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Abstract

Open-domain answer sentence selection (OD-
AS2), as a practical branch of open-domain
question answering (OD-QA), aims to respond
to a query by a potential answer sentence from
a large-scale collection. A dense retrieval
model plays a significant role across differ-
ent solution paradigms, while its success de-
pends heavily on sufficient labeled positive QA
pairs and diverse hard negative sampling in
contrastive learning. However, it is hard to sat-
isfy such dependencies in a privacy-preserving
distributed scenario, where in each client, less
in-domain pairs and a relatively small collec-
tion cannot support effective dense retriever
training. To alleviate this, we propose a brand-
new learning framework for Privacy-preserving
Distributed OD-AS2, dubbed PDD-AS?2. Built
upon federated learning, it consists of a client-
customized query encoding for better personal-
ization and a cross-client negative sampling for
learning effectiveness. To evaluate our learn-
ing framework, we first construct a new OD-
AS?2 dataset, called Fed-NewsQA, based on
NewsQA to simulate distributed clients with
different genre/domain data. Experiment re-
sults shows that our learning framework can
outperform its baselines and exhibit its person-
alization ability.

1 Introduction

Open-domain answer sentence selection (OD-AS2)
aims to fetch relevant sentences from a large-scale
collection given a query, which is also known as
long answer in open-domain question answering
(OD-QA). It has been attracting more and more in-
terest from both academia and industry (Yang et al.,
2018; Kwiatkowski et al., 2019) as it reaches a bal-
anced granularity between coarse-grained passages
(Nguyen et al., 2016) and fine-grained phrases
(Kwiatkowski et al., 2019). Such balanced-granular
answers can relieve crowd-sourcing burdens and
satisfy most real-world scenarios.

Advanced by surging pre-trained language mod-
els (Devlin et al., 2019; Liu et al., 2019), represen-
tation learning entered a new era and renders dense
retrieval as a significant prerequisite across differ-
ent solution paradigms (e.g., ‘retrieval & read’)
to OD-AS2. Built upon a dual-encoder (a.k.a. bi-
encoder, two-stream encoder), dense retrieval repre-
sents both questions from users and sentences in the
collections as dense vectors in the same semantic
space, and measures question-sentence relevance
via a lightweight metric, e.g., doc-product (Guu
et al., 2020; Karpukhin et al., 2020).

As training an effective dense retrieval model
requires sufficient data — both human-created pos-
itive question-answering pairs and a large-scale
collection to support negative mining, it remains
formidable challenges to directly apply the dense
retrieval to the real-world industrial scenarios, e.g.,
in-house data inquiry, individual email searches,
and personal intelligent assistants. The corpus (i.e.,
the labeled QA pairs and collections) in each client
is usually too scarce and biased to train an effective
model, while the corpus from each client cannot be
uploaded to a central server for standard distributed
learning for a privacy-preserving purpose.

To this end, we propose a new learning frame-
work for Privacy-preserving Distributed OD-AS2,
called PDD-AS2. In particular, built upon a pre-
vailing federated learning (FL) framework, Fe-
dAvg(McMahan et al., 2017), PDD-AS?2 alleviates
the data-scarcity problem along with two signif-
icant directions. On the one hand, while learn-
ing generic representation across clients via FL,
we present a client-customized query encoding
for personalization for client-specific query distri-
bution. In line with dynamic hard negatives and
query-side fine-tuning, it will largely improve the
model’s effectiveness. On the other hand, without
access to other clients’ collections to secure pri-
vacy, we propose a cross-client negative sampling
strategy, called fed-negative, compatible with previ-
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(a) The communication process of fed-
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Figure 1: (a) The client sends its queries to some other clients and receive negative embeddings from these clients.
(b) The client aggregates local negatives with received negatives to construct a negative subset.

ous strategies (e.g., in-batch, pre-batch, static hard
negative sampling) to further boost the model.

To evaluate our learning framework, PDD-AS2,
we propose to construct a new distributed OD-AS2
dataset based on NewsQA (Trischler et al., 2017)
Ww.I.t. news story’s genre.

In the experiments, we show that our PDD-AS2
framework can improve the performance of our
baseline by 5%-15%. Clients with insufficient train-
ing data benefit from the model aggregation greatly.
We also show that our fed-negative can improve
the performance of PDD-AS?2 framework by 1%-
10% compared with the original negative sampling
method. The main contribution of this work can be
summarized as

* We highlight a promising setting of open-
domain answer sentence selection (OD-AS2)
for real-world industrial applications and pro-
pose a privacy-preserving distributed OD-AS2
(PDD-AS?2) learning framework towards both
personalization and effectiveness.

* We propose two key techniques, i.e., client-
customized query encoding method and a
cross-client negative sampling strategy, to ef-
fectively learn PDD-AS?2 framework.

e We construct a new distributed OD-AS2
dataset upon
NewsQA, dubbed Fed-NewsQA to evaluate
the effectiveness of our framework and its
baselines.

2 Methodology

In this section, we first introduce the preliminaries
of our work. Then we present our proposed client-

customized query encoding and cross-client nega-
tive sampling in our PDD-AS?2 framework. Later,
we detail the training process of our PDD-AS2
framework and our proposed Fed-NewsQA bench-
mark for evaluating our framework.

2.1 Preliminary

Task formulation. In line with existing works
(Shen et al., 2017; Garg et al., 2020; Karpukhin
et al., 2020; Zhan et al., 2021), we first formulate
open-domain answer sentence selection (OD-AS2)
under distributed setting as follows: For each client
¢! € C with its large-scale sentence collection
St = {s¢...s%}, it aims to fetch potential answer
sentence(s) s}% from S that answers a given query
q € Q. In the OD-AS?2 setting, the sentence set S’
contains sentences from all passages in ¢'. If no
confusion is caused, we omit the superscript ‘¢’ for
a specific client in the remainder.

Usually, a query ¢ and its answer sentence s;
are often provided as positive training data in each
client. Hence, it is necessary to sample a set of

negative for ¢ to construct , i.e.,
Ny = {d|ld ~ P(S)}, (D

where P(-) denotes a distribution over S. For sim-
plicity, we omit the query-specific subscript indica-
tor, gq.

Then, a contrastive learning framework is usu-
ally employed to learn an efficient retrieval model.
In formal, a representation learning module is first
used to embed ¢ and each s € {s*} UN and then
derive a probability distribution over {s*} U N.



That is,

P({s"}UN|g;0) =1/Z 2)
exp(< Enc(g; ©9), Enc(s; 0)) >

where © = {09, ©()}, Z denotes softmax nor-
malization term, © parameterizes a text encoder
for a single vector representation, <, > denotes a
lightweight relevance metric (says, dot-product) for
their similarity score. Here, 0@ and ©(5), whether
tied or not, compose a dual-encoder structure for
efficient dense retrieval. Lastly, the training loss of
contrastive learning can be defined to optimize ©,
Le.,

L(Ct)(Q; 0)=— ZlogP(s = s"q,
qeQ
{sT}UN; @), (3)

where P(-|q; ©) denotes the probability distribu-
tion over {s*} UN for ¢ by Eq.(2).

Next, considering the distributed setting of OD-
AS?2, the overall training loss can be defined as

L({Q'};;{0'}) = ZL@(@"; o). @

However, directly optimizing Eq.(4) cannot de-
liver a satisfactory performance for each client ¢
since both labeled question-answering pairs and the
collection are too scarce to effectively learn. There-
fore, we adopt a popular federated learning method,
FedAvg (McMahan et al., 2017), as the backbone
of our framework. It will leverage the training data
distributed in each client in a privacy-preserving
way. We denote the weight of global model as
©9lobal For each ¢ € C with model weight O, we
update ©° with a learning rate of « locally by

0" =0' - aVL(QheY), 5)

where L is the loss function of local training ob-
jective defined in Eq.4. After local updates, each
client sends their weights O to the central server.
Central server aggregate the weights by

k

®9l0bal — Z !Dl’ @i’ (6)
=1 Zi=1 “D)l|

where k is the number of clients. Note that our
PDD-AS2 framework is also compatible with other
federated learning methods.

2.2 Fed-Negative: Cross-client Negatives

However, federated learning cannot fulfill negative
samples’ needs in terms of quality and quantity in
some clients with few document collections. Build-
ing on this problem, we propose fed-negative: a
cross-client negative sampling method inspired by
dynamic negative sampling for introducing more
diverse negative samples. As shown in the Figure
1, given a client ¢, we first encode ¢ into represen-
tations by Enc(g; ©). Then we select a subset of
clients from the whole client set as

Cs = Select({C}),c ¢ Cs, (7)

where the select function can based on network con-
dition or geography distance estimated by client’s
region. Then we send the query representation
Enc(g; ©) to each client in Cs.

Once each client receive the query, they did a
similarity search on their own sentence embedding
matrix to retrieve top n sentences embeddings and
send them back to c. ¢ choose top n negatives from
all negatives by the similarity score as

N'ed = TopK ({(N.,)}),cr € Cs  (8)

where N, is the negative set of ¢ sampled in client
Ck-

2.3 Client-customized Query Encoding

On top of fed-negative, we propose client-
customized query encoding inspired by query-side
fine-tuning. We aim to provide each client with
a personalized query encoder to resolve miscel-
laneous queries. For this purpose, we person-
alize Enc(q; ©) with local training while fixing
the Enc(s; ©). Enc(s; ©) shares a global weight
among all clients. In this stage, we utilize our pro-
posed fed-negative for diverse negative samples.

Training objective. To learn a personalized
query encoder, we apply the constrative loss de-
fined in Eq.4. Formally, given a query ¢ and its
gold answer s, we first sample the negative set
N7¢d defined by Eq.8. Therefore, we only update
the weight © of query encoder with loss function
defined in Eq.4

2.4 Training Pipeline of PDD-AS2

Finally, we introduce the overall training pipeline
of our PDD-AS?2 framework. As shown in Figure
2, we organize our training procedure as two stages
adapted from some prevailing works (Zhan et al.,
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Figure 2: (a) Train query encoder Enc(q; ©) and sentence encoder Enc(s; ©) with Static hard-negative sampling
(b) Personalize the query encoder Enc(g; ©) with fed-negative
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Figure 3: Statistics of each genre in our Benchmark

2021; Karpukhin et al., 2020): (Stage 1) Federated
Static negative training: we train the encoders
with static hard negative sampling N*!** under
FedAvg. Due to the instability of the model in
the early training stage, we initially sample BM25
negatives N2M25 to warm up the model following
some works (Zhan et al., 2021; Gao and Callan,
2022). We update both Enc(q; ©) and Enc(s; ©)
by L defined in Eq.4. The overview of the federated
framework is illustrated in Algorithm.1. (Stage 2)
Query encoder personalization: Continual from
first stage, we samples N/°? defined in section 2.2
to train a client-customized query encoder follows
section 2.3.

2.5 Fed-NewsQA: A Multi-client OD-AS2
Benchmark

For better evaluate our method in distributed set-
ting, we propose a multi-client OD-AS2 benchmark
based on NewsQA. Recent open-domain question
answering works often use datasets such as SQuUAD
(Rajpurkar et al., 2016), TREC (Wang et al., 2007),
WebQuestions (Berant et al., 2013), Natural Ques-
tions (Bird et al., 2009) in their experiments. How-
ever, we propose to use NewsQA (Trischler et al.,
2017) as our original dataset for two main reasons.

First, to better mimic the difference between
each client’s personal documents and the data
scarcity problem in the real-world cases, we pro-
pose to split the dataset into different genres for
simulating different clients. Among all these
datasets, we found that NewsQA meets our require-
ments perfectly. We split the dataset into different
genres directly from the web-link of each passage.
We choose ten genres from NewsQA since the rest
genres do not have enough numbers of samples in
the dev/test set. Each of these genres represents a
different client in our Federated setting. The statis-
tics of each genre is shown in the Figure 3.

Second, NewsQA significantly outnumbers
some other datasets on the distribution of the
more difficult reasoning questions, such as SQuUAD
(Trischler et al., 2017). We believe inferencing
and reasoning queries are essential to open-domain
question answering in real-world cases.

2.6 Retrieval Schemes

Our model is compatible with two retrieval
schemes: sentence-level retrieval and passage-level
retrieval. For sentence-level retrieval, we retrieve
the top sentences follow the probability distribu-
tion defined in Eq.2. For passage-level retrieval,
based on the fact that sentences are extracted from
their source passages. We retrieve the passage with
highest relevance score as

f(p, ) = max{< Enc(g; ©), Enc(s; ©) >}

,Vs € S. (©)]

The additional cost of sorting sentence scores
can be ignored. Therefore the inference speed of
our sentence-based passage retrieval is the same as
for sentence retrieval.



Algorithm 1: The federated learning frame-
work of PDD-AS?2 in stage 1 training
Input: Clients set C, Training set D; on

client ;, global model weight @9/°ba!,
learning rate o

1 Function Server execute:

2 | initialize ©° with ©9'°bal;

3 for round 1=1,2... do

4

5

for each client ¢; € C in parallel do
Q!
ClientUpdate(c;, ©%, D;)
6 end
7 end
8 @global _ Zf:l % i
Function ClientUpdate(c;, ©%, D;):
// execute on client ¢;
10 for batch b in D; do
1 ‘ 0! + 0 — nVL(q; ©Y)
12 end

L=

3 Experiments

3.1 Setup

Baselines. We conduct experiments' to compare
the performance of our method with several dense
retrieval methods, including: (1) dense retrieval
trained with random negative (Huang et al., 2020)
(2) dense retrieval trained with BM25 negative
(Gao et al., 2021); (3) dense retrieval trained with
STAR (Zhan et al., 2021). In personalization stage,
we compare our proposed fed-negative to dynamic
hard-negatives in (Zhan et al., 2021).(4) a simple
sparse retriever constrcuted by BM25.

We also includes a upper bound baseline trained
on a central server which shows the degree of per-
formance drop brought by the distributed setting.

Implementation. We use pre-trained DistilBERT
(Sanh et al., 2019) by huggingface as our model.
We use AdamW with a learning rate of 3e-5. We
use Faiss (Johnson et al., 2021) to perform the sim-
ilarity search. We use open-sourced BM25 model
in training. Queries and sentences are truncated
to a maximum of 32 tokens and 512 tokens, re-
spectively. We represent query embeddings simply
by the [C'LS] token and sentence embeddings by
the average pooling of word embeddings in the
sentence.

The detail of our training procedure is described

"We will make our data and codes public.

as follows: In the federated static negative train-
ing, we pair each query with BM25 negatives and
gold-negatives with a batch size of 8 in the warm-
up stage. Then we replace them with static hard-
negatives. To demonstrate the influence of numbers
of negatives, we also experiment with settings with
different numbers of negatives. We enable in-batch
negative in this stage. We implemented vanilla Fe-
dAvg as our Federated learning framework. We
aggregate local weights after each epoch.

In personalized query encoder training, we pair
each query with dynamic hard negatives or fed-
negatives with a batch size of 32. To demonstrate
the influence of numbers of negatives, we also ex-
periment on settings with different numbers of neg-
atives. We enable in-batch negatives in this stage.

We report two levels of metrics in our experi-
ments: sentence-level and passage-level. The re-
trieval procedure of both levels is defined in section
2.6. In both levels, we report the MRR@10, Re-
call@1,20,100 scores.

3.2 Experiment Results

The main result of our experiments is shown in
Table 1. We conclude with two main findings from
the results. First, compared with the dense retrieval
baselines trained on a single client, our PDD-AS2
outperformed all other methods. This is because
the number of documents in some clients are very
restricted. Our method can leverage training data
on each client in a privacy-preserving way. There-
fore, our federated method can achieve better per-
formance than non-Federated methods.

Second, our personalization method with fed-
negative can outperform the method with local dy-
namic hard negatives. This is because the scarcity
of training data in some clients can lead to a much
worse hard-negative sampling result. Compared
with static hard negative sampling, the training
of client-customized query encoder introduces far
more negative samples, strengthening the need of
hard negatives in terms of quality and quantity. Our
method alleviates the problem by leveraging di-
verse hard negatives on other clients in a privacy-
preserving way.

3.3 Influence of Numbers of Negatives

We explore the influence of num_negatives in
our setting. We experiment with the combina-
tions of different numbers of negatives used in each
method. The result of different num_negatives
is showed in Appendix A. We show the impact of



Table 1: Results on our Fed-NewsQA Benchmark.

Sentence-level Retrieval Passage-level Retrieval
Models MRR@10 R@1 R@20 R@100 | MRR@10 R@1 R@20 R@100
Upper Bound
Central-training 0338 0284 0.629 0781 0502 0447 0553  0.821
Sparse Retriever
BM25 0.172  0.152 0343  0.533 0343 0288 0345  0.598
Dense Retriever
dense retrieval-Random Neg 0.194 0.171  0.466 0.62 0.376 0.323 0401 0.702
dense retrieval-Bm25 Neg 0.188 0.151 0475  0.639 0.353 0.303 0.388  0.679
dense retrieval-STAR 0232  0.190 0535 0.679 0403 0350 0421  0.709
Dense Retriever: Ours
PDD-AS2 0261 0217 0546  0.695 0429 0395 0479 0745
+client-customized query encoding 0.289 0.232  0.556  0.711 0.445 0.414 0.489 0.75
+client-customized query encoding with fed-negative 0.309 0.252  0.577 0.72 0.458 0431 0.504  0.762
num_negatives on both stages of training sepa- 40.00%
rately. The maximum number of hard-negatives we i
can test in stage 1 training is limited due to GPU <
RAM cost. For BM25 negative sampling and static “3;’ oo
hard-negative sampling, we train the model with £ oo I I I I I
.. £
our PDD-AS2 framework from the beginning of S oo -
our training procedure. In experiments of stage 2 s
-10.00%
training with fed-negative, we continue our training &S SE @@ TR
from the model weights trained in previous steps, N YO E e N

which follows our training procedure.

We have two findings from the results. First, we
found that insufficient numbers of negative sam-
ples can lead to much worse performance. This
is intuitive since the model saw fewer numbers of
samples during training. Second, client-customized
query encoder training can benefit more from the
larger amount of negatives. Our experiment shows
that the optimal number for BM25 negative sam-
pling is not very large. BM25 negative sampling
cannot leverage the larger amount of negatives ef-
fectively. However, due to the limitation of hard-
ware resources, we cannot test on larger numbers
of negatives in stage 1 training.

Meanwhile, client-customized query encoder
can be steadily improved while feeding much more
negatives compared with stage 1 training. This
result indicates the need for introducing more hard-
negatives with higher quality in stage 2 training,
further proving the effectiveness and necessity of
our fed-negative. Whats more, the computational
cost does not scale with the num_negatives. As a
consequence, client-customized query encoder can
benefit from fed-negative with little cost.

3.4 Influence of Training Data Size

In this section, we first explore whether our PDD-
AS?2 can effectively handle the data scarcity prob-
lem on each client by leveraging data on differ-

Figure 4: Performance improvement of each client in
PDD-AS2 stage 1 training with FedAvg compared with
single-client training

ent clients. In training, we select different ratios
of data randomly. We present the sentence-level
R@1 score on our Fed-NewsQA in Figure 5. Com-
pared with single-client training, the PDD-AS2
can achieve higher accuracy in all data ratio set-
tings. Moreover, as the ratio of training data on
each client decreases, the data scarcity problem in
single-client is more serious. As a consequence,
PDD-AS2 can bring about a more signification per-
formance improvement over single-client training.

Also, we explore to what extent each client ben-
efits from the PDD-AS2. We show the perfor-
mance improvement in sentence-level R@1 on Fed-
NewsQA of each client in Figure 4. We found that
clients with fewer training data can benefit more
from the PDD-AS2 framework. These results in-
dicate that our framework can effectively leverage
the training data on different clients. However, per-
formance on some clients with a larger amount
of training data was decreased while applying our
framework, implying the need for personalization
in this scenario.



3.5 Influence of query hubness

However, retrieving all top-k hard negatives from
similarity search or BM25 engine can lead to a per-
formance drop in some scenarios. The reason is
that, not every possible answer for a given query
¢; has been labeled as positive. This is very intu-
itive since most machine reading comprehension
datasets only label the answer of the query, which
is only in its context passage. However, in open-
domain question answering, possible answers from
all passages must be labled as positive. This prob-
lem is more severe when the query is not specific
and precise.

As a consequence, for each g;, if we retrieve all
top-k sentences as negative, we actually harm the
performance of the model. We conduct a case study
in Appendix B. The case study shows that whether
or not the query is specific and precise, the top-k
negatives often contain possible answers that were
not labeled as positive. We refer to this problem as
‘query hubness’. To alleviate this problem, we uni-
formly samples n negatives from k candidate where
k>n in our approach. This approach yields better
results when we choose a correct k. The difference
in model performance in different k is shown in Ta-
ble 2. However, more theoretical insight is needed
in query hubness problem.

single-client e PDD-AS2
0.25

0.20

0.15

Sentence R@1

0.05
20% 40% 60% 80% 100%

Percentage of training data

Figure 5: Influence of training data in Sentence R@1
size

Table 2: Different k while sampling 10 negatives

Method | Sentence R@1 Passage R@1
k=10 0.121 0.235
k=50 0.202 0.379
k=100 0.211 0.352
k=300 0.217 0.395

Table 3: Perplexity of gpt-2 on our dataset.

Method Perplexity
Without training 36.3
CLM without embedding 25.9

CLM with sentence embedding 25.6

3.6 Privacy

When transferring sentence embeddings between
clients, one key concern is whether the user’s pri-
vacy would be leaked. However, no work is dedi-
cated to restoring private information from merely
sentence embeddings. In order to measure the risk
involved, we conducted an experiment to detect
whether our transmitted sentence embedding con-
tained information related to the original text.

In this experiment, we used GPT-2, a model that
performs well on text generation tasks. In the first
part of experiment, we trained GPT-2 on the lan-
guage modeling task on our dataset and measured
its perplexity on the test set. In the second part of
the experiment, we add the sentence embedding
generated by the previously trained sentence en-
coder in PDD-AS2 to the training and testing pro-
cedure. In detail, we feed the sentence embeddings
into the gpt-2 as key-value pairs together with the
text input. After receiving the input, the model tries
to establish the connection between the embedding
and the actual sentence it represents through the
self-attention structure.

Table 3 showed no significant difference in the
perplexity between the two groups of experiments.
The group with sentence embeddings has a slightly
lower perplexity on the testset. Also, we show
that the embedding group has a lower loss over
the training process in the Appendix C. However,
these differences are not statistically significant. To
further demonstrate that we cannot obtain private
information from the sentence embeddings, we let
gpt-2 generate actual sentences directly from their
corresponding embeddings without any input and
prompts. We show the result in the Appendix D.

We found that gpt-2 could not restore the ac-
tual sentence from the sentence embeddings only.
Sentence embeddings did have an impact on the
generated results. However, these effects are seem-
ingly random and irrelevant to the actual sentence.



4 Related Work

4.1 Dense retrieval

Dense retrieval has recently become a popular topic
in industry and academia due to its advantages of
both latency and performance. The essential to the
success of dense retrieval is its leverage of nega-
tive samples to train the model. The early stage
of research only uses random negatives to train
dense retrieval models(Huang et al., 2020). Re-
cently, researchers applied hard-negatives to train
the model. Hard negatives refer to samples that are
semantically similar to postive samples but are in
fact negatives. Some studies (Zhan et al., 2021)
demonstrate that most of the boosts in the train-
ing phase come from these hard negatives. Some
researchers use BM25 to retrieve hard negatives
(Karpukhin et al., 2020; Gao et al., 2021). Some
others use static hard-negatives fixed during the
entire training or an epoch(Guu et al., 2020; Xiong
et al., 2020). (Zhan et al., 2021)propose a dynamic
hard-negative method which called query-side fine-
tuning.

However, insufficient training data would result
in severe performance degradation. (Karpukhin
et al., 2020) shows around a 10% performance dif-
ference in top-5 passage retrieval due to an insuf-
ficient number of negative samples. (Qu et al.,
2021) found it is beneficial to increase the number
of random negatives in the mini-batch. When us-
ing only 10% percent of training data, the normal
dense retrieval model’s performance can drop by
20% (Lu et al., 2021). In this work, we propose an
open-domain question answering method empow-
ered by Federated learning to alleviate the problem.
Also, we further explore the potential of query-side
fine-tuning for personalization.

4.2 Answer Sentence Selection

Answer Sentence Selection task was defined by
(Wang et al., 2007). This task aims to select a
sentence that correctly answers the question from
a set of sentence candidates. This task has been
studied by many works (Shen et al., 2017; Tran
et al., 2018; Yoon et al., 2019; Garg et al., 2020).
However, in a typical AS2 task, the model is re-
quired to select sentences from several candidates.
In our Open-domain Sentence Selection setting, the
number of candidates can scale up to one million,
which significantly increases the task’s difficulty.

4.3 Federated Learning

Federated learning was proposed by (McMahan
et al., 2017) as a privacy-preserving solution to
leverage personal data on different clients. All the
training data is stored locally on each client. Each
client uses local data to train its own model locally.
After each round of training or a certain training
time, these clients allow other clients to learn from
the training data of this client with privacy protec-
tion by sharing the model weights or gradients.

Recently, some researchers have applied Fed-
erated learning to different NLP tasks (Ge et al.,
2020; Hardy et al., 2017; Jiang et al., 2019). In
these scenarios, user data are scattered in differ-
ent devices (e.g., cell phones) or different facilities
(e.g., banks, hospitals). Moreover, these data can-
not be uploaded to the central server because of
user privacy, such as user’s input method records,
medical records, etc. However, the combination
of Federated learning of open-domain question an-
swering has not been studied yet.

5 Conclusion

In this paper, we propose an Privacy-preserving
Distributed OD-AS2 method, dubbed PDD-AS?2.
Our method utilizes training data on different
clients while eliminating the need to transfer the
raw data between clients. The training process
of our approach is two-stage. In the first stage,
we train both query encoder and sentence encoder
with static hard-negatives under a federated frame-
work. In the second stage, we personalize a client-
customized query encoder for each client. We also
propose a new negative sampling method called
fed-negative. In fed-negative, we introduce diverse
negatives from other clients to boost the training.
We further test our method on a new Federated
Open-domain Sentence Selection benchmark based
on NewsQA. This Benchmark better mimics the
real-world cases than other benchmarks in data dis-
tribution and query types.

The experiment results show that our method
can effectively improve the performance of open-
domain answer sentence selection under distributed
settings by leveraging training data on different
clients in a privacy-preserving way. We prove that
not every client can benefit from the Federated
learning, which indicates the need for personaliza-
tion in such scenario. As a solution, we provide
each client with a client-customized query encoder
which handles miscellaneous queries.



6 Limitations

However, we did not discuss all possible privacy
leakage methods due to length limitations. For
example, users can get the information in query
embeddings from other users in fed-negative stage
by comparing the similarity of their own query
embeddings with others. Meanwhile, attackers can
infer the training data from the gradient updates
from the word embedding layer in the shared model
weight in Federated learning stage.

Furthermore, the communication cost between
each client is not included in the discussion. Many
studies indicate that the size of the communica-
tion cost directly impacts model performance. In
our settings, different clients need to transfer word
embeddings during training. More experiment is
needed to explore the impact of communication
cost on our proposed fed-negative method.

Finally, the size of participant clients in our ex-
periment was limited to 10 due to limitations in
computational resources. However, in a real-world
setting, the number of clients participating in fed-
eral learning would be much larger than the number
of participants in the experiment.
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Appendix A Different numbers of
negatives in training

We trained different models with different number
of negatives. The results is shown in Table 4

Appendix B Query hubness

We present the case study of query hubness exam-
ples in Table 6
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Table 4: Different num_negative in Training

Sentence-level Retrieval Passage-level Retrieval
Models MRR@10 R@1 R@20 R@100 | MRR@10 R@1 R@20 R@100
Dense Retriever with BM25 negatives
num_negative=2 0.143 0.123 0302  0.489 0.310 0.247 0.311 0.582
num_negative=8 0.172 0.151 0343  0.533 0.343 0.288 0.345  0.598
Dense Retriever with STAR
num_negative=2 0.201 0.160 0.506  0.655 0.352 0.305 0379  0.705
num_negative=8 0.232 0.191 0535  0.679 0.403 0.350 0.421 0.709
PDD-AS2
num_negative=2 0.242 0.193 0516  0.645 0.392 0.354 0432  0.719
num_negative=8 0.261 0.217 0.546  0.695 0.429 0.395 0479  0.745
+client-customized query encoding
num_negative=10 0.272 0.233  0.557  0.705 0.431 0415 0487  0.746
num_negative=200 0.289 0.251 0.576  0.711 0.445 0434 0.489 0.75

Table 5: Case study of retrieved hard-negatives

Case 1

Case 2

Question

What did the lawyer say

Who will star in the up-
coming ABC pilot “The
Manzanis™?

Gold answer

Murray defense lawyer Michael Flana-
gan, who was in court to defend Dr.
White Wednesday, said after the hear-
ing that he believed Murray should be
eligible for early release if he is given
prison time

When  Kirstie  Alley
cleared the 100 Ib. weight-
loss hurdle this summer,
it was time for a big, fat
celebration.

Hard-negative 1

In addition, Anthony’s attorney Charles
Greene asserted he would also invoke
the Fifth Amendment on her behalf if
questioning delved into the 2008 death
of her 2-year-old daughter, Caylee.

And she’s ready for her
next challenge: “What I'm
looking for is to be madly,
deeply in love,” says Al-
ley, who will also star in
the upcoming ABC pilot,
“The Manzanis.”

Hard-negative 2

CNN) — Attorneys representing Casey
Anthony invoked her Fifth Amendment
right against self-incrimination 60 times
during a deposition given in a civil suit
against her, according to a transcript of
the proceedings.

Kirstie Alley said she’s go-
ing to start dating “butt-
ugly men” on an episode
of “The Ellen DeGeneres
Show” airing Friday.
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Figure 6: The difference between performing CLM training with and without sentence embeddings using gpt-2

Appendix C Quantitive results with
privacy leakage experiment

We trained gpt-2 with casual language modeling
on our dataset. The training process is shown in
6 In the end, the group with embedding has a loss
of 3.239, while the group without embedding has
a loss of 3.245. Their corresponding perplexity is
shown in Table 3.

Appendix D Qualitative results with
privacy leakage experiment

We randomly select a few sentences from the
dataset and input the corresponding sentence em-
beddings as past_key_values into gpt-2. We ap-
plied beam search while generating texts. Table
6 shows the results of the model’s outputs from
decoding the embeddings. The conclusion is that
the model can not decode any private information
from the sentence embeddings.
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Table 6: Case study of sentence-embeddings decoding

Original Sentences

Generated Sentences

Four Australian troops have now died in the
conflict in Afghanistan.

"It’s not the first time that we’ve had

"It’s not the first time that we’ve seen a
"It’s not the first time that we’ve had to
"It’s not the first time that we’ve seen the

It made my stomach turn," Bertha Lewis, chief
executive officer of ACORN, told reporters at
the National Press Club in Washington.

"I think it’s important? very important? Very
difficult to the one. I think. is, part of me. I
the to blame, I don’t blame my

"I think it’s important? very important? Very
difficult to the one. I think. is, part of me. I
the to blame, I don’t people,

"I think it’s important? very important? Very
difficult to the one. I think. is, part of me. I
the to blame, I don’t people who

"I think it’s important? very important? Very
difficult to the one. I think. is, part of me. I
the to blame, I don’t blame the

Read the story at the WRTV web site

CNN’s a great-school program that’s not
CNN’s a great-school program for example of
CNN’s a great-school program," said reason
CNN’s a great-school program for example:
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