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Abstract

Multi-grained word segmentation (MWS) dif-001
fers from traditional single-grained word seg-002
mentation (SWS) by dividing a sentence into003
multiple word sequences at varying granular-004
ities. The scarcity of annotated MWS data005
has led previous studies to use automatically006
generated pseudo MWS data and treat MWS007
as a tree parsing task. However, this method008
is limited by the low quality of the pseudo009
data. In this work, we directly utilize multiple010
single-grained datasets and implement multi-011
task learning for MWS. To better address con-012
flicts arising from words segmented at different013
granularities, we employ a span-based word014
segmentation model. Additionally, we incor-015
porate naturally annotated BAIKE data to im-016
prove model performance in cross-domain ap-017
plications. Experimental results demonstrate018
that our method achieved an F1 score improve-019
ment of 0.83 on the NEWS dataset and 4.8 on020
the BAIKE dataset. Furthermore, by employing021
data augmentation, we obtained an additional022
F1 score improvement of 2.23 on the BAIKE023
dataset.024

1 Introduction025

Chinese word segmentation (CWS) plays a crucial026

role in natural language processing (NLP). Over the027

past decade, CWS has made significant progress028

(Zhao et al., 2017, 2018b; Shi et al., 2019; Yang,029

2019; Li et al., 2023; Xu, 2024). Unlike English,030

Chinese lacks clear word boundaries, and differ-031

ent individuals have varying perceptions of word032

boundaries. Therefore, single-grained word seg-033

mentation (SWS) cannot fully meet the segmen-034

tation needs of Chinese. Multi-grained word seg-035

mentation (MWS) enriches semantic information036

by acquiring both coarse-grained and fine-grained037

word boundary details, enhancing its adaptation038

to diverse NLP tasks. For instance, Dou et al.039

(2024) successfully integrated MWS and named040

现任龙岩市国土资源局党组成员、副局长

CTB 龙岩 市 国土 资源 局

MSR 龙岩市 国土资源局

PKU 龙岩市 国土 资源局

Longyan City Nationl Land Resources Bureau

Table 1: The different segmentation results of the natu-
ral annotation segment under three annotation specifica-
tions.

entity recognition (NER), resulting in notable im- 041

provement in entity identification. 042

The current research on MWS follows two main 043

approaches, both of which believe that sentences 044

can be segmented at different granularities. One 045

approach, which refers to itself as MCCWS (Multi- 046

Criteria Chinese Word Segmentation) (Chen et al., 047

2017; Gong et al., 2019; Qiu et al., 2020), learns 048

multiple segmentation criteria during training but 049

selects the most appropriate criterion as the output 050

during prediction, resulting in a final segmentation 051

that is still of a single granularity. 052

The other approach, proposed by Gong et al. 053

(2017), treats MWS as a structured prediction task 054

where all levels of granularity are retained simul- 055

taneously during the prediction process. To over- 056

come the challenge of limited training data, cou- 057

pled models are employed to merge two segmen- 058

tation annotations into combined annotations, ul- 059

timately resulting in constituent trees annotated 060

across all granularities. However, the conversion 061

process is intricate, raising doubts about the quality 062

of the generated pseudo-data. Moreover, the tree 063

parsing necessitates the CKY algorithm (Kasami, 064

1965; Younger, 1967) during inference, leading 065

to a significant increase in time complexity. Con- 066

sequently, this approach encounters difficulties in 067

efficiently achieving the objectives of MWS. 068

In this work, we build upon the work of Gong 069

et al. (2017), addressing the challenge of insuffi- 070
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cient standard training data in MWS by enabling071

the joint learning of multiple segmentation gran-072

ularities. Our approach leverages manually anno-073

tated SWS data to train the model and produces074

MWS results with a span-based word segmentation075

(WS) model. We selected three classic datasets076

from the field of Chinese word segmentation: the077

Penn Chinese Treebank (CTB) (Xue et al., 2005),078

the Microsoft Research Chinese Word Segmenta-079

tion (MSR) corpus (Huang et al., 2006), and the080

People’s Daily Corpus (PKU) from Peking Uni-081

versity (Yu and Zhu, 1998). The CTB prefers fine-082

grained annotation, making it more suitable for syn-083

tactic and semantic analysis. The MSR corpus pro-084

vides coarse-grained annotation, typically identify-085

ing named entities as complete words. The PKU086

corpus lies between the two, with coarse-grained087

annotation aiding in information retrieval and ex-088

traction tasks. While our method can efficiently089

utilize these data, we noticed that segmentations090

at different granularities could result in conflicts091

during the decoding process, with 1.7% of segmen-092

tations in the test set showing such problems. To093

mitigate this, we introduced a CKY decoding mod-094

ule specifically designed to resolve these conflicts.095

Additionally, we incorporated naturally annotated096

BAIKE data and used marginal probabilities to097

select high-quality training examples, thereby en-098

hancing the model’s performance on cross-domain099

test data.100

Our main contributions can be summed as fol-101

lows:102

1. We use a span-based segmentation model103

to leverage SWS data for MWS. The semi-104

Markov algorithm is employed for efficient105

training and prediction.106

2. We introduce a CKY decoding module to ad-107

dress conflicts in MWS and select the optimal108

segmentation results. The conflict resolution109

leads to improvements of 0.63 and 1.68 F-110

scores on the NEWS-test and BAIKE-test re-111

spectively.112

3. We introduce naturally annotated BAIKE data113

for cross-domain MWS. Through learning114

from partially labeled natural texts, the model115

achieves a maximum F1 improvement of 2.23116

on the BAIKE-test.117

2 Related Work118

MWS approaches. Gong et al. (2017) first pro-119

posal the concept of MWS and used automatically120

generated pseudo-data to train a tree parser. Sub- 121

sequently, researchers have used SWS data and 122

dictionary data as additional weak label training 123

data to further enhance MWS performance (Gong 124

et al., 2020). Additionally, some scholars are dedi- 125

cated to the research of MCCWS. They believe that 126

Chinese text segmentation involves multiple crite- 127

ria, with each sentence having an optimal criterion. 128

To address this, they have sequentially employed 129

Multi-Task Learning (MTL) (Chen et al., 2017; 130

Gong et al., 2019) and Unified Model approaches 131

(Qiu et al., 2020), aiming to identify the most suit- 132

able criterion through input cues. Chou et al. (2023) 133

proposed using adversarial multi-criteria learning 134

to leverage the shared knowledge across multiple 135

heterogeneous criteria to improve performance un- 136

der a single criterion. 137

Utilizing weakly labeled data. Jiang et al. 138

(2013) trained the enhanced classifier on weakly la- 139

beled web data by using the annotation differences 140

between the outputs of constraint decoding and 141

normal decoding. Liu et al. (2014) and Zhao et al. 142

(2018a) utilized various sources of free annotated 143

data, combining fully and partially annotated data 144

to train the model, demonstrating the effectiveness 145

of free data. 146

Gong et al. (2020) using naturally annotated data 147

from dictionaries for the MWS task. However, 148

the concise specifications of dictionary data led to 149

minimal gains obtained by the model.In this paper, 150

we using naturally annotated segments from the 151

Baidu Baike data, we obtain their MWS results for 152

model training. 153

Span-based methods. In the early stages of 154

CWS, reliance was primarily on manually curated 155

dictionaries and rules (Zhao et al., 2018b). As com- 156

putational capabilities advanced, statistical meth- 157

ods such as Conditional Random Fields (CRF) be- 158

gan to be introduced (Peng et al., 2004; Sutton 159

et al., 2007; Liu et al., 2016; Jin et al., 2022). In 160

recent years, the emergence of various pre-trained 161

models has enabled the capture of richer contextual 162

information, achieving excellent results in word 163

segmentation (Li et al., 2022). Span-based meth- 164

ods (Wang et al., 2022) can be regarded as a variant 165

of sequence labeling methods (Shin and Lee, 2020; 166

Xue, 2003), enabling more direct modeling and 167

prediction of word boundaries in text. 168
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Algorithm 1 Semi-Markov Algorithm.

1: Input: Sentence x = c1c2. . .cn and span
scores s(i, j) for each candidate word xi:j

2: Define: α ∈ Rn+1 stores the highest score of
the partial segmentation results

3: Initialize: α[0] = 0
4: for j = 1 . . . n do
5: α[j] = max

max(1,j−M)≤i≤j
α[i− 1] + s(i, j)

6: ▷ M is maximum word length ◁
7: return α[n]

3 Span-based Word Segmentation169

3.1 Task Definition170

Formally, a CWS model divides a character se-171

quence x = c1c2. . .cn into a word sequence172

y = w1w2. . .wm, where wk = xi:j is the kth173

word spanning from character ci to character cj .174

In this work, we utilize a span-based model built175

on semi-Markov conditional random fields (semi-176

CRFs) for CWS. Each word wk = xi:j is assigned177

a score s(i, j), and the segmentation score of y is178

the sum of scores of all words:179

s(x,y) =
∑

wk=xi:j∈y
s(i, j) (1)180

Under the semi-CRF framework, the conditional181

probability of the segmentation result y given the182

input x is defined as:183

p(y|x) = exp(s(x,y))

Z(x) ≡
∑

y′∈Y exp(s(x,y′))
(2)184

where Z(x) is the normalization term and Y rep-185

resents the set of all possible segmentation results186

for x.187

3.2 Inference Algorithm188

Given the scores of all candidate words, the goal189

is to find the optimal segmentation result ŷ, which190

achieves the highest segmentation score:191

ŷ = argmax
y∈Y

s(x,y) (3)192

The inference process can be efficiently addressed193

using the semi-Markov algorithm. This algorithm194

processes the input x sequentially from left to195

right to derive a partially optimal segmentation.196

Please refer to Algorithm 1 for details. The com-197

putational complexity of the semi-Markov algo-198

rithm is initially O(n2), but can be reduced to199

O(Mn) = O(n) by constraining the maximum200

word length to M .201

3.3 Training Loss 202

The loss function is defined as the negative log- 203

likelihood (refer to Equation 2) of gold-standard 204

segmentation y∗: 205

L(x) = − log p(y∗|x) = logZ(x)− s(x,y∗)
(4) 206

where Z(x) is calculated using the semi-Markov 207

algorithm by replacing the max-product with sum- 208

product. The marginal probability of each word is 209

derived through the partial derivative of logZ(x) 210

with respect to the word score s(i, j). This 211

marginal probability is subsequently utilized in 212

conflict resolution (see Subsection 4.3) and data 213

selection (refer to Subsection 5.1). 214

4 Multi-grained Word Segmentation 215

Let x = c1c2. . .cn be a character sequence of 216

length n. The goal of MWS is to produce mul- 217

tiple segmentation results for x, corresponding to 218

different segmentation standards or granularities. 219

For each granularity g, the segmentation result is 220

yg = wg
1w

g
2. . .w

g
m. In this work, instead of choos- 221

ing a specific granularity g∗ as done in other re- 222

search (Chou et al., 2023), we adopt the approach 223

proposed by Gong et al. (2017), where all granular- 224

ities are retained, creating a hierarchical structure 225

(refer to Table 1). Although this method is gen- 226

erally effective, there are instances where words 227

from different granularities overlap, hindering the 228

establishment of a coherent hierarchical structure. 229

In the following section, we will address: 230

1. For a given input x, how to obtain segmenta- 231

tion results of three annotation granularities 232

(in this work g ∈ {CTB, PKU, MSR}). 233

2. How to resolve conflicts arising from segmen- 234

tation under different standards. 235

4.1 Span-based MWS 236

MWS can provide more richer information than 237

SWS. Despite its benefits, the primary obstacle is 238

the scarcity of training data due to the absence of 239

an established multi-grained word segmentation 240

dataset. Gong et al. (2017) developed a synthetic 241

dataset for multi-grained word segmentation by 242

combing multiple segmentation annotations of sen- 243

tences into constituent trees. Nonetheless, this pro- 244

cess necessitates a complicated conversion proce- 245

dure which may introduce inaccurate examples. 246

Additionally, the inference stage relies on the CKY 247

algorithm, which operates at a time complexity of 248

O(n3). 249
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Figure 1: Model architecture.

To address these challenges, this work employs250

a multi-task learning (MTL) strategy for MWS by251

treating each segmentation granularity as an indi-252

vidual task. Figure 1 illustrates the setup, where the253

CTB, PKU, and MSR datasets share one encoder254

while utilizing three distinct decoders. For each255

sentence belonging to a specific granularity, the256

contextual representations from the shared encoder257

are input to the granularity-specific decoder to com-258

pute the loss during the training phase. In the infer-259

ence stage, the three decoders independently pre-260

dict segmentation results, which are subsequently261

arranged into a hierarchical structure. The training262

and inference procedures leverage the span-based263

word segmentation model detailed in Section 3.264

Compared to Gong et al. (2017), our method pro-265

vides two main advantages:266

1. The model is trained on sentences with word267

segmentation labels at a single granularity,268

eliminating the need for multi-granularity an-269

notations.270

2. While each decoder needs to conduct word271

segmentation to produce multi-granularity272

results, incurring a computational cost of273

O(3n2), it remains more efficient than the274

CKY-based method.275

4.2 Model Framework276

In this work, we constructed a span-based MTL277

model as shown in Figure 1, where the encoder278

is shared across multiple granularities while main-279

taining separate decoders for each granularity. The280

whole network architecture is similar to Zhang et al.281

(2020).282

Encoder. For each input character ci, a shared 283

encoding layer is used to encode it and obtain the 284

contextual representation hi. 285

Boundary representation. Within each decoder, 286

two MLP layers are used to obtain the left and right 287

boundary representation vectors for each character 288

ci. 289

hli = MLPl(hi)

hrj = MLPr(hj)
(5) 290

Biaffine scoring. The representations of the left 291

and right boundaries are then passed through a 292

Biaffine layer to compute the score s(i, j) for each 293

word. 294

s(i, j) =

[
hli
1

]T

W(hrj) (6) 295

Decoding. Subsequently, the scores of candidate 296

words are input to the semi-Markov algorithm to 297

derive granularity-specific segmentation results. 298

4.3 Conflict Resolution 299

Since MTL framework separately predicted seg- 300

metations of each granularity, conflicts may arise 301

when words from different granularities overlap. A 302

formal definition of conflict is provided herein For 303

any two words xi:j and xs:t, we say they overlap 304

if s ≤ j < t when i < s or s < i ≤ t when j > t. 305

In the SWS and MCCWS approachs, with only 306

one segmentation sequence, conflicts are avoided. 307

However, in the MWS method, potential conflicts 308

hinder the formation of legally hierarchical segmen- 309

tation outputs. There are two common methods for 310

resolving conflicts in the existing literature: 311

1. Ignoring Conflicts: Given that the number of 312

conflicts is very small (1,7%1 in this work), 313

conflicts are not addressed, and all overlap- 314

ping words are retained in the final outputs 315

(Gong et al., 2017). 316

2. Voting Mechanism: Different segmentation 317

granularities are voted on to select words 318

with the highest votes (Saha and Ekbal, 319

2013). However, when two words receive the 320

same number of votes, this method randomly 321

chooses one. 322

This work introduces an optimal conflict reso- 323

lution strategy using a span-based model, which 324

is challenging for sequence labeling models to 325

achieve the same objective. Given that hierarchical 326

1We count the number of conflicts in the test set and calcu-
late the proportion of these conflicts relative to the total word
counts.
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structures are fundamentally trees, the span-based327

model offers all the necessary components, such328

as span scores, to leverage the CKY algorithm for329

identifying the highest-scoring tree structures. Ini-330

tially, we calculate the marginal probability of each331

span under three granularities using marginal in-332

ference (refer to Subsection 3.3). Subsequently,333

we select the maximum probability2 from three334

granularities for each span as input for the CKY335

algorithm. For any two conflicting words, we only336

reserve the one appears in the output trees.337

5 Data Augmentation with Natural338

Annotations339

In the study by Gong et al. (2020), it was observed340

that the MWS model shows good performance on341

newswire data but experiences a notable decrease in342

accuracy when applied to the cross-domain BAIKE343

data (akin to Wikipedia). This drop in performance344

is attributed to the substantial differences between345

the training and testing data. To tackle this issue,346

they sought to improve the model by incorporat-347

ing weakly labeled data from dictionary resources348

to gain insights into word boundary information.349

However, the dictionary resources presented two350

clear limitations: 1) the words were predominantly351

short, mainly consisting of two-character words;352

2) they did not align with the domain of BAIKE.353

To overcome these shortcomings, this paper sug-354

gests utilizing BAIKE data for data augmentation.355

BAIKE data comes with naturally annotated spans356

like anchor texts that frequently denote entities and357

phrases, thereby offering rich granularity informa-358

tion.359

5.1 Data Filtering360

While naturally annotated spans can provide valu-361

able information, noise may be introduced due to362

its differences with source-domain segmentation363

standards (Liu et al., 2014). To deal with this issue,364

we choose utilizing the probability of these spans to365

select high-quality training examples. Specifically,366

we first categorize sentences into distinct probabil-367

ity intervals based on the probability of naturally368

annotated spans.3 Although lower probability in-369

tervals generally indicate lower quality, we employ370

two metrics to assess and determine the appropriate371

interval:372

2We also tried using the averaged probability, but it yielded
inferior results.

3The probability is also calculated with marginal inference
described in Subsention 3.3
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Figure 2: The criteria for data filtering, with the left
side indicating the number of conflicts and the right side
indicating the number of prediction errors.

1. We quantify the conflicts between the pre- 373

dicted outcomes of the MWS model and the 374

naturally annotated spans within each proba- 375

bility interval. 376

2. We randomly sample 100 sentences from each 377

probability interval and assess the number of 378

mispredicted sentences through human evalu- 379

ation. 380

As illustrated in Figure 2, intervals with probabil- 381

ities exceeding 0.4 exhibit a notable decrease in 382

both the number of automatically evaluated con- 383

flicts and manual inspected errors. Consequently, 384

these data will be utilized as high-quality training 385

samples. Our experiments will further investigate 386

the influence of varying data scales and probability 387

intervals on model performance. 388

5.2 Obtain Partial Multi-grained Annotation 389

For span-based WS model, natural annotations can- 390

not be directly used for training because words 391

serve as fundamental elements in semi-Markov al- 392

gorithm. Thus, it is essential to obtain segmentation 393

annotations at different granularities. 394

Similar to the self-training method, we employ 395

the MWS model to predict multi-grained results, 396

which are further used as gold-standard annotations. 397

Notably, only the segmentation results correspond- 398

ing to the naturally annotated spans are retained. 399

For example, as shown in Table 1 , the original sen- 400

tence “现任龙岩市国土资源局党组成员、副局 401

长” contains the natural annotation “龙岩市国土 402

资源局”, which is segmented into three granulari- 403

ties. We solely preserve the segmentation outcomes 404

for this annotated text while disregarding the seg- 405

mentation of other sentence components. 406

Furthermore, to mitigate potential inaccuracies 407

stemming from erroneous predictions, we discard 408

sentences where conflicts occur. These conflicts 409
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Probability #Sent #Spans Conflict(%)
CTB MSR PKU

#spans inc(%) #spans inc(%) #spans inc(%)

0.4-0.5 350k 550K 0.16 675K 21.68 700K 27.23 661K 20.13
0.5-0.6 450K 679K 0.11 791K 16.61 810K 19.35 768K 13.31
0.6-0.7 700K 1.01M 0.06 1.12M 10.89 1.00M - 1.08M 6.93
0.7-0.8 650K 974K 0.05 1.04M 6.75 1.03M 5.73 1,02M 4.70
0.8-0.9 650K 1.11M 0.03 1.15M 3.60 1.14M 2.70 1.14M 2.70
0.9-1.0 2.4M 3.27M 0.02 3.37M 3.06 3.29M 0.61 3.35M 2.45

Table 2: Data statistics used in the process of data augmentation (K represents thousand and M represents million).
We calculated the number of sentences (#Sent) in each probability interval, the number of naturally annotated
segments (#Spans), the proportion of conflicts (Conflicts), and the number of segmentations (#span) obtained
under the three annotation standards. (inc) indicates the proportion of span count increase under the corresponding
annotation standard.

encompass instances where predicted words clash410

with naturally annotated spans and where words411

segmented at different granularities contradict each412

other.413

5.3 Training with Partial Annotation414

The obtained BAIKE sentences are mixed with415

source-domain sentences to enhance the MWS416

moded. In the training phase, these BAIKE sen-417

tence are fed into three decoders (see Figure 1) for418

each granularity to compute three losses, which419

are then summed up as the final loss. The primary420

challenge lies in calculating the loss when only421

partial annotations are available, prompting us to422

employ the CRF model as a solution. We will use423

one granularity as an example to demonstrate how424

this can be accomplished.425

Let x̃ = ci. . .cj represent a naturally anno-426

tated span, which is a part of a sentence x =427

c1 . . . x̃. . .cn. The sentence only contains partial428

annotation information ỹ = ws . . . wt correspond-429

ing to x̃. We say y∗ = w1. . .ỹ. . .wm is a complete430

segmentation of ỹ, and the state space Ỹ consists of431

all such segmentations. The normalized probability432

of Ỹ is defined as:433

p(ỹ|x) =
Z̃(x) ≡

∑
y∗∈Ỹ exp(s(x,y))

Z(x) ≡
∑

y′∈Y exp(s(x,y′))
(7)434

The training objective of the model is to find as435

many complete segmentation as possible for partial436

annotation ỹ and maximize this probability. The437

calculation of the loss function is as follows:438

L(x) = − log p(ỹ|x) = logZ(x)− log Z̃(x)
(8)439

6 Experiments 440

Data. We use three datasets across different gran- 441

ularities: CTB, MSR, and PKU. For evaluation, 442

we employ NEWS-dev, NEWS-test and BAIKE- 443

test provided by Gong et al. (2020). Additionally, 444

for cross-domain data augmentation, we filtered 445

and acquired 5.2 million naturally annotated exam- 446

ples from 12 million sentences. Data statistics are 447

shown in Table 2 and Table 3. 448

Settings. Following Gong et al. (2017), we use 449

standard measures of F1, precision (P), and recall 450

(R) scores to evaluate MWS. Two types of encoder 451

are used: BiLSTM and BERT4 (Devlin et al., 2019). 452

The configuration of the model adheres to Zhang 453

et al. (2020). The training epochs are set to 1000 454

and 15 respectively, and early stopping is applied 455

on the development set. 456

6.1 Benchmark Methods 457

We employ five methods for comparison. Along- 458

side the multi-task learning method proposed in 459

this work, we replicated two benchmark methods: 460

tree parsing and single-task learning. 461

1. Tree-based: Gong et al. (2017) use pseudo 462

MWS data in the form of constituent trees to 463

train a tree parser with CKY decoding. We 464

reproduce their method when BERT is used. 465

2. Single: Three segmentation models are 466

trained separately on the CTB, MSR, and 467

PKU datasets. The results from three models 468

are directly combined as the MWS results5. 469

3. Joint: We use the CTB, MSR, and PKU train- 470

ing sets to jointly train a segmentation model 471

4https://huggingface.co/bert-large-uncased
5Conflicting words are all included in the final results.
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Dataset Annotation #Sents #Words OOV(%)

Train

CTB SWS 16,091 437,991 -
MSR SWS 78,226 2,121,758 -
PKU SWS 46,815 1,097,839 -

Pseudo MWS 138,628 4,127,461 -

Dev NEWS MWS 1,000 31,477 4.69

Test
NEWS MWS 2,000 63,108 4.96
BAIKE MWS 6,320 14,450 40.71

Table 3: Data statistics in our experiments. Pseudo
refers to automatically generated pseudo data 6. SWS
and MWS stand for single-granularity labels and multi-
granularity labels, respectively.

with a MTL method as describe in Section 4.472

Still, the results are directly used as the MWS473

results.474

4. Joint+Vote: Similar to Joint, but the conflicts475

in the ouputs are resolved through a voting476

mechanism.477

5. Joint+CKY: Similar to Joint, but we employ478

the CKY decoding to find the optimal conflict479

resolution.480

6.2 Main Result481

Table 4 compares various methods on the NEWS-482

test and BAIKE-test data.483

Comparison with baselines. We first compare484

our method with single-task learning method485

(Single) and the tree parsing method (Tree-based)486

on NEWS-test and BAIKE-test datasets. We ob-487

serve that Single achieves relatively high recall488

compared to other methods, but its precision is very489

low due to its disregard for connections among dif-490

ferent heterogeneous SWS data. The Tree-based491

model achieves relatively high precision at the ex-492

pense of a lower recall rate. In contrast, the pro-493

posed method (Joint) demonstrates significant en-494

hancements on both the NEWS-test and BAIKE-495

test datasets, with F1 score improvements of 0.2496

and 3.12 respectively compared to these two base-497

line methods. This underscores the suitability of498

our method for MWS tasks and its effectiveness in499

domain transfer.500

Notably, Tree-based method only achieves per-501

formance similar to Single method when BERT502

is used, highlighting the drawbacks of utilizing503

pseudo MWS data as.504

Impact of conflict resolution. We further in-505

vestigate the impact the conflict resolution strat-506

Model
NEWS-test BAIKE-test

P R F1 P R F1

BiLSTM

Tree-based 95.24 90.59 92.86 48.39 43.30 40.59
Single 87.16 93.95 90.43 38.21 49.87 46.94
Joint 93.56 92.64 93.10 38.93 51.58 44.37
Joint+Vote 93.04 93.78 93.40 39.02 51.90 45.46
Joint+CKY 93.73 93.45 93.59 40.53 52.93 45.91

BERT

Tree-based 94.69 92.05 93.36 56.17 63.68 59.93
Single 92.49 94.08 93.28 52.40 75.87 61.99
Joint 94.05 93.07 93.56 54.72 74.37 63.05
Joint+Vote 93.61 94.25 93.92 55.70 73.26 63.28
Joint+CKY 95.26 93.14 94.19 58.01 73.20 64.73

adding BAIKE 94.76 93.50 94.13 60.74 74.60 66.96

Table 4: The performance of different methods on
in-domain NEWS-test and cross-domain BAIKE-test.
adding BAIKE used 3 million BAIKE training data with
marginal probabilities distributed between 0.4 and 1.0.

egy.7 Compared to Joint, which simply overlooks 507

conflicts, both strategies show enhancements in 508

performance. in particular, when utilizing BERT, 509

our method demonstrates F1 score improvements 510

of 0.63 and 1.68 on NEWS-test and BAIKE- 511

test datasets, respectively, whereas Joint+Vote 512

achieves F1 score improvements of 0.36 and 0.23. 513

This highlights the advantageous nature of conflict 514

resolution in the MWS task. Additionally, our pro- 515

posed CKY decoding module shows more substan- 516

tial improvements compared to the voting method, 517

as the voting method struggles to resolve ties when 518

options receive an equal number of votes. Finally, 519

our method (Joint+CKY) outperforms the current 520

SOTA model (Tree-based) by achieving improve- 521

ments of 0.83 and 4.8 on the two test datasets. 522

Utilization of naturally annotated data. We 523

delve deeper into the efficacy of employing nat- 524

urally annotated data from Baidu Baike for data 525

augmentation. The results presented in Table 4 in- 526

dicate that our data augmentation approach does 527

not affect in-domain outcomes but leads to enhance- 528

ments in the cross-domain BAIKE-test results, with 529

improvements of 2.73 in precision, 1.4 in recall, 530

and 2.23 in F1 score compared to Joint+CKY. In 531

the subsequent section, we will conduct a more 532

detailed analysis of the influence of BAIKE data 533

on model performance. 534

7According to our statistical results, there are 1.7% con-
flicting words in NEWS-test.
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Figure 3: The performance on BAIKE-test when training examples of different scales and different probability
intervals are added to model training, using precision, recall, and F1 score as reference metrics. The dashed line
indicates the absence of actual values due to the limited number of data.

6.3 Analysis535

Table 2 presents the statistics of the 5.2 million536

high-quality training examples selected from the537

12 million BAIKE data 8. We can identify two538

significant features: (1) Sentences with high prob-539

abilities have the highest quality and the fewest540

conflicts. (2) Segments with low probabilities ex-541

hibit a greater increase in the number of spans after542

being re-segmented.543

We conducted extensive experiments by varying544

the data scale and source 9 to observe their impact545

on model performance.546

Influence of the amount of data. Figure 3 indi-547

cates that as the scale of additional training data548

increases, the model’s performance on the BAIKE-549

test improves. We can observed, as the data scale550

increases, both probability intervals contribute to551

improvements in the F1 score, with the maximum552

improvement being 2.23.553

Performance of different marginal probabil-554

ity intervals. The results in Figure 3 indicate555

that sentences with high marginal probabilities556

notably enhance precision, while those with low557

marginal probabilities significantly improve recall.558

We observe that incorporating sentences with high559

marginal probabilities decreases recall. These sen-560

tences lack diversity in the overall data distribution,561

reinforcing the model’s biases and reducing its ro-562

bustness. Conversely, sentences with low marginal563

8We collect 12 million sentences with natural annotation
from Baidu Baike website: https://baike.baidu.com/

9Segment the sentence into multiple intervals based on
marginal probabilities.

probabilities, as shown in Table 2, are more diverse 564

and contain richer lexical information, thereby en- 565

hancing the model’s generalization ability. How- 566

ever, from the distribution of F1 scores, both types 567

of data contribute to the improvement in F1, indi- 568

cating the effectiveness of our data augmentation 569

method. 570

7 Conclusion 571

This work advances the state-of-the-art (SOTA) 572

in MWS research through three key contribu- 573

tions. First, we apply span-based CWS methods 574

to the MWS task, evaluating our model on both in- 575

domain NEWS-test data and cross-domain BAIKE- 576

test data. Second, we introduce the CKY decod- 577

ing algorithm to resolve segmentation conflicts. 578

Finally, we derive a substantial number of high- 579

quality training examples from Baidu Baike texts 580

by filtering based on marginal probabilities and em- 581

ploying a local loss function to enhance the model’s 582

performance on cross-domain test data. Exten- 583

sive experiments demonstrate that: (1) integrating 584

the span-based segmentation model with the CKY 585

decoding algorithm for conflict resolution signifi- 586

cantly enhances model performance; (2) filtering 587

high-quality training examples based on marginal 588

probabilities effectively facilitates domain transfer; 589

and (3) our method improves the F1 score by 0.83 590

on the NEWS-test and by 7.03 on the BAIKE-test 591

compared to the current SOTA MWS model. 592
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Limitations593

While our approach demonstrates significant ad-594

vancements over the current (SOTA) model across595

both in-domain and cross-domain test sets, partic-596

ularly through effective data augmentation on the597

cross-domain BAIKE-test, there remains substan-598

tial room for further enhancement.599

On the one hand, we identified incomplete la-600

beling in the BAIKE-test dataset, where annotated601

segments lack a cohesive hierarchical structure in602

their labels. Given constraints on time and the ex-603

tensive workload associated with re-annotation, we604

are presently unable to address these issues.605

On the other hand, the availability of only one de-606

velopment set and two test sets for MWS limits our607

ability to comprehensively validate the superiority608

of our method across diverse domains. Lastly, com-609

putational resource constraints prevented us from610

utilizing larger-scale datasets for augmenting our611

data or exploring additional patterns effectively.612
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