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Abstract

The Adam optimizer is a cornerstone of modern deep learning, yet the empirical
necessity of each of its individual components is often taken for granted. This paper
presents a focused investigation into the role of bias-correction, a feature whose
contribution remains poorly understood. Through a series of systematic ablations on
vision and language modelling tasks, we demonstrate that the conventional wisdom
surrounding bias correction is misleading. In particular, we demonstrate that in the
optimal hyper-parameter configuration, the inclusion of bias correction leads to
no improvement in final test performance. Moreover, unless appropriate learning
rate scheduling is implemented, the inclusion of bias correction can sometimes
be detrimental to performance. We further reinterpret bias correction as a form of
implicit learning rate scheduling whose behaviour is strongly dependent on the
choice of smoothing hyperparameters β1, β2 ∈ [0, 1). Our findings challenge the
universal inclusion of this component.

1 Introduction

The Adam optimizer Kingma and Ba [2017] (with decoupled weight decay Loshchilov and Hutter
[2019]) has established itself as the de facto standard in deep learning. Due to its robust empirical
performance and ease of implementation, it is commonly adopted as the default choice when training
neural networks both large and small and across a wide range of tasks. Practitioners often use Adam
without extensive hyper-parameter tuning or consideration of each of the individual components of
the optimizer. One such component is bias correction.
A single step of the Adam optimizer, with bias correction , is given by

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
1

1− βt
1

mt , v̂t =
1

1− βt
2

vt

θt = θt−1 − ηt
m̂t√
v̂t + ε

(1)

where gt is the stochastic gradient, mt, vt are the respective first and second moments (which are
typically initialized at 0), (β1, β2) ∈ [0, 1)2 are the exponential decay rates, λ ∈ R≥0 weight decay
and (ηj)j≥1 ⊂ R≥0 is the learning rate schedule.

Background and Related Work While bias correction is universally included in practical im-
plementations of Adam(Bradbury et al. [2018], Paszke et al. [2019], Abadi et al. [2015]), it is
inconsistently treated in the theoretical literature. In many analyses, the term is explicitly incor-
porated (Balles and Hennig [2020], Li et al. [2023]), but is sometimes ignored for simplification
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(Bernstein and Newhouse [2024]) . To the best of our knowledge, it has not been carefully ablated
in empirical studies across a range of hyperparameter configurations and tasks. Nevertheless, it
plays a non-trivial role in shaping the optimizer’s behaviour and, when included, tends to complicate
convergence analyses and add interpretive nuance. For example, Défossez et al. [2022] discuss its
influence in the context of second-moment estimation. Explicitly, the authors omit the correction term
for the first moment mt, but not vt arguing that this "simplifies the analyses". Moreover, nearly all
existing analyses assume near default settings of β1 = 0.9, β2 = 0.999 or 0.99, leaving unexplored
how the effects of bias correction might change across the (β1, β2)-landscape. This gap in the
literature is particularly relevant in light of recent findings, such as Orvieto and Gower [2025], which
demonstrate that the setting β1 = β2 generally achieves optimal performance when pretraining large
language models.

A Discussion of the “Proof” for Bias Correction One can express the moments mt, vt at time
step t ∈ N in closed-form as follows:

mt = (1− β1)

t∑
j=1

βt−j
1 gj , vt = (1− β2)

t∑
j=1

βt−j
2 g2j (2)

The following argument is used by the original authors to justify the inclusion of the bias correction
step

E[mt] = E

[
(1− β1)

t∑
i=1

βt−i
1 gi

]

= E

[
(1− β1)gt

t∑
i=1

βt−i
1

]
(assuming E[gt] ≈ E[gi] for i < t)

= (1− βt
1)E[gt]

It is therefore argued that dividing by 1− βt
1 removes the expected "bias" in the exponential moving

average. An analogous argument is used to justify the bias correction factor for vt.
While the assumption that E[gt] ≈ E[gi] for i < t at early training steps simplifies the analysis,
it usually does not hold in practice. In particular, unless a very gradual warm-up of learning rate
is applied, it is unlikely that stepping somewhere in a complex loss landscape would not cause a
significant change of the expected value of the gradient.

Contributions In this work, we challenge the conventional understanding of bias correction.
Through controlled ablations in the language and vision settings, we show that:

• The inclusion of bias correction induces an implicit learning rate schedule by altering the
effective learning rate.

• For the β1 = β2 setting (LLM-optimal), bias correction provides no benefit and can even
degrade performance unless appropriate learning rate scheduling is implemented.

• For default parameters where performance is suboptimal, its removal is detrimental, explain-
ing the source of conventional wisdom.

2 Experiments

Language Model Training Details In the case of pretraining language models, we focus exclusively
on transformer-based models. Specifically, we make use of an enhancement (Ajroldi [2024]) of
nanoGPT (Karpathy [2022]), which incorporates improvements such as RMSNorm Zhang and
Sennrich [2019] in place of batch/layer normalization, SwiGLU Shazeer [2020], a FlashAttention
Dao et al. [2022] mechanism and Rotary Positional Embeddings (Su et al. [2023]).
All language models were trained on the SlimPajama Shen et al. [2024] dataset. We pretrain a
160M parameter, 12 layer model with hidden size 768 on 2.5B tokens, varying the learning rate
and investigating a number of different (β1, β2) settings. In all runs, we apply decoupled weight
decayLoshchilov and Hutter [2017] and global gradient clipping Zhang et al. [2020] for optimal
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Figure 1: Sensitivity to learning rate for AdamW with and without bias correction (orange and blue
respectively). The plots show final validation perplexity (y-axis) across a range of learning rates
(x-axis, log-scale). Results are averaged over 3 random seeds.
With warm-up cosine scheduling, removing bias correction increases sensitivity for default hyperpa-
rameters (β1, β2) = (0.9, 0.999) but with identical optimal performance. For the LM-optimal setting
(β1, β2) = (0.95, 0.95), performance is identical.
With a fixed learning rate, the inclusion of bias correction has a more pronounced effect. In the
default torch setting (0.9, 0.999), excluding bias correction has a detrimental effect whereas for the
LM-optimal setting (0.95, 0.95), bias correction slightly degrades optimal performance.

performance1 . The batch size is held fixed at 256.
We further compare the performance when a warm-up cosine schedule (linear warm-up for the first
10% of steps followed by cosine decay to zero) is applied vs a fixed learning rate throughout training.
We compare the performance when training in the torch default setting (β1, β2) = (0.9, 0.999) and
the more language model pretraining-optimal setting β1 = β2 = 0.95 which was shown in Orvieto
and Gower [2025] to yield near best performance across a large sweep. Figure 1 displays the final
validation perplexity across a sweep of learning rates for the two settings. In Appendix B, we extend
our investigation of the β1 = β2 case, systematically evaluating different values of this shared
parameter (see Figure 6 and an explanation in Figure 7).

Vision Models To support our intuition, we perform further experiments in the vision setting.
Details, experimental results and discussion are all provided in the appendix A. In particular, we
display our empirical findings in Figures 3, 5, 4.

3 Bias Correction as Implicit Learning Rate Scheduling

The bias-corrected Adam step direction (ignoring ε) factorizes as:

m̂t√
v̂t

=

1
1−βt

1
mt√

1
1−βt

2
vt

=

√
1− βt

2

1− βt
1

mt√
vt

= ρ(t;β1, β2)
mt√
vt

(3)

Where we define the bias-correction factor ρ(t;β1, β2) :=

√
1−βt

2

1−βt
1

. This term modulates the effective
learning rate ρ(t;β1, β2) · ηt over time in a manner which depends heavily on the values of β1, β2.

1The dynamics without decoupled weight decay/gradient clipping are nearly identical but with generally
worse performance throughout runs.
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Figure 2: Comparison of the effective learning rate when bias correction is applied for (β1, β2) =
(0.9, 0.999) (green) and (β1, β2) = (0.95, 0.95) (red) under both warm-up cosine scheduling (left)
and a constant learning rate (right).
With warm-up cosine scheduling, the bias correction factor is effectively absorbed for the LM-
optimal setting (0.95, 0.95) (the true warmup cosine schedule is indistinguishable from the red
curve), whereas for the default setting (0.9, 0.999) it substantially modifies the effective learning rate,
lowering the peak value. Without scheduling, the torch default configuration exhibits a very gradual
warm-up on effect on the effective learning rate, while the LM-optimal setting produces an initial
spike that quickly decays to the nominal learning rate.

While prior work John [2021] Défossez et al. [2022] has recognized this interpretation of the bias-
correction factor, its empirical behaviour has only been considered for a limited subset of (β1, β2)
Kingma and Ba [2017] – typically those near the default settings (β1 = 0.9, β2 = 0.999).
Figure 2 reveals how ρ(t;β1, β2) behaves differently across configurations:

• Default setting (0.9, 0.999): Creates a very gradual warm-up effect, slowly increasing the
effective learning rate across thousands of iterations.

• LM-optimal setting (0.95, 0.95): Produces a large initial spike that quickly decays to
baseline

The interaction with explicit scheduling is crucial. Warm-up cosine scheduling completely absorbs the
ρ(t) spike for (0.95, 0.95), but the bias correction factor non-negligibly alters the effective learning
rate for (0.9, 0.999). This results in a dampened peak learning rate.
This explains our empirical results in Figure 1:

• With scheduling, performance differences vanish for β1 = β2 as the spike is absorbed

• Without scheduling, the (0.95, 0.95) spike causes instability in the early training steps,
degrading performance

• Default parameters benefit from bias correction’s implicit warm-up when no scheduling is
used.

4 Conclusion

We have demonstrated a clear and actionable finding: when pretraining language models with
a proper learning rate schedule and optimal hyperparameters, Adam achieves the same validation
performance with or without the inclusion of bias correction. Bias correction is not a true performance
enhancer; but merely an implicit, and often clumsy, learning rate warm-up. Since explicit learning rate
scheduling is always required to achieve optimal results, we therefore advocate for its removal from
both implementation and theoretical analysis. This ultimately yields a simpler, more interpretable
optimizer without sacrificing performance. It also removes a potential confounder in convergence
studies and large scale training.
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A Additional Experiments in the Vision Setting

Vision Training Setup In order to support our claims, we investigate the effect of removing bias
correction in the vision setting. We train a ResNet92 model on CIFAR-10 Krizhevsky and Hinton
[2009] and both a vision transformer (ViT) Dosovitskiy et al. [2021] and ResNet He et al. [2015]
model on TinyImagenet Hendrycks and Dietterich [2019]. Standard data augmentation was applied in
all cases along with decoupled weight decay Loshchilov and Hutter [2017]. We compare the effect in
the torch default setting (β1, β2) = (0.9, 0.999) and the β1 = β2 = 0.95 setting. Again we consider
both the case of warm-up cosine scheduling and constant learning rate. For each learning rate, we
compute the average test accuracy from 3 random seeds.

Experimental Results Across the three model-dataset settings (Figure 3, Figure 5, 4, we observe
no qualitative difference in test performance when removing bias correction. This is true for both the
warm-up cosine and constant learning rate cases and for both (β1, β2) settings.

Takeaway These results further support our claims that bias correction can be safely removed from
Adam without decreased performance, provided a solid training pipeline is adopted.
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Figure 3: ResNet9 on CIFAR-10.

2A lightweight ResNet implementation He et al. [2015] with ∼ 1M parameters.
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Figure 4: ResNet50 on Tiny ImageNet.
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B A Closer Look at the β1 = β2 Setting

We further investigate the final validation performance when considering different values of β =
β1 = β2. We conduct a sweep across values β ∈ {0.9, 0.95, 0.975, 0.9875} with the other training
parameters the same as before. Due to computational constraints, each point represents a single
random seed.
Consider Figure 6.When warm-up cosine scheduling is applied, final validation performance is
indistinguishable for every learning rate and every choice of β. On the other hand, when the learning
rate is constant, the inclusion of bias correction always worsens optimal performance. Moreover
increasing values of β result in an increasing discrepancy between performance.
We posit that the performance discrepancy is explained by the behaviour of the bias correction factor
as shown in Figure 7. Indeed for higher values of β, the bias correction factor decays more slowly
towards the baseline. This spike in effective learning rate in the early steps likely has a destabilizing
effect, resulting in a worse trained model.
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Figure 6: Sensitivity curves comparing performance with and without bias correction (orange and
blue respectively) for the case that β1 = β2. The x-axis represents the learning rate (log scale) and
the y-axis the final validation perplexity.
With warm-up cosine scheduling, the inclusion of bias correction does not effect final validation
perplexity across all learning rates.
In contrast, with constant learning rate, bias correction actually denigrates performance, progressively
more for larger values of β1 = β2 – with bias correction always performing worse.
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As we can see, the behaviour for different β values is similar, but larger values require more iterations
to decay to 1.
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