1 + y) log q − 1
2 (1− y) log(1− q).

The set of predictor functions is Q :=
{
Q(z) = 1/[1 + exp(−q⊤z)], q ∈ Rr

}
, and the regret is

then given by the expected binary Kullback-Leibler (KL) divergence as in Definition 7.

Simplifying Algorithm 1 In the the multi-label classification setting of Definition 23, Algorithm
1 can be simplified as follows. First, since the number of response functions in the class F is finite,
the Phase 1 problem (22) in Algorithm 1 algorithm is simple, since the adversarial function can
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Figure 6: An image in the dataset for the multi-label classification setting (Definition 23).

be found by a simple maximization over the 6 functions. Then, the phase 2 step simply finds for
each function f (j2) in F , j2 ∈ [6], the best representation-predictor (R(j1), Q(j1,j2)) using gradient
descent, where R(j1) : X → Rr is a linear representation z =, and Q is logistic regression. This
results is a payoff matrix of R6×6. Then, the resulting game can be numerically solved as a linear
program, thus obtaining the probability that each representation should be played. The resulting
loss of this minimax rule R∗ is the loss of our representation. This representation is then compared
with a standard PCA representation, which uses the projections on the first r principle directions of
R = V1:r(Σx)

⊤ as the representation (without randomization). The results of the experiment are
shown in Figure 3 in the paper.

H.4 AN EXPERIMENT WITH A NN ARCHITECTURE

In the analysis and the experiments above we have considered basic linear functions. As mentioned,
since the operation of Algorithm 1 only depends on the gradients of the loss function, it can be easily
generalized to representations, response functions and predictors for which such gradients (or sub-
gradients) can be provided. In this section, we exemplify this idea with a simple NN architecture.
For x ∈ Rd, we let the rectifier linear unit (ReLU) be denoted as (x)+.
Definition 24 (The NN setting). Assume the same setting as in Definitions 1 and 7, except that the
class of representation, response and predictors are NN with c hidden layers of sizes hR, hf , hq ∈
N+, respectively, instead of linear functions. Specifically: (1) The representation is

R(x) = R⊤
c

(
· · ·
(
R⊤

1 (R
⊤
0 x)+

)
+

)
+

(207)

for some (R0, R1, · · ·Rc) ∈ R := {Rd×hR × RhR×hR · · ·RhR×hR × RhR×r} where d > r. (2)
The response is determined by

f(x) = f⊤c

(
· · ·
(
F⊤
1 (F⊤

0 x)+
)
+

)
+

(208)

where (F0, F1, . . . , fc) ∈ F := {Rd×hf × Rhf×hf · · ·Rhf×hf × Rhf }. (3) The predictor is deter-
mined by for some

q(z) = q⊤c

(
· · ·
(
Q⊤

1 (Q
⊤
0 z)+

)
+

)
+

(209)

where (Q0, Q1, . . . , qc) ∈ Q := {Rr×hq × Rhq×hq · · ·Rhq×hq × Rhq}.

Regret gradients Gradients were computed using PyTorchwith standard gradients computation
using backpropagation for an SGD optimizer.

Initialization The initialization algorithm is similar to the initialization algorithm used in the lin-
ear cross-entropy setting.

Algorithm parameters The algorithm parameters used for the example are shown in Table 4.

Results For a single hidden layer, Figure 7 shows the reduction of the regret with the iteration for
the cross-entropy loss.
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Table 4: Parameters for the NN cross-entropy setting.
Parameter c hR hf hq

Value 1 d d d

Parameter βr βf ηr ηf ηq

Value 0.9 0.9 10−3 10−1 10−1

Parameter TR Tf TQ Tavg Tstop

Value 100 1000 100 10 80

Figure 7: The regret achieved by Algorithm 1 in the NN cross-entropy setting as a function of the
iteration m.
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