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ABSTRACT

Rule-based models, e.g., decision trees, are widely used in scenarios demanding
high model interpretability for their transparent inner structures and good model
expressivity. However, rule-based models are hard to optimize, especially on large
data sets, due to their discrete parameters and structures. Ensemble methods and
fuzzy/soft rules are commonly used to tackle these issues, but they sacrifice the
model interpretability. In this paper, we propose a new classifier, named Rule-
based Representation Learner (RRL), that automatically learns interpretable non-
fuzzy rules for data representation. To train the non-differentiable RRL effectively,
we project it to a continuous space and propose a novel training method, called
Gradient Grafting, that can directly optimize the discrete model using gradient
descent. An improved design of logical activation functions is also devised to
increase the scalability of RRL and enable it to discretize the continuous features
end-to-end. Exhaustive experiments on 9 small and 4 large data sets show that
RRL outperforms the competitive approaches, has low complexity close to the
simple decision trees, and is rational for its main technical contributions.

1 INTRODUCTION

Although Deep Neural Networks (DNNs) have achieved impressive results in various machine learn-
ing tasks (Goodfellow et al., 2016), rule-based models, benefiting from their transparent inner struc-
tures and good model expressivity, still play an important role in domains demanding high model
interpretability, such as medicine, finance, and politics (Doshi-Velez & Kim, 2017). In practice,
rule-based models can easily provide explanations for users to earn their trust and help protect their
rights (Molnar, 2019; Lipton, 2016). By analyzing the learned rules, practitioners can understand
the decision mechanism of models, and use their knowledge to improve or debug the models (Chu
et al., 2018). Moreover, even if post-hoc methods can provide interpretations for DNNs, the inter-
pretations from rule-based models are more faithful and specific (Murdoch et al., 2019). However,
conventional rule-based models are hard to optimize, especially on large data sets, due to their dis-
crete parameters and structures, which limits their application scope. To take advantage of rule-based
models in more scenarios, we urgently need to improve their scalability.

Studies in recent years provide some solutions to improve conventional rule-based models in differ-
ent aspects. Ensemble methods and soft/fuzzy rules are proposed to improve the performance and
scalability of rule-based models but at the cost of model interpretability (Ke et al., 2017; Breiman,
2001; Irsoy et al., 2012). Bayesian framework is also leveraged to more reasonably restrict and ad-
just the structures of rule-based models (Letham et al., 2015; Wang et al., 2017; Yang et al., 2017).
However, due to the non-differentiable model structure, they have to use methods like MCMC or
Simulated Annealing, which could be time-consuming for large models. Another way to improve
rule-based models is to let a high-performance but complex model (e.g., DNN) teach a rule-based
model (Frosst & Hinton (2017); Ribeiro et al. (2016)). However, to learn from the complex model,
it requires soft rules, or the fidelity of the student model is not guaranteed. Wang et al. (2020) try
to extract hierarchical rule sets from a tailored neural network. Although the extracted rules could
behave differently from the neural network when the network is large, combined with binarized
networks (Courbariaux et al., 2015), it inspires us that we can search for the discrete solution of
rule-based models in a continuous space and leverage optimization methods like gradient descent.
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In this paper, we propose a novel rule-based model, named Rule-based Representation Learner
(RRL) (see Figure 1a), which owns three key technical contributions:

(i) To achieve model transparency, RRL is formulated as a hierarchical model, with layers sup-
porting both conjunction and disjunction operations. This paves the way for automatically learning
interpretable non-fuzzy rules for data representation and classification.

(ii) To facilitate training effectiveness, RRL exploits a novel gradient-based discrete model training
method, Gradient Grafting, that directly optimizes the discrete model and uses the gradient informa-
tion at both continuous and discrete points to suit more scenarios.

(iii) To ensure data scalability, RRL utilizes improved logical activation functions to handle high-
dimensional features. By further combining the improved logical activation functions with a tailored
feature binarization layer, it realizes the continuous feature discretization in an end-to-end manner.

We conduct experiments on 9 small data sets and 4 large data sets to validate the advantages of our
model over other representative classification models. The benefits of the model’s key components
are also verified by experiments.

2 RELATED WORK

Rule-based Models. Decision tree, rule list, and rule set are the widely used structures in rule-
based models. For their discrete parameters and non-differentiable structures, we have to train them
by employing various heuristic methods (Quinlan, 1993; Breiman, 2017; Cohen, 1995) which may
not find the globally best solution or a solution with close performance. Alternatively, train them
with search algorithms (Wang et al., 2017; Angelino et al., 2017), which could take too much time
on large data sets. In recent studies, Bayesian frameworks are leveraged to restrict and adjust model
structure more reasonably (Letham et al., 2015; Wang et al., 2017; Yang et al., 2017). Lakkaraju
et al. (2016) learn independent if-then rules with smooth local search. Using algorithmic bounds
and efficient data structures, Angelino et al. (2017) try to accelerate the learning of certifiably op-
timal rule lists. However, except heuristic methods, most existing rule-based models need frequent
itemsets mining and/or long-time searching, which limits their applications. Moreover, it is hard for
these rule-based models to get comparable performance with complex models like Random Forest.

Ensemble models like Random Forest (Breiman, 2001) and Gradient Boosted Decision Trees (Chen
& Guestrin, 2016; Ke et al., 2017), have better performance than the single rule-based model. How-
ever, for the decision is made by hundreds of models, ensemble models are commonly not consid-
ered as interpretable models (Hara & Hayashi, 2016). Soft or fuzzy rules are also used to improve
model performance (Irsoy et al., 2012; Ishibuchi & Yamamoto, 2005), but non-discrete rules are
much harder to understand than discrete ones. Deep Neural Decision Tree (Yang et al., 2018) is a
tree model realized by neural networks with the help of soft binning function and Kronecker prod-
uct. However, due to the use of Kronecker product, it is not scalable with respect to the number of
features. Other studies try to teach the rule-based model by a complex model, e.g., DNN, or extract
rule-based models from complex models (Frosst & Hinton, 2017; Ribeiro et al., 2016; Wang et al.,
2020). However, the fidelity of the student model or extracted model is not guaranteed.

Gradient-based Discrete Model Training. The gradient-based discrete model training methods
are mainly proposed to train binary or quantized neural networks for network compression and
acceleration. Courbariaux et al. (2015; 2016) propose to use Straight-Through Estimator (STE)
for binary neural network training and achieve empirical success. However, STE requires gradient
information at discrete points, which limits its applications. ProxQuant (Bai et al., 2018) formulates
quantized network training as a regularized learning problem and optimizes it via the prox-gradient
method. ProxQuant can use gradients at non-discrete points, but cannot directly optimize for the
discrete model. The Random Binarization (RB) method (Wang et al., 2020) trains a neural network
with random binarization for its weights to ensure the discrete and continuous model behave samely.
However, when the model is large, the differences between the discrete and continuous model are
inevitable. Gumbel-Softmax estimator (Jang et al., 2016) generates a categorical distribution with
a differentiable sample. However, we can hardly deal with a large number of variables, e.g., the
weights of binary networks, using the Gumbel-Softmax estimator for it is a biased estimator. Our
method, i.e., Gradient Grafting, is different from all the aforementioned works in using gradient
information of both discrete and continuous models in each backpropagation.
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Figure 1: (a) A Rule-based Representation Learner example. The dashed box shows an example of
a discrete logical layer and its corresponding rules. (b) A simplified computation graph of Gradient
Grafting. Arrows with solid lines represent forward pass while arrows with dashed lines represent
backpropagation. The green arrow denotes the grafted gradient, a copy of the gradient represented
by the red arrow. After grafting, there exists a backward path from loss function to the parameter θ.

3 RULE-BASED REPRESENTATION LEARNER

Notation Description. Let D = {(X1,y1), . . . , (XN ,yN )} denote the training data set with N
instances, where Xi is the observed feature vector of the i-th instance with the j-th entry as Xi,j ,
and yi is the corresponding class label, i ∈ {1, . . . , N}. Each feature value can be either discrete
or continuous. All the classes take discrete values, and the number of class labels is denoted by
M . We use one-hot encoding to represent all discrete features as binary features. Let Ci ∈ Rm

and Bi ∈ {0, 1}b denote the continuous feature vector and the binary feature vector of the i-th
instance respectively. Therefore, Xi = Ci ⊕ Bi, where ⊕ represents the operator that concatenates
two vectors. Throughout this paper, we use 1 (True) and 0 (False) to represent the two states of a
Boolean variable. Thus each dimension of a binary feature vector corresponds to a Boolean variable.

Overall Structure. A Rule-based Representation Learner (RRL), denoted by F , is a hierarchical
model consisting of three different types of layers. Each layer in RRL not only contains a specific
number of nodes, but also has trainable edges connected with its previous layer. Let U (l) denote
the l-th layer of RRL, u(l)

j indicate the j-th node in the layer, and nl represent the corresponding
number of nodes, l ∈ {0, . . . , L}. The output of the l-th layer is a vector containing the values of
all the nodes in the layer. For ease of expression, we denote this vector by u(l). There are only
one binarization layer, i.e., U (0), and one linear layer, i.e., U (L), in RRL, but the number of middle
layers, i.e., logical layers, can be flexibly adjusted according to the specific situation. The logical
layers mainly aim to learn the non-linear part of the data while the linear layer aims to learn the
linear part. One example of RRL is shown in Figure 1a.

When we input the i-th instance to RRL, the binarization layer will first binarize the continuous
feature vector Ci into a new binary vector C̄i. Then, C̄i and Bi are concatenated together as u(0)

and inputted to the first logical layer. The logical layers are designed to automatically learn data
representations using logical rules, and the stacked logical layers can learn rules in more complex
forms. After going through all the logical layers, the output of the last logical layer can be considered
as the new feature vector to represent the instance, wherein each feature corresponds to one rule
formulated by the original features. As such, the whole RRL is composed of a feature learner and a
linear classifier (linear layer). Moreover, the skip connections in RRL can skip unnecessary logical
layers. In what follows, the details of these components will be elaborated.

3.1 LOGICAL LAYER

Considering the binarization layer needs the help of its following logical layer to binarize features
in an end-to-end way, we introduce logical layers first. As mentioned above, logical layers can learn
data representations using logical rules automatically. To achieve this, logical layers are designed to
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have a discrete version and a continuous version. The discrete version is used for training, testing
and interpretation while the continuous version is only used for training. It is worth noting that the
discrete RRL indicates the parameter weights of logical layers take discrete values (i.e., 0 or 1).

Discrete Version. One logical layer consists of one conjunction layer and one disjunction layer.
In discrete version, let R(l) and S(l) denote the conjunction and disjunction layer of U (l) (l ∈
{1, 2, . . . , L − 1}) respectively. We denote the i-th node in R(l) by r

(l)
i , and the i-th node in S(l)

by s
(l)
i . Specifically speaking, node r

(l)
i corresponds to the conjunction of nodes in the previous

layer connected with r
(l)
i , while node s

(l)
i corresponds to the disjunction of nodes in previous layer

connected with s
(l)
i . Formally, the two types of nodes are defined as follows:

r
(l)
i =

∧
W

(l,0)
i,j =1

u
(l−1)
j , s

(l)
i =

∨
W

(l,1)
i,j =1

u
(l−1)
j , (1)

where W (l,0) denote the adjacency matrix of the conjunction layer R(l) and the previous layer
U (l−1), and W (l,0)

i,j ∈ {0, 1}. W (l,0)
i,j = 1 indicates there exists an edge connecting r

(l)
i to u

(l−1)
j ,

otherwise W (l,0)
i,j = 0. Similarly, W (l,1) is the adjacency matrix of the disjunction layer S(l) and

U (l−1). Similar to neural networks, we regard these adjacency matrices as the weight matrices of
logical layers. u(l) = r(l) ⊕ s(l), where r(l) and s(l) are the outputs ofR(l) and S(l) respectively.

The function of the logical layer is similar to the notion “level” in Wang et al. (2020). However,
one level in that work, which actually consists of two layers, can only represent rules in Disjunctive
Normal Form (DNF), while two logical layers can represent rules in DNF and Conjunctive Normal
Form (CNF) at the same time. Connecting nodes inR(l) with nodes in S(l−1), we get rules in CNF,
while connecting nodes in S(l) with nodes inR(l−1), we get rules in DNF. The flexibility of logical
layer is quite important. For instance, the length of CNF rule (a1 ∨ a2) ∧ · · · ∧ (a2n−1 ∨ a2n) is
2n, but the length of its corresponding DNF rule (a1 ∧ a3 · · · ∧ a2n−1)∨ · · · ∨ (a2 ∧ a4 · · · ∧ a2n)
is n · 2n, which means layers that only represent DNF can hardly learn this CNF rule.

Continuous Version. Although the discrete logical layers have good interpretability, they are hard to
train for their discrete parameters and non-differentiable structures. Inspired by the training process
of binary neural networks that searches the discrete solution in a continuous space, we extend the
discrete logical layer to a continuous version. The continuous version is differentiable, and when
we discretize the parameters of a continuous logical layer, we can obtain its corresponding discrete
logical layer.

Let Û (l) denote the continuous logical layer, and R̂(l) and Ŝ(l) denote the continuous conjunction
and disjunction layer respectively, l ∈ {1, 2, . . . , L − 1}. Let Ŵ (l,0) and Ŵ (l,1) denote the weight
matrices of R̂(l) and Ŝ(l) respectively. Ŵ

(l,0)
i,j , Ŵ

(l,1)
i,j ∈ [0, 1]. To make the whole Equation 1

differentiable, we leverage the logical activation functions proposed by Payani & Fekri (2019):

Conj(h,Wi) =

n∏
j=1

Fc(hj ,Wi,j), Disj(h,Wi) = 1−
n∏

j=1

(1− Fd(hj ,Wi,j)), (2)

where Fc(h,w) = 1− w(1− h) and Fd(h,w) = h · w. In Equation 2, if h and Wi are both binary
vectors, then Conj(h,Wi) =

∧
Wi,j=1 hj and Disj(h,Wi) =

∨
Wi,j=1 hj . Fc(h,w) and Fd(h,w)

decide how much hj would affect the operation according to Wi,j . If Wi,j = 0, hj would have no
effect on the operation.

After using continuous weights and logical activation functions, the nodes in R̂(l) and Ŝ(l) are
defined as follows:

r̂
(l)
i = Conj(û(l−1), Ŵ (l,0)

i ), ŝ
(l)
i = Disj(û(l−1), Ŵ (l,1)

i ) (3)

Now the whole logical layer is differentiable and can be trained by gradient descent. However, above
logical activation functions suffer from the serious vanishing gradient problem. The main reason can
be found by analyzing the partial derivative of each node w.r.t. its directly connected weights and
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w.r.t. its directly connected nodes as follows:

∂r̂
(l)
i

∂Ŵ
(l,0)
i,j

= (û
(l−1)
j − 1) ·

∏
k 6=j

Fc(û
(l−1)
k , Ŵ

(l,0)
i,k ),

∂r̂
(l)
i

∂û
(l−1)
j

= Ŵ
(l,0)
i,j ·

∏
k 6=j

Fc(û
(l−1)
k , Ŵ

(l,0)
i,k )

(4)
Due to û

(l−1)
k and Ŵ (l,0)

i,k are in the range [0, 1], the values of Fc(·) in Equation 4 are in the range
[0, 1] as well. If nl−1 is large and most of the values of Fc(·) are not 1, then the derivative is close
to 0 because of the multiplications (See Appendix A for the analysis of ŝ(l)i ). Wang et al. (2020) try
to use weight initialization to make Fc(·) close to 1 at the beginning. However, when dealing with
hundreds of features, the vanishing gradient problem is still inevitable.

We found that using the multiplications to simulate the logical operations in Equation 2 is
the main reason for vanishing gradients and propose improved logical activation functions.
One straightforward thought is to convert multiplications into additions using logarithm, e.g.,
log(

∏n
j=1 Fc(hj ,Wi,j)) =

∑n
j=1 log(Fc(hj ,Wi,j)). However, after taking the logarithm, the logi-

cal activation functions in Equation 2 cannot keep the characteristics of logical operations any more,
and the ranges ofConj(·) andDisj(·) are not [0, 1]. To deal with this problem, we need a projection
function to fix it. Apparently, the inverse function of log(x), i.e., ex, is not suitable.

For the projection function g, three conditions must be satisfied: (i) g(0) = e0 = 1. (ii)
limx→−∞ g(x) = limx→−∞ ex = 0. (iii) limx→−∞ ex

g(x) = 0. Condition (i) and (ii) aim to keep
the range and tendency of logical activation functions. Condition (iii) aims to lower the speed
of approaching zero when x → −∞. In this work, we choose g(x) = −1

−1+x as the projection
function, and the improvement of logical activation functions can be summarized as the function
P(v) = −1

−1+log(v) . The improved conjunction function Conj+ and disjunction function Disj+ are
given by:

Conj+(h,Wi) = P(

n∏
j=1

(Fc(hj ,Wi,j)+ε)), Disj+(h,Wi) = 1−P(

n∏
j=1

(1−Fd(hj ,Wi,j)+ε)),

(5)
where ε is a small constant, e.g., 10−10. The improved logical activation functions can avoid the
vanishing gradient problem in most scenarios and are much more scalable than the originals. More-
over, considering that dP(v)

dv = P2(v)
v , when n in Equation 5 is extremely large, dP(v)

dv may be very

close to 0 due to P2(v). One trick to deal with it is replacing P2(v)
v with P(P2(v))

v for P can lower the
speed of approaching 0 while keeping the value range and tendency.

3.2 BINARIZATION LAYER

Binarization layer is mainly used to divide the continuous feature values into several bins. By
combining one binarization layer and one logical layer, we can automatically choose the appropriate
bins for feature discretization (binarization), i.e., binarizing features in an end-to-end way.

For the j-th continuous feature, there are k lower bounds (Lj,1, . . . ,Lj,k) and k upper bounds
(Hj,1, . . . ,Hj,k). All these bounds are randomly selected (e.g., from uniform distribution) in the
value range of the j-th continuous feature, and these bounds are not trainable. When inputting one
continuous feature vector c, the binarization layer will check if cj satisfies the bounds and get the
following binary vector:

Qj = [q(cj − Lj,1), . . . , q(cj − Lj,k), q(Hj,1 − cj), . . . , q(Hj,k − cj)], (6)

where q(x) = 1x>0. If we input the i-th instance, i.e., c = Ci, then C̄i = Q1 ⊕ Q2 · · · ⊕ Qm

and u(0) = C̄i ⊕ Bi. After inputting u(0) to the logical layer U (1), the edge connections between
U (1) and U (0) indicate the choice of bounds (bins). For example, if r(1)i is connected to the nodes
corresponding to q(cj−Lj,1) and q(Hj,2−cj), then r

(1)
i contains the bin (Lj,1 < cj)∧(cj < Hj,2).

If we replace r(1)i with s
(1)
i in the example, we can get (Lj,1 < cj)∨(cj < Hj,2). It should be noted

that, in practice, if Lj,1 ≥ Hj,2, then r
(1)
i = 0, and if Lj,1 < Hj,2, then s

(1)
i = 1. When using the

continuous version, the weights of logical layers are trainable, which means we can choose bounds
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in an end-to-end way. For the number of bounds is 2k times of features, which could be large, only
logical layers with improved logical activation functions are capable of choosing the bounds.

3.3 GRADIENT GRAFTING

Although RRL can be differentiable with the continuous logical layers, it is challenging to search
for a discrete solution in a continuous space. To tackle this problem, one commonly used method is
Straight-Through Estimator (STE) (Courbariaux et al. (2016)). The STE method needs gradients at
discrete points to update the parameters. However, the gradients of RRL at discrete points have no
useful information in most cases (See Appendix B). Therefore STE is not suitable for RRL. Other
methods like ProxQuant (Bai et al. (2018)) and Random Binarization (Wang et al. (2020)) cannot
directly optimize for the discrete model and be scalable at the same time.

Inspired by plant grafting, we propose a new training method, called Gradient Grafting, that can
effectively train RRL. In stem grafting, one plant is selected for its roots, i.e., rootstock, and the other
plant is selected for its stems, i.e., scion. By grafting, we obtain a new plant with the advantages of
both two plants. In Gradient Grafting, the gradient of the loss function w.r.t. the output of discrete
model is the scion, and the gradient of the output of continuous model w.r.t. the parameters of
continuous model is the rootstock. Specifically, let θ denote the parameter vector and θt denote the
parameter vector at step t. q(x) = 1x>0.5 is the binarization function that binarizes each dimension
of x with 0.5 as the threshold. Let ŷ and ȳ denote the output of the continuous model F̂ and discrete
model F respectively, then ŷ = F̂(θt, X), ȳ = F(q(θt), X). The parameters update with Gradient
Grafting is formulated by:

θt+1 = θt − η ∂L(ȳ)

∂ȳ
· ∂ŷ
∂θt

, (7)

where η is the learning rate and L(·) is the loss function. One simplified computation graph of
Gradient Grafting is shown in Figure 1b for intuitive understanding.

Gradient Grafting can directly optimize the loss of discrete models and use the gradient information
at both continuous and discrete points, which overcomes the problems occurring in RRL training
when using other gradient-based discrete model training methods.

3.4 MODEL INTERPRETATION

After training with Gradient Grafting, the discrete RRL can be used for testing and interpretation.
RRL is easy to interpret for we can simply consider it as a feature learner and a linear classifier. The
binarization layer and logical layers are the feature learner, and they use logical rules to build and
describe the new features. The linear classifier, i.e., the linear layer, makes decisions based on the
new features. We can first find the important new features by the weights of the linear layer, then
understand each new feature by analyzing its corresponding rules. The L1/L2 regularization can be
used during training to search for an RRL with shorter rules. The dead nodes detection and redundant
rules elimination proposed by Wang et al. (2020) can also be used for better interpretability.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the proposed model and answer the follow-
ing questions: (i) How is the classification performance of RRL compared to the competitive ap-
proaches? (ii) How is the model complexity of RRL? (iii) How is the convergence of Gradient
Grafting compared to other gradient-based discrete model training methods?

4.1 DATASET DESCRIPTION AND EXPERIMENTAL SETTINGS

We took 9 small and 4 large public datasets to conduct our experiments, all of which are often used
to test classification performance and model interpretability (Dua & Graff, 2017; Xiao et al., 2017;
Anguita et al., 2013; Moro et al., 2016). Appendix C summarizes the statistics of these 13 datasets.
Together they show the data diversity, ranging from 178 to 102944 instances, from 2 to 26 classes,
and from 4 to 4714 original features.
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Table 1: 5-fold cross validated F1 score of comparing models on 9 small and 4 large datasets.
Dataset RRL C4.5 CART SBRL CRS LR SVM PLNN(MLP) GBDTe=100 RFe=10 RFe=100

adult 80.72 75.40 74.77 79.88 80.95 78.43 63.63 73.55 80.36 77.48 78.83
bank-marketing 76.29 71.24 70.21 72.67 73.34 69.81 66.78 72.40 75.28 69.89 72.01

banknote 100.0 98.45 97.85 94.44 94.93 98.82 100.0 100.0 99.48 99.11 99.19
chess 78.83 79.90 79.15 26.44 80.21 33.06 36.83 77.85 71.41 66.38 74.25

connect-4 71.23 61.66 61.24 48.54 65.88 49.87 50.17 64.55 64.45 61.95 62.72
letRecog 96.15 88.20 87.62 64.32 84.96 72.05 74.90 92.34 96.51 93.61 96.15
magic04 86.33 80.31 80.05 82.52 80.87 75.72 75.64 83.07 86.67 84.90 86.48

tic-tac-toe 99.77 91.70 94.21 98.39 99.77 98.12 98.07 98.26 99.19 94.85 98.37
wine 98.23 95.48 94.39 95.84 97.78 95.16 96.05 76.07 98.44 96.90 98.31

activity 98.17 94.24 93.35 11.34 5.05 98.47 98.67 98.27 99.02 96.93 97.80
dota 60.12 52.08 51.91 34.83 56.31 59.34 57.76 59.46 58.81 54.04 57.16

facebook 90.27 80.76 81.50 31.16 11.38 88.62 87.20 89.43 85.51 82.88 86.85
fashion 89.01 80.49 79.61 47.38 66.92 84.53 84.46 89.36 89.91 85.76 88.05

AvgRank 2.15 7.62 8.38 8.54 5.85 7.23 7.15 4.69 2.92 6.54 4.54

Figure 2: Scatter plot of F1 score against log(#edges) for 3 datasets for all 5 folds.

We adopt the F1 score (Macro) as the classification performance metric since some of the data
sets are imbalanced, i.e., the numbers of different classes are quite different. We adopt 5-fold cross-
validation to evaluate the classification performance more fairly. When parameter tuning is required,
95% of the training set is used for training and 5% for validation. Considering that reused structures
exist in rule-based models, e.g., one branch in Decision Tree can correspond to several rules, we use
the total number of edges instead of the total length of all rules as the metric of model complexity
for rule-based models.

4.2 CLASSIFICATION PERFORMANCE

We compare the classification F1 score (Macro) of RRL, C4.5 (Quinlan, 1993), CART (Breiman,
2017), Scalable Bayesian Rule Lists (SBRL) (Yang et al., 2017), Concept Rule Sets (CRS) (Wang
et al., 2020), Logistic Regression (LR) (Kleinbaum et al., 2002), Piecewise Linear Neural Network
(PLNN) (Chu et al., 2018), Support Vector Machines (SVM) (Scholkopf & Smola, 2001) with lin-
ear, RBF or Ploy kernel, Gradient Boosted Decision Tree (Ke et al., 2017) with 100 estimators
(GBDTe=100), and Random Forest (Breiman, 2001) with 10 estimators (RFe=10) and 100 estima-
tors (RFe=100). C4.5, CART, SBRL and CRS are all rule-based models, and LR is a linear model.
These five models are considered as interpretable models. PLNN is a Multilayer Perceptron (MLP)
that adopts piecewise linear activation functions, e.g., ReLU (Nair & Hinton, 2010). PLNN, SVM,
GBDT and Random Forest are considered as complex models.

The results are shown in Table 1, and the first 9 data sets are small data sets while the last 4 are
large data sets. We can observe that RRL performs well on almost all the data sets and gets the best
results on 6 data sets. RRL outperforms other interpretable models and only two complex models,
i.e., GBDTe=100 and RFe=100, have comparable results. Compared RRL with LR and other rule-
based models, we can see RRL can fit both linear and non-linear data well. CRS performs well on
small data sets but fails on large datasets due to the limitation of its logical activation functions and
training method. Good results on both small and large data sets verify RRL has good scalability.
Moreover, SBRL and CRS do not perform well on continuous feature data sets like letRecog and
magic04 for they need preprocessing to discretize continuous features, which may bring bias to the
data sets. On the contrary, RRL overcomes this problem by discretizing features end-to-end.
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Figure 3: Training loss of 3 compared discrete model training methods and Gradient Grafting with
or without improved logical activation functions on 3 data sets.

4.3 MODEL COMPLEXITY

Interpretable models need to keep low model complexity while ensuring high accuracy. To show
the relationships between accuracy and model complexity, we draw scatter plots of F1 score against
log(#edges) for rule-based models in Figure 2 (see Appendix G for results on other data sets). The
value in CART(0.03) denotes the complexity parameter used for Minimal Cost-Complexity Pruning
(Breiman, 2017), and a higher value corresponds to a simpler tree. We can observe that RRL is
much simpler than random forests, and its complexity is close to CRS and decision trees without
pruning. Meanwhile, RRL has higher F1 scores than models with close complexity. It also indicates
that RRL can make better use of rules than models using heuristic and ensemble methods.

4.4 ABLATION STUDY

Training Method for Discrete Model. To show the effectiveness of Gradient Grafting for training
RRL, we compare it with other representative gradient-based discrete model training methods, i.e.,
STE (Courbariaux et al., 2015; 2016), ProxQuant (Bai et al., 2018) and RB (Wang et al., 2020),
by training RRL with the same structure. Hyperparameters are set to be the same for each method
except exclusive hyperparameters, e.g., random binarization rate for RB, are fine-tuned. In Figure
3, we can see that the convergence of Gradient Grafting is faster and stabler than other methods on
all data sets. As we mentioned in Section 3.3, RRL has little useful gradient information at discrete
points, thus STE cannot converge. Due to the difference between discrete and continuous RRL,
ProxQuant and RB cannot converge well as well.

Improved Logical Activation Functions. We also compare RRL trained by Gradient Grafting
with or without improved logical activation functions. The results are also shown in Figure 3, and
GradGrafting(NI) represents RRL using original logical activation functions instead of improved
logical activation functions. We can observe that the original activation functions work well on small
data sets but fail on the large data set activity while the improved activation functions work well on
all data sets, which means the improved logical activation functions make RRL more scalable. It
should be noted that GradGrafting(NI) works well on the large data set facebook, the reason is
facebook is a very sparse data set, and the number of 1 in each binary feature vector is less than 30
(See Appendix A for detailed analyses).

4.5 CASE STUDY

We show how the learned rules look like by case studies. In Figure 4, we show the learned rules,
with high weights, of RRL trained on bank-marketing data set (See Appendix F for the distribution
of weights and see Appendix E for fashion data set). These rules are used to predict if the client will
subscribe a term deposit by telesales. Different types of features are marked in different colors, e.g.,
purple for previous behaviours of the bank. We can clearly see that middle-aged married persons
with low balance are more likely to subscribe a deposit, and the previous behaviour of the bank
would also affect the client. Then the bank can change their strategies according to these rules.

8
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Weight Rule
0.995 -122.5 < balance < 2606.1 ∧ marital = married ∧ campaign < 5 ∧ poutcome = success ∧ previous > 0

0.753 1757.2 < balance < 7016.7 ∧ marital = married ∧ contact = telephone ∧ 6 < day < 27 ∧ previous < 5

0.733 age > 36 ∧ balance < 7016.7 ∧ marital = married ∧ campaign < 5 ∧ pdays < 104 ∧ poutcome = success

0.731 36 < age < 60 ∧ balance > -122.5 ∧	 campaign < 7 ∧ day > 22 ∧ pdays > 304 ∧ previous > 0

0.728 age > 28 ∧ -669.1 < balance < 5813.7 ∧ campaign < 6 ∧ pdays > 304 ∧ 0 < previous < 6

Figure 4: Logical rules obtained from RRL trained on the bank-marketing data set.

5 CONCLUSION

We propose a new scalable classifier, named Rule-based Representation Learner (RRL), that can au-
tomatically learn interpretable rules for data representation and classification. For the particularity
of RRL, we propose a new gradient-based discrete model training method, i.e., Gradient Grafting,
that directly optimizes the discrete model. We also propose an improved design of logical activation
functions to increase the scalability of RRL and make RRL capable of discretizing the continu-
ous features end-to-end. Our experimental results show that RRL enjoys both high classification
performance and low model complexity on data sets with different scales.
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A VANISHING GRADIENT PROBLEM

The partial derivative of each node in Ŝ(l) w.r.t. its directly connected weights and w.r.t. its directly
connected nodes are given by:

∂ŝ
(l)
i

∂Ŵ
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∂û
(l−1)
j

= Ŵ
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Similar to the analysis of Equation 4, due to û
(l−1)
k and Ŵ (l,1)

i,k are in the range [0, 1], the values of
(1−Fd(·)) in Equation 8 and 9 are in the range [0, 1] as well. If nl−1 is large and most of the values
of (1 − Fd(·)) are not 1, then the derivative is close to 0 because of the multiplications. Therefore,
both the conjunction function and the disjunction function suffer from vanishing gradient problem.

If the large data set is very sparse and the number of 1 in each binary feature vector (for RRL the
binary feature vector is u(0)) is less than about one hundred, there will be no vanishing gradient
problem for nodes in Ŝ(1). The reason is when the number of 1 in each feature vector is less than
about one hundred, in Equation 8 and 9, most of the values of (1− Fd(·)) are 1, and only less than
one hundred values of (1 − Fd(·)) are not 1, then the result of the multiplication is not very close
to 0. The facebook data set is an example of this case. However, if the number of 1 in each binary
feature vector is more than about one hundred, the vanishing gradient problem comes again.

B GRADIENTS AT DISCRETE POINTS

The gradients of RRL with original logical activation functions at discrete points can be obtained by
Equation 4, 8 and 9. Take Equation 8 as an example, discrete points mean all the weights of logical
layers are 0 or 1, which also means the values of all the nodes in Û (l) are 0 or 1, l ∈ {0, 1, . . . , L−1}.
Hence, in Equation 8, û(l−1)

j , (1−Fd(·)) ∈ {0, 1}, and the whole equation is actually multiplications

of several 0 and several 1. Only when û
(l−1)
j and (1 − Fd(·)) are all 1, the derivative in Equation

8 is 1, otherwise, the derivative is 0. Therefore, the gradients at discrete points have no useful
information in most cases. The analyses of Equation 4 and 9 are similar.

To analyze the gradients of RRL with improved logical activation functions at discrete points, we
first calculate the partial derivative of each node w.r.t. its directly connected weights and w.r.t. its
directly connected nodes:
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· Ŵ (l,1)
i,j (13)

Take Equation 10 for example, when all the weights of logical layers are 0 or 1, the r̂
(l)
i , Fc(·) + ε

and (û
(l−1)
j −1) are all very close to 0 or 1 as well. For the initialized weights are randomly selected,

r̂
(l)
i is close to 0 in most cases. Hence, the derivative in Equation 10 is close to 0 in most cases, and

the analyses of Equation 11, 12 and 13 are similar. Therefore, the gradients at discrete points have
little useful information.
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C DATA SETS PROPERTIES

Table 2 summarizes the statistics of 13 datasets that we used in the experiments. The first 9 data sets
are small data sets while the last 4 are large data sets. Discrete or continuous feature type indicates
features in that data set are all discrete or all continuous. The mixed feature type indicates the data
set has both discrete and continuous features. The density is the averaged ratio of the number of 1
in each binary feature vector after one-hot encoding.

Table 2: Data sets properties.

Dataset #instances #classes #features feature type density

adult 32561 2 14 mixed -
bank-marketing 45211 2 16 mixed -

banknote 1372 2 4 continuous -
chess 28056 18 6 discrete 0.150

connect-4 67557 3 42 discrete 0.333
letRecog 20000 26 16 continuous -
magic04 19020 2 10 continuous -

tic-tac-toe 958 2 9 discrete 0.333
wine 178 3 13 continuous -

activity 10299 6 561 continuous -
dota2 102944 2 116 discrete 0.087

facebook 22470 4 4714 discrete 0.003
fashion 70000 4 784 continuous -

D COMPUTATION TIME

The computation time of RRL is similar to neural networks like Multilayer Perceptrons (MLP) for
their computations are quite similar. The training time of RRL on all the datasets (400 epochs on
the small datasets and 100 epochs on the large datasets) with one GeForce RTX 2080 Ti is shown
in Table 3. We can see that the training time of RRL is acceptable on all the datasets, which also
verifies the good scalability of RRL.

Table 3: Training time of RRL on 9 small and 4 large datasets.

Dataset adult bank-marketing banknote chess connect-4 letRecog magic04

Time 1h22m55s 1h0m49s 7m45s 29m40s 2h20m41s 2h16m24s 3h22m37s

Dataset tic-tac-toe wine activity dota facebook fashion

Time 1m3s 16s 1h2m24s 1h58m42s 2h27m23s 7h32m52s

E CASE STUDY

Although RRL is not designed for image classification tasks, due to its high scalability, it can still
provide intuition by visualizations. Take fashion dataset for example, for each class, we combine
the first ten rules, ordered by linear layer weights, for feature (pixel) visualization. In Figure 5, a
black/white pixel indicates the combined rule asks for a color close to black/white here in the original
input image, and the grey pixel means no requirement in the rule. According to these figures, we
can see how RRL classifies the images, e.g., distinguish T-shirt from Pullover by sleeves.

Figure 5: Decision mode for the fashion data set summarized from rules of RRL.
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F DISTRIBUTION OF WEIGHTS IN THE LINEAR LAYER

Table 4: The distribution of weights in the linear layer obtained from RRL trained on the bank-
marketing data set.

abs(weight) [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0)

probability 0.0781 0.1875 0.3125 0.2422 0.0859 0.0469 0.0078 0.0313 0.0000 0.0078

G MODEL COMPLEXITY

Figure 6 shows the scatter plots of F1 score against log(#edges) for rule-based models trained on the
other 10 data sets. The value in CART(0.03) denotes the complexity parameter used for Minimal
Cost-Complexity Pruning (Breiman, 2017), and a higher value corresponds to a simpler tree. On
these 10 data sets, we can still observe that RRL is much simpler than random forests, and its
complexity is close to CRS and decision trees without pruning. Meanwhile, RRL has higher F1
scores than models with close complexity in most cases.

Figure 6: Scatter plot of F1 score against log(#edges) for 10 datasets for all 5 folds.
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H AVERAGE RULE LENGTH

The average length of rules in RRL trained on different datasets is shown in Table 5. We can observe
that except the facebook and fashion datasets, the average length of rules is less than 13 (most are
less than 7), which means understanding one rule is easy and understanding the rules one by one in
the order of weights is feasible. The average length of rules of RRL trained on the facebook and
fashion datasets is large for facebook and fashion are actually two unstructured datasets, e.g., the
fashion dataset is an image classification dataset.

Table 5: Average rule length of RRL trained on 9 small and 4 large datasets.

Dataset adult bank-marketing banknote chess connect-4 letRecog magic04

AvgLength 5.71 5.62 3.56 7.03 12.44 5.91 5.05

Dataset tic-tac-toe wine activity dota facebook fashion

AvgLength 3.07 2.11 6.67 4.37 38.28 34.53
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