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ABSTRACT

Training large vision-language models requires extensive, detailed image-text
pairs. Existing web-scraped datasets, however, are noisy and lack detailed image
descriptions. To bridge this gap, we introduce PixelProse, a comprehensive dataset
of over 16M (million) synthetically generated captions, leveraging cutting-edge
vision-language models for detailed and accurate descriptions. To ensure data
integrity, we rigorously analyze our dataset for problematic content, including
child sexual abuse material (CSAM), personally identifiable information (PII),
and toxicity. We also provide valuable metadata such as watermark presence and
aesthetic scores, aiding in further dataset filtering. We hope PixelProse will be a
valuable resource for future vision-language research. PixelProse will be made
available publicly.

1 INTRODUCTION

Early vision-language models were trained on datasets of images from the web, each labeled with the
alt-text embedded in the surrounding HTML. These datasets enabled model training at large scales
for numerous applications. However, as models advanced and the machine learning community
moved, these datasets have begun to outlive their usefulness. The problems with these datasets
stem from the fact that alt-texts are not truly captions. They often contain little to no information
about the content of the image, and factors like background objects and fine-grained details are often
absent. As a result, commercial models that are trained on purpose-labeled and carefully curated
datasets have far surpassed the open source state of the art for both image generation and analysis.
Overall, trending research in the community has shown that dataset quality, not dataset size, has
become the bottleneck for open-source development. This motivates the need for new datasets that
are labeled with deliberately constructed captions rather than incidental alt-texts. At the same time,
the emergence of generative LLMs enables fast manipulation and reformatting of text labels. This
raises the value of dense image labels containing many categories of detailed information, as one
dataset can be refactored for many uses including vision captioning and question-answering (VQA).

PixelProse is a dataset that addresses the weaknesses of existing alt-text datasets for vision-language
applications and is designed to be used as either a standalone asset or in combination with LLM
refactoring. It contains detailed captions that are long, detailed, and cover a range of image properties
that are important for Vision-Language Model (VLM) and diffusion model training, as depicted
in Figure 1. Rather than target only one specific application (e.g., VQA), PixelProse captions are
intended to be general purpose image descriptions that contain large amounts of image data in dense
prose form. These captions can be used for pre-training tasks, image captioning, or they can be
refactored into other data formats (e.g., VQA, instructions, etc.) using an LLM.

2 PIXELPROSE DATASET

In this section, we provide a detailed description of how we created the PixelProse dataset. An
overview of our data generation pipeline is shown in Figure 2. Our captions are generated using
Google Gemini 1.0 Pro Vision Model (Team et al., 2023). The images from the dataset are provided
as URLs, along with original and generated captions.
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Figure 1: Dense synthetic image captions from PixelProse. Concrete phrases are highlighted in green, and
negative descriptions are underlined in purple.

2.1 IMAGE SOURCES

PixelProse comprises over 16M diverse images sourced from three different web-scraped databases,
which are discussed below:

CommonPool (Gadre et al., 2024) contains a large pool of image-text pairs from CommonCrawl,
which is distributed as a list of url-text pairs under a CC-BY-4.0 License. We filter the dataset using
cld31 to detect English-only text and select image-text pairs with a CLIP-L/14 similarity score above
0.3. This filtering scheme is the same as LAION-2B (Schuhmann et al., 2022), and is supported
through the metadata provided with the dataset. From our filtered subset, we recaption over 6.2M
samples.

CC12M (Changpinyo et al., 2021) comprises 12.4M web-crawled images and alt-text pairs. The
dataset is curated using both image and text-based filters. From this dataset, we recaption over 9.1M
samples.

RedCaps (Desai et al., 2021) is curated from Reddit. It consists of 12M image-text pairs from
350 different subreddits, which are filtered to select general photographs and minimize the number
of people (such as celebrity images). The images are fairly high quality, while captions are non-
descriptive. From this dataset, we sample and recaption nearly 1.2M samples.

Our goal in choosing data sources is to achieve a wide range of image properties and quality/aesthetic
rankings. The CommonPool data is less strictly curated than other sources, contributing lower quality
images, (which are important for VLM training) and high diversity. Also, it is collected more recently
and contributes more current information about celebrities and locations. The CC12M dataset features
higher image quality and is subject to stricter curation. The RedCaps images are the most strictly
curated by humans and are of very high quality and artistic value on average.

1https://github.com/google/cld3
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Alt-text: “Edit 
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Conservation"

Caption: This image 
displays a painting of a 
lion's face. The 
background and mane 
of the lion are formed 
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alt-text in prompt

[…] Finally, given the image, 
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Generate captions 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caption, as a reference to 
generate your result. Keep […]

Additional Metadata 
&  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Data Sources

Figure 2: Illustration of our pipeline for generating detailed, and diverse synthetic captions. We sample image
and alt-text pairs from various sources while filtering for CSAM content. We adopt our strategy to generate
prompts that are then used to produce captions with Google Gemini 1.0 Pro Vision Model (Team et al., 2023).
Finally, we redact different forms of PII and provide additional metadata such as aesthetic scores.

2.2 TEXT CAPTIONING

We aim to generate detailed image descriptions containing types, attributes, and counts of objects in
an image, in addition to spatial relations between objects, the presence of text, various broad image
categorizations, etc.

Prompting Strategy. We use five unique prompts to diversify the generated captions. Each asks for
descriptions with various attributes. These prompts are provided in A.1. We showcase one of the
prompts used below.

Describe every component of this image, as it were described by an artist in at
most two paragraphs. Each object, with its count, positions, and attributes
should be described. Describe the text, and the font in detail with its
contents in quotation marks. For example if the image has text Happy Birthday,
write it down as "Happy Birthday". Include the style of the image for example
photograph, 3d-render, shopping website etc. Capture the aesthetics of the
image, as if described by an artist. Start with the words ‘This image
displays:’

In addition to selecting one of the five prompts, we randomly also add a reference to the original
alt-text pair within the prompt. Prior work (Yu et al., 2024) has found this strategy helps improve
descriptive accuracy when alt-texts contain useful information, particularly proper nouns (e.g. “Taj
Mahal” instead of “White Marble Mausoleum”).

Negative Descriptions. Despite their impressive capabilities, both text-to-image diffusion models
and VLMs exhibit weaknesses in understanding negative instructions. For example, telling a diffusion
model to create an image with “no elephant” is likely to create an image with an elephant, while asking
a VLM about an elephant when there is none is likely to produce a hallucination. Such poor behaviors
probably arise in part because online image captions seldom deliberately reference absent objects.

To foster a better language understanding of negative references, we also prompt Gemini to describe
absent objects for a subset of images. We manually verify that prompting helps generate meaningful
negative captions, as depicted in Figure 1. Depending on the application, these negatives can easily
be filtered out based on the metadata or the final sentences in the generated caption.
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Text Recognition. Reading or generating text in images is essential for VLMs and diffusion models.
To support this, PixelProse features a substantial caption component that identifies text within
images. To ensure text recognition accuracy, we manually spot-check images and their corresponding
captions. First, we classify images using our watermark model (Section 3.3) and identify images
without a watermark but with the text present. Then, we apply an OCR spotting model (Baek et al.,
2019) to these images. We discard images with text regions smaller than 15 pixels in width or height.

Table 1: Spot-check results (image
ratio percentage) for text recognition
in 100 image captions.

Correct Incorrect Not Captured

76% 4% 20%

Finally, we did a manual assessment to confirm text recognition
accuracy in our captions. We attempted to automate this study
using OCR classification models for text recognition and caption
overlap checks, but found that inaccuracies due to fragmented
text regions and OCR errors made this infeasible. The results of
our manual study are presented in Table 1. For roughly 76% of
the images, the text within the captions is correctly recognized.
However, text recognition in captions fails in challenging cases, such as highly arbitrary or rotated
shapes and highly artistic fonts. We discuss some of these examples in the Appendix A.2.

2.3 ETHICAL CONSIDERATIONS

A growing body of work discusses potential ethical concerns regarding data scraped from the internet
(Birhane et al., 2024; Birhane & Prabhu, 2021; Gebru et al., 2021). Several large-scale datasets used
for training machine learning systems have come under scrutiny, prompting a reevaluation and in
some cases withdrawal of these datasets (Birhane & Prabhu, 2021; Yang et al., 2022; Asano et al.,
2021; Thiel, 2023). These datasets have been misused for various applications. For example, text-
to-image generative models trained on large-scale datasets can generate NSFW content resembling
specific individuals. Birhane et al. (Birhane et al., 2024) found that LAION-2B (Schuhmann et al.,
2021) contains hate content, highlighting problems of uncurated large-scale datasets.

2.3.1 NSFW & CSAM FILTERING

Recent work has shown that text-to-image models are trained on and can even produce Child Sexual
Abuse Material (CSAM) content (Thiel et al., 2023; Thiel, 2023). In a recent study, LAION-5B
(Schuhmann et al., 2022) was found to contain CSAM and subsequently taken down 2 (Thiel, 2023).
Addressing CSAM in future datasets requires robust detection mechanisms and better data collection
practices 3. We discuss our approach to removing CSAM, and other NSFW content below.

First, the image sources for our dataset already employ different mechanisms to remove NSFW
content. The CC12M (Changpinyo et al., 2021) dataset was filtered using commercial Google APIs
for detecting pornographic and profane content in both images and alt-text descriptions. RedCaps
(Desai et al., 2021) removed any subreddits or posts marked as NSFW (either by authors or subreddit
moderators). They further used an open-source NSFW classification model 4 to filter the remaining
content. CommonPool (Gadre et al., 2024) uses a modified version of LAION-5B (Schuhmann et al.,
2022) CLIP-based NSFW classification model. The classifier was further validated against Google
Vision API’s SafeSearch explicit content detector.

To further ensure the safety and integrity of our data, we check our dataset against several commercial
APIs. First, we use the PhotoDNA API by Microsoft 5, which uses perceptual hashing to match
against a database of known CSAM content. PhotoDNA is regarded as the industry standard and
can detect such content even if the images are slightly altered (Farid, 2021). We specifically process
the images we sampled from the CommonPool dataset against the PhotoDNA API, as our other
data sources are already processed to filter CSAM using different industrial APIs (Iwatt et al.; goo).
Finally, all our data is processed through Google Gemini API (Team et al., 2023) which provides
additional safeguards. The API blocks prompts (including images) and responses against certain core
harms such as child safety 6. We found 92 matches against the PhotoDNA database, all of which were

2https://laion.ai/notes/laion-maintenance/
3https://info.thorn.org/hubfs/thorn-safety-by-design-for-generative-AI.

pdf
4https://github.com/GantMan/nsfw_model
5https://www.microsoft.com/en-us/PhotoDNA
6https://ai.google.dev/gemini-api/docs/safety-settings
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removed from PixelProse. One should not conclude that our original data sources contain CSAM, as
these examples were not flagged by the Google Gemini API and were likely to be false positives.

2.3.2 PERSONALLY IDENTIFIABLE INFORMATION (PII)

Table 2: PII comparison between the original
and PixelProse captions. The values represent
the percentage of captions containing names,
phone numbers, E-mail IDs, and SSNs.

Names Phone Numbers E-mail IDs SSNs

Original Captions 10.51% 0.05% 0.32% 0.00%
PixelProse 7.93% 0.12% 1.23% 0.00%

Recent works have highlighted the use of PII in large
datasets (Koh et al., 2024; Lukas et al., 2023). To
ensure privacy, PII redaction steps are integrated into
our data processing pipeline. We remove images, and
captions from PixelProse that contain phone numbers.
We found no Social Security Numbers (SSNs) in the
captions. Phone numbers and SSNs are detected and
redacted using regular expressions that search for vari-
ous standard PII number formats (e.g., (123)-456-7890,
123-456-7890, and 123.456.7890). We additionally run the anonymization and scrubadub Python
packages over image captions as an additional filter, to ensure that PII is removed.

We find that our generated captions contain more phone numbers and e-mail IDs than the original
captions. This indicates that our dataset contains rich labels of text content, but also highlights the
need for robust PII scrubbing mechanisms to protect sensitive information.

Table 3: Toxicity level comparison between the original and PixelProse captions using Detoxify (Hanu &
Unitary team, 2020) at a threshold of 0.2. The values represent the percentage of captions exhibiting each type
of toxicity. PixelProse captions show significantly lower toxicity scores across all attributes, indicating improved
safety and content quality.

Threshold Toxicity Severe Toxicity Obscene Identity Attack Insult Threat Sexual Explicit Overall Toxicity

Original Captions 0.2 0.74% 0.00% 0.08% 0.07% 0.26% 0.04% 0.04% 0.75%
PixelProse 0.2 0.13% 0.00% 0.03% 0.00% 0.06% 0.00% 0.01% 0.13%

2.3.3 TOXICITY

Mitigating toxicity in datasets is vital for ethical AI deployment. Previous research (Deshpande
et al., 2023; Zhuo et al., 2023; Wen et al., 2023; Gehman et al., 2020) highlights that language
models are prone to various forms of toxicity, such as hate speech, identity hate, explicit content,
insults, and harmful stereotypes. To address these concerns, we conduct a toxicity analysis of our
generated captions using Detoxify (Hanu & Unitary team, 2020), which classifies text across a wide
range of toxic attributes, from overtly offensive language to subtle passive-aggressive remarks. We
subsequently flag 0.13% of captions using a threshold of 0.2 across all attributes.

Our analysis in Table 3 shows that the PixelProse captions are safer compared to the original captions.
Most of our captions fall within the lowest toxicity range (0-0.2) across various attributes. Specifically,
the percentages of captions exhibiting severe toxicity, identity attacks, and threats are exceptionally
low, with PixelProse achieving < 0.01% for all three. For overall toxicity, PixelProse captions exhibit
a markedly lower percentage of 0.13% compared to 0.75% for the original captions. For this reason,
we believe PixelProse is well suited for training generative models with low risk of harmful outputs.

3 A CLOSER LOOK AT THE DATASET

3.1 LINGUISTIC DIVERSITY

In Figure 3, we show the distribution of caption lengths for our generated captions compared to the
original caption. The generated captions are generally more descriptive and contain more words. Our
generated captions average 506 characters per caption, compared to 101 characters for the original
captions, and are longer for over 98% of the data. Figure 4 shows the histogram of the number of
tokens based on LLaMA-3 (lla, 2024) tokenizer. PixelProse comprises 1,710,499,128 (1.7B) text
tokens.

In Table 4, we show the noun diversity across several open-source datasets recaptioned using different
captioning models (Bird et al., 2009). Our dataset offers a larger noun vocabulary across images
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compared to other datasets. Our dataset is two orders of magnitude larger than ALLaVA (Chen et al.,
2024a), and an order of magnitude larger than ShareGPT4V (Chen et al., 2023). SAM-LLaVA (Chen
et al., 2024c) of similar scale to our dataset, but is captioned using the LLaVA-1.0 7B model (Liu
et al., 2023b) that suffers from significant hallucinations (Chen et al., 2024b; 2023).

Table 4: We analyzed the noun vocabulary in multiple datasets recaptioned using different models, defining valid
nouns as those that appear more than 10 times. We found that PixelProse is larger and has a more diverse noun
vocabulary than other datasets. Our dataset is also complementary to other datasets in that it covers different
sources of images, and was captioned by a different commercial model.

Size Image Sources Captioning Model Valid Nouns Distinct Nouns Total Nouns

ALLaVA Chen et al. (2024a) 0.68M VisionFlan, LAION GPT-4V(ision) 18K 121K 23.32M
ShareGPT4V Chen et al. (2023) 1.34M CC3M, SBU, LAION, etc. Multiple 13K 66K 49.26M

SAM-LLaVA Chen et al. (2024c) 11.5M SAM LLaVA-1.0 23K 124K 327.90M

Ours 16.4M CC12M, RedCaps, etc. Gemini 1.0 Pro 49K 490K 357.61M
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Figure 3: Histogram of words for generated captions
v/s original captions. Generated captions are longer
with an average of 106 words, while original captions
only have 19 words on average.
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Figure 4: Histogram of tokens for generated captions,
which are tokenized by the tokenizer of LLaMA-3 (lla,
2024). The bars at 150 represent the number of images
with (100, 150] tokens in their captions.

3.2 REPURPOSING CAPTIONS INTO VQA PAIRS

Our captions contain dense general-purpose information and are intended to be ideal inputs for LLM
refactoring. To probe how our captions can be refactored into specific formats, we use LLaMA-3 8B
Instruct (lla, 2024) to refactor our captions into free-form VQA pairs for 100 images. We manually
verified that over 70% of the VQA pairs generated using our captions were valid pairs. Figure 5,
shows some of these VQA Pairs. Other works have shown refactoring captions into VQA pairs or
other instructions can be further improved using better language models and prompting strategies
(Liu et al., 2023b). We discuss the details of refactoring captions into VQA pairs in the Appendix
A.3.

3.3 STATISTICS OF PIXELPROSE CONTENT

We quantitatively describe the PixelProse dataset by reporting the size, watermark prevalence,
aesthetic scores, and style attributes of images.

Image Resolution. In PixelProse, over 15M images have a resolution below 2000 pixels, while the
rest are high-resolution images exceeding 2000 pixels, as shown in Figure 6. For each data source,
the average sizes are as follows: (299.6, 331.9) ± (137.2, 149.5) for CommonPool, (719.7, 820.0) ±
(269.0, 285.1) for CC12M, and (1234.1, 1234.4) ± (277.2, 325.2) for RedCaps.

Watermark Detection. To detect and label the presence of explicitly visible watermarks in images,
we follow the work of (Schuhmann et al., 2022).7 However, we found that this method leads to
frequent false-positives in the case that images are without watermark but with innocuous text. This
is problematic, as an explicit goal of our efforts is to include and properly label images containing

7https://github.com/LAION-AI/LAION-5B-WatermarkDetection
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Question: What are the colors of the towels in each stack?

Answer: The towels are pink, blue, and white, respectively.


Original Caption: Perfect 15 Incredible Small Bathroom Decorating ldeas


Our Caption: This image displays three stacks of folded hand towels. […..] The stacks are arranged 
in a row, with the pink towels on the left, the blue towels in the middle, and the white towels on the 
right. There is a white background and the towels are stacked vertically. The image is a photograph. 

Question: How many beer taps are there on top of the fridge?

Answer: There are two beer taps on top of the fridge.


Original Caption: Hands on Review: KOMOS Stainless Steel Kegerators! - Designed for Home brewers


Our Caption: This image displays a stainless steel mini fridge with two beer taps on top of it. There is a 
black drip tray under the taps. The fridge has a black handle and a digital display on the front. There is a 
brick wall in the background. The image is well-lit and the fridge is the main focus.

Figure 5: Our captions are much more detailed than the original alt-text pairs, and can be refactored into VQA
Pairs. We use our detailed captions to prompt Llama3-8B Instruct, a text-only model to generate question/answer
pairs. The images are shown only for reference.
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Figure 6: Histogram of image size. Each bucket is within the range of (x − 100, x] pixels, e.g., bars at 700
represent the image count with (600, 700] pixels. The bin at 4000+ considers (2000, 4000+].

text. To mitigate this, we manually collected an additional group of hard examples to fine-tune the
model. These images fell into three categories: with watermark, without watermark, and without
watermark but with text, as demonstrated in Figure 7.

w/ watermark w/o watermark w/o watermark but
w/ text (score: 0.96)score: 0.93 score: 0.96

Figure 7: Categories of watermark classification models.

The figure also demonstrates the corresponding
probability score for each category. To better
understand the distribution of images w/ or w/o
watermark in the whole dataset, we plot the his-
togram for the three categories within different
score ranges in Figure 8. The lowest probability
scores for all three categories are around 0.5.
We carefully review images with low probabil-
ity scores around 0.5 in the two watermark-free
categories, noting that they are still safe to keep.
For the watermark category, we recommend a filtering threshold above 0.85, indicating that less than
6% of the dataset (around 1M images) are truly watermarked in PixelProse.

Aesthetic Estimation. Aesthetically pleasing images tend to have clearer and more distinct visual
features, which may help in learning better representations for VLMs. This is also crucial for diffusion
models to generate high-quality, visually appealing images. Most importantly, aesthetic images often
have more coherent and contextually relevant descriptions, aiding in better alignment between images
and captions.
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Figure 8: Histogram of watermark scores, with each
bucket in the range (x−0.1, x], e.g., bars at 0.7 indi-
cate the image count with scores between (0.6, 0.7].
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Figure 9: Histogram of aesthetic scores, with each bucket
in the range of (x − 0.5, x]. For example, bars at 7.0
indicate the image count with scores between (6.5, 7.0].

To investigate aesthetic properties in PixelProse, we fine-tune the aesthetic filter LAION-Aesthetics
V2 (Schuhmann et al., 2022) with natural and generated (synthetic) images selected from recent
high-quality datasets (Xu et al., 2023; Yi et al., 2023; Huang et al., 2008; Karras et al., 2018; Kirstain
et al., 2023). We semi-manually annotate our filtered training data, giving higher scores to more
artistic, realistic, high-definition, and text-based data sources. To supervise training, we adopt the
mean value of the original aesthetic predictor and our annotations as the label.

Figure 9 shows the distribution of images based on their aesthetic scores. Images with scores below
5.0 generally are blurry or less artistic (see Figure 10) and make up a small portion of PixelProse
compared to those with relatively high scores. These images are still valuable for augmenting training
due to the diversity they bring to the overall dataset. Most images have relatively high aesthetic scores
above 5.0, indicating PixelProse contains a large proportion of high-quality images (more than 11M).

aesthetic score: 6.8 aesthetic score: 5.5 aesthetic score: 4.8

Figure 10: Images with corresponding aesthetic scores.

4 EXPERIMENTS

To understand how PixelProse dataset, can be useful for vision language applications, we perform
experiments by pretraining and finetuning vision-language models using our dataset. We show
improved performance across different benchmarks.

For our finetuning experiments, we use a pretrained PaliGemma model8 (Beyer et al., 2024). We
compare against 100K GPT4V captions from ShareGPT4V dataset, and original raw captions for
PixelProse Chen et al. (2023). We experiment with 2M randomly sampled captions, from our dataset.
To control for the dataset size, we also compare against using 100K samples from the CommonPool
subset of our data. For evaluation, we focus on several popular benchmarks, such as VQVA2 (Goyal
et al., 2017) for visual question answering, OCRBench (Liu et al., 2024c) for optical character
recognition, NoCaps (Agrawal et al., 2019) for novel object captioning, and DetailCaps Dong et al.
(2024) for detailed object captioning.

The results are shown in Table 5. Note that ShareGPT4V contains a total of 100K captions from
a GPT4V, while our dataset contains 16M captions. PaliGemma fine-tuned on PixelProse 2M
synthetic captions outperforms other datasets on nearly all evaluations. Specifically, on visual
question answering, and OCR models trained on our PixelProse synthetic captions perform better
than ShareGPT4V and PixelProse using original captions.

8https://huggingface.co/google/paligemma-3b-pt-224
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VQVA2 / Lite OCRBench NoCaps NoCaps NoCaps DetailCaps / All DetailCaps / Gemini
Finetune Dataset Accuracy Score BLEU_1 ROUGE METEOR CAPTURE CAPTURE

None 45.42 289 0.08 0.24 0.105 - -
GPT4V 100K 58.38 419 0.313 0.258 0.205 0.593 0.4355

PixelProse Original 2M 56.2 339 0.25 0.231 0.097 - -
PixelProse Ours 100K 57.3 342 0.345 0.284 0.233 0.566 0.544
PixelProse Ours 2M 59.88 455 0.344 0.291 0.238 0.5611 0.5481

Table 5: We finetune PaliGemma on different vision-language datasets, and evaluate their performance across
multiple benchmarks for visual-question answering, optical character recognition, and image captioning.

Pretrain Dataset FineTune Dataset Accuracy
ShareGPT4V 1.2M VQA-V2 Train 55.37

PixelProse Original 3M VQA-V2 Train 60.8
PixelProse Ours 3M VQA-V2 Train 68.44

Table 6: Results for pre-training with different vision language datasets, then finetuning and evaluation for
visual-question answering. The model performs best when pretrained on PixelProse synthetic captions.

For DetailCaps, we observe that the model finetuned on ShareGPT4V performs slightly better.
However, DetailCaps contains ground-truth captions from three different models (GPT4o, GPT4V
and Gemini-Pro 1.5). As it contains two GPT models as ground-truth, it may skew evaluations in
favor of GPT4V data (i.e ShareGPT4V). Hence, we also report results using only Gemini Pro 1.5 as
the ground-truth in the last column. Here, we again observe that the models trained on PixelProse
captions perform better than ShareGPT4V by a larger margin.

When training using only 100K samples from PixelProse, we again outperform GPT4V on NoCaps,
and Details (Gemini). On OCRBench, our performance is worse. However, we note that ShareGPT4V
carefully curated data specifically for text due to its smaller size. Our dataset is much larger, and
leveraging 2M samples we are able to outperform GPT4V using 100K samples.

We also conduct experiment with pre-training vision language models. We use all the ShareGPT-4V
1.2M images (100K GPT4V images, and 1.1M ShareCaptioner images), and 3M images from CC12M
subset of PixelProse dataset. We use CLIP-L/14 image encoder Radford et al. (2021), and Gemma
2B language model Gemma Team (2024). We first pre-train a small MLP as our multi-modal adapter
using PixelProse original and synthetic captions. For the first stage, we only train the adapter and do
not fine-tune the vision / language models. Then, we fine-tune on VQAV2 training split and evaluate
on the the full VQAV2 validation split. Our results are shown in Table 6, showing for pretraining, our
synthetic captions again outperform ShareGPT4V and PixelProse original captions.

5 RELATED WORK

Many large-scale image caption datasets such as COYO-700M (Byeon et al., 2022), DataComp (Gadre
et al., 2024), LAION (Schuhmann et al., 2021), YFCC100M (Thomee et al., 2016), CC12M (Chang-
pinyo et al., 2021), SBU (Ordonez et al., 2011), RedCaps (Desai et al., 2021) are created from various
internet sources by mapping an image to its corresponding alt-text or the text surrounding the image.
Despite their large sizes, the quality of captions for these datasets is quite low.

Higher quality image caption datasets such as MS-COCO (Lin et al., 2014), VizWiz (Gurari et al.,
2020), VisualGenome (Krishna et al., 2017), nocaps (Agrawal et al., 2019), Flickr30K (Young
et al., 2014), TextCaps (Sidorov et al., 2020) and many others (Pont-Tuset et al., 2020; Kazemzadeh
et al., 2014; Mao et al., 2016) exist, however, they are usually smaller (sub-million) in size. The
LLaVA (Liu et al., 2024a; 2023a;b; 2024b) family of models and a series of smaller VLMs (Li
et al., 2024; Chu et al., 2024) have shown that it is possible to train a high-performance model with
small-scale synthetic data (Chen et al., 2023) from GPT-4(V). PixArt-α (Chen et al., 2024c) trained a
higher-quality diffusion model with 25M images, and VLM caption pairs with approximately 1.25%
training data volume compared to Stable Diffusion v1.5 (Rombach et al., 2022). Stable Diffusion v3
(Esser et al., 2024) also uses 50% VLM synthetic captions for training diffusion models. Many other
recent works (Zhou et al., 2023; Chen et al., 2024c; Kondratyuk et al., 2024; Chen et al., 2024b; Liu
et al., 2024a) have also shown that a few million higher quality examples can train better models than
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many million low-quality data. Hence, high-quality datasets are urgently needed to train the next
generation of multi-modal models.

A few attempts are made towards this goal, completely human-annotated, with humans-in-the-loop,
or some completely automated. DOCCI (Onoe et al., 2024) is a small high-detailed image caption
dataset that is completely human-annotated. Despite having only 15K samples, all the captions
contain diverse details like key objects and their attributes, spatial relationships, text rendering, and
so on. ImageInWords (Garg et al., 2024) is another small-scale detailed caption dataset that takes a
slightly different approach by using object detection and other annotation models with humans in the
loop. Densely Caption Images (DCI) (Urbanek et al., 2023) is another human-in-the-loop annotation
dataset which uses labels from Segment Anything (Kirillov et al., 2023). Both these datasets contain
fewer than 10K samples.

LVIS-Instruct4V (Wang et al., 2023) dataset contains detailed captions of 110K images from the
LVIS (Gupta et al., 2019) dataset annotated by GPT-4V (Achiam et al., 2023). ALLaVA (Chen
et al., 2024a) introduces 715K captions by GPT-4V on images sourced from LAION (Schuhmann
et al., 2021) and Vision-Flan (Xu et al., 2024). ShareGPT4V dataset contains 100K detailed cap-
tions on images sourced from LAION (Schuhmann et al., 2022), SBU (Ordonez et al., 2011), and
CC12M (Changpinyo et al., 2021) created by GPT-4V. They further train a model and generate
captions for over a million images. LLaVA (Liu et al., 2023a) introduces a dataset of 23K detailed
captions on top of COCO images using GPT-4. Lastly, Pixart-α (Chen et al., 2024c) introduces
large-scale synthetic captions on top of the SAM dataset (Kirillov et al., 2023) using LLaVA-1.0
7B (Liu et al., 2023a) model. While this particular dataset contains 11M examples, it contains many
captions with hallucinations and the images in the dataset are of limited diversity. PixelProse has
over 16M samples, which to the best of our knowledge is the largest detailed high-quality publicly
available image-caption dataset.

6 LIMITATIONS AND CONCLUSION

Our images are collected from the internet, which contains unsafe and toxic content. Though we use
extensive automated measures to remove CSAM, NSFW content, and PII, our automated systems are
imperfect. VLMs tend to suffer from hallucinations, hence the captions may not always accurately
describe the image. While we use a state-of-the-art large commercial model to generate our captions,
it still suffers from hallucinations. Despite this, our captions are of much higher quality and fidelity
than captions in other similar-sized public datasets. Most importantly, unlike the original alt-text
captions, PixelProse captions consistently reflect the image content.

In addition to its obvious uses in training open-source models, we hope that the dense format of Pixel-
Prose facilitates research into methods for refactoring dense captions into instructions and VQA pairs.
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APPENDIX

A.1 PROMPTS

We utilize five different prompts for our dataset, which are provided below. Some of these prompts
were taken and adapted from other sources such as LAION-Pop 9.

Describe the image in detail. Please specify any objects within the image,
backgrounds, scenery, interactions, and gestures or poses. If they are
multiple of any object, please specify how many and where they are. If any text
is present in the image, mention where it is, and the font.Describe the text in
detail with quotation marks. For example, if the image has text, Merry
Christmas, write it down as “Merry Christmas”. Describe the style of the image.
If there are people or characters in the image, what emotions are they
conveying? Identify the style of the image, and describe it as well. Please
keep your descriptions factual and terse but complete. The description should
be purely factual, with no subjective speculation. Make sure to include the
style of the image, for example cartoon, photograph, 3d render etc. Start with
the words ‘This image displays:’

Describe every component of this image, as it were described by an artist in
atmost two paragraphs. Each object, with its count, positions, and attributes
should be described. Describe the text, and the font in detail with its
contents in quotation marks. For example if the image has text Happy Birthday,
write it down as "Happy Birthday". Include the style of the image for example
photograph, 3d-render, shopping website etc. Capture the aesthetics of the
image, as if described by an artist. Start with the words ‘This image
displays:’

Describe the image, the foreground and the background. All objects, along with
its count and positions must be described. For any text present in the image,
describe the text using quotation marks. Be factual in your description,
capturing the content, and style of the image. Describe the image, in a short
but desciptive manner. Start with the words ‘This image displays:’

Write a detailed caption describing the image. Include all components, and
objects with their positions. If any text is present in the image, and describe
the text contents in quotation marks. For example if the image has text Happy
Birthday, write it down as "Happy Birthday". Be detailed in your description
of the image, and write as if it were being described by a boring person. Start
with the words ‘This image displays:’

Don’t forget these rules: 1. Be Direct and Concise: Provide straightforward
descriptions without adding interpretative or speculative elements. 2. Use
Segmented Details: Break down details about different elements of an image
into distinct sentences, focusing on one aspect at a time. 3. Maintain a
Descriptive Focus: Prioritize purely visible elements of the image, avoiding
conclusions or inferences. 4. Follow a Logical Structure: Begin with the
central figure or subject and expand outward, detailing its appearance before
addressing the surrounding setting. 5. Avoid Juxtaposition: Do not use
comparison or contrast language; keep the description purely factual. 6.
Incorporate Specificity: Mention age, gender, race, and specific brands or
notable features when present, and clearly identify the medium if it’s
discernible. When writing descriptions, prioritize clarity and direct
observation over embellishment or interpretation. Write a detailed
description of this image, do not forget about the texts on it if they exist.
Also, do not forget to mention the type/style of the image. No bullet points.
Start with the words, "This image displays:"

9https://laion.ai/blog/laion-pop/
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Our Caption: This image displays a young woman wearing a gray t-shirt with the text “The 
snuggle is real” and a picture of a sleeping cat on it. The woman is lying in bed with the cat, 
who is curled up next to her. The cat is white and orange, and has one paw on the woman's 
arm. The woman is smiling down at the cat. The background is a white wall with a window. The 
text on the shirt is in a handwritten font. The image is a photograph. The emotion conveyed is 
happiness.

Our Caption: This image displays a wall with two framed black-and-white photographs of watches on 
it. There is also a small red, white, and blue flag with a single star in the upper left corner of the flag. 
The flag has gold fringe and is attached to the wall by a small nail. There is a black hat on top of the 
framed photos. There is text at the top of the photo that reads: “GENESTONE AND STEPHEN 
PULVIRENT”.

Figure A.1: Images with their corresponding captions. The correctly recognized text is highlighted in green.

Our Caption: This image displays a night scene of a retro bowling galley with a liquor sign. A man with 
dark hair and a black jacket walks toward the entrance. The bowling alley has red neon signage and a 
brick exterior. lts windows are covered with snow. A fire hydrant is located on the sidewalk in front of the 
entrance. The image iclear and well-lit.

Our Caption: This image displays a book titled “The Prevent and Reverse Heart Disease 
Cookbook", which is signd by two people. The book is open and there is a handwritten note that is 
partially visible. The note says “To Everette, Anne, You know the power. Thrive. Ann Crile 
Esselstyn, M.D.” The background of the image is black, and the book is white with blue text.

Figure A.2: Images with imperfect text recognition in the captions. The correctly recognized text is highlighted
in green and incorrect text is highlighted in red.

A.2 TEXT RECOGNITION

We observe that captions fail to capture text in images when text data is in a complex format, or
the model fails to adhere to the prompt. Failure cases for text recognition are shown in Figure A.2.
Despite some failure cases, text recognition is fairly successful. We show several cases in Figure A.1.

A.3 VQA CONSTRUCTION

To construct our VQA pairs using caption data, we use LLaMa-3-8B Instruct a text-only model lla
(2024). We use the following user prompt to construct our VQA pairs.
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You are an AI visual assistant, and you are seeing a single image. What you see
are provided with is context regarding the image, describing the same image
you are looking at. Answer all questions as you are seeing the image. Design a
conversation between you and a person asking about this photo. The answers
should be in a tone that a visual AI assistant is seeing the image and
answering the question. Ask diverse questions and give corresponding answers.
Include questions asking about the visual content of the image, including the
object types, counting the objects, object actions, object locations,
relative positions between objects, etc. Only include questions that have
definite answers: (1) one can see the content in the image that the question
asks about and can answer confidently; (2) one can determine confidently from
the image that it is not in the image. Do not ask any question that cannot be
answered confidently. Here is the image description:

Since vision-language models tend to hallucinate, several VQA pairs are invalid however based on
our manual spot check, we find that over 70% of our constructed VQA pairs are valid.

A.4 IMAGE STYLE ATTRIBUTES

Style attributes play a key role in organizing, retrieving, analyzing, and personalizing image content.
They enhance the usability of the dataset, making them more valuable for various applications. For
example, categorizing images based on style simplifies the retrieval of specific types of images from
our large dataset. If a user is searching for documentary chart images, having this as a category
enables quick estimation of the number of available images and ensures accurate retrieval.

As shown in the example prompt in Section 2.2, Gemini is tasked with providing the style of the
image in its response. These responses are then analyzed and categorized to a predefined set of classes
based on the occurrence of specific keywords, as listed in Table A.1. Table A.2 offers an insight into
the relative frequencies of image style categories across PixelProse, showing that photographs are the
most prevalent image style within our dataset, followed by painting, drawings, comics and digital art.

Table A.1: Predefined Vocabulary for Image Style Categorization. The category "other" includes medical images,
screenshots, and captions that do not fit into the existing categories.

Image Type Category Sample Keywords

Photographs photograph
3D Rendering render, 3D, 3d, 3-dimensional
Digital Art digital, CGI, CG, vector, raster
Painting and Drawings paint, draw, sketch, comic, anime
Charts & Diagrams chart, plot, diagram, table, map

Table A.2: Distribution of image type categories across PixelProse. Gemini responses are analyzed, and each is
assigned to a category based on the occurrence of a predefined set of words in the style part of the caption.

Image Type Photographs Painting and Drawings 3D Rendering Digital Art Chart or Diagrams Other

Relative Frequency 85.9 4.3 3.5 1.0 0.5 4.8

A.5 BROADER IMPACTS

Internet data can reflect societal biases, which already exist in our data sources, i.e., CC12M,
CommmonPool, and RedCaps. Thus, our dataset may inherit these biases. We have taken steps to
mitigate these biases by filtering out captions that contain toxic content, as described in Section 2.
Also, it is challenging to ensure the accuracy and reliability of the captions produced by a state-of-the-
art commercial model, which also may contain biases and generate inexistent or incorrect information.
These issues warrant further research and consideration when training upon our dataset to evaluate
models.
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