
Published as a conference paper at ICLR 2025

TRIPLES AS THE KEY: STRUCTURING MAKES DECOM-
POSITION AND VERIFICATION EASIER IN LLM-BASED
TABLEQA

Zhen Yang1,2,3, Ziwei Du1,2,3, Minghan Zhang1,2,3, Wei Du1,2,3,
Jie Chen1,2,3, Zhen Duan1,2,3, Shu Zhao1,2,3∗
1School of Computer Science and Technology, Anhui University
2Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University
3Anhui Provincial Key Laboratory of Security Artificial Intelligence, Anhui University
*zhaoshuzs2002@hotmail.com

ABSTRACT

As the mainstream approach, LLMs have been widely applied and researched in
TableQA tasks. Currently, the core of LLM-based TableQA methods typically
include three phases: question decomposition, sub-question TableQA reasoning,
and answer verification. However, several challenges remain in this process: i)
Sub-questions generated by these methods often exhibit significant gaps with the
original question due to critical information overlooked during the LLM’s direct
decomposition; ii) Verification of answers is typically challenging because LLMs
tend to generate optimal responses during self-correct. To address these chal-
lenges, we propose a Triple-Inspired Decomposition and vErification (TIDE)
strategy, which leverages the structural properties of triples to assist in decompo-
sition and verification in TableQA. The inherent structure of triples (head entity,
relation, tail entity) requires the LLM to extract as many entities and relations
from the question as possible. Unlike direct decomposition methods that may
overlook key information, our transformed sub-questions using triples encompass
more critical details. Additionally, this explicit structure facilitates verification.
By comparing the triples derived from the answers with those from the question
decomposition, we can achieve easier and more straightforward verification than
when relying on the LLM’s self-correct tendencies. By employing triples along-
side established LLM modes, Direct Prompting and Agent modes, TIDE achieves
state-of-the-art performance across multiple TableQA datasets, demonstrating the
effectiveness of our method. We release our code here.

1 INTRODUCTION

Tabular data is ubiquitous in daily life and plays a crucial role in fields such as finance and education.
Table Question Answering (TableQA) assists in judgment, analysis, and decision-making based on
this data (Wang et al., 2023; Wu et al., 2024; Cao et al., 2023; Jin et al., 2023; Lee et al., 2023).
TableQA involves comprehending and analyzing table content to infer answers to specific questions.
With the development of large language models (LLMs) (Zhao et al., 2023b; Yang et al., 2024; Xiao
et al., 2024; Lu et al., 2024; Brown et al., 2020), the use of LLMs for TableQA has become a main-
stream research direction (Zhang et al., 2024b; Ye et al., 2024; Zhao et al., 2023a). Most LLM-based
TableQA methods can be divided into three phases: question decomposition (Lewkowycz et al.,
2022; Liu et al., 2022; Fu et al., 2022; Pasupat & Liang, 2015), sub-question TableQA reasoning
and answer verification (Madaan et al., 2024; Ni et al., 2023).

∗Corresponding authors

1

https://github.com/Zhen-Yang094/TIDE-triples

Published as a conference paper at ICLR 2025

In recent years, under decomposition-reasoning-verification phases, LLM-based TableQA tasks
have mainly employed two modes for solving complex questions: Direct Prompting (DP), a textual
reasoning mode, and Agent, a symbolic reasoning mode. In the DP mode, the decomposition-
reasoning-verification process primarily utilizes a few examples to prompt LLMs. Specifically,
during the decomposition phase, the LLM is prompted to break down the question using manu-
ally crafted Chain-of-Thought (CoT) examples (Zhang et al., 2023b; Guan et al., 2024; Sarkar &
Lausen, 2023), SQL statements (Mouravieff et al., 2024), or even zero-shot requests to leverage its
capabilities directly (Zhang et al., 2023a; Gemmell & Dalton, 2023; Ye et al., 2023a; Kojima et al.,
2022). In the reasoning phase, the LLM is prompted to reason through the sub-questions, while the
verification phase is guided by manually constructed verification examples or by asking the LLM to
re-answer for confirmation. In the Agent mode, the decomposition-reasoning-verification process is
carried out automatically by the LLM (Zhang et al., 2024a; Li et al., 2024a; Gong et al., 2020; Li
et al., 2024b). Specifically, during the decomposition phase, the model first observes the current and
previous states to plan the next steps, designing the question incrementally. In the reasoning phase,
it employs symbolic code, such as Python or SQL, to take action on the sub-questions. Finally, in
the verification phase, the model performs self-correct, prompting the LLM to reassess its results
and make necessary corrections.

name took of!ice left of!ice party
William McCreery March 4, 1803 March 3, 1809 Republican

Alexander McKim March 4, 1809 March 3, 1815 Republican

William Pinkney March 4, 1815 April 18,1816 Republican

Peter Little Sep 2, 1816 March 3, 1823 Republican

Peter Little March 4, 1823 March 3, 1825 Jacksonian DR

Peter Little March 4, 1825 March 3, 1829 Adams

Benjamin Howard March 4, 1829 March 3, 1833 Jacksonian

Question:
How many people stayed at least

3 years in of!ice?

Table

Answer
0

Answer
4

Answer
5

who stayed in of!ice?
who stay in of!ice 3 years?

what's the total number ?

who stayed in of!ice?
who stay in of!ice 3 years?

what's the total number ?

at leastat least

√

×

×

($1, stayed in, of!ice),
($2, stay more than, 3 years),

(stayed at least 3 years, number, $3)

($1, stayed in, of!ice),
($2, stay more than, 3 years),

(stayed at least 3 years, number, $3)

[William McCreery, stay more than, 3 years],
[Alexander McKim, stay more than, 3 years],
[William Pinknery, stay less than, 3 years],

[Peter Little, stay more than, 3 years],
[Benjamin Howard, stay more than, 3 years]

[William McCreery, stay more than, 3 years],
[Alexander McKim, stay more than, 3 years],
[William Pinknery, stay less than, 3 years],

[Peter Little, stay more than, 3 years],
[Benjamin Howard, stay more than, 3 years]

None of people stay in of!ice 3 years.None of people stay in of!ice 3 years. Yes, none of people stay 3 years.

who stayed in of!ice?
who stay in of!ice at least 3 years?

what's the total number ?

who stayed in of!ice?
who stay in of!ice at least 3 years?

what's the total number ?

[William McCreery, stay more than, 3 years],
[Alexander McKim, stay more than, 3 years],

[Peter Little, stay more than, 3 years],
[Benjamin Howard, stay more than, 3 years]

[William McCreery, stay more than, 3 years],
[Alexander McKim, stay more than, 3 years],

[Peter Little, stay more than, 3 years],
[Benjamin Howard, stay more than, 3 years]

[William McCreery],
[Alexander McKim],

[Peter Little],
[Benjamin Howard]

[William McCreery],
[Alexander McKim],

[Peter Little],
[Benjamin Howard]

[William McCreery],
[Alexander McKim],
[William Pinknery],

[Peter Little],
[Benjamin Howard]

[William McCreery],
[Alexander McKim],
[William Pinknery],

[Peter Little],
[Benjamin Howard]

Question Decomposition Sub-question Reasoning Answer Veri!ication

×

×

(a)

(b)

TIDE

(c)

Figure 1: (a) Direct Decomposition Methods: Direct decomposition by large models can overlook
critical information, resulting in a semantic gap between sub-questions and the original question. (b)
Self-correct Methods:The LLM’s self-correct tends to generate responses that align with the prompt,
contradict the actual context, making it difficult to verification answers correctly due to this bias. (c)
Our TIDE: The structured nature of triples prompts the LLM to extract as many entities and relations
from the question as possible, thereby covering more critical information. Additionally, the triple
structure enables a clear verification process by comparing the triples from question decomposition
with those derived from the answer.

However, current LLM-based methods encounter several challenges in the decomposition-
reasoning-verification process. First, the limited understanding of complex queries by LLMs often
leads to fragmented sub-questions during direct decomposition, creating a significant semantic gap
with the original question due to overlooked critical information. As illustrated in Figure 1(a), both
Direct Prompting and Agent’s direct decomposition methods frequently miss essential details, exac-
erbating this gap. Second, during the verification phase, simply prompting the LLM to self-correct
or bypass verification hinders the accurate identification of errors in intermediate answers. Research
(Huang et al., 2024) indicates that this approach may bias the model away from generating optimal
responses to the initial prompt, resulting in a performance decline. As shown in Figure 1(b), direct
verification of answers by LLMs often fails to detect such errors. Therefore, a more explicit method
is needed to enable LLMs to generate as many sub-questions as necessary to comprehensively ad-
dress the initial query while mitigating the tendency for self-correct.

To address the aforementioned challenges, we propose a Triple-Inspired Decomposition and
vErification (TIDE) method that leverages the structured properties of triples for decomposition
and verification, as illustrated in Figure 1(c). First, LLMs directly decomposing sub-questions often
overlook critical information. In contrast, we use triples, with their fixed structure of (head entity,
relation, tail entity), compels LLMs to extract as many entities and relations from the question as
possible, thereby covering more key information. Second, LLMs’ self-correction tends to generate
responses related to the prompt, which can introduce biases in answer verification. By converting
answers into triples and comparing their structures with those of the decomposed question triples,

2

Published as a conference paper at ICLR 2025

we utilize the explicit nature of triples to determine the correctness of the answers by checking the
equivalence of entities and relations. Since our triples are applied during both the decomposition
and verification, and are compatible with both DP and Agent decomposition-reasoning-verification
modes, our method can be utilized independently or in a joint approach with either DP or Agent.

We evaluated our method on the WikiTableQuestions (Pasupat & Liang, 2015) and TabFact (Chen
et al., 2020) datasets. Our method can be applied independently to either DP or Agent methods, or
in a joint reasoning framework, to enhance accuracy. Integrating our TIDE into these modes led to
significant accuracy improvements, achieving the latest state-of-the-art (SOTA) results. The main
contributions of this study are summarized as follows:

• We leverage the structured characteristics of triples (head entity, relation, tail entity) to
prompt the LLM to extract as many entities and relations from the question as possible,
thereby covering more key information. Consequently, the sub-questions derived from
these triples help minimize the semantic gap with the original question.

• Utilizing the clear structure of triples allows for more easier and straightforward answer
verification. By converting the answer into triple format and comparing the entities and
relations with those from the question decomposition, we can directly validate the answer,
thereby avoiding the biases inherent in LLMs when directly verifying responses.

• The use of triples for decomposition and verification aligns well with both DP and Agent
modes, allowing our TIDE approach to be employed in either standalone or joint reasoning.
Through joint reasoning, TIDE achieves state-of-the-art results in TableQA, demonstrating
its effectiveness and accuracy.

2 RELATED WORK

2.1 TABLEQA

As a crucial task in table-related research, TableQA involves understanding table to infer answers
and has gained significant attention in the NLP (Cheng et al., 2024; Li et al., 2023; Chen et al.,
2024). With the development of LLMs, leveraging their knowledge and capabilities for TableQA
become the mainstream approach (Pal et al., 2023; Lee et al., 2024; Zhong et al., 2017; Xia et al.,
2023). LLM-based TableQA can be divided into three phases: question decomposition, sub-question
TableQA reasoning, and answer verification. First, LLMs decompose complex questions, then rea-
son for the sub-questions, and finally verify the intermediate answers. Under this decomposition-
reasoning-verification framework, LLM-based TableQA tasks primarily employ two modes: Direct
Prompting (DP) (Sui et al., 2023; Chen, 2023) and Agent modes (Li et al., 2024b; Lei et al., 2023).

2.2 DIRECT PROMPTING IN TABLEQA

In the DP mode, the decomposition-reasoning-verification process heavily relies on manually con-
structed Chain-of-Thought (CoT) prompts (Kong et al., 2024; Zhao et al., 2023d; Deng et al., 2024)
to guide LLMs in gradual decomposition, reasoning, and verification. CoT was originally utilized in
LLM-based text inference, incorporating prompts like think step by step to facilitate gradual reason-
ing toward the final answer. During the critical question decomposition phase, early DP (Zhao et al.,
2023c; Sui et al., 2023; Chemmengath et al., 2021) employed few-shot examples, SQL statements,
or zero-shot prompts to assist LLMs in breaking down complex questions. For instance, (Luo et al.,
2023) used manually constructed CoTs and retrieval-based reconstruction to simulate human-like
reasoning. BINDER (Cheng et al., 2023) guided models to reason through decomposed sub-queries
using SQL statements with embedded sub-queries. Similarly, DATER (Ye et al., 2023b) employed
SQL to parse, fill, and reasoning answers after extracting relevant rows and columns from large ta-
bles. (Liu et al., 2024a) added the zero-shot prompt think step by step for question decomposition
and inference. In answer verification phase, the DP mode frequently neglects the verification process
or asks the LLM to re-check answers directly. Studies have shown (Stechly et al., 2023; Valmeekam
et al., 2023) that it is challenging for LLMs to identify issues in answers they generated themselves.

Although these LLM-based TableQA methods utilize LLMs to generate intermediate sub-questions,
relying solely on a few examples for direct decomposition usually result in fragmented sub-questions

3

Published as a conference paper at ICLR 2025

that overlook critical information. This leads to a significant semantic gap between the decomposed
sub-questions and the original question. Additionally, due to LLM’s tendency, the constructed veri-
fication examples prompt the LLM to direct self-correct, leading to a bias toward generating contra-
dictory viewpoints, which hampers the accurate verification of answers in TableQA.

2.3 AGENT IN TABLEQA

With the continuous development of agents, their application in TableQA has been widely studied
(Li et al., 2024a; Gong et al., 2020). Agents automate the decomposition-reasoning-verification
process using LLMs. Typical LLM-based Agent approaches either iteratively generate intermedi-
ate tables during question decomposition or utilize LLMs to automatically break down questions.
CHAIN-OF-TABLE (Wang et al., 2024) decomposes to generate intermediate tables and introduces
functions to derive the answer. Similarly, ReAcTable (Zhang et al., 2024c) continuously generates
intermediate tables to answer questions. (Liu et al., 2024b) used SQL statements to construct an-
swers from newly created tables, while (Mouravieff et al., 2024) converted intermediate tables into
computational graphs for reasoning. During the sub-question TableQA reasoning phase, agents typ-
ically generate code using languages like Python to obtain answers. In the answer verification phase,
they often require the LLM to observe the previous and current states to perform self-correct.

The above methods typically focus on specific parts, such as decomposition or verification. To
make the decomposition-reasoning-verification process more intelligent, subsequent research has
developed various automated agent frameworks. StructGPT (Jiang et al., 2023) provided a unified
framework for LLMs to conduct QA on structured data by invoking functions and serializing re-
sponses. However, its effectiveness was limited by the absence of integrated symbolic reasoning.
To address this, SheetCopilot (Li et al., 2024a) and DataCopilot (Zhang et al., 2024a), inspired by
AutoGPT, proposed solutions that traditional programming finds difficult to achieve. Nonetheless,
these frameworks still require rigorous evaluation across various scenarios. To adapt to different
contexts, (Liu et al., 2024a) explored table structures and introduced an agent for flexible reasoning.

Although Agent mode can handle TableQA tasks, it primarily relies on the LLM’s self-
decomposition and self-correct. The LLM’s limited understanding of complex queries often leads
to the omission of key information, resulting in a semantic gap between sub-questions and the orig-
inal question. Additionally, relying on the LLM to automatically self-correct makes it difficult to
detect errors in the answers. Therefore, we need a more comprehensive decomposition approach to
narrow the gap between sub-questions and the original question, while also facilitating the correct
verification of sub-question answers.

To address this, we leverage the structured nature of triples to assist LLMs in TableQA decompo-
sition and verification. By extracting as many entities and relations as possible from the question
to form triples, we can capture more critical information, reducing the semantic gap. Additionally,
the clear structure of triples allows for easier verification by comparing the consistency between the
triples formed during question decomposition and those generated from the answers. This enables
more straightforward and accurate answer verification.

3 TASK DEFINITION

3.1 TABLEQA

TableQA aims to infer the answer to a question based on table content. Given a question Q and
a table context C, the goal of TableQA is to determine the final answer Afinal. This task can be
formally represented by Eq.1, where C is structured data composed of rows and columns. Currently,
most TableQA methods utilizing LLMs follow three phases: question Q decomposition into sub-
questions, reasoning based on table content C, and verification to obtain the final answer Afinal.
In our approach, we erialize the table content C by separating each cell with a ‘|’, resulting in
the format: value1|value2|...|valuen. Here, Q is a natural language question, and Afinal can
be a calculated number, a specific value from the table, or any other possible outcome, as seen
in the WikiTableQuestions dataset (Pasupat & Liang, 2015). Additionally, there is a specific type
of TableQA known as fact verification, where Q is a natural language statement about the table’s
content, and Afinal indicates whether the statement is correct, with possible values of Yes or No, as
shown in the TabFact dataset (Chen et al., 2020).

4

Published as a conference paper at ICLR 2025

LLM(Q,C) → Afinal (1)

3.2 TRIPLE

A triple is commonly used in graph-related tasks and typically takes the form of Eq.2. Here, the
head and tail are entities, while the relation represents the connection between them. When the
structure is correct and a link exists, knowing any two parts of the triple allows for the inference of
the unknown part based on the graph’s links. For example, if the head entity and the relation are
known, the unknown tail entity can be inferred by traversing the graph.

i− th triple (head entity, relation, tail entity) → (ei1, ri, ei2) (2)

In our approach, we leverage the structured nature of triples in both the question decomposition and
answer verification. The fixed structure of triples encourages the LLM to extract as many entities and
relations from the question as possible, thereby covering more critical information. Therefore the
sub-questions derived from these triples are better aligned with the original question, reducing the
semantic gap. Additionally, the structured format of triples makes answer verification more easier.
By comparing the entities and relations between the triples generated from the answer and those
extracted during question decomposition, verification becomes more straightforward and reliable.

4 METHOD

Overview. Our method, illustrated in Figure 2, consists of four components: TIDE-Decomposition,
DP/Agent Reasoning, TIDE-Verification, and Joint Reasoning. This aligns with the decomposition-
reasoning-verification process found in most approaches. We utilize triples to assist the LLM in both
decomposition and verification, leading to the development of the TIDE-Decomposition and TIDE-
Verification modules. In the sub-question reasoning phase, we integrate both Direct Prompting and
Agent modes to get the answers of the sub-questions. Ultimately in the joint reasoning phase, we
apply these two modes answers for joint reasoning.

4.1 QUESTION DECOMPOSITION

We leverage triples to narrow the gap between sub-questions and original question. As shown in
Figure 2 TIDE-Decomposition, we first utilize the LLM to extract as many entities and relations
from the question as possible to form triples. Compared to direct decomposition, these triples
capture more critical information. Consequently, transforming these triples into natural language
sub-questions helps to bridge the semantic gap with the original query. The process in Eq.3-4.

LLM(Q,C, Prompttriples generate) → TQ (3)

∀i ∈ {1, . . . , k}, TQ
i = (eQi1, r

Q
i , e

Q
i2) ∈ TQ, LLM(TQ

i ,Promptdecomposition) → Si (4)

Here, S = {S1, . . . , Si, . . . , SK} is the set of sub-questions, Si denotes the i-th of the sub-questions
set. TQ = {TQ

1 , . . . , TQ
i , . . . , TQ

K} , where TQ
i is the i-th triple: TQ

i = (eQi1, r
Q
i , e

Q
i2).

As illustrated in Figure 2, we first utilize the LLM to identify the entities and relations within the
question. For the example shown, we identify the explicit entities: people, office, and 3 years, along
with the relations: stay and at least 3 years. Additionally, certain words that require prediction
serve as implicit entities; for instance, how many can be transformed into the entity number for
prediction, while people acts as the entity to be predicted. After combining all identified entities and
relations into triples, we utilize the LLM to convert these triples into natural language sub-questions,
facilitating further inference. For example, we form the triple ($, stay in, office), leading to Sub-
question 1: ”Who stayed in the office?” Next, we construct the triple ($, stay more than, 3 years)
to generate Sub-question 2: ”Who stayed for more than 3 years?” Finally, to align with the original
question, we create the triple (number, stay at least 3 years in office, $), resulting in Sub-question 3:
”What’s the total number of people who stayed at least 3 years in the office?”

5

Published as a conference paper at ICLR 2025

By using these sub-questions, we aim to cover as much critical information from the original ques-
tion as possible. For each question, we utilize the LLM to extract entities and relations, construct
triples, and transform them into natural language sub-questions as part of the decomposition process.
This decomposition breaks down the question step-by-step, allowing the LLM to refine its reasoning
process and enhance accuracy.

Question: How many people stayed at least 3 years in of!ice?

Answer: William, Alexander, Peter and Benjamin stay time more than 3 years. So the !inal answer is 4.

name took office left office party

William McCreery March 4, 1803 March 3, 1809 Republican

Alexander McKim March 4, 1809 March 3, 1815 Republican

William Pinkney March 4, 1815 April 18, 1816 Republican

Peter Little Sep 2, 1816 March 3, 1823 Republican

Peter Little March 4, 1823 March 3, 1825 Jacksonian DR

Peter Little March 4, 1825 March 3, 1829 Adams

Benjamin Howard March 4, 1829 March 3, 1833 Jacksonian

who stayed in of!ice?who stayed in of!ice?

who stayed more than 3 years?who stayed more than 3 years?

what's the total number of
people stayed at least 3 years
in of!ice?

what's the total number of
people stayed at least 3 years
in of!ice?

who stayed in of!ice?

who stayed more than 3 years?

what's the total number of
people stayed at least 3 years
in of!ice?

Question Decomposition

Answer Veri!ication

stay
 more than

$2
3

years

stay
 more than

$2
3

years

stay in
$1

stay in
$1

stay at least 3
years in of!ice

numbernumber $3

stay at least 3
years in of!ice

number $3

of!iceof!ice

stay
 more than

$2
3

years

stay in
$1

stay at least 3
years in of!ice

number $3

of!ice
Entity

Relation

$
To be

predicted

Entity

Relation

$
To be

predicted

Answer
4

Answer
4

William McCreery

Alexander McKim

Peter Little

Benjamin Howard

William McCreery,
Alexander McKim,

Peter Little and
Benjamin Howard

Joint Reasoning

4

√

√
 stay in

Benjamin
C.Howard
Benjamin
C.Howard

William
McCreery
William

McCreery

ALexander
McKim

ALexander
McKim

Peter
Little
Peter
Little

WIlliam
Pinkney
WIlliam
Pinkney

stay in

stay in stay in

stay in

stay in

Benjamin
C.Howard

William
McCreery

ALexander
McKim

Peter
Little

WIlliam
Pinkney

stay in

stay in stay in

stay in

of!iceof!ice
stay in

Benjamin
C.Howard

William
McCreery

ALexander
McKim

Peter
Little

WIlliam
Pinkney

stay in

stay in stay in

stay in

of!ice

WIlliam
Pinkney
WIlliam
Pinkney

3

years

stay
 more than

Benjamin
C.Howard
Benjamin
C.Howard

William
McCreery
William

McCreery

ALexander
McKim

ALexander
McKim

Peter
Little
Peter
Little

stay
 more than

stay
 more than

stay
 more than

3

years

stay
 more than

Benjamin
C.Howard

William
McCreery

ALexander
McKim

Peter
Little

stay
 more than

stay
 more than

stay
 more than

×
stay time
less than

3

years

stay
 more than

Benjamin
C.Howard

William
McCreery

ALexander
McKim

Peter
Little

stay
 more than

stay
 more than

stay
 more than

×
stay time
less than

WIlliam
Pinkney

3

years

stay
 more than

Benjamin
C.Howard

William
McCreery

ALexander
McKim

Peter
Little

stay
 more than

stay
 more than

stay
 more than

×
stay time
less than

Direct Prompting

 William ... Benjamin Howard stayed in of!ice.

 William...Benjamin stayed more than 3 years.

 So the total number of people stayed at least 3

years in of!ice is 5.

(a)Direct Prompting

 William ... Benjamin Howard stayed in of!ice.

 William...Benjamin stayed more than 3 years.

 So the total number of people stayed at least 3

years in of!ice is 5.

(a)

 def get_name(table)

 def get_ name_3_years
(took of!ice, left of!ice)

 def sum(name_3_years)

Agent (b)

 def get_name(table)

 def get_ name_3_years
(took of!ice, left of!ice)

 def sum(name_3_years)

Agent (b)

DP/Agent Reasoning

Direct Prompting

 William ... Benjamin Howard stayed in of!ice.

 William...Benjamin stayed more than 3 years.

 So the total number of people stayed at least 3

years in of!ice is 5.

(a)

 def get_name(table)

 def get_ name_3_years
(took of!ice, left of!ice)

 def sum(name_3_years)

Agent (b)

DP/Agent Reasoning

44

stay at least 3
years in of!ice

4

stay at least 3
years in of!ice

√

√

number 4

stay at least 3
years in of!ice

√

√

number 4

stay at least 3
years in of!ice

√

√

number

11

22

33

44

33

(a)

(b)

55

Triples Triples

Figure 2: Question Decomposition: Our method first extracts entities and relations from the question
to form triples, then divides them into sub-questions based on these triples. DP/Agent Reasoning:
Next, we use either the DP or Agent mode to perform reasoning on the sub-questions. Answer
Verification: In the verification phase, the inferred answers are verified based on the structure of the
triples. Joint Reasoning: Finally, answers are combined using majority voting for joint reasoning.

4.2 DP/AGENT REASONING

Both the DP method, which utilizes CoT-related prompts, and the Agent method, which employs
external tools, have proven effective for TableQA tasks. After TIDE-Decomposition, we obtain
sub-questions that are processed separately through the DP and Agent approaches for inference.

In the DP mode, we prompt the LLM to infer answers for each sub-question in conjunction with
the table content, resulting in intermediate answers, as shown in the Direct Prompting section of
Figure 2. For the Agent method, we configure the LLM to interact with Python functions for each
sub-question. Initially, it prompts the LLM to observe the current state and, using the table content,
generates Python code or other symbolic languages to obtain intermediate answers, as depicted in
the Agent section of Figure 2. The process can be represented as Eq.5.

∀i ∈ {1, . . . , k}, LLM(Si,PromptDP) → ADP
i , LLM(Si,PromptAgent) → AAgent

i (5)

Here, ADP = {ADP
1 , . . . , ADP

i , . . . , ADP
K } is the set of DP sub-answers, ADP

i denotes the i-th
of the DP sub-answers set. AAgent = {AAgent

1 , . . . , AAgent
i , . . . , AAgent

K } is the set of Agent sub-
answers, AAgent

i denotes the i-th of the Agent sub-answers set.

4.3 ANSWER VERIFICATION

To mitigate the tendency of LLM self-correct towards contradictory responses, we do not directly
use LLM for answer verification. Instead, we provide the triples from the question decomposition as
examples, prompting the LLM to generate triples for the answers as shown in Eq.6. By comparing
the relationships of the two triples and ensuring that one entity (either the head or tail entity) matches,
we validate the correctness of the answer. The process can be represented as Eq.7-10.

6

Published as a conference paper at ICLR 2025

∀i ∈ {1, . . . , k}, LLM(ADP
i ,Promptanswer triple) → TDP

i ,

LLM(AAgent
i ,Promptanswer triple) → TAgent

i

(6)

Here, TDP = {TDP
1 , . . . , TDP

i , . . . , TDP
K }, is the set of sub-answer triples. The i-

th DP triple TDP
i = {(eDP

i1 , rDP
i , eDP

i2)}, i ∈ {1, . . . , k}. Moreover, TAgent =

{TAgent
1 , . . . , TAgent

i , . . . , TAgent
K }, is the set of sub-answer triples. The i-th Agent triple TAgent

i =

{(eAgent
i1 , rAgent

i , eAgent
i2)}, i ∈ {1, . . . , k}.

∀i ∈ {1, . . . , k}, ADP
i =

{
ADP

i if eDP
i1 = eQi1 or eDP

i2 = eQi2, r
DP
i = rQi ,

LLM(Si,PromptDP) otherwise.
(7)

∀i ∈ {1, . . . , k},

AAgent
i =

{
AAgent

i if eAgent
i1 = eQi1 or eAgent

i2 = eQi2, r
Agent
i = rQi ,

LLM(Si,PromptAgent) otherwise.
(8)

ADP
final =

{
ADP

k if ∀i ∈ {1, . . . , k}, eDP
i1 = eQi1 or eDP

i2 = eQi2, r
DP
i = rQi ,

LLM(Sk,PromptDP) otherwise.
(9)

AAgent
final =

AAgent

k if ∀ i ∈ {1, . . . , k},
eAgent
i1 = eQi1 or eAgent

i2 = eQi2, r
Agent
i = rQi ,

LLM(Sk,PromptAgent) otherwise.
(10)

For example, for the intermediate answer: William McCreery, Alexander McKim, William Pinkney,
Peter Little, Benjamin Howard stayed in office, transforms this into the triples: (William McCreery,
stay in, office), (Alexander McKim, stay in, office), (William Pinkney, stay in, office), (Peter Little,
stay in, office), and (Benjamin Howard, stay in, office). Comparing with triple ($, stay in, office)
which generate in question, we find both the relation and tail entity match, confirming correctness.

However, when the converted triples do not align with the initial triples, it indicates an error in the
intermediate answer, prompting LLM to regenerate the answer. For instance, the transformed triple
(William Pinkney, stay less than, 3 years) compared with the triple ($, stay more than, 3 years) shows
the same tail entity but a different relation. Therefore, this sub-question must be re-answered. Once
all intermediate answers have been verified as correct, we can derive the final answer.

4.4 JOINT REASONING

After reasoning and verifying both the DP and Agent modes, we obtain the final answers for each
mode that pass verification. To mitigate errors from single-pass LLM reasoning, we use majority
voting to combine the results. For flexibility, we first generate five answers for each mode and then
randomly select a specified number based on a set hyperparameter. Further results and analysis of
different selection combinations are provided in Section 5. Eq.11 Afinal is the final answer.

Afinal = Majority V ote(ADP
final, A

Agent
final) (11)

5 EXPERIMENT

5.1 DATASETS AND EVALUATION

Dataset. We used two widely recognized TableQA datasets: WikiTableQuestions (Pasupat & Liang,
2015) and TabFact (Chen et al., 2020). WikiTableQuestions is a commonly used dataset for complex

7

Published as a conference paper at ICLR 2025

TableQA tasks, involving operations such as aggregation, comparison, and arithmetic calculations.
Our method was evaluated on its test set, containing 4,344 table-related questions. The TabFact
dataset focuses on fact verification in TableQA, determining whether a statement is correct based on
the table’s content, with answers being yes or no. TabFact test set includes 2,024 samples.

Evaluation. Following previous work (Cheng et al., 2023; Liu et al., 2024a), we use exact match
accuracy as the evaluation metric, comparing whether the final answer matches the gold answer.

5.2 IMPLEMENTATION DETAILS

We followed previous work (Cheng et al., 2023; Ye et al., 2023b; Liu et al., 2024a) and used GPT-3.5
as the LLM, with a temperature of 0.8. To reduce errors from single-pass reasoning, we generated
five answers for both the DP and Agent. The combination of answer selections is detailed in Section
5.5. The specific prompts used for the DP and Agent methods are provided in the Appendix I.

5.3 BASELINES

For LLM-based TableQA, we first directly compared several language models, including SASP (Ou
& Liu, 2022), TAPAS-large (Eisenschlos et al., 2020), T5-3B (Xie et al., 2022), TAPEX-large (Liu
et al., 2021), and Codex (Cheng et al., 2023). Additionally, to better evaluate TIDE in DP and Agent,
we selected methods under both frameworks, including BINDER (Cheng et al., 2023), DATER (Ye
et al., 2023b), StructGPT (Jiang et al., 2023), DTE (Wang et al., 2023), TACR (Wu et al., 2023), ITR
(Lin et al., 2023), (Liu et al., 2024b), Tab-PoT (Xiao et al., 2024), CHAIN-OF-TABLE Wang et al.
(2024), ReAcTable (Zhang et al., 2024c), Cabinet (Patnaik et al., 2024), and (Liu et al., 2024a). For
detailed descriptions of the baseline method, please refer to Appendix H.

5.4 MAIN RESULTS

Table 1 presents the results on the WikiTableQuestions. Both standalone DP and agent deliver
strong results. Notably, when our method combines both modes, it achieves SOTA, surpassing all
other methods by 1.35%-20%. Table 2 shows the results on the TabFact. Similarly, our method is
effective in both standalone DP and agent, outperforming most approaches. The combination of our
method with both modes achieves SOTA performance, improving over all methods by about 1%-
16%. Since best performance on TabFact is already high, the gains of 1.32% should be interpreted
as a proportion of scope of further improvement possible, 1.32/(100− 88.5), which is ≈ 11.48%.

TIDE’s success largely stems from its effective guidance during decomposition and verification. In
decomposition, we identify all entities and relations in the question, forming triples that ensure sub-
questions align with the original semantics. This step-by-step reasoning mitigates errors from direct
answering. During verification, explicit standards enable the LLM to make consistent judgments,
reducing errors at each step and ensuring accurate final inferences. By seamlessly integrating DP
and Agent approaches, our method leverages joint reasoning across both modes, minimizing biases
from single-pass predictions.

Additionally, TIDE-Agent consistently outperforms TIDE-DP on both datasets, primarily due to
two factors. First, the agent generates Python code to interact with tables, making it better suited for
handling structured tabular data. Second, its global observation capability allows it to select the next
action based on the current state, enabling more accurate global reasoning.

5.5 ABLATION STUDY

To examine TIDE’s impact during the decomposition and verification phases in both DP and Agent
modes, we conducted ablation experiments on the WikiTableQuestions and TabFact datasets. We
evaluated the effect of using only TIDE’s decomposition and only TIDE’s verification in both modes,
with results shown in Table 3.

As Table 3 illustrates, TIDE’s decomposition has a significant impact on accuracy. This is primarily
due to the pipeline’s sequential nature: first, the question is decomposed, then responses are vali-
dated. If the decomposition is incorrect—leading to erroneous sub-questions or failing to capture the
original question’s semantics—the final answer will be incorrect, even if intermediate responses are

8

Published as a conference paper at ICLR 2025

Table 1: Results on WikiTableQuestions.
TIDE-DP and TIDE-Agent show results for
DP and Agent modes separately. TIDE-
DP&Agent shows the joint reasoning result.

Method Acc.
TAPEX-large (Liu et al., 2021) 59.10
T5-3B (Xie et al., 2022) 50.60
BINDER (Cheng et al., 2023) 64.60
DATER (Ye et al., 2023b) 65.90
StructGPT (Jiang et al., 2023) 57.00
DTE (Wang et al., 2023) 54.20
TACR (Wu et al., 2023) 60.20
ITR (Lin et al., 2023) 63.40
(Liu et al., 2024b) 55.80
CHAIN-OF-TABLE (Wang et al., 2024)59.94
ReAcTable (Zhang et al., 2024c) 68.00
Cabinet (Patnaik et al., 2024) 69.10
(Liu et al., 2024a)-DP&Agent 73.65

TIDE-DP 66.51
TIDE-Agent 68.72
TIDE-DP&Agent 75.00

Table 2: Results on TabFact dataset. TIDE-
DP and TIDE-Agent show results for DP and
Agent modes separately. TIDE-DP&Agent
shows the joint reasoning result.

Method Acc.
TAPAS-large (Eisenschlos et al., 2020) 81.00
TAPEX-large (Liu et al., 2021) 84.20
SASP (Ou & Liu, 2022) 77.00
T5-3B (Xie et al., 2022) 83.68
Codex end-to-end (Cheng et al., 2023) 72.60
Codex SQL (Cheng et al., 2023) 80.70
BINDER (Cheng et al., 2023) 85.10
DATER (Ye et al., 2023b) 85.60
StructGPT (Jiang et al., 2023) 87.30
CHAIN-OF-TABLE (Wang et al., 2024)80.20
ReAcTable (Zhang et al., 2024c) 86.10
Tab-PoT (Xiao et al., 2024) 85.77
(Liu et al., 2024a)-DP&Agent 88.50

TIDE-DP 81.32
TIDE-Agent 88.19
TIDE-DP&Agent 89.82

accurate. Conversely, when decomposition is correct, the LLM’s inherent reasoning ability can still
maintain a certain level of accuracy in intermediate responses, even without explicit verification.

Table 3: Ablation results on WikiTableQuestions
(WTQ) and TabFact.

Method WTQ TabFact

TIDE-DP 66.51 81.32
w/o Decomposition 60.33 (↓ 6.18) 77.22 (↓ 4.10)
w/o verification 64.89 (↓ 1.62) 79.64 (↓ 1.68)

TIDE-Agent 68.72 88.19
w/o Decomposition 61.21 (↓ 7.51) 81.27 (↓ 6.92)
w/o verification 67.12 (↓ 1.60) 86.86 (↓ 1.33)

TIDE-DP&Agent 75.00 89.82
w/o Decomposition 68.61 (↓ 6.39) 85.47 (↓ 4.35)
w/o verification 71.22 (↓ 3.78) 87.06 (↓ 1.76)

Table 4: Impact of answer selection in
TIDE-DP and TIDE-Agent.

Agent DP WTQ TabFact

1 1 65.06 81.52
3 3 73.73 89.33
5 5 75.00 89.82

1 3 67.11 81.99
3 1 70.28 83.27
1 5 69.38 82.16
5 1 71.04 87.35

3 5 73.02 84.98
5 3 74.15 89.23

5.6 PERFORMANCE ANALYSIS UNDER DIFFERENT FACTORS

Number of Answer Selections in TIDE-DP and TIDE-Agent. Our method can be applied inde-
pendently in either DP or Agent, or used for joint reasoning across both modes. To examine the
effect of different selection combinations, Table 4 presents the results. For a single mode, increasing
the number of selected answers improves performance, suggesting that majority voting mitigates
bias from single-pass LLM reasoning. In joint mode, performance is better when the number of
Agent-generated answers exceeds DP-generated answers, indicating that the agent’s results are more
reliable and its reasoning capability is stronger, consistent with our analysis in Section 5.4.

Number of Triples Decomposed in TableQA. Generally, more triples indicate a more complex
question, requiring additional inference steps. To evaluate our method’s adaptability to complex-
ity and decomposition efficiency, we report the frequency and accuracy of decomposed triples in
both datasets. As shown in Figure 3, in WTQ, inference accuracy declines as question complex-
ity increases. We speculate this is because complex questions require more evidence, straining the

9

Published as a conference paper at ICLR 2025

LLM’s ability to reason over longer texts. In contrast, TabFact exhibits fluctuating accuracy. Ex-
amining its decomposition, we found that due to limited prompt examples, TabFact questions are
broken down more granularly than in WTQ. This sometimes leads to overly simple questions being
split into multiple sub-questions, increasing their count. Any error in inferring a sub-question can
propagate, resulting in accuracy fluctuations.

0

20

40

60

80

100

1 2 3 4 5 6

A
c
c
u
ra

c
y

Number of Triples

TabFact

0

20

40

60

80

100

1 2 3 4 5 6

A
c
c
u
ra

c
y

Number of Triples

WTQ

Figure 3: Number of Triples Decomposed in
WTQ and TabFact.

0

20

40

60

80

100

1 2 3 4 5 6 7

A
c
c
u

ra
c
y

Number of Decomposition
Sub-questions

WTQ

0

20

40

60

80

100

1 2 3 4 5 6 7

A
c
c
u

ra
c
y

Number of Decomposition
Sub-questions

TabFact

Figure 4: Number of Sub-questions Decom-
posed in WTQ and TabFact.

Number of Sub-questions Decomposed in TableQA. We further analyze the sub-questions derived
from triples. To evaluate TIDE’ across both datasets, we report accuracy for different numbers of
decomposed sub-questions. As shown in Figure 4, the number of sub-questions varies, with the
LLM automatically breaking complex triples into additional sub-questions during inference. This is
especially noticeable in the Agent. While the number of triples reflects the problem’s complexity,
the number of sub-questions indicates reasoning difficulty. In Figure 4, aside from fluctuations at the
4-step decomposition in WTQ, the overall trend aligns with the decline seen in Figure 3 for WTQ.
Similarly, TabFact shows notable fluctuations, supporting our previous hypothesis.

0

20

40

60

80

100

A
cc

ur
ac

y

WTQ Row Count

TIDE-DP TIDE-Agent

0

20

40

60

80

100

Ac
cu

ra
cy

TabFact Row Count

TIDE-DP TIDE-Agent

Figure 5: Impact of table size on TableQA performance.

Table Size in TableQA. To assess the inference capabilities of TIDE-DP and TIDE-Agent across
different table sizes, we categorized tables based on previous work. Each interval contained approxi-
mately 430 data points, and we calculated average accuracy within these ranges. As shown in Figure
5, TIDE-Agent generally outperforms TIDE-DP across both datasets, consistent with our analysis in
Section 5.4. With its ability to process tables via code and observe data globally, TIDE-Agent proves
more effective in most cases. In WTQ, we observe that as table size increases, the performance gap
between TIDE-Agent and TIDE-DP widens. Larger tables result in longer serialized text, making
inference harder for TIDE-DP, whereas TIDE-Agent efficiently extracts data through code. This
highlights the need for future research to focus on handling larger tables more effectively.

6 CONCLUSION

To address issues like overlooked information and contradictory self-corrections, we propose TIDE,
which leverages the structured nature of triples. The fixed structure ensures LLMs extract more
entities and relations, covering critical information. It also simplifies answer verification by directly
comparing decomposed triples with those from the answer.

10

Published as a conference paper at ICLR 2025

7 ACKNOWLEDGEMENTS

Our work is supported by the National Natural Science Foundation of China (62476003), Anhui
Province Excellent Scientific Research and Innovation Team (2024AH010004), Anhui Provincial
Natural Science Foundation - Water Science Joint Fund (2408055US006), the University Synergy
Innovation Program of Anhui Province (GXXT-2023-050), and SMP-Zhipu.AI Large Model Cross-
Disciplinary Fund (SMP-Zhipu20240210). We also acknowledge the support from Zhipu AI-Anhui
University Joint Research Center, and the High-Performance Computing Platform of Anhui Univer-
sity.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and Daniel Fried. Api-assisted code generation
for question answering on varied table structures. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 14536–14548, 2023.

Saneem Chemmengath, Vishwajeet Kumar, Samarth Bharadwaj, Jaydeep Sen, Mustafa Canim,
Soumen Chakrabarti, Alfio Gliozzo, and Karthik Sankaranarayanan. Topic transferable table
question answering. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 4159–4172, 2021.

Wenhu Chen. Large language models are few (1)-shot table reasoners. In Findings of the Association
for Computational Linguistics: EACL 2023, pp. 1120–1130, 2023.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. In The
8th International Conference on Learning Representations, 2020.

Yongrui Chen, Shenyu Zhang, Guilin Qi, and Xinnan Guo. Parameterizing context: Unleashing
the power of parameter-efficient fine-tuning and in-context tuning for continual table semantic
parsing. Advances in Neural Information Processing Systems, 36, 2024.

Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang, Chaoyun Zhang, Xiaoting Qin, Xiang Huang,
Ling Chen, Qingwei Lin, Dongmei Zhang, et al. Call me when necessary: Llms can efficiently
and faithfully reason over structured environments. arXiv preprint arXiv:2403.08593, 2024.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. Binding language models in symbolic
languages. In The 11th International Conference on Learning Representations, 2023.

Naihao Deng, Zhenjie Sun, Ruiqi He, Aman Sikka, Yulong Chen, Lin Ma, Yue Zhang, and Rada
Mihalcea. Tables as images? exploring the strengths and limitations of llms on multimodal
representations of tabular data. arXiv preprint arXiv:2402.12424, 2024.

Julian Eisenschlos, Syrine Krichene, and Thomas Mueller. Understanding tables with intermediate
pre-training. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
281–296, 2020.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The 11th International Conference on Learning Representations,
2022.

Carlos Gemmell and Jeff Dalton. Toolwriter: Question specific tool synthesis for tabular data. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
16137–16148, 2023.

11

Published as a conference paper at ICLR 2025

Heng Gong, Yawei Sun, Xiaocheng Feng, Bing Qin, Wei Bi, Xiaojiang Liu, and Ting Liu. Tablegpt:
Few-shot table-to-text generation with table structure reconstruction and content matching. In
Proceedings of the 28th International Conference on Computational Linguistics, pp. 1978–1988,
2020.

Che Guan, Mengyu Huang, and Peng Zhang. Mfort-qa: Multi-hop few-shot open rich table question
answering. arXiv preprint arXiv:2403.19116, 2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The 12th Interna-
tional Conference on Learning Representations, 2024.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt: A
general framework for large language model to reason over structured data. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 9237–9251, 2023.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neubig, and Weizhu Chen. Omnitab: Pretraining
with natural and synthetic data for few-shot table-based question answering. In Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 932–942, 2022.

Nengzheng Jin, Dongfang Li, Junying Chen, Joanna Siebert, and Qingcai Chen. Enhancing open-
domain table question answering via syntax-and structure-aware dense retrieval. In Proceedings
of the 13th International Joint Conference on Natural Language Processing and the 3rd Con-
ference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 2:
Short Papers), pp. 157–165, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems,
35:22199–22213, 2022.

Kezhi Kong, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Chuan Lei, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Opentab: Advancing large language models as
open-domain table reasoners. In The 12th International Conference on Learning Representations,
2024.

Kang-il Lee, Segwang Kim, and Kyomin Jung. Weakly supervised semantic parsing with execution-
based spurious program filtering. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 6884–6894, 2023.

Younghun Lee, Sungchul Kim, Ryan A Rossi, Tong Yu, and Xiang Chen. Learning to reduce:
Towards improving performance of large language models on structured data. In First Workshop
on Long-Context Foundation Models@ ICML 2024, 2024.

Fangyu Lei, Tongxu Luo, Pengqi Yang, Weihao Liu, Hanwen Liu, Jiahe Lei, Yiming Huang, Yifan
Wei, Shizhu He, Jun Zhao, et al. Tableqakit: A comprehensive and practical toolkit for table-based
question answering. arXiv preprint arXiv:2310.15075, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and ZHAO-XIANG ZHANG. Sheetcopilot: Bring-
ing software productivity to the next level through large language models. Advances in Neural
Information Processing Systems, 36, 2024a.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo, Fei Huang, Wenyu
Du, Luo Si, and Yongbin Li. Graphix-t5: Mixing pre-trained transformers with graph-aware
layers for text-to-sql parsing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 13076–13084, 2023.

12

Published as a conference paper at ICLR 2025

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman,
Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table fine-tuned gpt for diverse table tasks.
Proceedings of the ACM on Management of Data, 2(3):1–28, 2024b.

Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert, and Gonzalo Iglesias. An inner table
retriever for robust table question answering. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 9909–9926, 2023.

Jiacheng Liu, Skyler Hallinan, Ximing Lu, Pengfei He, Sean Welleck, Hannaneh Hajishirzi, and
Yejin Choi. Rainier: Reinforced knowledge introspector for commonsense question answering.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 8938–8958, 2022.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
Tapex: Table pre-training via learning a neural sql executor. arXiv preprint arXiv:2107.07653,
2021.

Tianyang Liu, Fei Wang, and Muhao Chen. Rethinking tabular data understanding with large lan-
guage models. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 450–482, 2024a.

Yujian Liu, Jiabao Ji, Tong Yu, Ryan Rossi, Sungchul Kim, Handong Zhao, Ritwik Sinha, Yang
Zhang, and Shiyu Chang. Augment before you try: Knowledge-enhanced table question answer-
ing via table expansion. arXiv preprint arXiv:2401.15555, 2024b.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo Chen. Large language model for table
processing: A survey. arXiv preprint arXiv:2402.05121, 2024.

Tongxu Luo, Fangyu Lei, Jiahe Lei, Weihao Liu, Shihu He, Jun Zhao, and Kang Liu. Hrot: Hybrid
prompt strategy and retrieval of thought for table-text hybrid question answering. arXiv preprint
arXiv:2309.12669, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Raphaël Mouravieff, Benjamin Piwowarski, and Sylvain Lamprier. Training table question answer-
ing via sql query decomposition. arXiv preprint arXiv:2402.13288, 2024.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In International
Conference on Machine Learning, pp. 26106–26128. PMLR, 2023.

Suixin Ou and Yongmei Liu. Learning to generate programs for table fact verification via structure-
aware semantic parsing. In Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 7624–7638, 2022.

Vaishali Pal, Andrew Yates, Evangelos Kanoulas, and Maarten de Rijke. Multitabqa: Generating
tabular answers for multi-table question answering. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6322–6334, 2023.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 1470–1480, 2015.

Sohan Patnaik, Heril Changwal, Milan Aggarwal, Sumit Bhatia, Yaman Kumar, and Balaji Krishna-
murthy. Cabinet: Content relevance-based noise reduction for table question answering. In The
12th International Conference on Learning Representations, 2024.

Soumajyoti Sarkar and Leonard Lausen. Testing the limits of unified sequence to sequence llm
pretraining on diverse table data tasks. In NeurIPS 2023 Second Table Representation Learning
Workshop, 2023.

13

Published as a conference paper at ICLR 2025

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems. In NeurIPS 2023 Foundation Models for
Decision Making Workshop, 2023.

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du, Shi Han, and Dongmei Zhang. Tap4llm:
Table provider on sampling, augmenting, and packing semi-structured data for large language
model reasoning. arXiv preprint arXiv:2312.09039, 2023.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans? In NeurIPS 2023 Foundation Models for
Decision Making Workshop, 2023.

Bailin Wang, Ivan Titov, and Mirella Lapata. Learning semantic parsers from denotations with
latent structured alignments and abstract programs. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 3774–3785, 2019.

Bing Wang, Yan Gao, Zhoujun Li, and Jian-Guang Lou. Know what i don’t know: Handling am-
biguous and unknown questions for text-to-sql. In Findings of the Association for Computational
Linguistics: ACL 2023, pp. 5701–5714, 2023.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table: Evolving
tables in the reasoning chain for table understanding. In The 12th International Conference on
Learning Representations, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jian Wu, Yicheng Xu, Yan Gao, Jian-Guang Lou, Börje F Karlsson, and Manabu Okumura. Tacr: A
table-alignment-based cell-selection and reasoning model for hybrid question-answering. arXiv
preprint arXiv:2305.14682, 2023.

Jian Wu, Yicheng Xu, Börje F Karlsson, and Manabu Okumura. A table question alignment based
cell-selection method for table-text qa. Journal of Natural Language Processing, 31(1):189–211,
2024.

Renqiu Xia, Bo Zhang, Haoyang Peng, Ning Liao, Peng Ye, Botian Shi, Junchi Yan, and Yu Qiao.
Structchart: Perception, structuring, reasoning for visual chart understanding. arXiv preprint
arXiv:2309.11268, 2023.

Bin Xiao, Burak Kantarci, Jiawen Kang, Dusit Niyato, and Mohsen Guizani. Efficient prompting
for llm-based generative internet of things. arXiv preprint arXiv:2406.10382, 2024.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga, Chien-
Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I Wang, et al. Unifiedskg: Unifying and multi-
tasking structured knowledge grounding with text-to-text language models. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pp. 602–631, 2022.

Bohao Yang, Chen Tang, Kun Zhao, Chenghao Xiao, and Chenghua Lin. Effective distillation of
table-based reasoning ability from llms. In Proceedings of the 2024 Joint International Confer-
ence on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024),
pp. 5538–5550, 2024.

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye, Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
Qi Qian, Ji Zhang, et al. Ureader: Universal ocr-free visually-situated language understanding
with multimodal large language model. In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 2841–2858, 2023a.

Junyi Ye, Mengnan Du, and Guiling Wang. Dataframe qa: A universal llm framework on dataframe
question answering without data exposure. arXiv preprint arXiv:2401.15463, 2024.

14

Published as a conference paper at ICLR 2025

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decomposing evidence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 174–184, 2023b.

Le Zhang, Yihong Wu, Fengran Mo, Jian-Yun Nie, and Aishwarya Agrawal. Moqagpt: Zero-shot
multi-modal open-domain question answering with large language model. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 1195–1210, 2023a.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions
of data and humans with autonomous workflow. In ICLR 2024 Workshop on Large Language
Model (LLM) Agents, 2024a.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou, Qingfu Zhu, and Wanxiang Che. A survey of table
reasoning with large language models. arXiv preprint arXiv:2402.08259, 2024b.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep, and Jignesh M Patel.
Reactable: Enhancing react for table question answering. Proceedings of the VLDB Endowment,
17(8):1981–1994, 2024c.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting
in large language models. In The 11th International Conference on Learning Representations,
2023b.

Bowen Zhao, Changkai Ji, Yuejie Zhang, Wen He, Yingwen Wang, Qing Wang, Rui Feng, and
Xiaobo Zhang. Large language models are complex table parsers. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 14786–14802, 2023a.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023b.

Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Zhongfen Deng, and S Yu Philip. Localize, retrieve
and fuse: A generalized framework for free-form question answering over tables. In Findings of
the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings), pp. 1–12, 2023c.

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang, and Dragomir Radev. Reastap: Injecting table
reasoning skills during pre-training via synthetic reasoning examples. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 9006–9018, 2022.

Yilun Zhao, Haowei Zhang, Shengyun Si, Linyong Nan, Xiangru Tang, and Arman Cohan. Inves-
tigating table-to-text generation capabilities of llms in real-world information seeking scenarios.
arXiv preprint arXiv:2305.14987, 2023d.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

15

Published as a conference paper at ICLR 2025

APPENDIX

A ABLATED IMPLEMENT

This section mainly provides a formal description of the implementation details of the ablation
experiments.

1) w/o TIDE-Decomposition

This method is similar to Chain of Thought (CoT)(Wei et al., 2022), where the prompt think step by
step and few examples used. Sub-questions Decomposition {S1, ..., SK} can be represented as the
equation.

LLM(Q,C, PromptCoT) → Si

2) w/o TIDE-Verification

This approach resembles not providing any explicit standards. Instead, the LLM is prompted to
rely on self-correct(Huang et al., 2024) using the instruction: Review your previous answer and
find problems with your answer. Based on the problems you found, improve your answer. Please
reiterate your answer and few examples. The Sub-answers Ai Verification can be represented as the
equation.

Ai =

{
Ai if LLM(Ai, P romptself) = True,

LLM(Si, P romptself) otherwise.

B OTHER LLMS

1) Open-source and Closed-source LLM Models

Table 5 results demonstrate that our method improves the performance of multiple open-source and
closed-source models, validating its effectiveness.

Model Acc.
Llama 2-7b 42.23
Llama 2-7b + Ours 45.00 (2.77 ↑)
Llama 3-70b 53.25
Llama 3-70b + Ours 58.64 (5.39 ↑)
GLM 4 60.17
GLM 4 + Ours 64.00 (3.83 ↑)
Gemini 1.5 54.23
Gemini 1.5 + Ours 59.84 (5.61 ↑)
Claude 3.5 70.38
Claude 3.5 + Ours 75.60 (5.22 ↑)

Table 5: Comparison of models with and without our method

Size Acc.
Llama 2-7b + Ours 45.00
Llama 3-8b + Ours 50.27
Llama 3-70b + Ours 58.64

Table 6: Model Size and Accuracy Comparison

16

Published as a conference paper at ICLR 2025

2) Model Size Affect

We conducted verification on different sizes of the open-source Llama model, and the results are as
in Table 6. The results indicate that the model size has a significant impact on performance. Larger
models consistently achieve better results, demonstrating improved effectiveness.

3) Non-LLM methods

Some baseline methods in our paper are non-LLM-based approaches. Table 7 comparison shows
a substantial performance gap, with our method achieving improvements ranging from 11.7% to
30.5%. This demonstrates the effectiveness of our approach.

Model Acc.
Structured Attention (Wang et al., 2019) 44.50
ReasTAP-Large (Zhao et al., 2022) 58.70
TAPEX-large (Liu et al., 2021) 59.10
OmniTab-Large (Jiang et al., 2022) 63.30
Ours 75.00

Table 7: Comparison of Non-LLM methods

4) Data Contamination

In order to mitigate the impact of LLM data contamination, we address this issue by comparing
the performance of directly using the same LLM for question answering versus applying our pro-
posed method in Table 8. From the comparison result, it is evident that our method improves the
model’s accuracy by approximately 27%, demonstrating that our approach itself brings significant
performance gains.

Model Acc.
GPT Direct QA (Cheng et al., 2023) 48.70
Ours 75.00

Table 8: Comparison of Direct QA.

Method DP Agent Result
(Liu et al., 2024a)-DP&Agent 5 5 73.65
Ours 5 5 75.00

Table 9: Comparison of SOTA.

C VERIFICATION FAILS

This section primarily discusses cases of verification failure. In our implementation, we limit the
number of iterations to a maximum of 4. Additionally, our statistics show that nearly 90% of the
data reaches the final answer within a single iteration. Furthermore, less than 2% of cases fail to
obtain an answer after 4 iterations, for which we set a default value of error. To mitigate the impact
of these error cases, we follow the SOTA approach by obtaining multiple results from the DP and
Agent modes, respectively, and applying majority voting. In Table 9, we also present the results of
different answer combinations based on the two modes.

D DP AND AGENT JOINT

This section primarily explores the joint effect of DP and Agent. In our method, majority voting is
employed for their integration. First, we compare it with methods that also utilize majority voting,

17

Published as a conference paper at ICLR 2025

Method Result

ReAcTable (Zhang et al., 2024c) 68.00
Ours 75.00

Table 10: Comparison with majority voting method.

as shown in Table 10, where it can be observed that combining DP and Agent indeed achieves
excellent performance. Subsequently, we compare it with the results of using DP or Agent alone in
SOTA methods, as presented in Table 11.

Our method follows the SOTA approach, which combines DP and Agent. We introduced triples ,
building upon the SOTA framework. As shown in the table 13, while the performance in the DP
mode is roughly the same, significant improvements were observed in the Agent and joint modes.
This demonstrates the effectiveness of incorporating triples.

Method Result

(Liu et al., 2024a)-DP [6] 66.99
Ours-DP 66.51 (0.48↓ almost same)
(Liu et al., 2024a)-Agent [6] 63.77
Ours-Agent 68.72 (4.95↑)
(Liu et al., 2024a)-DP&Agent [6] 73.65
Ours-DP&Agent 75.00 (1.35↑)

Table 11: Comparison with SOTA DP and Agent.

For the comparable results in the DP mode, we speculate that this is due to DP relying on text-
based reasoning, which has limited understanding of the structured nature of tables. Agent, using
Python-based methods, has a stronger understanding of table structure.

E TIME AND TOKEN USED

In practical implementation, we combine the triple prompt with the decomposition prompt and inte-
grate answer generation with triple verification. We analyzed the average time and token usage for
the decomposition and verification LLM calls in Table 12. Besides, compared to other LLM-based
methods, our approach reduces the number of API calls while achieving better results, as shown in
Table 13.

Operation Time Token

Decomposition 2.190s Prompt length 1159 + table length + question length

Verification 3.211s Prompt length 970 + table length + question length
+ triple and sub-question length

Table 12: Operation time and token details

Methods Result Number of API calls

CHAIN-OF-TABLE (Wang et al., 2024) 59.94 (Next operation 1 + Argument 1 +
Transform table 1) * Iter N = 3N

Ours 75.00 Decompose triple and sub-questions 1
+ Answer and verification 1 = 2

Table 13: Comparison of Methods with Results and API Calls

18

Published as a conference paper at ICLR 2025

F QUESTION TYPE

Our method does not impose limitations, as it structures questions and answers into triples, mak-
ing it broadly applicable to table question-answering tasks. Additionally, our triples are generated
specifically based on the questions and are designed to aid in understanding the table context.

The WTQ dataset covers a variety of operations and question types, including where, which, what,
who, how many, average, and is, among others.

To illustrate this, we have provided actual results from the test dataset.

Figure 6: Question type example.

19

Published as a conference paper at ICLR 2025

G ERROR ANALYSIS

Here, we randomly selected 100 test samples and categorized the errors for analysis.

G.1 ANSWER FORMATING

Figure 7: Answer formating error.

20

Published as a conference paper at ICLR 2025

G.2 INCORRECT NUMERICAL COMPARISON

Figure 8: Incorrect numerical comparison error.

21

Published as a conference paper at ICLR 2025

G.3 SPECIAL ROW

Figure 9: Special row error.

22

Published as a conference paper at ICLR 2025

G.4 COUNTING

Figure 10: Counting error.

H BASELINES

SASP (Ou & Liu, 2022) uses lexical and structural features to generate programs for solving pseudo-
programs. TAPEX-large (Liu et al., 2021) learns a neural SQL executor on a synthetic corpus of
executable SQL queries and their outputs. T5-3B (Xie et al., 2022) within the UnifiedSKG frame-
work unifies 21 SKG tasks into a text-to-text format for comprehensive SKG research. TAPAS-large

23

Published as a conference paper at ICLR 2025

(Eisenschlos et al., 2020) creates a balanced dataset of millions of automatically generated training
examples for intermediate learning before fine-tuning. Codex (Cheng et al., 2023), as an OpenAI
API, can generate SQL or Python statements and perform end-to-end QA.

BINDER (Cheng et al., 2023) iteratively refines pseudo-SQL queries for final answers. DATER (Ye
et al., 2023b) extracts sub-tables and decomposes questions for joint reasoning. StructGPT (Jiang
et al., 2023) enhances zero-shot reasoning with specialized interfaces for structured data. DTE
(Wang et al., 2023) refines text-to-SQL QA using counterfactual examples. TACR (Wu et al., 2023)
aligns multi-hop questions with various modalities for evidence retrieval. ITR (Lin et al., 2023)
selects relevant rows and columns for compact sub-tables. (Liu et al., 2024b) creates new tables
with external information for SQL-based answers. Tab-PoT (Xiao et al., 2024) enhances open-
source LLMs with prompt management and post-processing modules. CHAIN-OF-TABLE Wang
et al. (2024) plans operation chains dynamically based on table structure and questions. ReAcTable
(Zhang et al., 2024c) iteratively generates intermediate tables using LLMs and external code. Cabi-
net (Patnaik et al., 2024) removes noise from tables to improve LLM reasoning accuracy. (Liu et al.,
2024a) explore combining DP and Agent to address LLM sensitivity to table structure.

I DP AND AGENT PROMPT

I.1 DP PROMPT

Direct Prompt

According to the decomposed sub-questions and table content, think about the answers step by step, and finally get the final answer to the question.
Ensure the final answer format is only "Final Answer: AnswerName1, AnswerName2..." form, no other form. And ensure the final answer is a number or
entity names, as short as possible, without any explanation.

#
Table:
/*
| constituency number | name | reserved for (sc/st/none) | district | number of electorates (2009) |
|---:|-------:|:-------------------|:-------|:----|----------------------:|
| 43 | tikamgarh | none | tikamgarh | 153,339 |
| 44 | jatara | sc | tikamgarh | 145,555 |
| 45 | prithvipur | none | tikamgarh | 139,110 |
| 46 | niwari | none | tikamgarh | 141,265 |
| 47 | khargapur | none | tikamgarh | 161,546 |
| 48 | maharajpur | none | chhatarpur | 162,460 |
| 51 | chhatarpur | none | chhatarpur | 152,605 |
| 52 | bijawar | none | chhatarpur | 151,159 |
| total : total | total | total | total | 1,207,039 |
*/

Question:
Which district has the greatest total number of electorates?

Question triplets:
($1, is, district), ($1, number of electorates, $2), ($3, has the greatest total number of, electorates)

Decompose questions:
which is district?
For every district, what's the number of electorates?
which district has the greatest total number of electorates?

Answer and verify:
tikamgarh and chhatarpur are districts, match ($1, is, district), yes.
the number of tikamgarh electorates is 153,339 + 145,555 + 139,110 + 141,265 + 161,546 = 740,815. the number of chhatarpur electorates is 162,460 +
152,605 + 151,159 = 466,224, match ($1, number of electorates, $2), yes.
tikamgarh has the greatest total number of electorates, match ($3, has the greatest total number of, electorates), yes.
Final Answer: tikamgarh
#

#
Table:
/*
table caption : {TITLE}
{TABLE}
*/

Question:
{QUESTION}

Question triplets:
{TRIPLE}

Decompose questions:
{DECOMPOSE}

Answer and verify:

Figure 11: The prompt of Direct Prompting mode.

24

Published as a conference paper at ICLR 2025

I.2 AGENT PROMPT

Agent Prompt

You are working with a pandas dataframe in Python. The name of the dataframe is `df`. Your task is to use `python_repl_ast` to answer

the question posed to you.

Tool description:

- `python_repl_ast`: A Python shell. Use this to execute python commands. Input should be a valid python command. When using this

tool, sometimes the output is abbreviated - ensure it does not appear abbreviated before using it in your answer.

Guidelines:

- **Aggregated Rows**: Be cautious of rows that aggregate data such as 'total', 'sum', or 'average'. Ensure these rows do not influence

your results inappropriately.

- **Data Verification**: Before concluding the final answer, always verify that your observations align with the original table and

question.

Strictly follow the given format to respond:

Question: the input question you must answer

Question Triples: Triples drawn according to the question

Decompose Sub-questions: the decompose sub-questions of the question based on the question triples

Thought: you should always follow the decompose sub-questions, and always think about what to do to interact with `python_repl_ast`

Action: can **ONLY** be `python_repl_ast`

Action Input: the input code to the action

Observation: the result of the every sub-question's action whether conforms to the structure of a triple and the answer whether is right.

... (this Thought/Action/Action Input/Observation can repeat N times)

Thought: after verifying the table, observations, and the question, I am confident in the final answer

Final Answer: the final answer to the original input question (AnswerName1, AnswerName2...)

Notes for final answer:

- Ensure the final answer format is only "Final Answer: AnswerName1, AnswerName2..." form, no other form.

- Ensure the final answer is a number or entity names, as short as possible, without any explanation.

- Ensure to have a concluding thought that verifies the table, observations and the question before giving the final answer.

You are provided with a table regarding "[TITLE]". This is the result of `print(df.to_markdown())`:

[TABLE]

Note: All cells in the table should be considered as `object` data type, regardless of their appearance.

Begin!

Question: [QUESTION]

Question Triples: [Triples]

Decompose Sub-questions: [Decompose]

"""

Figure 12: The prompt of Agent mode.

25

	introduction
	related work
	TableQA
	Direct Prompting in TableQA
	Agent in TableQA

	Task Definition
	TableQA
	Triple

	Method
	Question Decomposition
	DP/Agent Reasoning
	Answer Verification
	Joint Reasoning

	Experiment
	Datasets and Evaluation
	Implementation Details
	Baselines
	Main Results
	Ablation Study
	Performance Analysis Under Different Factors

	Conclusion
	Acknowledgements
	Ablated Implement
	Other LLMs
	Verification Fails
	DP and Agent Joint
	Time and Token Used
	Question Type
	Error Analysis
	Answer Formating
	Incorrect Numerical Comparison
	Special Row
	Counting

	Baselines
	DP and Agent Prompt
	DP Prompt
	Agent Prompt

