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Abstract

Open-domain answer sentence selection (OD-001
AS2), as a practical branch of open-domain002
question answering (OD-QA), aims to respond003
to a query by a potential answer sentence from004
a large-scale collection. A dense retrieval005
model plays a significant role across differ-006
ent solution paradigms, while its success de-007
pends heavily on sufficient labeled positive QA008
pairs and diverse hard negative sampling in009
contrastive learning. However, it is hard to sat-010
isfy such dependencies in a privacy-preserving011
distributed scenario, where in each client, less012
in-domain pairs and a relatively small collec-013
tion cannot support effective dense retriever014
training. To alleviate this, we propose a brand-015
new learning framework for Privacy-preserving016
Distributed OD-AS2, dubbed PDD-AS2. Built017
upon federated learning, it consists of a client-018
customized query encoding for better personal-019
ization and a cross-client negative sampling for020
learning effectiveness. To evaluate our learn-021
ing framework, we first construct a new OD-022
AS2 dataset, called Fed-NewsQA, based on023
NewsQA to simulate distributed clients with024
different genre/domain data. Experiment re-025
sults shows that our learning framework can026
outperform its baselines and exhibit its person-027
alization ability.028

1 Introduction029

Open-domain answer sentence selection (OD-AS2)030

aims to fetch relevant sentences from a large-scale031

collection given a query, which is also known as032

long answer in open-domain question answering033

(OD-QA). It has been attracting more and more in-034

terest from both academia and industry (Yang et al.,035

2018; Kwiatkowski et al., 2019) as it reaches a bal-036

anced granularity between coarse-grained passages037

(Nguyen et al., 2016) and fine-grained phrases038

(Kwiatkowski et al., 2019). Such balanced-granular039

answers can relieve crowd-sourcing burdens and040

satisfy most real-world scenarios.041

Advanced by surging pre-trained language mod- 042

els (Devlin et al., 2019; Liu et al., 2019), represen- 043

tation learning entered a new era and renders dense 044

retrieval as a significant prerequisite across differ- 045

ent solution paradigms (e.g., ‘retrieval & read’) 046

to OD-AS2. Built upon a dual-encoder (a.k.a. bi- 047

encoder, two-stream encoder), dense retrieval repre- 048

sents both questions from users and sentences in the 049

collections as dense vectors in the same semantic 050

space, and measures question-sentence relevance 051

via a lightweight metric, e.g., doc-product (Guu 052

et al., 2020; Karpukhin et al., 2020). 053

As training an effective dense retrieval model 054

requires sufficient data – both human-created pos- 055

itive question-answering pairs and a large-scale 056

collection to support negative mining, it remains 057

formidable challenges to directly apply the dense 058

retrieval to the real-world industrial scenarios, e.g., 059

in-house data inquiry, individual email searches, 060

and personal intelligent assistants. The corpus (i.e., 061

the labeled QA pairs and collections) in each client 062

is usually too scarce and biased to train an effective 063

model, while the corpus from each client cannot be 064

uploaded to a central server for standard distributed 065

learning for a privacy-preserving purpose. 066

To this end, we propose a new learning frame- 067

work for Privacy-preserving Distributed OD-AS2, 068

called PDD-AS2. In particular, built upon a pre- 069

vailing federated learning (FL) framework, Fe- 070

dAvg(McMahan et al., 2017), PDD-AS2 alleviates 071

the data-scarcity problem along with two signif- 072

icant directions. On the one hand, while learn- 073

ing generic representation across clients via FL, 074

we present a client-customized query encoding 075

for personalization for client-specific query distri- 076

bution. In line with dynamic hard negatives and 077

query-side fine-tuning, it will largely improve the 078

model’s effectiveness. On the other hand, without 079

access to other clients’ collections to secure pri- 080

vacy, we propose a cross-client negative sampling 081

strategy, called fed-negative, compatible with previ- 082
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(a) The communication process of fed-
negative.

(b) Negative Aggregation of fed-negative.

Figure 1: (a) The client sends its queries to some other clients and receive negative embeddings from these clients.
(b) The client aggregates local negatives with received negatives to construct a negative subset.

ous strategies (e.g., in-batch, pre-batch, static hard083

negative sampling) to further boost the model.084

To evaluate our learning framework, PDD-AS2,085

we propose to construct a new distributed OD-AS2086

dataset based on NewsQA (Trischler et al., 2017)087

w.r.t. news story’s genre.088

In the experiments, we show that our PDD-AS2089

framework can improve the performance of our090

baseline by 5%-15%. Clients with insufficient train-091

ing data benefit from the model aggregation greatly.092

We also show that our fed-negative can improve093

the performance of PDD-AS2 framework by 1%-094

10% compared with the original negative sampling095

method. The main contribution of this work can be096

summarized as097

• We highlight a promising setting of open-098

domain answer sentence selection (OD-AS2)099

for real-world industrial applications and pro-100

pose a privacy-preserving distributed OD-AS2101

(PDD-AS2) learning framework towards both102

personalization and effectiveness.103

• We propose two key techniques, i.e., client-104

customized query encoding method and a105

cross-client negative sampling strategy, to ef-106

fectively learn PDD-AS2 framework.107

• We construct a new distributed OD-AS2108

dataset upon109

NewsQA, dubbed Fed-NewsQA to evaluate110

the effectiveness of our framework and its111

baselines.112

2 Methodology113

In this section, we first introduce the preliminaries114

of our work. Then we present our proposed client-115

customized query encoding and cross-client nega- 116

tive sampling in our PDD-AS2 framework. Later, 117

we detail the training process of our PDD-AS2 118

framework and our proposed Fed-NewsQA bench- 119

mark for evaluating our framework. 120

2.1 Preliminary 121

Task formulation. In line with existing works 122

(Shen et al., 2017; Garg et al., 2020; Karpukhin 123

et al., 2020; Zhan et al., 2021), we first formulate 124

open-domain answer sentence selection (OD-AS2) 125

under distributed setting as follows: For each client 126

ci ∈ C with its large-scale sentence collection 127

Si = {si1...sin}, it aims to fetch potential answer 128

sentence(s) sik from Si that answers a given query 129

q ∈ Q. In the OD-AS2 setting, the sentence set Si 130

contains sentences from all passages in ci. If no 131

confusion is caused, we omit the superscript ‘i’ for 132

a specific client in the remainder. 133

Usually, a query q and its answer sentence s+q 134

are often provided as positive training data in each 135

client. Hence, it is necessary to sample a set of 136

negative for q to construct , i.e., 137

Nq = {d|d ∼ P (S)}, (1) 138

where P (·) denotes a distribution over S. For sim- 139

plicity, we omit the query-specific subscript indica- 140

tor, q. 141

Then, a contrastive learning framework is usu- 142

ally employed to learn an efficient retrieval model. 143

In formal, a representation learning module is first 144

used to embed q and each s ∈ {s+} ∪ N and then 145

derive a probability distribution over {s+} ∪ N. 146
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That is,147

P ({s+} ∪ N|q; Θ) = 1/Z (2)148

exp(< Enc(q; Θ(q)),Enc(s; Θ(s)) >149

where Θ = {Θ(q),Θ(s)}, Z denotes softmax nor-150

malization term, Θ parameterizes a text encoder151

for a single vector representation, <,> denotes a152

lightweight relevance metric (says, dot-product) for153

their similarity score. Here, Θ(q) and Θ(s), whether154

tied or not, compose a dual-encoder structure for155

efficient dense retrieval. Lastly, the training loss of156

contrastive learning can be defined to optimize Θ,157

i.e.,158

L(ct)(Q; Θ) = −
∑
q∈Q

logP (s = s+|q,159

{s+} ∪ N; Θ), (3)160

where P (·|q; Θ) denotes the probability distribu-161

tion over {s+} ∪ N for q by Eq.(2).162

Next, considering the distributed setting of OD-163

AS2, the overall training loss can be defined as164

L({Qi}i; {Θi}i) =
∑
i

L(ct)(Qi; Θi). (4)165

However, directly optimizing Eq.(4) cannot de-166

liver a satisfactory performance for each client i167

since both labeled question-answering pairs and the168

collection are too scarce to effectively learn. There-169

fore, we adopt a popular federated learning method,170

FedAvg (McMahan et al., 2017), as the backbone171

of our framework. It will leverage the training data172

distributed in each client in a privacy-preserving173

way. We denote the weight of global model as174

Θglobal. For each c ∈ C with model weight Θi, we175

update Θi with a learning rate of α locally by176

Θi = Θi − α∇L(Qi; Θi), (5)177

where L is the loss function of local training ob-178

jective defined in Eq.4. After local updates, each179

client sends their weights Θi to the central server.180

Central server aggregate the weights by181

Θglobal =

k∑
i=1

|Di|∑k
i=1 |Di|

Θi, (6)182

where k is the number of clients. Note that our183

PDD-AS2 framework is also compatible with other184

federated learning methods.185

2.2 Fed-Negative: Cross-client Negatives 186

However, federated learning cannot fulfill negative 187

samples’ needs in terms of quality and quantity in 188

some clients with few document collections. Build- 189

ing on this problem, we propose fed-negative: a 190

cross-client negative sampling method inspired by 191

dynamic negative sampling for introducing more 192

diverse negative samples. As shown in the Figure 193

1, given a client c, we first encode q into represen- 194

tations by Enc(q; Θ). Then we select a subset of 195

clients from the whole client set as 196

Cs = Select({C}), c /∈ Cs, (7) 197

where the select function can based on network con- 198

dition or geography distance estimated by client’s 199

region. Then we send the query representation 200

Enc(q; Θ) to each client in Cs. 201

Once each client receive the query, they did a 202

similarity search on their own sentence embedding 203

matrix to retrieve top n sentences embeddings and 204

send them back to c. c choose top n negatives from 205

all negatives by the similarity score as 206

Nfed = TopK({(Nck)}), ck ∈ Cs (8) 207

where Nck is the negative set of q sampled in client 208

ck. 209

2.3 Client-customized Query Encoding 210

On top of fed-negative, we propose client- 211

customized query encoding inspired by query-side 212

fine-tuning. We aim to provide each client with 213

a personalized query encoder to resolve miscel- 214

laneous queries. For this purpose, we person- 215

alize Enc(q; Θ) with local training while fixing 216

the Enc(s; Θ). Enc(s; Θ) shares a global weight 217

among all clients. In this stage, we utilize our pro- 218

posed fed-negative for diverse negative samples. 219

Training objective. To learn a personalized 220

query encoder, we apply the constrative loss de- 221

fined in Eq.4. Formally, given a query q and its 222

gold answer s+, we first sample the negative set 223

Nfed defined by Eq.8. Therefore, we only update 224

the weight Θ of query encoder with loss function 225

defined in Eq.4 226

2.4 Training Pipeline of PDD-AS2 227

Finally, we introduce the overall training pipeline 228

of our PDD-AS2 framework. As shown in Figure 229

2, we organize our training procedure as two stages 230

adapted from some prevailing works (Zhan et al., 231
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Figure 2: (a) Train query encoder Enc(q; Θ) and sentence encoder Enc(s; Θ) with Static hard-negative sampling
(b) Personalize the query encoder Enc(q; Θ) with fed-negative

Figure 3: Statistics of each genre in our Benchmark

2021; Karpukhin et al., 2020): (Stage 1) Federated232

Static negative training: we train the encoders233

with static hard negative sampling N static under234

FedAvg. Due to the instability of the model in235

the early training stage, we initially sample BM25236

negatives NBM25 to warm up the model following237

some works (Zhan et al., 2021; Gao and Callan,238

2022). We update both Enc(q; Θ) and Enc(s; Θ)239

byL defined in Eq.4. The overview of the federated240

framework is illustrated in Algorithm.1. (Stage 2)241

Query encoder personalization: Continual from242

first stage, we samples Nfed defined in section 2.2243

to train a client-customized query encoder follows244

section 2.3.245

2.5 Fed-NewsQA: A Multi-client OD-AS2246

Benchmark247

For better evaluate our method in distributed set-248

ting, we propose a multi-client OD-AS2 benchmark249

based on NewsQA. Recent open-domain question250

answering works often use datasets such as SQuAD251

(Rajpurkar et al., 2016), TREC (Wang et al., 2007),252

WebQuestions (Berant et al., 2013), Natural Ques-253

tions (Bird et al., 2009) in their experiments. How-254

ever, we propose to use NewsQA (Trischler et al.,255

2017) as our original dataset for two main reasons.256

First, to better mimic the difference between 257

each client’s personal documents and the data 258

scarcity problem in the real-world cases, we pro- 259

pose to split the dataset into different genres for 260

simulating different clients. Among all these 261

datasets, we found that NewsQA meets our require- 262

ments perfectly. We split the dataset into different 263

genres directly from the web-link of each passage. 264

We choose ten genres from NewsQA since the rest 265

genres do not have enough numbers of samples in 266

the dev/test set. Each of these genres represents a 267

different client in our Federated setting. The statis- 268

tics of each genre is shown in the Figure 3. 269

Second, NewsQA significantly outnumbers 270

some other datasets on the distribution of the 271

more difficult reasoning questions, such as SQuAD 272

(Trischler et al., 2017). We believe inferencing 273

and reasoning queries are essential to open-domain 274

question answering in real-world cases. 275

2.6 Retrieval Schemes 276

Our model is compatible with two retrieval 277

schemes: sentence-level retrieval and passage-level 278

retrieval. For sentence-level retrieval, we retrieve 279

the top sentences follow the probability distribu- 280

tion defined in Eq.2. For passage-level retrieval, 281

based on the fact that sentences are extracted from 282

their source passages. We retrieve the passage with 283

highest relevance score as 284

f(p, q) := max
s∈p
{< Enc(q; Θ),Enc(s; Θ) >} 285

, ∀s ∈ S. (9) 286

The additional cost of sorting sentence scores 287

can be ignored. Therefore the inference speed of 288

our sentence-based passage retrieval is the same as 289

for sentence retrieval. 290
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Algorithm 1: The federated learning frame-
work of PDD-AS2 in stage 1 training

Input: Clients set C, Training set Di on
client i, global model weight Θglobal,
learning rate α

1 Function Server execute:
2 initialize Θi with Θglobal;
3 for round t=1,2... do
4 for each client ci ∈ C in parallel do
5 Θi ←

ClientUpdate(ci,Θ
i, Di)

6 end
7 end
8 Θglobal =

∑k
i=1

Di
D Θi

9 Function ClientUpdate(ci,Θ
i, Di):

// execute on client ci
10 for batch b in Di do
11 Θi ← Θi − η∇L(q; Θi)
12 end

3 Experiments291

3.1 Setup292

Baselines. We conduct experiments1 to compare293

the performance of our method with several dense294

retrieval methods, including: (1) dense retrieval295

trained with random negative (Huang et al., 2020)296

(2) dense retrieval trained with BM25 negative297

(Gao et al., 2021); (3) dense retrieval trained with298

STAR (Zhan et al., 2021). In personalization stage,299

we compare our proposed fed-negative to dynamic300

hard-negatives in (Zhan et al., 2021).(4) a simple301

sparse retriever constrcuted by BM25.302

We also includes a upper bound baseline trained303

on a central server which shows the degree of per-304

formance drop brought by the distributed setting.305

Implementation. We use pre-trained DistilBERT306

(Sanh et al., 2019) by huggingface as our model.307

We use AdamW with a learning rate of 3e-5. We308

use Faiss (Johnson et al., 2021) to perform the sim-309

ilarity search. We use open-sourced BM25 model310

in training. Queries and sentences are truncated311

to a maximum of 32 tokens and 512 tokens, re-312

spectively. We represent query embeddings simply313

by the [CLS] token and sentence embeddings by314

the average pooling of word embeddings in the315

sentence.316

The detail of our training procedure is described317

1We will make our data and codes public.

as follows: In the federated static negative train- 318

ing, we pair each query with BM25 negatives and 319

gold-negatives with a batch size of 8 in the warm- 320

up stage. Then we replace them with static hard- 321

negatives. To demonstrate the influence of numbers 322

of negatives, we also experiment with settings with 323

different numbers of negatives. We enable in-batch 324

negative in this stage. We implemented vanilla Fe- 325

dAvg as our Federated learning framework. We 326

aggregate local weights after each epoch. 327

In personalized query encoder training, we pair 328

each query with dynamic hard negatives or fed- 329

negatives with a batch size of 32. To demonstrate 330

the influence of numbers of negatives, we also ex- 331

periment on settings with different numbers of neg- 332

atives. We enable in-batch negatives in this stage. 333

We report two levels of metrics in our experi- 334

ments: sentence-level and passage-level. The re- 335

trieval procedure of both levels is defined in section 336

2.6. In both levels, we report the MRR@10, Re- 337

call@1,20,100 scores. 338

3.2 Experiment Results 339

The main result of our experiments is shown in 340

Table 1. We conclude with two main findings from 341

the results. First, compared with the dense retrieval 342

baselines trained on a single client, our PDD-AS2 343

outperformed all other methods. This is because 344

the number of documents in some clients are very 345

restricted. Our method can leverage training data 346

on each client in a privacy-preserving way. There- 347

fore, our federated method can achieve better per- 348

formance than non-Federated methods. 349

Second, our personalization method with fed- 350

negative can outperform the method with local dy- 351

namic hard negatives. This is because the scarcity 352

of training data in some clients can lead to a much 353

worse hard-negative sampling result. Compared 354

with static hard negative sampling, the training 355

of client-customized query encoder introduces far 356

more negative samples, strengthening the need of 357

hard negatives in terms of quality and quantity. Our 358

method alleviates the problem by leveraging di- 359

verse hard negatives on other clients in a privacy- 360

preserving way. 361

3.3 Influence of Numbers of Negatives 362

We explore the influence of num_negatives in 363

our setting. We experiment with the combina- 364

tions of different numbers of negatives used in each 365

method. The result of different num_negatives 366

is showed in Appendix A. We show the impact of 367
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Table 1: Results on our Fed-NewsQA Benchmark.

Sentence-level Retrieval Passage-level Retrieval
Models MRR@10 R@1 R@20 R@100 MRR@10 R@1 R@20 R@100
Upper Bound
Central-training 0.338 0.284 0.629 0.781 0.502 0.447 0.553 0.821
Sparse Retriever
BM25 0.172 0.152 0.343 0.533 0.343 0.288 0.345 0.598
Dense Retriever
dense retrieval-Random Neg 0.194 0.171 0.466 0.62 0.376 0.323 0.401 0.702
dense retrieval-Bm25 Neg 0.188 0.151 0.475 0.639 0.353 0.303 0.388 0.679
dense retrieval-STAR 0.232 0.190 0.535 0.679 0.403 0.350 0.421 0.709
Dense Retriever: Ours
PDD-AS2 0.261 0.217 0.546 0.695 0.429 0.395 0.479 0.745
+client-customized query encoding 0.289 0.232 0.556 0.711 0.445 0.414 0.489 0.75
+client-customized query encoding with fed-negative 0.309 0.252 0.577 0.72 0.458 0.431 0.504 0.762

num_negatives on both stages of training sepa-368

rately. The maximum number of hard-negatives we369

can test in stage 1 training is limited due to GPU370

RAM cost. For BM25 negative sampling and static371

hard-negative sampling, we train the model with372

our PDD-AS2 framework from the beginning of373

our training procedure. In experiments of stage 2374

training with fed-negative, we continue our training375

from the model weights trained in previous steps,376

which follows our training procedure.377

We have two findings from the results. First, we378

found that insufficient numbers of negative sam-379

ples can lead to much worse performance. This380

is intuitive since the model saw fewer numbers of381

samples during training. Second, client-customized382

query encoder training can benefit more from the383

larger amount of negatives. Our experiment shows384

that the optimal number for BM25 negative sam-385

pling is not very large. BM25 negative sampling386

cannot leverage the larger amount of negatives ef-387

fectively. However, due to the limitation of hard-388

ware resources, we cannot test on larger numbers389

of negatives in stage 1 training.390

Meanwhile, client-customized query encoder391

can be steadily improved while feeding much more392

negatives compared with stage 1 training. This393

result indicates the need for introducing more hard-394

negatives with higher quality in stage 2 training,395

further proving the effectiveness and necessity of396

our fed-negative. Whats more, the computational397

cost does not scale with the num_negatives. As a398

consequence, client-customized query encoder can399

benefit from fed-negative with little cost.400

3.4 Influence of Training Data Size401

In this section, we first explore whether our PDD-402

AS2 can effectively handle the data scarcity prob-403

lem on each client by leveraging data on differ-404

Figure 4: Performance improvement of each client in
PDD-AS2 stage 1 training with FedAvg compared with
single-client training

ent clients. In training, we select different ratios 405

of data randomly. We present the sentence-level 406

R@1 score on our Fed-NewsQA in Figure 5. Com- 407

pared with single-client training, the PDD-AS2 408

can achieve higher accuracy in all data ratio set- 409

tings. Moreover, as the ratio of training data on 410

each client decreases, the data scarcity problem in 411

single-client is more serious. As a consequence, 412

PDD-AS2 can bring about a more signification per- 413

formance improvement over single-client training. 414

Also, we explore to what extent each client ben- 415

efits from the PDD-AS2. We show the perfor- 416

mance improvement in sentence-level R@1 on Fed- 417

NewsQA of each client in Figure 4. We found that 418

clients with fewer training data can benefit more 419

from the PDD-AS2 framework. These results in- 420

dicate that our framework can effectively leverage 421

the training data on different clients. However, per- 422

formance on some clients with a larger amount 423

of training data was decreased while applying our 424

framework, implying the need for personalization 425

in this scenario. 426
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3.5 Influence of query hubness427

However, retrieving all top-k hard negatives from428

similarity search or BM25 engine can lead to a per-429

formance drop in some scenarios. The reason is430

that, not every possible answer for a given query431

qi has been labeled as positive. This is very intu-432

itive since most machine reading comprehension433

datasets only label the answer of the query, which434

is only in its context passage. However, in open-435

domain question answering, possible answers from436

all passages must be labled as positive. This prob-437

lem is more severe when the query is not specific438

and precise.439

As a consequence, for each qi, if we retrieve all440

top-k sentences as negative, we actually harm the441

performance of the model. We conduct a case study442

in Appendix B. The case study shows that whether443

or not the query is specific and precise, the top-k444

negatives often contain possible answers that were445

not labeled as positive. We refer to this problem as446

‘query hubness’. To alleviate this problem, we uni-447

formly samples n negatives from k candidate where448

k≫n in our approach. This approach yields better449

results when we choose a correct k. The difference450

in model performance in different k is shown in Ta-451

ble 2. However, more theoretical insight is needed452

in query hubness problem.

Figure 5: Influence of training data in Sentence R@1
size

Table 2: Different k while sampling 10 negatives

Method Sentence R@1 Passage R@1
k=10 0.121 0.235
k=50 0.202 0.379
k=100 0.211 0.352
k=300 0.217 0.395

453

Table 3: Perplexity of gpt-2 on our dataset.

Method Perplexity
Without training 36.3
CLM without embedding 25.9
CLM with sentence embedding 25.6

3.6 Privacy 454

When transferring sentence embeddings between 455

clients, one key concern is whether the user’s pri- 456

vacy would be leaked. However, no work is dedi- 457

cated to restoring private information from merely 458

sentence embeddings. In order to measure the risk 459

involved, we conducted an experiment to detect 460

whether our transmitted sentence embedding con- 461

tained information related to the original text. 462

In this experiment, we used GPT-2, a model that 463

performs well on text generation tasks. In the first 464

part of experiment, we trained GPT-2 on the lan- 465

guage modeling task on our dataset and measured 466

its perplexity on the test set. In the second part of 467

the experiment, we add the sentence embedding 468

generated by the previously trained sentence en- 469

coder in PDD-AS2 to the training and testing pro- 470

cedure. In detail, we feed the sentence embeddings 471

into the gpt-2 as key-value pairs together with the 472

text input. After receiving the input, the model tries 473

to establish the connection between the embedding 474

and the actual sentence it represents through the 475

self-attention structure. 476

Table 3 showed no significant difference in the 477

perplexity between the two groups of experiments. 478

The group with sentence embeddings has a slightly 479

lower perplexity on the testset. Also, we show 480

that the embedding group has a lower loss over 481

the training process in the Appendix C. However, 482

these differences are not statistically significant. To 483

further demonstrate that we cannot obtain private 484

information from the sentence embeddings, we let 485

gpt-2 generate actual sentences directly from their 486

corresponding embeddings without any input and 487

prompts. We show the result in the Appendix D. 488

We found that gpt-2 could not restore the ac- 489

tual sentence from the sentence embeddings only. 490

Sentence embeddings did have an impact on the 491

generated results. However, these effects are seem- 492

ingly random and irrelevant to the actual sentence. 493
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4 Related Work494

4.1 Dense retrieval495

Dense retrieval has recently become a popular topic496

in industry and academia due to its advantages of497

both latency and performance. The essential to the498

success of dense retrieval is its leverage of nega-499

tive samples to train the model. The early stage500

of research only uses random negatives to train501

dense retrieval models(Huang et al., 2020). Re-502

cently, researchers applied hard-negatives to train503

the model. Hard negatives refer to samples that are504

semantically similar to postive samples but are in505

fact negatives. Some studies (Zhan et al., 2021)506

demonstrate that most of the boosts in the train-507

ing phase come from these hard negatives. Some508

researchers use BM25 to retrieve hard negatives509

(Karpukhin et al., 2020; Gao et al., 2021). Some510

others use static hard-negatives fixed during the511

entire training or an epoch(Guu et al., 2020; Xiong512

et al., 2020). (Zhan et al., 2021)propose a dynamic513

hard-negative method which called query-side fine-514

tuning.515

However, insufficient training data would result516

in severe performance degradation. (Karpukhin517

et al., 2020) shows around a 10% performance dif-518

ference in top-5 passage retrieval due to an insuf-519

ficient number of negative samples. (Qu et al.,520

2021) found it is beneficial to increase the number521

of random negatives in the mini-batch. When us-522

ing only 10% percent of training data, the normal523

dense retrieval model’s performance can drop by524

20% (Lu et al., 2021). In this work, we propose an525

open-domain question answering method empow-526

ered by Federated learning to alleviate the problem.527

Also, we further explore the potential of query-side528

fine-tuning for personalization.529

4.2 Answer Sentence Selection530

Answer Sentence Selection task was defined by531

(Wang et al., 2007). This task aims to select a532

sentence that correctly answers the question from533

a set of sentence candidates. This task has been534

studied by many works (Shen et al., 2017; Tran535

et al., 2018; Yoon et al., 2019; Garg et al., 2020).536

However, in a typical AS2 task, the model is re-537

quired to select sentences from several candidates.538

In our Open-domain Sentence Selection setting, the539

number of candidates can scale up to one million,540

which significantly increases the task’s difficulty.541

4.3 Federated Learning 542

Federated learning was proposed by (McMahan 543

et al., 2017) as a privacy-preserving solution to 544

leverage personal data on different clients. All the 545

training data is stored locally on each client. Each 546

client uses local data to train its own model locally. 547

After each round of training or a certain training 548

time, these clients allow other clients to learn from 549

the training data of this client with privacy protec- 550

tion by sharing the model weights or gradients. 551

Recently, some researchers have applied Fed- 552

erated learning to different NLP tasks (Ge et al., 553

2020; Hardy et al., 2017; Jiang et al., 2019). In 554

these scenarios, user data are scattered in differ- 555

ent devices (e.g., cell phones) or different facilities 556

(e.g., banks, hospitals). Moreover, these data can- 557

not be uploaded to the central server because of 558

user privacy, such as user’s input method records, 559

medical records, etc. However, the combination 560

of Federated learning of open-domain question an- 561

swering has not been studied yet. 562

5 Conclusion 563

In this paper, we propose an Privacy-preserving 564

Distributed OD-AS2 method, dubbed PDD-AS2. 565

Our method utilizes training data on different 566

clients while eliminating the need to transfer the 567

raw data between clients. The training process 568

of our approach is two-stage. In the first stage, 569

we train both query encoder and sentence encoder 570

with static hard-negatives under a federated frame- 571

work. In the second stage, we personalize a client- 572

customized query encoder for each client. We also 573

propose a new negative sampling method called 574

fed-negative. In fed-negative, we introduce diverse 575

negatives from other clients to boost the training. 576

We further test our method on a new Federated 577

Open-domain Sentence Selection benchmark based 578

on NewsQA. This Benchmark better mimics the 579

real-world cases than other benchmarks in data dis- 580

tribution and query types. 581

The experiment results show that our method 582

can effectively improve the performance of open- 583

domain answer sentence selection under distributed 584

settings by leveraging training data on different 585

clients in a privacy-preserving way. We prove that 586

not every client can benefit from the Federated 587

learning, which indicates the need for personaliza- 588

tion in such scenario. As a solution, we provide 589

each client with a client-customized query encoder 590

which handles miscellaneous queries. 591
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6 Limitations592

However, we did not discuss all possible privacy593

leakage methods due to length limitations. For594

example, users can get the information in query595

embeddings from other users in fed-negative stage596

by comparing the similarity of their own query597

embeddings with others. Meanwhile, attackers can598

infer the training data from the gradient updates599

from the word embedding layer in the shared model600

weight in Federated learning stage.601

Furthermore, the communication cost between602

each client is not included in the discussion. Many603

studies indicate that the size of the communica-604

tion cost directly impacts model performance. In605

our settings, different clients need to transfer word606

embeddings during training. More experiment is607

needed to explore the impact of communication608

cost on our proposed fed-negative method.609

Finally, the size of participant clients in our ex-610

periment was limited to 10 due to limitations in611

computational resources. However, in a real-world612

setting, the number of clients participating in fed-613

eral learning would be much larger than the number614

of participants in the experiment.615
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Appendix A Different numbers of 802

negatives in training 803

We trained different models with different number 804

of negatives. The results is shown in Table 4 805

Appendix B Query hubness 806

We present the case study of query hubness exam- 807

ples in Table 6 808
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Table 4: Different num_negative in Training

Sentence-level Retrieval Passage-level Retrieval
Models MRR@10 R@1 R@20 R@100 MRR@10 R@1 R@20 R@100
Dense Retriever with BM25 negatives
num_negative=2 0.143 0.123 0.302 0.489 0.310 0.247 0.311 0.582
num_negative=8 0.172 0.151 0.343 0.533 0.343 0.288 0.345 0.598
Dense Retriever with STAR
num_negative=2 0.201 0.160 0.506 0.655 0.352 0.305 0.379 0.705
num_negative=8 0.232 0.191 0.535 0.679 0.403 0.350 0.421 0.709
PDD-AS2
num_negative=2 0.242 0.193 0.516 0.645 0.392 0.354 0.432 0.719
num_negative=8 0.261 0.217 0.546 0.695 0.429 0.395 0.479 0.745
+client-customized query encoding
num_negative=10 0.272 0.233 0.557 0.705 0.431 0.415 0.487 0.746
num_negative=200 0.289 0.251 0.576 0.711 0.445 0.434 0.489 0.75

Table 5: Case study of retrieved hard-negatives

Case 1 Case 2
Question What did the lawyer say Who will star in the up-

coming ABC pilot “The
Manzanis”?

Gold answer Murray defense lawyer Michael Flana-
gan, who was in court to defend Dr.
White Wednesday, said after the hear-
ing that he believed Murray should be
eligible for early release if he is given
prison time

When Kirstie Alley
cleared the 100 lb. weight-
loss hurdle this summer,
it was time for a big, fat
celebration.

Hard-negative 1 In addition, Anthony’s attorney Charles
Greene asserted he would also invoke
the Fifth Amendment on her behalf if
questioning delved into the 2008 death
of her 2-year-old daughter, Caylee.

And she’s ready for her
next challenge: “What I’m
looking for is to be madly,
deeply in love,” says Al-
ley, who will also star in
the upcoming ABC pilot,
“The Manzanis.”

Hard-negative 2 CNN) – Attorneys representing Casey
Anthony invoked her Fifth Amendment
right against self-incrimination 60 times
during a deposition given in a civil suit
against her, according to a transcript of
the proceedings.

Kirstie Alley said she’s go-
ing to start dating “butt-
ugly men” on an episode
of “The Ellen DeGeneres
Show” airing Friday.
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Figure 6: The difference between performing CLM training with and without sentence embeddings using gpt-2

Appendix C Quantitive results with809

privacy leakage experiment810

We trained gpt-2 with casual language modeling811

on our dataset. The training process is shown in812

6 In the end, the group with embedding has a loss813

of 3.239, while the group without embedding has814

a loss of 3.245. Their corresponding perplexity is815

shown in Table 3.816

Appendix D Qualitative results with817

privacy leakage experiment818

We randomly select a few sentences from the819

dataset and input the corresponding sentence em-820

beddings as past_key_values into gpt-2. We ap-821

plied beam search while generating texts. Table822

6 shows the results of the model’s outputs from823

decoding the embeddings. The conclusion is that824

the model can not decode any private information825

from the sentence embeddings.826
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Table 6: Case study of sentence-embeddings decoding

Original Sentences Generated Sentences
Four Australian troops have now died in the
conflict in Afghanistan.

"It’s not the first time that we’ve had

"It’s not the first time that we’ve seen a
"It’s not the first time that we’ve had to
"It’s not the first time that we’ve seen the

It made my stomach turn," Bertha Lewis, chief
executive officer of ACORN, told reporters at
the National Press Club in Washington.

"I think it’s important? very important? Very
difficult to the one. I think. is, part of me. I
the to blame, I don’t blame my
"I think it’s important? very important? Very
difficult to the one. I think. is, part of me. I
the to blame, I don’t people,
"I think it’s important? very important? Very
difficult to the one. I think. is, part of me. I
the to blame, I don’t people who
"I think it’s important? very important? Very
difficult to the one. I think. is, part of me. I
the to blame, I don’t blame the

Read the story at the WRTV web site CNN’s a great-school program that’s not
CNN’s a great-school program for example of
CNN’s a great-school program," said reason
CNN’s a great-school program for example:
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