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Abstract

Multi-grained word segmentation (MWS) dif-
fers from traditional single-grained word seg-
mentation (SWS) by dividing a sentence into
multiple word sequences at varying granular-
ities. The scarcity of annotated MWS data
has led previous studies to use automatically
generated pseudo MWS data and treat MWS
as a tree parsing task. However, this method
is limited by the low quality of the pseudo
data. In this work, we directly utilize multiple
single-grained datasets and implement multi-
task learning for MWS. To better address con-
flicts arising from words segmented at different
granularities, we employ a span-based word
segmentation model. Additionally, we incor-
porate naturally annotated BAIKE data to im-
prove model performance in cross-domain ap-
plications. Experimental results demonstrate
that our method achieved an F1 score improve-
ment of 0.83 on the NEWS dataset and 4.8 on
the BAIKE dataset. Furthermore, by employing
data augmentation, we obtained an additional
F1 score improvement of 2.23 on the BAIKE
dataset.

1 Introduction

Chinese word segmentation (CWS) plays a crucial
role in natural language processing (NLP). Over the
past decade, CWS has made significant progress
(Zhao et al., 2017, 2018b; Shi et al., 2019; Yang,
2019; Li et al., 2023; Xu, 2024). Unlike English,
Chinese lacks clear word boundaries, and differ-
ent individuals have varying perceptions of word
boundaries. Therefore, single-grained word seg-
mentation (SWS) cannot fully meet the segmen-
tation needs of Chinese. Multi-grained word seg-
mentation (MWYS) enriches semantic information
by acquiring both coarse-grained and fine-grained
word boundary details, enhancing its adaptation
to diverse NLP tasks. For instance, Dou et al.
(2024) successfully integrated MWS and named
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Table 1: The different segmentation results of the natu-
ral annotation segment under three annotation specifica-
tions.

entity recognition (NER), resulting in notable im-
provement in entity identification.

The current research on MWS follows two main
approaches, both of which believe that sentences
can be segmented at different granularities. One
approach, which refers to itself as MCCWS (Multi-
Criteria Chinese Word Segmentation) (Chen et al.,
2017; Gong et al., 2019; Qiu et al., 2020), learns
multiple segmentation criteria during training but
selects the most appropriate criterion as the output
during prediction, resulting in a final segmentation
that is still of a single granularity.

The other approach, proposed by Gong et al.
(2017), treats MWS as a structured prediction task
where all levels of granularity are retained simul-
taneously during the prediction process. To over-
come the challenge of limited training data, cou-
pled models are employed to merge two segmen-
tation annotations into combined annotations, ul-
timately resulting in constituent trees annotated
across all granularities. However, the conversion
process is intricate, raising doubts about the quality
of the generated pseudo-data. Moreover, the tree
parsing necessitates the CKY algorithm (Kasami,
1965; Younger, 1967) during inference, leading
to a significant increase in time complexity. Con-
sequently, this approach encounters difficulties in
efficiently achieving the objectives of MWS.

In this work, we build upon the work of Gong
et al. (2017), addressing the challenge of insuffi-



cient standard training data in MWS by enabling
the joint learning of multiple segmentation gran-
ularities. Our approach leverages manually anno-
tated SWS data to train the model and produces
MWS results with a span-based word segmentation
(WS) model. We selected three classic datasets
from the field of Chinese word segmentation: the
Penn Chinese Treebank (CTB) (Xue et al., 2005),
the Microsoft Research Chinese Word Segmenta-
tion (MSR) corpus (Huang et al., 2006), and the
People’s Daily Corpus (PKU) from Peking Uni-
versity (Yu and Zhu, 1998). The CTB prefers fine-
grained annotation, making it more suitable for syn-
tactic and semantic analysis. The MSR corpus pro-
vides coarse-grained annotation, typically identify-
ing named entities as complete words. The PKU
corpus lies between the two, with coarse-grained
annotation aiding in information retrieval and ex-
traction tasks. While our method can efficiently
utilize these data, we noticed that segmentations
at different granularities could result in conflicts
during the decoding process, with 1.7% of segmen-
tations in the test set showing such problems. To
mitigate this, we introduced a CKY decoding mod-
ule specifically designed to resolve these conflicts.
Additionally, we incorporated naturally annotated
BAIKE data and used marginal probabilities to
select high-quality training examples, thereby en-
hancing the model’s performance on cross-domain
test data.

Our main contributions can be summed as fol-

lows:

1. We use a span-based segmentation model
to leverage SWS data for MWS. The semi-
Markov algorithm is employed for efficient
training and prediction.

2. We introduce a CKY decoding module to ad-
dress conflicts in MWS and select the optimal
segmentation results. The conflict resolution
leads to improvements of 0.63 and 1.68 F-
scores on the NEWS-test and BAIKE-test re-
spectively.

3. We introduce naturally annotated BAIKE data
for cross-domain MWS. Through learning
from partially labeled natural texts, the model
achieves a maximum F1 improvement of 2.23
on the BAIKE-test.

2 Related Work

MWS approaches. Gong et al. (2017) first pro-
posal the concept of MWS and used automatically

generated pseudo-data to train a tree parser. Sub-
sequently, researchers have used SWS data and
dictionary data as additional weak label training
data to further enhance MWS performance (Gong
et al., 2020). Additionally, some scholars are dedi-
cated to the research of MCCWS. They believe that
Chinese text segmentation involves multiple crite-
ria, with each sentence having an optimal criterion.
To address this, they have sequentially employed
Multi-Task Learning (MTL) (Chen et al., 2017;
Gong et al., 2019) and Unified Model approaches
(Qiu et al., 2020), aiming to identify the most suit-
able criterion through input cues. Chou et al. (2023)
proposed using adversarial multi-criteria learning
to leverage the shared knowledge across multiple
heterogeneous criteria to improve performance un-
der a single criterion.

Utilizing weakly labeled data. Jiang et al.
(2013) trained the enhanced classifier on weakly la-
beled web data by using the annotation differences
between the outputs of constraint decoding and
normal decoding. Liu et al. (2014) and Zhao et al.
(2018a) utilized various sources of free annotated
data, combining fully and partially annotated data
to train the model, demonstrating the effectiveness
of free data.

Gong et al. (2020) using naturally annotated data
from dictionaries for the MWS task. However,
the concise specifications of dictionary data led to
minimal gains obtained by the model.In this paper,
we using naturally annotated segments from the
Baidu Baike data, we obtain their MWS results for
model training.

Span-based methods. In the early stages of
CWS, reliance was primarily on manually curated
dictionaries and rules (Zhao et al., 2018b). As com-
putational capabilities advanced, statistical meth-
ods such as Conditional Random Fields (CRF) be-
gan to be introduced (Peng et al., 2004; Sutton
et al., 2007; Liu et al., 2016; Jin et al., 2022). In
recent years, the emergence of various pre-trained
models has enabled the capture of richer contextual
information, achieving excellent results in word
segmentation (Li et al., 2022). Span-based meth-
ods (Wang et al., 2022) can be regarded as a variant
of sequence labeling methods (Shin and Lee, 2020;
Xue, 2003), enabling more direct modeling and
prediction of word boundaries in text.



Algorithm 1 Semi-Markov Algorithm.

1: Input: Sentence * = cjca. . .c, and span
scores (i, j) for each candidate word @;.;

2: Define: o € R™"! stores the highest score of
the partial segmentation results

3. Initialize: a[0] =0

4: forj=1...ndo

5: alj| = ma. alt — 1]+ s(i, g
4] L [0 = 1] + s(i, )
6: > M is maximum word length N

7: return a|n]

3 Span-based Word Segmentation
3.1 Task Definition

Formally, a CWS model divides a character se-
quence £ = cjc3...c, into a word sequence
Y = Wiws2...Wy,, where w, = x;; is the kth
word spanning from character c¢; to character c;.

In this work, we utilize a span-based model built
on semi-Markov conditional random fields (semi-
CRFs) for CWS. Each word wy, = x;.; is assigned
a score (i, j), and the segmentation score of y is
the sum of scores of all words:

S(il),y) = Z

WE=T;:; €Y

s(i,J) )

Under the semi-CRF framework, the conditional
probability of the segmentation result y given the
input x is defined as:

exp(s(, y))
Z2(x) = Y yey exp(s(z, y'))
where Z(x) is the normalization term and ) rep-

resents the set of all possible segmentation results
for x.

p(ylx) = (2)

3.2 Inference Algorithm

Given the scores of all candidate words, the goal
is to find the optimal segmentation result g, which
achieves the highest segmentation score:
= argmax s(x

] 5@ (x,y) 3)
The inference process can be efficiently addressed
using the semi-Markov algorithm. This algorithm
processes the input x sequentially from left to
right to derive a partially optimal segmentation.
Please refer to Algorithm 1 for details. The com-
putational complexity of the semi-Markov algo-
rithm is initially O(n?), but can be reduced to
O(Mn) = O(n) by constraining the maximum
word length to M.

3.3 Training Loss

The loss function is defined as the negative log-
likelihood (refer to Equation 2) of gold-standard
segmentation y*:

L(z) = —logp(y”|x) = log Z(x) — s(x,y")

“)
where Z(x) is calculated using the semi-Markov
algorithm by replacing the max-product with sum-
product. The marginal probability of each word is
derived through the partial derivative of log Z(x)
with respect to the word score s(i,j). This
marginal probability is subsequently utilized in
conflict resolution (see Subsection 4.3) and data
selection (refer to Subsection 5.1).

4 Multi-grained Word Segmentation

Let © = cico...c, be a character sequence of
length n. The goal of MWS is to produce mul-
tiple segmentation results for &, corresponding to
different segmentation standards or granularities.
For each granularity g, the segmentation result is
y9 = wiw§. .. w,. In this work, instead of choos-
ing a specific granularity ¢g* as done in other re-
search (Chou et al., 2023), we adopt the approach
proposed by Gong et al. (2017), where all granular-
ities are retained, creating a hierarchical structure
(refer to Table 1). Although this method is gen-
erally effective, there are instances where words
from different granularities overlap, hindering the
establishment of a coherent hierarchical structure.
In the following section, we will address:
1. For a given input &, how to obtain segmenta-
tion results of three annotation granularities
(in this work g € {CTB, PKU, MSR}).
2. How to resolve conflicts arising from segmen-
tation under different standards.

4.1 Span-based MWS

MWS can provide more richer information than
SWS. Despite its benefits, the primary obstacle is
the scarcity of training data due to the absence of
an established multi-grained word segmentation
dataset. Gong et al. (2017) developed a synthetic
dataset for multi-grained word segmentation by
combing multiple segmentation annotations of sen-
tences into constituent trees. Nonetheless, this pro-
cess necessitates a complicated conversion proce-
dure which may introduce inaccurate examples.
Additionally, the inference stage relies on the CKY
algorithm, which operates at a time complexity of

O(n?).
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Figure 1: Model architecture.

To address these challenges, this work employs
a multi-task learning (MTL) strategy for MWS by
treating each segmentation granularity as an indi-
vidual task. Figure 1 illustrates the setup, where the
CTB, PKU, and MSR datasets share one encoder
while utilizing three distinct decoders. For each
sentence belonging to a specific granularity, the
contextual representations from the shared encoder
are input to the granularity-specific decoder to com-
pute the loss during the training phase. In the infer-
ence stage, the three decoders independently pre-
dict segmentation results, which are subsequently
arranged into a hierarchical structure. The training
and inference procedures leverage the span-based
word segmentation model detailed in Section 3.
Compared to Gong et al. (2017), our method pro-
vides two main advantages:

1. The model is trained on sentences with word
segmentation labels at a single granularity,
eliminating the need for multi-granularity an-
notations.

2. While each decoder needs to conduct word
segmentation to produce multi-granularity
results, incurring a computational cost of
O(3n?), it remains more efficient than the
CKY-based method.

4.2 Model Framework

In this work, we constructed a span-based MTL
model as shown in Figure 1, where the encoder
is shared across multiple granularities while main-
taining separate decoders for each granularity. The
whole network architecture is similar to Zhang et al.
(2020).

Encoder. For each input character c;, a shared
encoding layer is used to encode it and obtain the
contextual representation h;.

Boundary representation. Within each decoder,
two MLP layers are used to obtain the left and right
boundary representation vectors for each character
C;.

hl = MLP!(h;)

I = MLP’ (h;) ®)

Biaffine scoring. The representations of the left
and right boundaries are then passed through a
Biaffine layer to compute the score s(3, j) for each

word.
l

L T
s(i,j) = H W (h}) (6)

Decoding. Subsequently, the scores of candidate
words are input to the semi-Markov algorithm to
derive granularity-specific segmentation results.

4.3 Conflict Resolution

Since MTL framework separately predicted seg-
metations of each granularity, conflicts may arise
when words from different granularities overlap. A
formal definition of conflict is provided herein For
any two words x;.; and x.;, we say they overlap
ifs <j<twheni <sors<i<twhenj>t
In the SWS and MCCWS approachs, with only
one segmentation sequence, conflicts are avoided.
However, in the MWS method, potential conflicts
hinder the formation of legally hierarchical segmen-
tation outputs. There are two common methods for
resolving conflicts in the existing literature:

1. Ignoring Conflicts: Given that the number of
conflicts is very small (1,7%" in this work),
conflicts are not addressed, and all overlap-
ping words are retained in the final outputs
(Gong et al., 2017).

2. Voting Mechanism: Different segmentation
granularities are voted on to select words
with the highest votes (Saha and Ekbal,
2013). However, when two words receive the
same number of votes, this method randomly
chooses one.

This work introduces an optimal conflict reso-
lution strategy using a span-based model, which
is challenging for sequence labeling models to
achieve the same objective. Given that hierarchical

'We count the number of conflicts in the test set and calcu-
late the proportion of these conflicts relative to the total word
counts.



structures are fundamentally trees, the span-based
model offers all the necessary components, such
as span scores, to leverage the CKY algorithm for
identifying the highest-scoring tree structures. Ini-
tially, we calculate the marginal probability of each
span under three granularities using marginal in-
ference (refer to Subsection 3.3). Subsequently,
we select the maximum probability? from three
granularities for each span as input for the CKY
algorithm. For any two conflicting words, we only
reserve the one appears in the output trees.

5 Data Augmentation with Natural
Annotations

In the study by Gong et al. (2020), it was observed
that the MWS model shows good performance on
newswire data but experiences a notable decrease in
accuracy when applied to the cross-domain BAIKE
data (akin to Wikipedia). This drop in performance
is attributed to the substantial differences between
the training and testing data. To tackle this issue,
they sought to improve the model by incorporat-
ing weakly labeled data from dictionary resources
to gain insights into word boundary information.
However, the dictionary resources presented two
clear limitations: 1) the words were predominantly
short, mainly consisting of two-character words;
2) they did not align with the domain of BAIKE.
To overcome these shortcomings, this paper sug-
gests utilizing BAIKE data for data augmentation.
BAIKE data comes with naturally annotated spans
like anchor texts that frequently denote entities and
phrases, thereby offering rich granularity informa-
tion.

5.1 Data Filtering

While naturally annotated spans can provide valu-
able information, noise may be introduced due to
its differences with source-domain segmentation
standards (Liu et al., 2014). To deal with this issue,
we choose utilizing the probability of these spans to
select high-quality training examples. Specifically,
we first categorize sentences into distinct probabil-
ity intervals based on the probability of naturally
annotated spans.® Although lower probability in-
tervals generally indicate lower quality, we employ
two metrics to assess and determine the appropriate
interval:

2We also tried using the averaged probability, but it yielded
inferior results.

3The probability is also calculated with marginal inference
described in Subsention 3.3
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Figure 2: The criteria for data filtering, with the left
side indicating the number of conflicts and the right side
indicating the number of prediction errors.

1. We quantify the conflicts between the pre-
dicted outcomes of the MWS model and the
naturally annotated spans within each proba-
bility interval.

2. We randomly sample 100 sentences from each
probability interval and assess the number of
mispredicted sentences through human evalu-
ation.

As illustrated in Figure 2, intervals with probabil-
ities exceeding 0.4 exhibit a notable decrease in
both the number of automatically evaluated con-
flicts and manual inspected errors. Consequently,
these data will be utilized as high-quality training
samples. Our experiments will further investigate
the influence of varying data scales and probability
intervals on model performance.

5.2 Obtain Partial Multi-grained Annotation

For span-based WS model, natural annotations can-
not be directly used for training because words
serve as fundamental elements in semi-Markov al-
gorithm. Thus, it is essential to obtain segmentation
annotations at different granularities.

Similar to the self-training method, we employ
the MWS model to predict multi-grained results,
which are further used as gold-standard annotations.
Notably, only the segmentation results correspond-
ing to the naturally annotated spans are retained.
For example, as shown in Table 1, the original sen-
tence “MAELE TE L FTREACARR - 85
% contains the natural annotation “ £ & 7 E +
% JR /), which is segmented into three granulari-
ties. We solely preserve the segmentation outcomes
for this annotated text while disregarding the seg-
mentation of other sentence components.

Furthermore, to mitigate potential inaccuracies
stemming from erroneous predictions, we discard
sentences where conflicts occur. These conflicts




Probability #Sent #Spans Conflict(%) CTB MSR PKU

#spans inc(%) #spans inc(%) #spans inc(%)
04-0.5 350k 550K 0.16 675K 21.68 700K 27.23 661K 20.13
0.5-0.6 450K 679K 0.11 791K 16.61 810K 19.35 768K 13.31
0.6-0.7 700K 1.01M 0.06 1.12M 10.89 1.00M - 1.08M 6.93
0.7-0.8 650K 974K 0.05 1.04M 6.75 1.03M 5.73 1,02M 4.70
0.8-09 650K 1.11M 0.03 1.15M 3.60 1.14M 2.70 1.14M 2.70
09-1.0 24M 3.27M 0.02 337M 3.06 329M 0.61 3.35M 245

Table 2: Data statistics used in the process of data augmentation (K represents thousand and M represents million).
We calculated the number of sentences (#Sent) in each probability interval, the number of naturally annotated
segments (#Spans), the proportion of conflicts (Conflicts), and the number of segmentations (#span) obtained
under the three annotation standards. (inc) indicates the proportion of span count increase under the corresponding

annotation standard.

encompass instances where predicted words clash
with naturally annotated spans and where words
segmented at different granularities contradict each
other.

5.3 Training with Partial Annotation

The obtained BAIKE sentences are mixed with
source-domain sentences to enhance the MWS
moded. In the training phase, these BAIKE sen-
tence are fed into three decoders (see Figure 1) for
each granularity to compute three losses, which
are then summed up as the final loss. The primary
challenge lies in calculating the loss when only
partial annotations are available, prompting us to
employ the CRF model as a solution. We will use
one granularity as an example to demonstrate how
this can be accomplished.

Let * = c¢;...c; represent a naturally anno-
tated span, which is a part of a sentence *x =
c1...Z...cy,. The sentence only contains partial
annotation information y = wsy . . . w; correspond-
ing to . We say y* = wj...y. . .wp, is a complete
segmentation of y, and the state space ) consists of
all such segmentations. The normalized probability
of ) is defined as:

Z(@) =%,y exp(s(x, y))
Z(m) = Zy/ey exp(s(w, y/))

The training objective of the model is to find as
many complete segmentation as possible for partial
annotation y and maximize this probability. The
calculation of the loss function is as follows:

p(ylz) = (N

£(x) = ~log p(@la) = log Z(z) — log Z(x)
®)

6 Experiments

Data. We use three datasets across different gran-
ularities: CTB, MSR, and PKU. For evaluation,
we employ NEWS-dev, NEWS-test and BAIKE-
test provided by Gong et al. (2020). Additionally,
for cross-domain data augmentation, we filtered
and acquired 5.2 million naturally annotated exam-
ples from 12 million sentences. Data statistics are
shown in Table 2 and Table 3.

Settings. Following Gong et al. (2017), we use
standard measures of F1, precision (P), and recall
(R) scores to evaluate MWS. Two types of encoder
are used: BILSTM and BERT* (Devlin et al., 2019).
The configuration of the model adheres to Zhang
et al. (2020). The training epochs are set to 1000
and 15 respectively, and early stopping is applied
on the development set.

6.1 Benchmark Methods

We employ five methods for comparison. Along-
side the multi-task learning method proposed in
this work, we replicated two benchmark methods:
tree parsing and single-task learning.

1. Tree-based: Gong et al. (2017) use pseudo
MWS data in the form of constituent trees to
train a tree parser with CKY decoding. We
reproduce their method when BERT is used.

2. Single: Three segmentation models are
trained separately on the CTB, MSR, and
PKU datasets. The results from three models
are directly combined as the MWS results”.

3. Joint: We use the CTB, MSR, and PKU train-
ing sets to jointly train a segmentation model

*https://huggingface.co/bert-large-uncased
3Conflicting words are all included in the final results.
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Dataset Annotation #Sents #Words OOV (%)

CTB SWS 16,091 437,991 -

. MSR SWS 78,226 2,121,758 -
Train

PKU SWS 46,815 1,097,839 -

Pseudo MWS 138,628 4,127,461 -

Dev NEWS MWS 1,000 31,477  4.69

Test NEWS MWS 2,000 63,108 4.96

BAIKE MWS 6,320 14,450 40.71

Table 3: Data statistics in our experiments. Pseudo
refers to automatically generated pseudo data ®. SWS
and MWS stand for single-granularity labels and multi-
granularity labels, respectively.

with a MTL method as describe in Section 4.
Still, the results are directly used as the MWS
results.

4. Joint+Vote: Similar to Joint, but the conflicts
in the ouputs are resolved through a voting
mechanism.

5. Joint+CKY: Similar to Joint, but we employ
the CKY decoding to find the optimal conflict
resolution.

6.2 Main Result

Table 4 compares various methods on the NEWS-
test and BAIKE-test data.

Comparison with baselines. We first compare
our method with single-task learning method
(Single) and the tree parsing method (Tree-based)
on NEWS-test and BAIKE-test datasets. We ob-
serve that Single achieves relatively high recall
compared to other methods, but its precision is very
low due to its disregard for connections among dif-
ferent heterogeneous SWS data. The Tree-based
model achieves relatively high precision at the ex-
pense of a lower recall rate. In contrast, the pro-
posed method (Joint) demonstrates significant en-
hancements on both the NEWS-test and BAIKE-
test datasets, with F1 score improvements of 0.2
and 3.12 respectively compared to these two base-
line methods. This underscores the suitability of
our method for MWS tasks and its effectiveness in
domain transfer.

Notably, Tree-based method only achieves per-
formance similar to Single method when BERT
is used, highlighting the drawbacks of utilizing
pseudo MWS data as.

Impact of conflict resolution. We further in-
vestigate the impact the conflict resolution strat-

Model NEWS-test BAIKE-test
P R F1 P R F1
BiLSTM
Tree-based 95.24 90.59 92.86 48.39 43.30 40.59
Single 87.16 93.95 90.43 38.21 49.87 46.94
Joint 93.56 92.64 93.10 38.93 51.58 44.37
Joint+Vote 93.04 93.78 93.40 39.02 51.90 45.46
Joint+CKY 93.73 93.45 93.59 40.53 52.93 4591
BERT
Tree-based 94.69 92.05 93.36 56.17 63.68 59.93
Single 92.49 94.08 93.28 52.40 75.87 61.99
Joint 94.05 93.07 93.56 54.72 74.37 63.05
Joint+Vote 93.61 94.25 93.92 55.70 73.26 63.28
Joint+CKY 95.26 93.14 94.19 58.01 73.20 64.73

adding BAIKE 94.76 93.50 94.13 60.74 74.60 66.96

Table 4: The performance of different methods on
in-domain NEWS-test and cross-domain BAIKE-test.
adding BAIKE used 3 million BAIKE training data with
marginal probabilities distributed between 0.4 and 1.0.

egy.” Compared to Joint, which simply overlooks
conflicts, both strategies show enhancements in
performance. in particular, when utilizing BERT,
our method demonstrates F1 score improvements
of 0.63 and 1.68 on NEWS-test and BAIKE-
test datasets, respectively, whereas Joint+Vote
achieves F1 score improvements of 0.36 and 0.23.
This highlights the advantageous nature of conflict
resolution in the MWS task. Additionally, our pro-
posed CKY decoding module shows more substan-
tial improvements compared to the voting method,
as the voting method struggles to resolve ties when
options receive an equal number of votes. Finally,
our method (Joint+CKY) outperforms the current
SOTA model (Tree-based) by achieving improve-
ments of 0.83 and 4.8 on the two test datasets.

Utilization of naturally annotated data. We
delve deeper into the efficacy of employing nat-
urally annotated data from Baidu Baike for data
augmentation. The results presented in Table 4 in-
dicate that our data augmentation approach does
not affect in-domain outcomes but leads to enhance-
ments in the cross-domain BAIKE-test results, with
improvements of 2.73 in precision, 1.4 in recall,
and 2.23 in F1 score compared to Joint+CKY. In
the subsequent section, we will conduct a more
detailed analysis of the influence of BAIKE data
on model performance.

7According to our statistical results, there are 1.7% con-
flicting words in NEWS-test.
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intervals are added to model training, using precision, recall, and F1 score as reference metrics. The dashed line
indicates the absence of actual values due to the limited number of data.

6.3 Analysis

Table 2 presents the statistics of the 5.2 million
high-quality training examples selected from the
12 million BAIKE data . We can identify two
significant features: (1) Sentences with high prob-
abilities have the highest quality and the fewest
conflicts. (2) Segments with low probabilities ex-
hibit a greater increase in the number of spans after
being re-segmented.

We conducted extensive experiments by varying
the data scale and source ° to observe their impact
on model performance.

Influence of the amount of data. Figure 3 indi-
cates that as the scale of additional training data
increases, the model’s performance on the BAIKE-
test improves. We can observed, as the data scale
increases, both probability intervals contribute to
improvements in the F1 score, with the maximum
improvement being 2.23.

Performance of different marginal probabil-
ity intervals. The results in Figure 3 indicate
that sentences with high marginal probabilities
notably enhance precision, while those with low
marginal probabilities significantly improve recall.
We observe that incorporating sentences with high
marginal probabilities decreases recall. These sen-
tences lack diversity in the overall data distribution,
reinforcing the model’s biases and reducing its ro-
bustness. Conversely, sentences with low marginal

8We collect 12 million sentences with natural annotation
from Baidu Baike website: https://baike.baidu.com/

Segment the sentence into multiple intervals based on
marginal probabilities.

probabilities, as shown in Table 2, are more diverse
and contain richer lexical information, thereby en-
hancing the model’s generalization ability. How-
ever, from the distribution of F1 scores, both types
of data contribute to the improvement in F1, indi-
cating the effectiveness of our data augmentation
method.

7 Conclusion

This work advances the state-of-the-art (SOTA)
in MWS research through three key contribu-
tions. First, we apply span-based CWS methods
to the MWS task, evaluating our model on both in-
domain NEWS-test data and cross-domain BAIKE-
test data. Second, we introduce the CKY decod-
ing algorithm to resolve segmentation conflicts.
Finally, we derive a substantial number of high-
quality training examples from Baidu Baike texts
by filtering based on marginal probabilities and em-
ploying a local loss function to enhance the model’s
performance on cross-domain test data. Exten-
sive experiments demonstrate that: (1) integrating
the span-based segmentation model with the CKY
decoding algorithm for conflict resolution signifi-
cantly enhances model performance; (2) filtering
high-quality training examples based on marginal
probabilities effectively facilitates domain transfer;
and (3) our method improves the F1 score by 0.83
on the NEWS-test and by 7.03 on the BAIKE-test
compared to the current SOTA MWS model.


https://baike.baidu.com/

Limitations

While our approach demonstrates significant ad-
vancements over the current (SOTA) model across
both in-domain and cross-domain test sets, partic-
ularly through effective data augmentation on the
cross-domain BAIKE-test, there remains substan-
tial room for further enhancement.

On the one hand, we identified incomplete la-
beling in the BAIKE-test dataset, where annotated
segments lack a cohesive hierarchical structure in
their labels. Given constraints on time and the ex-
tensive workload associated with re-annotation, we
are presently unable to address these issues.

On the other hand, the availability of only one de-
velopment set and two test sets for MWS limits our
ability to comprehensively validate the superiority
of our method across diverse domains. Lastly, com-
putational resource constraints prevented us from
utilizing larger-scale datasets for augmenting our
data or exploring additional patterns effectively.
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