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ABSTRACT

Large language models are being widely used across industries to generate text
that contributes directly to key performance metrics, such as medication adher-
ence in patient messaging and conversion rates in content generation. Pretrained
models, however, often fall short when it comes to aligning with human prefer-
ences or optimizing for business objectives. As a result, fine-tuning with good-
quality labeled data is essential to guide models to generate content that achieves
better results. Controlled experiments, like A/B tests, can provide such data, but
they are often expensive and come with significant engineering, logistical, and
ethical challenges. Meanwhile, companies have access to a vast amount of his-
torical (observational) data that remains underutilized. In this work, we study the
challenges and opportunities of fine-tuning LLMs using observational data. We
show that while observational outcomes can provide valuable supervision, directly
fine-tuning models on such data can lead them to learn spurious correlations. We
present empirical evidence of this issue using various real-world datasets and pro-
pose DECONFOUNDLM, a method that explicitly removes the effect of known
confounders from reward signals. In simulation experiments, DECONFOUNDLM
more accurately recovers causal relationships and mitigates failure modes of meth-
ods that assume counterfactual invariance, achieving over 16% higher objective
score than ODIN and other baselines, when entangled confounding is present.

1 INTRODUCTION

Large language models (LLMs) can be powerful tools for creating content that affects user behavior
and supports business goals. From enhancing user engagement to increasing purchase likelihood,
companies often aim to generate content that delivers measurable outcomes. Prior research has
shown that pretrained LLMs can perform well in certain tasks, such as generating creative product
ideas (Castelo et al., 2024) and predicting the likelihood of purchases (Arora et al., [2025). How-
ever, these models often struggle to capture human preferences and directly optimize for business
outcomes (Goli & Singh, |2024; |Ye et al., [2024), emphasizing the need for fine-tuning with labeled
data to causally guide the models towards desired business outcomes. Yet obtaining the right kind of
labeled data to support this alignment is difficult; human-labeled data and surveys can introduce bias
due to artificial contexts (Yeh et al., 2024), and randomized experiments are often infeasible due to
logistical and opportunity costs (Quin et al.,2024). This paper explores how to bridge this gap using
an abundant but underutilized source of supervision available to firms: historical observational data.

Consider a news website that aims to improve the click-through rates (CTR) of news headlines.
While they may not have the capacity to run controlled experiments, they may track how users
respond to different headlines over time, which could be used for fine-tuning. However, directly
fine-tuning on this data could be challenging because external factors such as time trends may in-
fluence both the content and the outcome. Furthermore, while running controlled experiments may
already be impractical for a news website, the difficulty is amplified in healthcare settings, where
fairness and ethical concerns further restrict experimentation and increase the importance of lever-
aging available historical data. In this paper, we examine both the opportunities and risks associated
with using observational data, and we propose a novel method that corrects for confounding effects
in the fine-tuning process.
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Fine-tuned LLMs have been used in many domains from electronic health records (Wu et al., [2024)
to astronomical data (Wang et al., 2024b) and social-science corpora; however most work does
not discuss causal challenges or the pitfalls of learning from historical data. In business settings,
methods such as|Ye et al.| (2024) and |Angelopoulos et al.| (2024) rely on experimental supervision,
leaving the potential of firms’ extensive historical logs underexplored. On the causal side, computer
science work has documented biases in preference data used for fine-tuning (e.g., length bias and
sycophancy) and proposed methods, such as ODIN (Chen et al.| [2024), Wang et al.| (2025), and |Sri-
vastava et al.| (2025)) that rely on the counterfactual invariance assumption. This assumption forces
the reward estimates not to change when confounding attributes are changed. While counterfac-
tual invariance may be plausible for human-rated LLM outputs, it is often violated in real-world
applications where different variables can affect outcomes. In contrast, we propose a method to use
abundant observational data and correct for observed confounders without assuming counterfactual
invariance.

Our results in this paper show:

* Risks of observational signals. Using StackExchange, we show that naive fine-tuning on
historical interactions can lead models to internalize spurious correlations.

* Value of observational signals. Using Upworthy, we show that observational data can
provide valuable signals. We also highlight the role of regularization to suppress the con-
founding effects when using historical data.

* Confounder correction. We propose DECONFOUNDLM, a fine-tuning method that re-
moves the influence of observed confounders from the reward signal. Our results show
that this approach consistently improves model behavior, enabling it to focus on causally
relevant attributes rather than superficial artifacts.

2 RELATED WORK

Our research spans three domains: (1) LLMs in science and business, (2) causal inference in econo-
metrics and machine learning, and (3) alignment of LLMs with reward modeling under confound-
ing. We summarize key contributions in each domain and highlight how our work extends current
boundaries, particularly in aligning LLMs using observational data subject to confounding.

2.1 LLMS IN SCIENCE AND BUSINESS APPLICATIONS

LLMs have advanced applications across domains, from health records (Wu et al., 2024) and as-
tronomy (Wang et al.l 2024b) to social sciences. In business, most work leverages experimental
supervision: |Ye et al.|(2024) use adaptive experiments for headline CTR, while Angelopoulos et al.
(2024) fine-tune on A/B outcomes. Other efforts explore knowledge transfer (Wang et al., [2024a)
and demand prediction (Leel [2024). Together, these works highlight the promise of LLMs in busi-
ness settings. However, aside from the last study, which focuses on demand prediction rather than
content generation, these methods primarily rely on supervision signals obtained from controlled ex-
periments, which are costly and limited in scope (Feit & Berman), 2019} Miller & Hosanagar, 2020),
or on synthetic feedback that may reflect the biases of the teacher model. In contrast, our work
investigates how to fine-tune LLMs using abundant observational data, while explicitly addressing
the confounding factors that can mislead model learning.

2.2 CAUSAL INFERENCE WITH MACHINE LEARNING AND ECONOMETRICS

Econometric methods offer tools for causal learning under confounding. (Chernozhukov et al.[(2018))
introduce Double Machine Learning (DML), using orthogonalized moment conditions and cross-
fitting to reduce bias from regularization in high-dimensional settings. [Farrell et al| (2021) ex-
tend this framework with a theoretical analysis for deep neural networks in semiparametric models.
However, both methods assume exogeneity, limiting their utility when confounding is endogenous.
IV-based approaches (Dikkala et al., 2020; Bennett et al.,2019; Singh & Zheng|,2023)) handle endo-
geneity using adversarial or nonparametric estimation. Our work contributes to this line of research
by adapting IV-based ideas for generative modeling with LLMs. Instead of estimating structural
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parameters, our goal is to deconfound reward signals used in LLM fine-tuning, ensuring the model
aligns with causal rather than spurious objectives.

2.3 LLM ALIGNMENT AND REWARD MODELING

RLHF has become standard for alignment (Ouyang et al.| 2022)), with PPO and DPO leveraging
human preference data (Rafailov et al., [2024b}; |[Zheng et al.,|2023). Yet reward models inherit bias
(Ntoutsi et al., |2020) and overfit to artifacts like length or sycophancy (Tien et al.| [2022; |Denison
et al.| 2024)). To address these issues, several works have developed causal reward modeling frame-
works. However, these methods typically assume counterfactual invariance, that the reward should
not change when confounding attributes are perturbed—an assumption that often fails in practice.
ODIN (Chen et al.,|2024) removes known confounders (e.g., length) from the learned reward. Wang
et al.|(2025) train rewards to satisfy counterfactual invariance by construction. More recently, |Srivas-
tava et al.|(2025) proposes a robust reward modeling method that enforces counterfactual invariance
via counterfactual data augmentation. While the counterfactual invariance assumption may hold
for LLM-generated answers evaluated by humans, it does not hold in many real-world applications,
which we discuss more below.

f(F,C) = [(F),
with F' denoting meaningful features and C' confounders. Approaches like ODIN (Chen et al.,
2024), invariant training (Wang et al. 2025)), and augmentation-based methods (Srivastava et al.,
2025) rely on this assumption. However, it is overly restrictive in real-world business contexts where
confounders (e.g., price, seasonality) legitimately affect outcomes. Our method, DECONFOUNDLM,
relaxes invariance by estimating and removing spurious influences, enabling alignment with true
causal drivers.

3  OBSERVATIONAL DATA: PITFALLS AND POTENTIAL

In this section, we examine both the pitfalls and potential of learning from historical observational
data, relying on experiments using StackExchange and Upworthy data.

3.1 PITFALL: INTERNALIZING SPURIOUS CORRELATION

We illustrate how confounding in historical data can mis-specify rewards when fine-tuning LMs.
Using Academia Stack Exchange, we mimic |Askell et al.| (2021) by treating user scores as prefer-
ences. In this dataset, engagement varies by weekday, specifically, we see a higher activity earlier
in the week (Figure [T). Because of this pattern, scores partly reflect exposure rather than quality.
To make this spurious signal explicit, we prepend a “Happy Monday!” marker to Monday answers,
then construct preference pairs where the higher-scored answer is treated as preferred. Evaluated
on 3,000 held-out questions, models trained on these preferences learn the weekday cue: compared
to SFT, DPO amplifies the artifact, generating “Happy” 21.2% vs. 13.7% and “Monday” 11.8%
vs. 9.1% of the time (both increases statistically significant). Full description and details of this
experiment are presented in Appendix

3.2 POTENTIAL

In the previous section, we showed that historical data can induce spurious correlations. Here we
ask: What is its potential value? When a firm lacks experimental data, can logs of content and
observed performance still improve future predictions? This cannot be answered in purely observa-
tional settings because outcomes are not causally attributable to the content. We therefore use the
Upworthy dataset Matias et al.|(2021]), which provides CTRs from controlled A/B tests. To simulate
observational access, we retain a single headline package and its CTR from each test and discard the
alternative; dataset statistics and preprocessing are discussed in Appendix

The realized CTR of a headline package depends not only on its intrinsic appeal but also on exoge-
nous factors such as audience composition and temporal context. For example, surges of sports-
related traffic during major events or elevated engagement with political content during election
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Figure 1: Weekly temporal patterns in Stack Exchange engagement. User scores and views exhibit
strong weekday effects, with higher engagement early in the week.

periods can substantially influence observed CTRs. Figure [2a] illustrates these dynamics: average
CTRs exhibit pronounced temporal variation across experimental training, observational training,
and observational validation subsets. Monthly averages are highly correlated across subsets (pair-
wise correlations of 96-97%), indicating that these fluctuations are systematic rather than stochastic.

These findings raise concerns regarding the direct use of raw CTRs for model training. Temporal
shifts in audience composition and preferences may dominate the signal, leading models to capture
time-specific artifacts rather than structural attributes of headline quality. Figure 2b|provides further
evidence, showing substantial variation in impressions per package over time, including a marked in-
crease in late 2023 coinciding with the U.S. election period. Such variation suggests non-stationarity
in both traffic volume and audience characteristics. Consequently, models trained naively on obser-
vational CTRs risk conflating shifts in exposure and demand with causal effects of content, thereby
limiting their ability to generalize beyond the training environment.
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Figure 2: Temporal patterns in user engagement. The left plot shows variation in average click-
through rates (CTR) across months, while the right plot shows the number of impressions per pack-
age, indicating changes in user traffic volume.

To compare learning from experimental vs. observational data, we fine-tune LLMs by adding a
small head to the final embeddings: (i) a pairwise classification head with logistic loss to predict the
higher-CTR headline (experimental), and (ii) a regression head with MSE to predict observed CTR
(observational). In both settings, we use Lo regularization and tune A on a validation set.

Performance. We evaluate all models on the same held-out set of headline pairs, where each
pair comes from an A/B test with a known preferred headline. The evaluation objective is to as-
sess whether the model correctly ranks the preferred headline higher. To do this, we compute the
ROC AUC (Area Under the Receiver Operating Characteristic Curve), which reflects the model’s
ability to distinguish between better and worse-performing headlines. We use the Pythia suite of
open-weight language models for all experiments Biderman et al.| (2023)). Figure [3alshows the ROC
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AUC results for the Pythia-12B model. Training on the experimental dataset yields an AUC of 0.82,
whereas the observational dataset produces a lower, but still above-chance, AUC of 0.74. This result
is encouraging: it suggests that historical data, even without experimental variation and with only
about 26% of the training packages, can still provide meaningful signals for preference learning.
The performance gap also highlights the value of randomized feedback; exposure to counterfactual
comparisons enables better generalization and more reliable preference estimation. Figure [3b] fur-
ther shows AUC improves with model size in both settings, yet the experimental—observational gap
remains, underscoring the value of randomized feedback when available.
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Figure 3: ROC on held-out Upworthy headline pairs. (a) ROC curves for models trained with
experimental data outperform those trained on observational data. (b) Larger models yield better
results in both settings, but the performance gap persists.

Importance of regularization. We study the role of regularization in observational learning and
find that strong regularization is critical for generalization. As shown in Figures [4b|and [4c| optimal
validation loss occurs at A = 18,000, yet the best test ROC AUC is achieved at A = 50,000. This
discrepancy suggests that in the presence of confounding factors, tuning hyperparameters solely
based on validation loss may not suffice. The model may overfit to patterns influenced by spurious
correlations in the validation data, rather than learning features that generalize causally to unseen
headline comparisons. Figure [5a]shows that this gap holds across model sizes: stronger regulariza-
tion consistently yields better test performance than what validation loss would suggest. We further
find that larger models generally require stronger regularization for optimal test performance. This
observation implies that using a fixed regularization setting across models of different sizes is sub-
optimal. Figure [5b] demonstrates this by plotting test performance against model size under fixed
regularization levels. The figure shows a non-monotonic effect, larger models begin to overfit more
if regularization is kept constant. These results emphasize the need to scale regularization appropri-
ately with model capacity in order to maintain generalization, which is often overlooked in practice.
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Figure 4: Effect of regularization strength (\) on different evaluation metrics for the Pythia-12B
model.

While these results underscore the critical role of regularization, they also raise a practical chal-
lenge when access to held-out experimental data for tuning hyperparameters is often limited. In
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such cases, alternative strategies are needed to remove the effect of confounders. We address this
issue in Section[d] where we introduce a method for explicitly correcting for confounding effects in
observational fine-tuning.

Temporal pattern overfitting. As discussed earlier, temporal variation in CTRs is a potential con-
founder in observational data. To assess how much models internalize these patterns, we compute
the correlation between monthly average CTR estimates on the validation set and observed monthly
CTRs in the training data. Figure 4d|shows this correlation across values of A for the Pythia-12B
model. We observe that moderate regularization improves alignment with temporal patterns, but
higher regularization reduces it. Interestingly, the \ that yields the best test performance comes well
after this drop, indicating that suppressing temporal patterns helps the model on the causal evaluation
of headlines. This trend holds across model sizes. As shown in Figure|5c| models consistently show
lower temporal correlation at their optimal test-time A, further suggesting that failing to effectively
account for confounding patterns can impair generalization performance.
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Figure 5: Regularization dynamics across model sizes. (a) Models require larger regularization to
achieve optimal test performance. (b) Using a fixed regularization setting leads to non-monotonic
scaling performance. (c) Models show lower correlation with temporal engagement patterns at their
optimal test-time .

4 A CAUSAL FRAMEWORK FOR OBSERVATIONAL FINE-TUNING

We now introduce a formal framework to analyze the effect of confounding in observational fine-
tuning. Suppose we have access to historical interaction data D = {(X;, y;) }scz, where X; denotes
the context vector for interaction ¢ and y; is the associated outcome (e.g., click-through rate or
reservation rate). We assume that X; can be decomposed into a textual decision variable T; (e.g., a
generated title or headline) and auxiliary features X, such that: yi = f(T5, X,-) + €;, where f is
the unknown outcome function and ¢; is zero-mean noise. The goal is to train a generative model
G : X — T that produces high-reward textual actions for new inputs. To capture confounding, we
assume that the outcome function can be decomposed as:

yi = 9(Ti, Fy) + h(C;) + €, )

where Fj is the set of observed features including 7;, and C;; represents observed confounders that
influence both the action and the outcome. The function g captures the causal effect of the textual
action and other features, while & captures the contribution of confounders. Crucially, if g and & are
entangled, estimating them independently may result in biased models and reward misspecification.

Proposed method: DECONFOUNDLM Our proposed approach, Deconfounded Language Model
Fine-Tuning (DECONFOUNDLM), involves first identifying and modeling the effect of confounders,
and then explicitly removing their contribution from the observed outcomes. This allows the model
to learn the causal impact of the textual input and other features, without being influenced by con-
founding effects. In our experiments, we apply an instrumental variable strategy to estimate the
confounding component. However, the framework is flexible: other methods such as Double Ma-
chine Learning Chernozhukov et al.|(2018) or Adversarial GMMs Dikkala et al.| (2020) can be used,
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provided the researcher is mindful of the assumptions of the methods. We further discuss the poten-
tial impacts and limitations in Appendix [E]

Example 1 (Partially Linear Regression). Consider a partially linear model where the confounder
pi, e.g., the price in Airbnb listings, enters linearly (Similar to the examples from |Chernozhukov
et al.| (2018))):

yi = 9(Ti, F;) + ap; + €, 2

Here, p; € C; is an observed confounder. In the Airbnb example, when optimizing titles to improve
reservation rates, price may strongly affect y; and also correlate with certain title patterns (e.g.,
“affordable”). Estimating g accurately thus requires adjusting for p; to avoid spurious correlations.

4.1 SIMULATION EXPERIMENTS

In this section, we turn to simulation experiments for a controlled evaluation of the proposed DE-
CONFOUNDLM method. We base our simulation experiments on the MIND dataset (Wu et al.,
2020), which contains over 160,000 English-language news articles with both titles and full text.
We treat the article body as the input context and aim to generate a headline 7; that maximizes a
synthetic performance score y;, interpreted as a proxy for engagement or click-through rate. To
simulate realistic challenges in observational fine-tuning, we design two scenarios, Orthogonal con-
founding and Entangled confounding, where the observed outcome y; depends on both the textual
quality and a confounding variable p; representing topic popularity (e.g., how much fan interest a
team garners). We use the headline sentiment s(7;) = ¢(7;, F;) as a measure of quality, as it is
interpretable and easily measured.

Across both scenarios, we model the outcome as:

yi = s(T3) + 0.1p; + v;, €))

where p; is the confounder, and v; ~ N(0,0.1) represents observational noise. We vary how p; is
constructed across two settings:

* Orthogonal confounding. The confounder p; is independent of the sentiment s(7};), making
its effect easier to isolate and remove. Specifically:

p; = 1(title mentions West Coast team) + 2 - 1(Central team) + 3 - 1(East Coast team) + €;,

“)
where €; ~ N(0,0.5). This reflects a hypothetical bias where East Coast teams are gener-
ally more popular and draw higher engagement regardless of the title’s quality.

» Entangled confounding. Here, popularity p; is correlated with the sentiment of the news
abstract, mimicking a setting where emotional salience of the topic and engagement co-
vary. For instance, sad events may draw more audience to the platform and lead to increased
engagement. We model this with:

p; = 1(title mentions West Coast team) + 2 - 1(Central team) + 3 - 1(East Coast team)
—10.5 - s(abstract) + ¢;.
&)

IV justification. In this setting, both the abstract sentiment s(abs) and team mentions influence
the latent popularity measure p;, which in turn drives engagement Y;. Omitting popularity from the
analysis induces bias in the estimated effect of headline sentiment on Y}, since part of the observed
variation in engagement is mediated by shifts in audience composition or topical salience. Instru-
mental variables (IV) address this problem by exploiting variation that affects the outcome only
through its impact on popularity. In our case, team mentions satisfy this requirement: they generate
exogenous shocks to popularity (e.g., attention surges around specific sporting events) but do not
otherwise alter the causal path from headline sentiment to engagement.

The IV procedure estimates and removes the contribution of popularity, leaving only the compo-
nent of engagement that is causally attributable to headline sentiment. This illustrates the classical
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conditions under which IV estimation is effective: (i) relevance, since team mentions are strongly
correlated with popularity, and (ii) exclusion, since they affect engagement only through popularity.
When these conditions are satisfied, IV recovers the true causal effect of headline sentiment even in
the presence of confounding.

Comparative methods. We evaluate seven approaches: (1) a base pre-trained model, (2) super-
vised fine-tuning (SFT), (3) RL with access to ground-truth sentiment (which serves as a baseline)
(4) RL using observed performance without controlling for confounders, (5) RL models that in-
corporate popularity either as input text or as a scalar feature in the final layer, (6) ODIN (Chen
et al., 2024) as an example of a method that relies on counterfactual invariance, and (7) our pro-
posed method DECONFOUNDLM-1IV, which estimates and removes the confounder effect using an
instrumental variable.

Results. We evaluate all models’ generations after the RL step on a held-out set of 3,000 news
articles. Table [T] summarizes the average sentiment of generated headlines and the frequency of
team name mentions, which serve as a proxy for reliance on the popularity-based confounder. In the
Orthogonal setting, the model trained on observed performance (without accounting for confound-
ing) is able to improve headline sentiment, indicating that it learns part of the true signal. However,
it also shows a marked increase in the frequency of team name mentions, suggesting reliance on
popularity cues. Incorporating popularity information, either via text prompts or as an input feature,
reduces this effect. Among all methods, DECONFOUNDLM-IV more closely matches the sentiment
gains of the true-reward model while not generating unnecessary references to team names caused
by the confounding variable.

Table 1: Comparison of models under two confounding scenarios. The table reports the mean
sentiments and the number of generated titles mentioning teams by region. Models are tested on
3,000 headline generations. Note that the reported results for the first four models are identical
across both scenarios, as they do not rely on the observed performances; the difference between the
two scenarios lies solely in how the observed performance is constructed.

Model Scenario 1: Orthogonal Scenario 2: Entangled
Sent. W C E Sent. W C E

Base Pre-Trained Model 0.684 177 795 717 0450 177 795 717

SFT Model 0716 159 634 610 0.716 159 634 610

Model with only sentiment 0950 165 714 728 0960 187 697 720
Model with sentiment + noise  0.934 172 699 664 0958 174 716 699

RL w/ observed performance  0.956 214 914 1016 0.735 186 908 1041

RL w/ pop. in text 0932 158 655 638 0.718 166 676 629
RL w/ pop. in layer 0935 178 679 661 0.800 189 829 835
ODIN (Chen et al.|[2024) 0934 178 729 680 0.807 249 1018 1063
DECONFOUNDLM-IV 0939 181 692 682 0937 170 736 694

The Entangled case presents a more challenging scenario. Here, the naive model trained on observed
performance fails to improve sentiment and heavily generates team names. While models that in-
clude popularity in the input text or final layer performed well in the orthogonal setting, they struggle
to recover the sentiment-performance relationship in this setting. ODIN also achieves a similar per-
formance in terms of sentiments of the generated headlines, but generates many more team names.
In contrast, DECONFOUNDLM-IV demonstrates strong robustness. It successfully suppresses the
influence of the confounder and generates headlines with 16 % higher sentiment scores compared
to the next highest sentiment scores. Full experimental details for the simulation experiments are
provided in Appendix

Reward-sentiment correlation. We now turn to the question of why DECONFOUNDLM delivers
stronger results: How closely do the reward models actually follow the true sentiment measures?
Table [2] shows the average Pearson correlation between predicted rewards and sentiment scores
in the reward validation set, under two confounding scenarios. In the orthogonal case, observed
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performance is positively correlated with sentiment, allowing most models to achieve a positive
correlation between their reward estimates and sentiment. However, in the entangled case, where
the confounder (e.g., team popularity) effect is entangled with the outcome, this relationship breaks
down. Most of the models that do not account for the confounder, or attempt to include it through
text features or final-layer embeddings, fail to maintain a positive correlation between predicted
rewards and sentiment. In contrast, DECONFOUNDLM-IV remains robust across both scenarios,
maintaining a strong positive correlation.

Table 2: Correlation between predicted rewards and sentiment across two confounding scenarios.
Each cell shows the Pearson correlation on the train and validation sets. The reported results for
the first two models are identical across both scenarios, as they do not rely on the observed perfor-
mances.

Model Scenario 1: Orthogonal | Scenario 2: Entangled

Train Valid Train Valid
Model with only sentiment 0.913 0.872 0.913 0.872
Model with sentiment + noise 0.910 0.891 0.807 0.802
RL w/ observed performance 0.880 0.859 -0.073 -0.079
RL w/ pop. in text 0.839 0.827 -0.261 -0.253
RL w/ pop. in layer 0.862 0.841 0.623 0.627
ODIN Chen et al.|(2024) 0.654 0.641 -0.536 -0.542
DECONFOUNDLM-IV 0.915 0.886 0.898 0.867

5 CONCLUSION AND DISCUSSION

Our findings suggest that using historical data to fine-tune language models can be a double-edged
sword: while it provides valuable information without the need for experimentation, it could also
introduce the risk of learning from confounded outcomes. Through both real-world and synthetic ex-
periments, we show that models trained on observational data may internalize spurious correlations
that are not causally linked to content quality. To mitigate this, we introduce DECONFOUNDLM,
a method that explicitly adjusts for observed confounders in the fine-tuning process. By separat-
ing confounding influences from the outcome signal, our approach enables more causally grounded
learning without relying on the counterfactual invariance assumption that is often used in prior work.
Across multiple settings, we find that DECONFOUNDLM improves fine-tuning outcomes and bet-
ter captures the true effects of textual inputs. Finally, while our primary focus is performance and
causal inference, we note that confounding can also introduce fairness concerns. If unaddressed, it
may lead models to replicate or amplify structural biases in the data. We view causal deconfounding
as a promising direction for aligning language models not only with user preferences but also with
broader values of equity and accountability.
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A PROBLEM SETUP AND BACKGROUND

Fine-tuning LLMs to align their outputs with user preferences is a common approach for enhancing
their performance. This process typically relies on labeled preference data, which may be collected
through human annotations [Ziegler et al.|(2019), automated feedback mechanisms (e.g., RLAIF|Lee
et al| (2024)), or structured reasoning tasks (e.g., (Guo et al| (2025)). Two major paradigms are
commonly used to incorporate preference data into LLM training: (i) Reward Modeling followed
by Reinforcement Learning, and (ii) Direct Preference Optimization.

In the former, a reward model 4 (z, y) is first trained to predict human preferences between outputs
given an input x. The model is typically trained using pairwise comparisons, optimizing a Bradley-
Terry likelihood:

ERM(¢) = 7]E(;c,yw,yz)~D [loga (7’¢(.€C, yw) - 7‘¢($, yl))] )
where o is the logistic sigmoid. Once trained, this reward model is used to fine-tune the language
model 7y(y | z) using reinforcement learning algorithms such as Proximal Policy Optimization
(PPO), which maximize expected reward while regularizing against a reference policy:

MAX By D,y (1) [76(2,y) = BKL (w0 (- | 2) [} meee(- [ 2))] -

In contrast, Direct Preference Optimization (DPO) bypasses reward modeling entirely and directly
updates the policy to prefer higher-rated responses using a contrastive objective over preference
pairs Rafailov et al.|(2024b).

In industrial applications such as optimizing click-through rates for headlines, boosting booking
rates on rental platforms, or improving adherence in health messaging, the gold standard for evalu-
ating outcomes is randomized controlled trials, which allow unbiased estimation of causal effects.
However, such experiments are expensive and often infeasible in practice. Meanwhile, organizations
often have abundant observational data: historical logs of content such as page titles, messages, or
headlines and their associated outcomes. This data can be used directly for fine-tuning, either by
training a reward model or by constructing preference pairs for methods like DPO. The challenge,
however, is that observational data is subject to confounding: unobserved variables may influence
both the textual content and the observed outcome, leading to spurious correlations. For exam-
ple, consider an LLM deployed at Airbnb to generate listing titles aimed at increasing reservation
rates. Historical data may show that listings with the word “affordable” in the title perform better.
However, this could reflect the underlying confounding effect of the price, as lower-priced listings
generally get higher reservations. A model fine-tuned naively on this data may learn to associate
“affordable” with success in all contexts, leading to unsuitable generations. Say you are asking the
model to generate a title for a luxury riverside property, and the model generates * ‘Affordable
log chalet { perfect for solo travelers’’!

This is a clear instance of reward misspecification: the model learns to optimize a proxy signal that
only partially reflects the true objective. While prior work Gao et al.| (2023); |Rafailov et al.| (2024a)
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has investigated reward over-optimization in both classical RLHF and Direct Alignment settings,
these studies have largely focused on empirical scaling behavior and optimization dynamics. In this
work, we take a step further by analyzing the role of confounding and causal misalignment in fine-
tuning large language models using observational data. In the following section, we investigate how
relying on historical preference data can lead to biased and potentially flawed model fine-tuning, by
examining a real-world case study.

B THE MONDAY EXPERIMENT: AN EXAMPLE OF CONFOUNDING IN
OBSERVATIONAL DATA

In this section, we present an example illustrating how confounding can lead to reward misspecifi-
cation when fine-tuning language models using historical data. Specifically, we construct a dataset
similar to that used by |Askell et al.| (2021), based on data from the Academia Stack Exchange. In
their study, the authors fine-tune a question-answering model and, in one step of their fine-tuning,
Preference Model Pre-Training (PMP), use historical data to guide learning. They treat answer
scores as preference signals and train the model to prefer higher-scored answers in cases where mul-
tiple answers are available for a question. This PMP step is followed by fine-tuning with human
feedback, to ensure the alignment of the model’s preferences with human judgments. In our experi-
ment, we investigate what happens when human feedback is unavailable and only observational data
is used for fine-tuning.

While using the scores can signal which answer is more helpful, these scores are not the outcomes
of randomized experiments, rather could be affected by user engagement patterns. For example,
answers posted earlier may receive more views and thus more votes. One confounder we investigate
is periodicity in platform engagement across different weekdays. To investigate this, we analyze the
average answer scores by weekday. As shown in Figure answers posted on Mondays receive
significantly higher scores than those posted on Fridays. While one might speculate that this might
be causal and reflect differences in writing quality, we observe a similar pattern in the average scores
of questions themselves (Figure[Ib), suggesting that broader engagement trends may be at play.

We further examine the number of views per question as a proxy for user exposure. Since the
dataset does not include view counts for individual answers, we cannot directly assess the effect of
exposure at the answer level. Figure [1c| displays both question views and scores over time. The
strong correlation between the two suggests that the observed temporal trends are more likely driven
by fluctuations in user activity than by differences in content quality.

To test whether this bias can influence model behavior, we simulate a fine-tuning setup similar to that
of |Askell et al.| (2021). We construct answer pairs based on user scores and designate the higher-
scoring answer as preferred. For answers posted on Mondays, we prepend a neutral * ‘Happy
Monday!’’ phrase to introduce a content marker correlated with engagement rather than qual-
ity. We then evaluate model generations on 3000 held-out questions and count how often the words
“Happy” and “Monday” appear. Table [3] summarizes the results. The base pre-trained model rarely
generates these terms. The supervised fine-tuned (SFT) should ideally capture the distribution in the
data (generation temperature is set to 1). Our results show a frequency of 13.7% + 0.2% for the first
word “Happy” which is consistent with the distribution in the data (~ 1/7). In comparison, the DPO
model generates “Happy” in 21.2% + 0.8% and “Monday” in 11.8% =+ 0.8%, representing substan-
tial increases of approximately 7.5 and 2.7 percentage points, respectively. To assess whether these
increases are statistically significant, we perform independent two-sample t-tests over the 25 genera-
tion rates from each model. The difference in “Happy” usage is highly significant (p = 6.5x 10719),
and the increase in “Monday” usage is also statistically significant (p = 3.4 x 10~3). These results
show that the model has internalized and amplified a spurious temporal signal. Additional details
of this experiment, as well as further details about data and training characteristics, are provided in

Appendix [B]

This case highlights how confounding variables in observational datasets can lead to reward mis-
specification and unintended behavior in fine-tuned models. Without accounting for causal struc-
ture, models may learn to exploit spurious signals that correlate with success, even when they do not
contribute to genuine task quality.
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Table 3: Mean percentage (standard error) of generations containing “Happy” and “Monday” across
5 generation seeds for the base model, and 25 runs (5 fine-tuning seeds x 5 generation seeds) of SFT
and DPO fine-tuning. DPO fine-tuning significantly amplifies the spurious weekday signal.

Model Generations per Run  Num. Runs With “Happy” (%) With “Monday” (%)
Base Model 3000 5 1.13 (0.04) 0.07 (0.02)
SFT Model 3000 25 13.69 (0.21) 9.05 (0.19)
DPO Model 3000 25 21.22 (0.77) 11.78 (0.81)

Data. To replicate and extend the setup of |Askell et al.| (2021) we use data from the |Academia
Stack Exchange. The dataset contains 104,426 question-answer pairs. We retain only those ques-
tions with multiple answers, reducing the data to 82,737 answer instances. To reduce memory usage
during training, we further restrict to questions and answers with fewer than 180 words, yielding
33,194 answers across 14,319 questions. Of these, 4,937 answers were written on a Monday.

We split the questions into three groups: 5,000 for supervised fine-tuning (SFT), 3,000 for testing,
and the remainder for reward-based fine-tuning. For each question in the fine-tuning subset, we form
ordered answer pairs by comparing scores and labeling the higher-scored answer as preferred. We
cap the number of pairs per question at 10 to prevent imbalance. This yields 11,886 pairs, where we
find a notable weekday skew: in pairs with only one Monday answer, 958 have the Monday answer
as preferred, while 887 have it as rejected, hinting at temporal confounding.

Fine-tuning setup. We use the 360M parameter SmolLM2-Instruct |Allal et al.|(2025)) model
as the base and perform two-stage fine-tuning.

Supervised Fine-Tuning (SFT). The SFT step uses the answer text as the assistant response and the
corresponding question as input. Training is done for 1 epoch with a batch size of 8 and a learning
rate of 2 x 10~ using the AdamW optimizer (8-bit). We apply LoRA Hu et al.|(2022) with rank 16
and dropout 0.1. Inputs are tokenized using a custom prompt template with a 512-token sequence
limit.

Direct Preference Optimization (DPO). The DPO stage initializes from the SFT checkpoint and
fine-tunes using the constructed answer preference pairs. We use a 3 of 0.1 and train for up to 4
epochs with a batch size of 8. LoRA is applied with rank 8. The maximum prompt and completion
lengths are 256 and 512 tokens, respectively.

Generations for evaluation are performed on a held-out set of 3,000 questions, and model outputs
are assessed for lexical artifacts. For the base model, which is fixed and not subject to any fine-
tuning variability, we introduce randomness only through the generation process by using 5 different
random seeds. In contrast, both the SFT and DPO models are subject to randomness in fine-tuning
as well as generation. Specifically, we fine-tune each model using 5 different random seeds for
initializing the model head, and then generate outputs from each trained model using 5 different
generation seeds. This results in 25 runs per model, each producing 3000 generations.

To qualitatively assess the effect of fine-tuning, Table @] presents representative generations from the
base, SFT, and DPO models for a single held-out question. This example illustrates how fine-tuning
shapes model behavior and provides evidence that the fine-tuning process is likely implemented
correctly. The base model produces a generic answer formatted in Markdown (e.g., using *« for
bold), reflecting conventions likely present in its pretraining data. In contrast, the SFT model aligns
more closely with the domain-specific formatting patterns found in the training set, namely, HTML
tags. It adopts a tone more typical of answers on the target forum. The DPO model builds upon this,
showing further alignment with patterns found in high-scoring answers: it employs richer format-
ting (e.g., <strong>) and incorporates external references, likely reflecting learned associations
between such features and answer quality.

Compute. All experiments for this setup were conducted on an NVIDIA RTX A6000 GPU. The
Supervised Fine-Tuning (SFT) stage is relatively lightweight and completes in approximately 10
minutes. In contrast, the Direct Preference Optimization (DPO) stage is more computationally in-
tensive due to its iterative training on preference pairs and takes around 1 hour to run per seed.
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Table 4: Comparison of model responses for a given question.

Question Model

Generated Answer

"<p>I’'ve been a
Computer Sciences
student for 4 years
now, give or take,

and my experience
with emailing
teachers/professors
(teachers from

now on) has been
either of two cases:
</p> <ul> <li>they
reply to my entire
email</li><li>they
read the last sentence
or paragraph and reply
to that.</li></ul>
<p>Generally, if a
teacher fits in one
of those categories,
they always respond
like that.<br>However,
for me it’s quite
frustrating to receive
an email back (within
5 minutes, an hour,

a day) with a reply,
to only one point,

and then having to
mail back with my
other questions,
removing one question
at a time.</p> <p>To
note: my e-mails

are always very
respectful, neatly

Base Model

1. xxInclude specifics about the
difficulties you facexx: Instead

of a general statement, explain the
difficulties yourfe facing. This will
show that youre willing to help by
providing more details. 2. xxOffer
solutions to the problemxx: Provide
some strategies or tips to help teachers
improve their email responses to

your questions. This will show that
youre proactive and interested in
finding a solution to the problem.

3. *xProvide clear examples of your
goals and objectives*x: Be specific
about what youre trying to achieve

by improving the response rate. For
instance, you could say that youd like
to see more direct responses or more
personalized responses from the teachers.
4. «*xHighlight any potential benefits
to the schoolxx: While you mentioned
that the teacher-student ratio might be
a problem, you could also mention that
the improvement in response rate could
positively affect the students, such as
by having more individualized support.
5. xxEmphasize the time and effort
required*x: Acknowledge that sending
multiple emails back and forth might be
time-consuming, but also express that the
benefits of getting more responses are
worth the extra effort. Example of how
you could write a specific paragraph to
demonstrate this: "Im frustrated that
IVe received responses to my

written, and without
spelling or other
mistakes.</p> <p>What
can I do to get a
higher percentage of
questions-answered-per-email
response?</p>"

SFT Model

<p>Happy Monday!</p><p>If my general
attitude is that you should be able to
reply to a very large number of emails
with a single email, your teacher should
answer the first few emails, since

they don’t need to spend a lot of time
answering those.</p><p>On the other hand,
if your teacher is very particular about
your answers, you might want to offer
more details about what you’re trying to
accomplish in your course, and what kind
of questions you have and are trying to
get answered.</p>

RL (DPO)

<p>Happy Monday!</p><p>The first point

is that people generally answer more
questions than they reply to in the
course of an email. In a rough order,
the answers are:</p><ul><li>Less
frequently, but they <strong>read the
last sentence or paragraph</strong>

and then reply to that: <a
href="http://en.wikipedia.org/wiki/Reciprocity">
Reciprocity</a> with you. It’s nice

to hear from you again and it’s

worth the extra effort for them to

do so.</li><li>Less frequently,

but <strong>you read the last

sentence or paragraph</strong>

and then reply to that: <a
href="http://en.wikipedia.org/wiki/Reciprocity">
Reciprocity</a>.</1li><1li><a
href="https://stackoverflow.com/ask"
target="_blank">Ask a question</a> and
get answers.</li><1li>Less frequently, but
<strong>you don’t read the last sentence
or)paragraph</strong> and reply to that:
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C UPWORTHY EXPERIMENT DETAILS

We follow a similar data processing approach to that of | Ye et al.| (2024)), using the Upworthy dataset.
The full dataset includes 150,817 headline-image “packages” across 32,487 A/B tests. Since some
tests involve variation in both headlines and images, we restrict our analysis to headline-only tests
where the image remains fixed. This filtering yields 17,682 headline-only tests comprising 77,245
packages.

To construct the experimental dataset, we generate all possible headline pairs within each A/B test
and retain only those with a statistically significant difference in click-through rate (CTR) at the 5%
level. This results in 41,624 headline pairs covering 27,745 packages. We split these into training
(60%), validation (20%), and test (20%) sets, while ensuring no headline appears in more than one
split to avoid data leakage. The final dataset includes 24,842 training pairs, 8,395 validation pairs,
and 8,387 test pairs.

These statistically significant pairs form the basis of our experimental setting. To simulate a non-
experimental setting, we derive a corresponding observational dataset. For each headline test in the
training set, we randomly retain only one package and discard the counterfactual. This results in
8,499 training packages, representing approximately 26% of the total packages. This setup reflects
a typical historical logging scenario, where only observed outcomes are available. Table [5|provides
summary statistics of the experimental and observational datasets.

Before moving on to the modeling details, we briefly highlight a potential confounder that can affect
observational CTRs: temporal variation in user engagement and topic salience. The probability that
a user clicks on a given package depends not only on the quality or attractiveness of the headline,
but also on who the viewers are and how relevant or important the topic is at the time. For instance,
if a major sporting event occurs, the site may receive a surge of sports fans, whose preferences dis-
proportionately influence overall CTRs. Similarly, politically themed headlines may receive more
engagement during election periods. Figure [2a] shows the average CTR by month for three data
subsets: experimental training packages, observational training packages, and observational vali-
dation packages. We observe a clear temporal pattern, with certain months getting substantially
higher CTRs. Moreover, the CTR trends are highly correlated across subsets (pairwise correlations
of monthly averages are between 96% and 97%), suggesting that these fluctuations are systematic
rather than random.

This raises a concern for models trained directly on raw CTRs. They may overfit to superficial,
time-related artifacts rather than learning meaningful properties of headline quality. As previously
discussed, variations in CTR may partly reflect changes in the user population and taste rather than
differences in content effectiveness. Figure 2b|provides evidence of these changes, showing substan-
tial variation in the number of impressions per package across months. Notably, there is a marked
increase in impressions toward the end of 2023, coinciding with the U.S. election period. These
fluctuations suggest that the volume and potentially the composition of website traffic change over
time. As a result, shifts in user demographics or interests could introduce biases into the observed
CTRs, potentially misleading models trained on such observational data.

Reward modeling. To train reward models, we use a prompting structure where the model is
asked to generate a headline for a given news abstract:

System: You are an editor of a news website.

Your task is to generate a headline for each news article that

will attract the most readers. The headline should be less than 40 words.
Only respond with the headline.

User: The news abstract is ‘{lede}‘' News posted at {created_at}
Assistant: {headline}

We use models from the Pythia suite Biderman et al.| (2023)) to generate embeddings, specifically
extracting the representation of the final token in each output. A classification or regression head is
added on top of this embedding to predict outcomes (CTR or preference), and an Lo regularization
parameter ) is tuned to manage overfitting, as detailed in the main text.

Compute. The most computationally intensive part of this experiment is generating embeddings
using models from the Pythia suite. We extract the final-token representations, which serve as in-
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Table 5: Summary statistics of the Upworthy dataset for experimental and observational settings.

Statistic \ Upworthy Data
Total headline-only A/B tests 17,682
Total packages 77,245

| Experimental Data  Observational Data
Statistically significant pairs 41,624 -
Packages in significant pairs 46,330 -
Training pairs 24,842 -
Training packages 27,745 7,285
Validation pairs 8,395 -
Validation packages 7,527 2,079
Test pairs \ 8,387 8,387

puts to the reward models. These embedding computations are performed on an AMD Radeon 7900
GPU. For the largest model used in our experiments, Pythia-12B, the embedding generation takes
approximately 12 minutes for the observational dataset and about 1.5 hours for the experimental
dataset, which is larger. Once embeddings are obtained, training the reward models with a classifi-
cation or regression head is relatively lightweight and runs efficiently on the Intel(R) Xeon(R) Gold
CPU @ 2.90GH.

D DETAILS OF SIMULATION EXPERIMENTS

For our synthetic experiments, we use the MIND (Microsoft News Dataset) (Wu et al.,2020), which
contains 160,000 English news articles, each with a headline and article body. To simulate user
engagement, we construct synthetic performance scores (interpretable as click-through rates) for the
article headlines using equations equation [3] equation [ and equation [5] To find the sentiment of
each headline in the data, we use the sentiment analysis model from Yuan|(2023).

To ensure domain consistency, we focus on the sports category, which includes 54,553 articles, the
largest among all categories. The data is split as follows: 20,000 articles for Supervised Fine-Tuning
(SFT), 10,000 for Reward Modeling (RM), 3,000 for reward validation, 10,000 for Proximal Policy
Optimization (PPO), and the rest for testing.

These synthetic scenarios allow us to explicitly test whether models can recover the true effect of
sentiment when the observed performance signal is partially corrupted by a structured confounder.

Supervised Fine-Tuning. We fine-tune a language model using SFT, where the model is prompted
to generate engaging headlines from article abstracts. The prompting structure is:

System: You are an editor of a news website. Your task is to

generate a headline for each news article that will attract the most
readers. The headline should be less than 30 words. Only respond with
the headline.

User: The news abstract is ‘{abstract}®

Assistant: {headline}

The base model is HuggingFaceTB/SmolLM2-360M-Instruct, fine-tuned with LoRA (rank
16, a=32, dropout=0.1) for one epoch. We use a learning rate of 2e—4 and batch size of 8.

Reward modeling. To train reward models on the synthetic performance scores, we perform hy-
perparameter tuning over several learning rates: {2e-4, 6e-4, 8e-4, le-3, 2e-3}. Based on prior
findings (Ouyang et al., |2022)), we limit training to one epoch to avoid overfitting.
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Generation results. Table |I| summarizes the average sentiment of generated headlines and the
frequency of team name mentions, which serve as a proxy for reliance on the popularity-based
confounder. We discussed these results in Section .11

Compute. Our simulation experiments were run using two types of GPUs: NVIDIA RTX A6000
and AMD Radeon 7900. For each combination of training seed and learning rate, reward modeling
takes approximately 3—5 minutes on either GPU. However, the PPO fine-tuning stage is significantly
more time-consuming, requiring about 2-3 hours to complete per setting.

E IMPACTS AND ASSUMPTIONS OF OUR FRAMEWORK

Our framework enables the use of observational data to align large language models (LLMs), thereby
opening new possibilities for alignment with significant potential for positive social impact. As
discussed in the main body of the paper, there are many real-world scenarios where conducting
randomized experiments on content and messaging is infeasible, while firms often possess exten-
sive historical observational data. In such cases, leveraging this data can substantially improve the
alignment of LLMs with organizational or societal objectives. Consider, for example, a messaging
system designed to improve medication adherence among patients. While running an experiment
might be challenging due to engineering and ethical challenges, optimizing such a system using ob-
servational data could lead to substantial improvements in health outcomes. However, as with any
machine learning paradigm that seeks to optimize a performance metric, this approach also presents
challenges. As highlighted in prior work Mehrabi et al.|(2021), various forms of bias can influence
the outputs of machine learning models.

Our framework specifically targets biases arising from confounders that influence both the treatment
and the outcome. While we have not yet conducted empirical evaluations of the bias correction
component with respect to mitigating group-level disparities, the proposed method can be used to
account for societal factors that might otherwise lead a model to prefer one textual input over an-
other based on irrelevant or unfair criteria. Furthermore, researchers and practitioners must consider
heterogeneity in individual responses to different texts to prevent the model from unintentionally en-
coding or amplifying structural disparities. For example, in a mobile health messaging application,
if a particular message yields high adherence overall but performs poorly for a specific subgroup,
it is crucial to incorporate recipient characteristics into the model to ensure equitable outcomes and
avoid disproportionately favoring majority groups.

Turning to the theoretical underpinnings of our framework, prior work (see Section [2.3) often as-
sumes that confounders have no effect on the outcome, implying a functional form f(F,C) =
f(F). However, this assumption may not hold in practice, especially in business settings where
variables such as price are important drivers of outcomes. In contrast, our approach allows for a
more realistic representation of the data-generating process, formulated as follows:

f(TzaXL) + € (6)

This formulation allows confounders to have a meaningful effect on outcomes, rather than assum-
ing that outcomes are independent of confounder values. To ensure tractability, we impose two
assumptions within our framework. First, we assume exogeneity of the error term conditional on the
observed covariates, that is, E[e;| X;] = 0. This assumption is commonly made in empirical research
involving high-dimensional covariates Zou & Zhang| (2009), though it is not without limitations. As
discussed in |Fan & Liao| (2014), even in high-dimensional settings, incidental or unintentional en-
dogeneity can arise due to selection bias or model misspecification. Second, we assume a separable
functional form in the final line of Equation [6] in which the effects of the confounders and the re-
maining variables are additively decomposed. Importantly, the model remains flexible enough to
capture interactions between g and h through their shared inputs, as illustrated in the entangled case
described in Section [4.1]
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While our framework introduces greater flexibility than prior approaches, we acknowledge the lim-
itations of these assumptions. The authors are currently working on developing a more general
framework that further relaxes these conditions.
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