
CAPO: Cost-Aware Prompt Optimization 1

Anonymous1 2

1
Anonymous Institution 3

Abstract Large language models (LLMs) have revolutionized natural language processing by solving 4

a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive 5

to prompt formulation. While automated prompt optimization addresses this challenge by 6

finding optimal prompts, current methods require a substantial number of LLM calls and 7

input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware 8

Prompt Optimization), an algorithm that enhances prompt optimization efficiency by inte- 9

grating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, 10

incorporating racing to save evaluations and multi-objective optimization to balance perfor- 11

mance with prompt length. It jointly optimizes instructions and few-shot examples while 12

leveraging task descriptions for improved robustness. Our extensive experiments across 13

diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete 14

prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm 15

achieves better performances already with smaller budgets, saves evaluations through racing, 16

and decreases average prompt length via a length penalty, making it both cost-efficient 17

and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and 18

generally remains robust to initial prompts. CAPO represents an important step toward 19

making prompt optimization more powerful and accessible by improving cost-efficiency. 20

1 Introduction 21

Figure 1: CAPOyields superiormean population

test scores on Subj with Qwen2.5-32B.

The increasing capabilities of transformer-based large 22

language models (Vaswani et al., 2017; Brown et al., 23

2020) have led to a paradigm shift in Natural Lan- 24

guage Processing (NLP): instead of pre-training and 25

expensively fine-tuning models for each individual 26

downstream task, a single LLM, pre-trained in an en- 27

tirely unsupervised manner, can now solve a diverse 28

range of tasks, simply steered by a textual prompt 29

without requiring any additional training (Liu et al., 30

2023). These models demonstrate strong performance 31

on many NLP tasks, often nearly reaching perfor- 32

mances of state-of-the-art fine-tuned models (Brown 33

et al., 2020). In this context, a prompt refers to instruc- 34

tions provided to the LLM as input to guide its output 35

toward solving a specific task (Karmaker Santu and 36

Feng, 2023; White et al., 2025). It may additionally include in-context examples (“shots”) of the task, 37

acting as demonstrations (Schulhoff et al., 2025). However, LLM performance is highly sensitive to 38

prompt quality, format, as well as choice and order of few-shot examples (Zhao et al., 2021; Lu et al., 39

2022; Zhou et al., 2023). It has been demonstrated that semantically similar prompts can perform 40

quite differently (Yang et al., 2024), which we illustrate in Table 1 with two semantically similar 41

prompts differing by 10%p in accuracy after optimization. 42

This phenomenon introduces the need for prompt engineering or optimization — designing 43

prompts to enable an LLM to optimally solve a task (Liu et al., 2023; Meskó, 2023). Manual prompt 44

Submitted to AutoML 2025 © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Table 1: Best performing prompts from our benchmark experiments on GSM8K with Llama-3.3-70B.

Before optimization (43.8%): Please analyze this elementary school math problem that requires multiple logical steps.

After explaining your reasoning, provide the ultimate solution between <final_answer> </final_answer> tags.

After optimization with EvoPromptGA (53.8%): Assist with solving the elementary or grade school level math

problem that requires multiple steps and provide the solution within <final_answer> </final_answer> tags for easy

identification.

After optimization with CAPO (ours, 79.2%): To tackle this math word problem, which demands a series of logical

steps, dissect it methodically. Outline your thought process and ensure you clearly signify your solution, enclosing it

within <final_answer> </final_answer> markers for easy identification. + 2 few shots

engineering requires time and expertise (Liu et al., 2023). Therefore, automated prompt optimization 45

has gained increasing attention, including both continuous approaches optimizing learnable “soft 46

prompts” (Lester et al., 2021; Li and Liang, 2021; Qin and Eisner, 2021) and discrete methods acting 47

directly on textual prompts (Zhou et al., 2023; Agarwal et al., 2024; Yang et al., 2024). The discrete 48

prompt optimization framework EvoPrompt (Guo et al., 2024), which leverages LLMs as operators in 49

an evolutionary algorithm, achieves strong performance across various tasks. However, EvoPrompt 50

relies on good, task-specific initial prompts. Other approaches incorporate human-designed task 51

descriptions to mitigate this reliance (Yang et al., 2024). Moreover, recent advances in prompt 52

optimization also integrate few-shot example selection (Agarwal et al., 2024; Wu et al., 2024). 53

Nonetheless, many prompt optimization methods remain relatively expensive in terms of the 54

number of LLM calls (Agarwal et al., 2024). For instance, optimizing with EvoPrompt in its original 55

parametrization requires 4-6 million input tokens per task until convergence (Guo et al., 2024). 56

Given current API costs for commercial LLMs
1
, this can quickly become expensive, not even 57

accounting for output tokens or subsequent productive usage of the optimized prompt. 58

In this paper, we address the cost problem in prompt optimization by introducing CAPO 59

(Cost-Aware Prompt Optimization), a novel discrete prompt optimization algorithm that integrates 60

AutoML techniques for enhanced cost-efficiency. CAPO draws its underlying mechanism on 61

EvoPrompt (Guo et al., 2024) and implements racing (Birattari et al., 2002) to reduce the number 62

of evaluations and improve cost-efficiency. Our algorithm employs multi-objective optimization 63

by incorporating prompt length as additional objective through a penalty, and integrates recent 64

advances in prompt optimization by combining instruction and few-shot example optimization as 65

well as leveraging task descriptions for improved robustness. Our main contributions are
2
: 66

1. We introduce CAPO, a cost-efficient prompt optimization algorithm that integrates racing and 67

multi-objective optimization while leveraging few-shot examples and task descriptions. 68

2. We conduct extensive benchmark experiments comparing CAPO against three state-of-the-art 69

prompt optimization algorithms across diverse datasets and LLMs, demonstrating its superior 70

performance in most scenarios, even with substantially fewer input tokens (e.g., Figure 1). 71

3. We provide comprehensive ablation studies indicating that few-shot example selection greatly 72

enhances performance, racing improves cost-efficiency, the prompt length objective reduces 73

average prompt length, and task descriptions make the algorithm robust to initial prompt quality. 74

2 Notation & Problem Statement 75

Let I denote the space of all possible instructions 𝑖 and E the space of all possible examples 76

𝑒 , also referred to as “shots”. A tuple of few-shot examples consisting of 𝑘 shots is denoted by 77

𝒆 = (𝑒1, . . . , 𝑒𝑘), the space of all possible 𝑘-shot examples is represented by E𝑘
. We define the space 78

of possible prompts with up to 𝑘max shots as P = I × ⋃𝑘max

𝑘=0
E𝑘

, where each prompt 𝑝 = (𝑖, 𝒆) 79

1
Cf. e.g., https://openai.com/api/pricing/ or https://www.anthropic.com/pricing (accessed: 2025-03-22).

2
Our complete implementation is available as supplementary material under the Apache 2.0 license.

2

https://openai.com/api/pricing/
https://www.anthropic.com/pricing

consists of an instruction and between 0 and 𝑘max shots. Let an LLM be a function Φ that takes 80

a prompt 𝑝 and some input, and produces an output. In the classical case, the input refers to an 81

instance 𝑥 ∈ X from a dataset D = {(𝑥 (𝑖) , 𝑦 (𝑖))}𝑛𝑖=1 ∼ P𝑥𝑦 and the output to a corresponding 82

predicted label 𝑦 ∈ Y . We also use LLMs for generating variations of instructions, where input and 83

output both refer to instructions 𝑖 . We refer to this as meta-LLM in contrast to the evaluation-LLM 84

for which we optimize the prompt. LLMs are treated as black boxes without access to gradients or 85

token probabilities, a common scenario for API LLMs from closed-source vendors. 86

We evaluate a prompt 𝑝 by comparing the true label 𝑦 to the predicted label 𝑦 = Φ(𝑝, 𝑥) for a 87

given instance 𝑥 with a point-wise scoring function 𝜎 : Y × Y → R. While any scoring function is 88

generally possible, we always test for direct match in this paper, i.e., 89

𝜎 (𝑦,𝑦) =
{
1 if 𝑦 = 𝑦

0 otherwise.

(1)

Our goal is to find a prompt 𝑝 that maximizes this score in expectation: 90

argmax

𝑝 ∈P
E(𝑥,𝑦)∼P𝑥𝑦 [𝜎 (𝑦,Φ(𝑝, 𝑥))] . (2)

Estimating this quantity based on a finite dataset D = {(𝑥 (𝑖) , 𝑦 (𝑖))}𝑛𝑖=1 yields our objective 𝑓 : 91

𝑓 (𝑝 ;D) = 1

𝑛

∑𝑛
𝑖=1 𝜎 (𝑦𝑖 ,Φ(𝑝, 𝑥𝑖)) . Our goal is to find a prompt 𝑝 that maximizes 𝑓 within a limited 92

budget of input tokens to an LLM. Since we want to generalize well to unseen data, we measure 𝑓 93

on a separate, finite test dataset D𝑡𝑒𝑠𝑡 = {(𝑥 (𝑖) , 𝑦 (𝑖))}𝑛+𝑚𝑖=𝑛+1 drawn from the same distribution. 94

3 Related Work 95

Automatic Prompt Optimization. Recently, interest in automating prompt optimization has grown 96

as manual prompt engineering requires time and expertise without guaranteeing optimality (Jiang 97

et al., 2020; Liu et al., 2023). A related area is prompt selection, which aims to find optimal prompts 98

from a pre-defined pool of candidates (Sorensen et al., 2022; Do et al., 2024; Schneider et al., 2024; Shi 99

et al., 2024). Prompt optimization includes both the optimization of instructions and the selection 100

of relevant few-shot examples (“exemplar optimization”) (Wan et al., 2024; Wu et al., 2024). 101

Continuous prompt optimization improves prompts in continuous space to obtain learnable “soft 102

prompts” (Li and Liang, 2021; Lester et al., 2021; Qin and Eisner, 2021). While this requires access 103

to LLM parameters and makes prompts not interpretable (Lester et al., 2021), recent approaches 104

like InstructZero (Chen et al., 2024) and its extension INSTINCT (Lin et al., 2024) address this by 105

performing Bayesian optimization on soft prompts used to generate human-readable instructions. 106

Discrete methods directly optimize textual prompts (Agarwal et al., 2024). Unlike earlier ap- 107

proaches that require access to gradients or token probabilities (Shin et al., 2020; Deng et al., 2022; 108

Shi et al., 2023), recent discrete methods also work with black box LLMs. They typically use 109

a “meta-LLM” instructed by a “meta-prompt” to alternate prompt candidates: APE (Zhou et al., 110

2023) uses a meta-LLM to generate instructions from demonstrations and iteratively proposes 111

semantically similar variants, ProTeGi (Pryzant et al., 2023) leverages misspredicted instances as 112

“pseudo-gradients”, and PromptBreeder (Fernando et al., 2024) uses an evolutionary strategy with a 113

meta-LLM performing mutation guided by self-improving mutation-prompts. EvoPrompt (Guo 114

et al., 2024), which serves as foundation of our work, is also based on evolutionary algorithms 115

and has two instantiations: a genetic algorithm (GA) and differential evolution (DE). Both start 116

from an initial prompt population and implement evolutionary operations by a meta-LLM. De- 117

spite outperforming previous discrete methods, EvoPrompt has two major drawbacks: it requires 118

many LLM calls (Agarwal et al., 2024) and its performance depends on good, task-specific initial 119

prompts (Yang et al., 2024). OPRO (Yang et al., 2024) directly employs LLMs as optimizers by lever- 120

aging task descriptions, task examples, and previous candidates with scores in the meta-prompt, 121

3

maintaining good performance even with task-unspecific initial prompts. These methods focus 122

solely on instruction optimization without incorporating few-shot examples in prompt candidates. 123

However, even simple random example selection can outperform sophisticated instruction optimiz- 124

ers. Combining instruction and example optimization is found to create synergies (Wan et al., 2024). 125

PromptWizard (Agarwal et al., 2024) optimizes instructions and examples simultaneously using 126

a critique-synthesis mechanism, reportedly outperforming previously described methods while 127

greatly reducing LLM calls. However, approaches like PromptWizard, ProTeGi, or OPRO require a 128

notion of what constitutes a “good” prompt, asking a meta-LLM to identify problems or improve 129

prompts. Since prompt performance does not necessarily follow predictable patterns (Yang et al., 130

2024), this potentially limits these methods’ ability to capture such subtleties. 131

AutoML for Efficiency. The field of AutoML offers several techniques to enhance optimization 132

efficiency. Racing algorithms are applicable when objectives are decomposable into cheaper sub- 133

objectives that can be evaluated individually. They sequentially evaluate candidates and eliminate 134

poor ones once sufficient statistical evidence accumulates, preserving budget for promising candi- 135

dates (Birattari et al., 2002, 2010). Important works include Hoeffding Races (Maron andMoore, 1994) 136

using Hoeffding’s bound for elimination, BRACE (Moore and Lee, 1994) employing Bayesian statis- 137

tics, F-Race (Birattari et al., 2002) using Friedman’s test (Conover, 1999), and I/F-Race (Balaprakash 138

et al., 2007) iteratively applying F-Race while biasing a probabilistic model of the candidates to 139

promising areas. The irace package (López-Ibáñez et al., 2016) provides a general iterated racing 140

implementation, i.a. with a paired t-test as alternative. Related methods that save evaluations by 141

adaptively increasing evaluations include FocusedILS (Hutter et al., 2009), as well as ROAR and 142

SMAC (Hutter et al., 2011), employing an “intensification” mechanism without statistical testing. 143

Multi-objective optimization addresses scenarios with multiple competing objectives such as 144

performance versus efficiency (Karl et al., 2023). A priori methods transform multiple objectives 145

into a single one, e.g., via scalarization, yielding only a single solution candidate (Karl et al., 2023). 146

While greatly simplifying optimization (Miettinen, 1998), choosing scalarization weights a-priori is 147

often non-trivial (Jin and Sendhoff, 2008). A posteriori methods produce a set of Pareto-optimal 148

solutions (Karl et al., 2023). Notable approaches include evolutionary methods like NSGA-II (Deb 149

et al., 2002) and SMS-EMOA (Beume et al., 2007) based on non-dominated sorting rank, and 150

Bayesian optimization approaches such as ParEGO (Knowles, 2006), approximating the Pareto-front 151

using a set of randomly generated scalarization weights. Finally, combinations of multi-objective 152

optimization and racing include irace with Hypervolume (López-Ibáñez et al., 2016), S-Race and its 153

extensions (Zhang et al., 2013, 2015a; Miranda et al., 2015), and MO-ParamILS (Blot et al., 2016). 154

AutoML methods like multi-fidelity optimization (Jamieson and Talwalkar, 2016; Li et al., 2018; 155

Falkner et al., 2018; Awad et al., 2021) have also been successfully adopted outside the field, e.g., for 156

prompt selection, where efficiency is similarly important (Schneider et al., 2024; Shi et al., 2024). 157

We refer to Appendix A for additional background and previous work to the approaches discussed. 158

4 CAPO: Cost-Aware Prompt Optimization 159

In this section, we introduce our novel algorithm that addresses the cost problem in automatic 160

prompt optimization and integrates recent advances in prompt optimization, CAPO (Cost-Aware 161

Prompt Optimization). Conceptually, CAPO builds on EvoPromptGA (Guo et al., 2024), following 162

a standard genetic algorithm (Goldberg, 1989) with a meta-LLM for cross-over and mutation 163

operations. As the number of evaluations is a major cost factor in prompt optimization, CAPO 164

employs racing to eliminate underperforming candidates early. In addition, CAPO draws inspiration 165

from multi-objective optimization, incorporating efficiency as secondary objective by penalizing 166

prompt length. Keeping the length of the resulting prompt minimal reduces evaluation cost during 167

optimization and deployment cost of the final prompt. Similar to PromptWizard (Agarwal et al., 168

2024), CAPO optimizes both instructions and few-shot examples simultaneously. Furthermore, 169

4

Algorithm 1 CAPO: Cost-Aware Prompt Optimization

Require: datasets Ddev and Dshots, meta-LLM Φmeta, evaluation-LLM Φeval, initial instructions I0 =

{𝑖1, . . . , 𝑖𝜇}, population size 𝜇, block size 𝑏, number of iterations 𝑇 , number of crossovers per itera-

tion 𝑐 , max. number of few-shot examples 𝑘max, max. number of evaluated blocks 𝑧max, confidence level

𝛼 , token length penalty control parameter 𝛾 , cross-over-meta-prompt 𝑝𝐶 , mutation-meta-prompt 𝑝𝑀
1: Divide dataset Ddev into blocks B = {𝐵1, ..., 𝐵𝑧} where |𝐵𝑖 | = 𝑏

2: P𝜇 ← []
3: for 𝑖 ∈ I0 do ⊲ Initialize prompt population

4: 𝑘 ∼ Unif({0, . . . , 𝑘max}) ⊲ Sample number of few-shots

5: 𝒆 ← create_shots(Dshots, 𝑘, 𝑖,Φeval) ⊲ Create few-shots

6: 𝑝 ← (𝑖, 𝒆)
7: P𝜇 ← append(𝑝,P𝜇)
8: end for
9: for 𝑡 = 1 to 𝑇 do
10: Poff ← cross_over(P𝜇,Φmeta, 𝑝𝐶 , 𝑐) ⊲ Perform cross-over operation

11: Poff ← mutate(Poff,Φmeta,Φeval, 𝑝𝑀 ,Dshots, 𝑘max) ⊲ Mutation operation on offspring

12: P𝜇 ← do_racing(P𝜇 ∪ Poff,B,Φeval, 𝛼,𝛾, 𝜇, 𝑧max) ⊲ Survival selection via racing

13: end for
14: return P𝜇

CAPO leverages task descriptions in the meta-prompt to reduce reliance on task-specific initial 170

prompts (Yang et al., 2024). We additionally simplify the meta-prompt templates by substantially 171

shortening them and avoiding formulations like “better prompt” that require a notion of what 172

constitutes a good prompt. We outline CAPO in Algorithm 1. 173

Population Initialization: A set of initial instructions I0 of population size 𝜇 is provided as 174

input, either manually engineered or automatically generated with approaches like APE (Zhou 175

et al., 2023). We first augment each instruction with a random number of few-shot examples 176

between 0 and 𝑘max. We generate reasoning for each with the evaluation-LLM, prompting it with 177

the initial instruction to solve the example input, typically yielding a response with both reasoning 178

and prediction. If the LLM fails to generate a correct prediction, we use the true label as example 179

output. This resembles PromptWizard (Agarwal et al., 2024), which leverages reasoning chains. 180

Our initialization yields a diverse population with varying number and lengths of shots. 181

Cross-over & Mutation: For cross-over, CAPO randomly selects parents, unlike Evo- 182

PromptGA (Guo et al., 2024) which uses score-based roulette wheel selection. While less exploitative, 183

our choice eliminates expensive evaluations during parent selection. The cross_over operation 184

(cf. Appendix B) leverages a meta-LLM Φmeta to create an offspring instruction 𝑖off from the two 185

selected parents’ instructions. The meta-LLM is steered by a meta-cross-over prompt 𝑝𝐶 , which is 186

simplified compared to the EvoPromptGA (Guo et al., 2024) meta-prompt and incorporates a task 187

description
3
. For the offspring’s few-shot examples 𝒆off, we sample from the union of the parents’ 188

examples, with the number of examples corresponding to the average of the two parents’. This 189

process is repeated 𝑐 times per iteration to generate 𝑐 offspring. To each offspring, we then apply 190

the mutate operation (cf. Appendix B). Similar to cross-over, a meta-LLM Φmeta is instructed via 191

a simplified meta-mutation-prompt 𝑝𝑀 with task description to create a mutated version of the 192

offspring instruction
3
. To mutate few-shot examples, we apply one of three operations with equal 193

probability: adding a new shot if not exceeding 𝑘max, removing a random shot if there are any, or 194

keeping them unchanged. Afterwards, we randomly shuffle the example order. 195

Survival Selection: To select survivors, we eliminate prompts through racing (do_racing in 196

Appendix B), discarding underperforming prompts early when statistical evidence indicates they 197

3
Prompt templates are provided in Appendix F. We illustrate instruction variation with examples in Appendix G.

5

perform significantly worse. Our racing procedure operates on blocks of samples B = {𝐵1, ..., 𝐵𝑧} 198

of fixed size 𝑏, similar to F-Race (Birattari et al., 2002). We optionally shuffle block order in each 199

iteration to avoid potential elimination biases. We sequentially process blocks, evaluate all prompts 200

on the selected block (caching block scores to save evaluations later), and eliminate inferior prompts 201

when more than 𝜇 other prompts are significantly better according to a statistical test. We do 202

not correct for multiple testing as this can negatively affect racing behavior by making the test 203

more conservative not discarding candidates (Birattari, 2009). This corresponds to a population- 204

based racing approach since we compare across the entire population rather than against a single 205

incumbent.
4
Racing continues with additional blocks until we either reach 𝜇 survivors or the 206

maximum block evaluation limit 𝑧max. If more than 𝜇 prompts survive after 𝑧max evaluated blocks, 207

we select the 𝜇 best-performing prompts based on their average scores. 208

As statistical test, we employ a paired t-test with 𝛼 = 0.2, which is favorable for our case 209

compared to the commonly used F-test as scores across instances are commensurable (López-Ibáñez 210

et al., 2016) while less conservative than non-parametric bounds like Hoeffding’s (Maron and Moore, 211

1994). Since the paired t-test requires normality or sufficiently large sample sizes (≥ 30) (Hsu and 212

Lachenbruch, 2014), block size 𝑏 must be chosen such that assumptions hold even for a single block. 213

Since we aim to maximize performance while keeping prompt length minimal, i.e., shorter 214

instructions, fewer examples, and reasoning only when necessary, we implement a form of multi- 215

objective optimization. This is particularly important given our inclusion of few-shot examples, 216

which can considerably increase prompt length. To keep the racing procedure simple, we scalarize 217

our objective using a length penalty parameter 𝛾 that controls the trade-off between prompt 218

performance and any measure of relative token length. This parameter must be selected a-priori, 219

yielding the objective 𝑓𝛾 (𝑝 ;𝐵) = 𝑓 (𝑝 ;𝐵) − 𝛾 · rel_token_length(𝑝). In our implementation, 220

rel_token_length represents token count normalized by the longest initial prompt. 221

5 Experimental Setup 222

For our experiments, we use three different LLMs: Llama-3.3-70B-Instruct-GPTQ (Meta, 2024), 223

Qwen2.5-32B-Instruct-GPTQ (Qwen et al., 2025) and Mistral-Small-24B-GPTQ (Mistral AI Team, 224

2025). These cover different model sizes from different companies and regions. We opt for model 225

sizes that still fit on a single GPU while exhibiting strong performances. To meet hardware 226

constraints, we employ GPTQ-quantized models (Frantar et al., 2023), which show negligible 227

performance loss compared to uncompressed models. For each setup, we use the same model as 228

meta- and evaluation-LLM. For further technical details, we refer to Appendix C. 229

We employ five datasets spanning a diverse range of typical NLP tasks with different subject 230

areas, targets, and complexity levels: SST-5 (sentiment classification; Socher et al., 2013), AG 231

News (topic classification; Zhang et al., 2015b), Subj (subjectivity classification; Pang and Lee, 2004), 232

GSM8K (grade school math word problems; Cobbe et al., 2021) and (Balanced) COPA (commonsense 233

causal reasoning; Kavumba et al., 2019). The first three datasets are used in the EvoPrompt 234

paper (Guo et al., 2024), GSM8K in OPRO (Yang et al., 2024) and PromptWizard (Agarwal et al., 235

2024), and COPA is added as, to the best of our knowledge, a novel application for discrete prompt 236

optimization. For each dataset, we use 200 samples as few-shot dataset, 300 as development set for 237

optimization (larger than EvoPrompt (Guo et al., 2024), where 200 samples are used for these tasks), 238

and 500 holdout samples as test set (equivalent to the size of the smallest test set from our five 239

datasets; details in Appendix C.2). We automatically create a diverse pool of 15 initial instructions 240

per dataset with Anthropic’s Claude Sonnet 3.7 (cf. Appendix E), and sample the initial instructions 241

from this pool for all optimizers and models. CAPO and OPRO (Yang et al., 2024) additionally use 242

task descriptions, which we manually craft (cf. Appendix D). 243

4
This makes the erroneous elimination of the best candidate very unlikely, as not only one but several type I errors

would have to occur.

6

Table 2: Performance comparison of different prompt optimizers (last step before exceeding 5M input tokens).

We report the mean accuracy (in %) on test set with standard deviation across three seeds of the best prompts.

The best prompt per seed is selected from the last population based on development set scores. Bold values

indicate best, underlined values second to best performance for each LLM and dataset.

Model Optimizer SST-5 AG News Subj GSM8K COPA ∅

Llama-3.3-
70B

Initial 58.47± 1.53 87.06± 0.65 62.00±5.22 44.28± 4.91 97.65± 1.31 69.89

OPRO 60.87± 1.09 88.20± 0.49 71.33±2.80 51.87± 2.04 98.07± 0.57 74.07

PromptWizard 32.80± 1.73 23.33± 0.19 51.93±0.25 39.33±15.09 50.33± 0.34 39.55

EvoPromptGA 60.53± 1.73 88.67± 0.41 75.53±1.39 50.87± 0.74 97.60± 1.13 74.64

CAPO (ours) 62.27± 0.34 88.80± 0.75 91.60±2.16 73.73± 3.73 98.27± 0.52 82.93

Qwen2.5-
32B

Initial 56.68± 1.94 79.57± 0.84 62.85±4.53 33.08± 7.78 98.27± 0.43 66.09

OPRO 57.00± 0.43 79.87± 0.19 70.67±2.36 46.33± 3.07 98.67± 0.34 70.51

PromptWizard 39.73±12.31 63.47±28.49 64.93±5.01 15.27±20.19 98.13± 0.19 56.31

EvoPromptGA 58.60± 1.73 81.73± 1.68 75.87±3.58 61.27± 8.39 97.87± 0.66 75.07

CAPO (ours) 59.07± 0.50 87.07± 0.81 91.00±0.65 60.20± 4.82 98.47± 0.19 79.16

Mistral-
Small-24B

Initial 48.69± 2.94 72.21± 7.45 61.65±6.04 33.71± 5.89 94.56± 0.94 62.17

OPRO 53.20± 2.83 84.20± 0.16 77.07±0.09 43.53± 0.47 96.33± 0.34 70.87

PromptWizard 31.07± 3.80 44.40±25.76 59.00±5.09 48.67± 6.46 57.47±10.28 48.12

EvoPromptGA 54.93± 0.94 84.40± 0.28 74.93±2.04 43.93± 3.85 96.13± 0.34 70.87

CAPO (ours) 60.20± 0.33 84.33± 2.13 81.67±1.64 65.07± 1.20 95.13± 1.20 77.28

We benchmark CAPO against three state-of-the-art discrete prompt optimizers: Evo- 244

PromptGA (Guo et al., 2024), OPRO (Yang et al., 2024), and PromptWizard (Agarwal et al., 2024). 245

We use the GA instantiation of EvoPrompt as it performs similar to the DE variant while being 246

conceptually simpler and closer to CAPO. For EvoPromptGA and OPRO, we use reimplementa- 247

tions of a public library, while for PromptWizard, we utilize the original implementation with 248

small adaptions. For implementation and parametrization details of these optimizers, we refer to 249

Appendix C.4. 250

For all experiments with CAPO, EvoPromptGA, and OPRO, we do not restrict maximum 251

iterations, but instead use a budget of 5M input tokens after which the run terminates
5
. We choose 252

this budget such that EvoPromptGA, which is most expensive in terms of LLM calls, has likely 253

converged (cf. Guo et al., 2024). We evaluate each optimizer with each LLM and dataset, performing 254

three repetitions with different random seeds per setup to quantify variance. 255

6 Results & Analysis 256

6.1 Benchmark Results 257

We report the test scores of our benchmark experiments in Table 2. The results demonstrate that 258

CAPO outperforms the other prompt optimization methods on most datasets and models (11/15). 259

Notably, for Llama-3.3-70B, CAPO leads to the best results on every single dataset. For scenarios in 260

which another optimizer is better, CAPO is still competitive and within one standard deviation. 261

While performance gains of CAPO compared to the rest are small on SST-5 or AG News, we observe 262

substantial performance improvements on Subj and GSM8K, with up to 21%p improvement over 263

the rest (Llama-3.3-70B on GSM8K). Initial instructions are consistently improved by CAPO. 264

To assess the performance at intermediate token budgets, we depict the mean population 265

performance over input tokens for two representative examples of optimizer-dataset pairs in 266

Figure 1 & 2 and provide the remaining optimization curves in Appendix J.2. For both examples, as 267

soon as CAPO yields the first prompt, it consistently dominates the other optimizers over the entire 268

token range. Early performances of CAPO already exceed the other optimizers’ final performances 269

5
PromptWizard has no clear way to increase compute time, we report its performance on reduced budget.

7

Figure 2: Population mean test scores over input to-

kens on GSM8K with Mistral-Small-24B with mean

± std across seeds. PromptWizard yields only a sin-

gle prompt early, marked with a star and error bars.

Figure 3: Tests score vs. prompt length (system

+ user prompt) for every prompt on GSM8K with

Mistral-Small-24B. Stars mark the best performing

on dev-set from the last population.

after the full budget, underscoring its cost-efficiency. However, we observe that CAPO often yields 270

its first prompt later in terms of used input tokens than its competitors. This is due to the fact that 271

CAPO includes few-shot examples, making evaluations more costly. It follows that CAPO requires 272

many tokens in the first step while being very cost-efficient later (for details, see Appendix K.2). 273

We also find that CAPO yields longer prompts than EvoPromptGA and OPRO due to few-shot 274

examples but still shorter than PromptWizard (cf. Figure 3). Thus, though PromptWizard requires 275

fewer tokens during optimization, CAPO reduces costs when the prompt is deployed. 276

6.2 Ablation Studies 277
Table 3: Ablation study results using Llama-3.3-70B. Mean

accuracy (in %) on test set of best prompt per seed selected

on the development set scores (Format as in Table 2)

Ablation Accuracy Prompt length

AG News GSM8K AG News GSM8K

CAPO 88.80±0.75 73.73±3.73 481±113 110±46

↩→ zero shot 89.00±0.16 62.40±6.15 94± 17 48± 4

↩→ 𝛾 = 0 89.27±0.41 74.93±1.04 297± 27 128±27

↩→ w/o racing 89.20±0.43 75.00±3.12 469±130 146±52

↩→ generic init 89.33±0.19 82.93±2.36 206±113 182±22

EvoPromptGA 88.67±0.41 50.87±0.74 28± 2 30± 1

↩→ generic init 23.20±0.00 53.47±0.38 17± 8 20± 2

To better understand design choices in 278

CAPO, we ablate several components on 279

AG News and GSM8K with Llama-3.3- 280

70B, a budget of 5M input tokens, three 281

seeds, and optimizer parameters as before. 282

We provide results in Table 3 and give fur- 283

ther insights in Appendix K with the key 284

findings described here. 285

I. Zero-shot performance: Without 286

few-shot examples, the performances of 287

the best prompts remain unchanged for 288

AG News while being substantially worse 289

for the more complex GSM8K task (cf. Table 3). This highlights the importance of few-shot examples 290

for complex tasks. Notably, zero-shot CAPO still considerably outperforms EvoPromptGA on 291

GSM8K. Due to the lack of few-shot examples, the resulting prompts are much shorter than default 292

CAPO prompts but interestingly longer than for EvoPromptGA. 293

II. No length penalty: Removing the length penalty (𝛾 = 0) improves performance of the final 294

prompts compared to default CAPO while the prompt length stays in a similar range (cf. Table 3). 295

Nonetheless, we find that with length penalty, average prompt length decreases as optimization 296

progresses, enabling more steps. We discuss this effect of different length penalties in Appendix I. 297

III. No racing: After 5M input tokens, CAPO without racing performs slightly better while 298

differences lie within one standard deviation (cf. Table 3). Still, comparing performance over input 299

tokens reveals that with racing, substantially fewer input tokens are needed to yield first prompts 300

8

with relatively good performance (cf. Figure 14). We further find that racing, on average, saves 44% 301

of evaluations, enabling considerably more steps with the same budget (cf. Appendix K.2). 302

IV. Generic initial instructions: We use automatically generated task-unspecific initial instruc- 303

tions (cf. Appendix E) and analyze if task descriptions in CAPO counteract degrading performances 304

observed by Yang et al. (2024). Our results confirm the degrading performance of EvoPromptGA, 305

especially for AG News. Optimization curves reveal that EvoPromptGA’s performance stays con- 306

stant as no valid labels are predicted while CAPO starts lower than with task-specific instructions 307

but quickly improves as task descriptions introduce task-specific information, eventually reaching 308

similar performances (cf. Figure 15). Surprisingly, for GSM8K, generic initial instructions even lead 309

to improved CAPO performance (cf. Table 3), likely because (1) the GSM8K task is self-explanatory 310

and (2) CAPO can explore more freely. This demonstrates CAPO’s robustness and suggests even 311

generic instruction repositories could serve as initial populations. 312

7 Conclusion & Future Work 313

In this paper, we propose the discrete prompt optimization method CAPO. Our experiments 314

demonstrate that CAPO outperforms other discrete prompt optimizers in 11 out of 15 cases, with 315

differences up to 21%p on GSM8K with Llama-3.3-70B, while being competitive in the remaining 4 316

cases. CAPO yields better performance already at earlier stages than other algorithms after the full 317

budget, showing its cost-efficiency, and remains dominant over the entire budget. Nonetheless, 318

it yields longer prompts due to few-shot examples. Our ablation studies reveal several important 319

insights: (I.) few-shot examples substantially contribute to the performance, especially for complex 320

tasks, while CAPO maintains strong performance even without examples; (II.) the length-penalty 321

effectively reduces average prompt length throughout optimization; (III.) racing leads to considerable 322

savings in terms of evaluations, enabling more iterations; and (IV.) task descriptions make CAPO 323

robust, yielding strong performance with generic initial instructions. 324

Despite the great advances, our work also has limitations. First, racing does not necessarily 325

contribute to better performance. We hypothesize that the significance level of 𝛼 = 0.2 could be too 326

large, prematurely discarding promising prompts. Moreover, our study focuses on smaller models, 327

which could be extended to larger LLMs, and is limited to classification and math tasks, while the 328

main usage of LLMs is text generation. Additionally, all datasets are older than the LLMs, leading 329

to potential test set contamination. Nonetheless, this limitation holds for all optimizers equally, not 330

affecting our conclusions. Finally, output token length is another major cost factor influenced by 331

the prompt, which is not considered in our work and should be addressed by future work. 332

In the future, we plan to make CAPO an a posteriori multi-objective method, allowing the 333

user to choose from a final population that differently balances prompt performance and length. 334

In addition, we plan to study the use of other strategies for budget allocation, such as successive 335

halving (Karnin et al., 2013; Parmentier et al., 2019) or hyperband (Li et al., 2018; Awad et al., 2021). 336

8 Broader Impact Statement 337

Making CAPO openly available enables positive impacts across industrial and research applications, 338

though also creating potential for misuse by malicious actors. As our work builds upon LLMs, it 339

inherits their associated impacts, including potential biases, hallucination, and energy consumption. 340

Prompt optimization specifically requires numerous LLM calls, resulting in significant energy 341

expenditure and negative environmental impact. Nonetheless, CAPO aims to reduce these costs. 342

Through racing, CAPO saves evaluations while producing effective prompts earlier, a length penalty 343

encourages shorter prompts for reduced production costs. Our algorithm often achieves better 344

performance at a substantially smaller input token budget than other optimizers on the full budget, 345

greatly improving cost-efficiency. These efficiency improvements directly translate to reduced 346

energy requirements for more environmentally sustainable prompt optimization. 347

9

References 348

Agarwal, E., Singh, J., Dani, V., Magazine, R., Ganu, T., and Nambi, A. (2024). PromptWizard: 349

Task-aware prompt optimization framework. arXiv:2405.18369 [cs.CL]. 350

Awad, N., Mallik, N., and Hutter, F. (2021). DEHB: Evolutionary hyperband for scalable, robust and 351

efficient Hyperparameter Optimization. In Zhou, Z., editor, Proceedings of the 30th International 352

Joint Conference on Artificial Intelligence (IJCAI’21), pages 2147–2153. 353

Balaprakash, P., Birattari, M., and Stützle, T. (2007). Improvement strategies for the f-race algorithm: 354

Sampling design and iterative refinement. In Bartz-Beielstein, T., Aguilera, M. B., Blum, C., 355

Naujoks, B., Roli, A., Rudolph, G., and Sampels, M., editors, Proceedings of the International 356

Workshop on Hybrid Metaheuristics (HM’07), volume 4771 of Lecture Notes in Computer Science, 357

pages 108–122. Springer. 358

Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA: Multiobjective selection based on 359

dominated hypervolume. European Journal of Operational Research, 181(3):1653–1669. 360

Birattari, M. (2009). Tuning Metaheuristics, volume 197 of Studies in Computational Intelligence. 361

Springer, Berlin, Heidelberg. 362

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configuring 363

metaheuristics. In Langdon, W., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrish- 364

nan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A., Miller, J., Burke, 365

E., and Jonoska, N., editors, Proceedings of the Genetic and Evolutionary Computation Conference 366

(GECCO’02), pages 11–18. Morgan Kaufmann Publishers. 367

Birattari, M., Yuan, Z., Balaprakash, P., and Stützle, T. (2010). F-Race and Iterated F-Race: An 368

overview. In Bartz-Beielstein, T., Chiarandini, M., Paquete, L., and Preuss, M., editors, Exper- 369

imental Methods for the Analysis of Optimization Algorithms, pages 311–336. Springer, Berlin, 370

Heidelberg. 371

Blot, A., Hoos, H. H., Jourdan, L., Kessaci-Marmion, M.-É., and Trautmann, H. (2016). MO-ParamILS: 372

A multi-objective automatic algorithm configuration framework. In Festa, P., Sellmann, M., 373

and Vanschoren, J., editors, Proceedings of the Tenth International Conference on Learning and 374

Intelligent Optimization (LION’16), Lecture Notes in Computer Science, pages 32–47. Springer. 375

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., 376

Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, 377

A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., 378

Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language 379

models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., and Lin, 380

H., editors, Proceedings of the 33rd International Conference on Advances in Neural Information 381

Processing Systems (NeurIPS’20), pages 1877–1901. Curran Associates. 382

Chen, L., Chen, J., Goldstein, T., Huang, H., and Zhou, T. (2024). InstructZero: Efficient instruction 383

optimization for black-box large language models. In Salakhutdinov, R., Kolter, Z., Heller, K., 384

Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F., editors, Proceedings of the 41st International 385

Conference on Machine Learning (ICML’24), volume 235 of Proceedings of Machine Learning 386

Research, pages 6503–6518. PMLR. 387

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, 388

J., Nakano, R., Hesse, C., and Schulman, J. (2021). Training verifiers to solve math word problems. 389

arXiv:2110.14168 [cs.LG]. 390

10

Conover, W. J. (1999). Practical Nonparametric Statistics. John Wiley & Sons. 391

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic 392

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197. 393

Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T., Song, M., Xing, E., and Hu, Z. (2022). 394

RLPrompt: Optimizing discrete text prompts with reinforcement learning. In Goldberg, Y., 395

Kozareva, Z., and Zhang, Y., editors, Proceedings of the 2022 Conference on Empirical Methods 396

in Natural Language Processing (EMNLP), pages 3369–3391. Association for Computational 397

Linguistics. 398

Do, V.-T., Hoang, V.-K., Nguyen, D.-H., Sabahi, S., Yang, J., Hotta, H., Nguyen, M.-T., and Le, H. 399

(2024). Automatic prompt selection for large language models. 400

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles. 401

Mathematical Programming, 91(2):201–213. 402

Falkner, S., Klein, A., andHutter, F. (2018). BOHB: Robust and efficient Hyperparameter Optimization 403

at scale. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on 404

Machine Learning (ICML’18), volume 80, pages 1437–1446. Proceedings of Machine Learning 405

Research. 406

Fernando, C., Banarse, D., Michalewski, H., Osindero, S., and Rocktäschel, T. (2024). Promptbreeder: 407

self-referential self-improvement via prompt evolution. In Salakhutdinov, R., Kolter, Z., Heller, K., 408

Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F., editors, Proceedings of the 41st International 409

Conference on Machine Learning (ICML’24), volume 235 of Proceedings of Machine Learning 410

Research, pages 13481–13544. PMLR. 411

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. (2023). GPTQ: Accurate post-training 412

quantization for generative pre-trained transformers. arXiv:2210.17323 [cs.LG]. 413

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison- 414

Wesley Longman Publishing Co., Inc., USA, 1st edition. 415

Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., Liu, G., Bian, J., and Yang, Y. (2024). Connecting 416

large language models with evolutionary algorithms yields powerful prompt optimizers. In The 417

Twelfth International Conference on Learning Representations. 418

Hsu, H. and Lachenbruch, P. A. (2014). Paired Test. InWiley StatsRef: Statistics Reference Online. 419

John Wiley & Sons, Ltd. 420

Hutter, F., Hoos, H., and Leyton-Brown, K. (2011). Sequential model-based optimization for general 421

algorithm configuration. In Coello, C., editor, Proceedings of the Fifth International Conference 422

on Learning and Intelligent Optimization (LION’11), volume 6683 of Lecture Notes in Computer 423

Science, pages 507–523. Springer. 424

Hutter, F., Hoos, H., Leyton-Brown, K., and Stützle, T. (2009). ParamILS: An automatic algorithm 425

configuration framework. Journal of Artificial Intelligence Research, 36:267–306. 426

Hutter, F., Kotthoff, L., and Vanschoren, J., editors (2019). Automated Machine Learning: Methods, 427

Systems, Challenges. Springer. Available for free at http://automl.org/book. 428

Jamieson, K. and Talwalkar, A. (2016). Non-stochastic best arm identification and Hyperparameter 429

Optimization. In Gretton, A. and Robert, C., editors, Proceedings of the Seventeenth International 430

Conference on Artificial Intelligence and Statistics (AISTATS’16), volume 51. Proceedings of Machine 431

Learning Research. 432

11

http://automl.org/book

Jiang, Z., Xu, F. F., Araki, J., and Neubig, G. (2020). How can we know what language models know? 433

Transactions of the Association for Computational Linguistics, 8:423–438. 434

Jin, Y. and Sendhoff, B. (2008). Pareto-based multiobjective machine learning: an overview and case 435

studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 436

38(3):397–415. 437

Karl, F., Pielok, T., Moosbauer, J., Pfisterer, F., Coors, S., Binder, M., Schneider, L., Thomas, J., Richter, 438

J., Lang, M., Garrido-Merchán, E., Branke, J., and Bischl, B. (2023). Multi-objective hyperparameter 439

optimization – an overview. Transactions of Evolutionary Learning and Optimization, 3(4):1––50. 440

Karmaker Santu, S. K. and Feng, D. (2023). TELeR: A general taxonomy of LLM prompts for 441

benchmarking complex tasks. In Bouamor, H., Pino, J., and Bali, K., editors, Findings of the 442

Association for Computational Linguistics: EMNLP 2023, pages 14197–14203. Association for 443

Computational Linguistics. 444

Karnin, Z., Koren, T., and Somekh, O. (2013). Almost optimal exploration in multi-armed bandits. 445

In Dasgupta, S. and McAllester, D., editors, Proceedings of the 30th International Conference on 446

Machine Learning (ICML’13), pages 1238–1246. Omnipress. 447

Kavumba, P., Inoue, N., Heinzerling, B., Singh, K., Reisert, P., and Inui, K. (2019). When choosing 448

plausible alternatives, clever hans can be clever. In Ostermann, S., Zhang, S., Roth, M., and Clark, 449

P., editors, Proceedings of the First Workshop on Commonsense Inference in Natural Language 450

Processing, pages 33–42. Association for Computational Linguistics. 451

Knowles, J. D. (2006). ParEGO: a hybrid algorithm with on-line landscape approximation for 452

expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 453

10(1):50–66. 454

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J., Zhang, H., and Stoica, I. 455

(2023). Efficient memory management for large language model serving with pagedattention. In 456

Proceedings of the 29th Symposium on Operating Systems Principles (SOSP ’23), pages 611–626. 457

Association for Computing Machinery. 458

Lester, B., Al-Rfou, R., and Constant, N. (2021). The power of scale for parameter-efficient prompt 459

tuning. In Moens, M.-F., Huang, X., Specia, L., and Yih, S. W.-t., editors, Proceedings of the 2021 460

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3045–3059. 461

Association for Computational Linguistics. 462

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018). Hyperband: A novel 463

bandit-based approach to Hyperparameter Optimization. Journal of Machine Learning Research, 464

18(185):1–52. 465

Li, X. L. and Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. In 466

Zong, C., Xia, F., Li, W., and Navigli, R., editors, Proceedings of the 59th Annua Meeting of the 467

Association for Computational Linguistics and the 11th International Joint Conference on Natural 468

Language Processing (Volume 1: Long Papers), pages 4582–4597. Association for Computational 469

Linguistics. 470

Lin, X., Wu, Z., Dai, Z., Hu, W., Shu, Y., Ng, S.-K., Jaillet, P., and Low, B. K. H. (2024). Use your 471

INSTINCT: INSTruction optimization for LLMs usIng neural bandits coupled with transformers. 472

In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F., 473

editors, Proceedings of the 41st International Conference on Machine Learning (ICML’24), volume 474

235 of Proceedings of Machine Learning Research, pages 30317–30345. PMLR. 475

12

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G. (2023). Pre-train, prompt, and predict: 476

A systematic survey of prompting methods in natural language processing. ACM Computing 477

Surveys, 55(9):195:1–195:35. 478

López-Ibáñez, M., Dubois-Lacoste, J., Caceres, L. P., Birattari, M., and Stützle, T. (2016). The irace 479

package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 480

3:43–58. 481

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp, P. (2022). Fantastically ordered prompts and 482

where to find them: Overcoming few-shot prompt order sensitivity. In Muresan, S., Nakov, P., 483

and Villavicencio, A., editors, Proceedings of the 60th Annual Meeting of the Association for Com- 484

putational Linguistics (Volume 1: Long Papers), pages 8086–8098. Association for Computational 485

Linguistics. 486

Maron, O. and Moore, A. (1994). Hoeffding races: accelerating model selection search for clas- 487

sification and function approximation. In Cowan, J. D., Tesauro, G., and Alspector, J., editors, 488

Proceedings of the 8th International Conference on Advances in Neural Information Processing 489

Systems (NeurIPS’94), pages 59–66. Morgan Kaufmann Publishers. 490

Meskó, B. (2023). Prompt engineering as an important emerging skill for medical professionals: 491

Tutorial. Journal of Medical Internet Research, 25(1):e50638. 492

Meta (2024). Llama 3.3: Model cards and prompt formats. https://www.llama.com/docs/ 493

model-cards-and-prompt-formats/llama3_3/. Accessed: 2025-03-31. 494

Miettinen, K. (1998). Nonlinear Multiobjective Optimization, volume 12 of International Series in 495

Operations Research & Management Science. Springer US, Boston, MA. 496

Miranda, P., Silva, R. M., and Prudêncio, R. (2015). I/S-Race: An iterative multi-objective racing 497

algorithm for the SVM parameter selection problem. In 22st European Symposium on Artificial 498

Neural Networks, Computational Intelligence And Machine Learning, Bruges, April, pages 23–24. 499

Mistral AI Team (2025). Mistral Small 3: Mistral AI. https://mistral.ai/news/mistral-small-3. 500

Accessed: 2025-03-31. 501

Moore, A. W. and Lee, M. S. (1994). Efficient Algorithms for Minimizing Cross Validation Error. In 502

Cohen, W. W. and Hirsh, H., editors, Machine Learning Proceedings 1994, pages 190–198. Morgan 503

Kaufmann. 504

Pang, B. and Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity 505

summarization based on minimum cuts. In Proceedings of the 42nd Annual Meeting of the 506

Association for Computational Linguistics (ACL-04), pages 271–278. 507

Parmentier, L., Nicol, O., Jourdan, L., and Kessaci, M. (2019). TPOT-SH: A faster optimization algo- 508

rithm to solve the automl problem on large datasets. In Proceedings of the 31st IEEE International 509

Conference on Tools with Artificial Intelligence (ICTAI’19), pages 471–478. IEEE Computer Society, 510

IEEE. 511

Pryzant, R., Iter, D., Li, J., Lee, Y., Zhu, C., and Zeng, M. (2023). Automatic prompt optimization with 512

“gradient descent” and beam search. In Bouamor, H., Pino, J., and Bali, K., editors, Proceedings 513

of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 514

7957–7968. Association for Computational Linguistics. 515

13

https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://mistral.ai/news/mistral-small-3

Qin, G. and Eisner, J. (2021). Learning how to ask: Querying lms with mixtures of soft prompts. In 516

Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, 517

R., Chakraborty, T., and Zhou, Y., editors, Proceedings of the 2021 Conference of the North American 518

Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 519

5203–5212. Association for Computational Linguistics. 520

Qwen, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, 521

H., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J., Dang, K., Lu, K., Bao, K., Yang, K., 522

Yu, L., Li, M., Xue, M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Tang, T., Xia, T., Ren, X., Ren, 523

X., Fan, Y., Su, Y., Zhang, Y., Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and Qiu, Z. (2025). Qwen2.5 524

technical report. arXiv:2412.15115 [cs.CL]. 525

Schneider, L., Wistuba, M., Klein, A., Golebiowski, J., Zappella, G., and Merra, F. A. (2024). 526

Hyperband-based Bayesian Optimization for black-box prompt selection. arXiv:2412.07820 527

[cs.LG]. 528

Schulhoff, S., Ilie, M., Balepur, N., Kahadze, K., Liu, A., Si, C., Li, Y., Gupta, A., Han, H., Schulhoff, S., 529

Dulepet, P. S., Vidyadhara, S., Ki, D., Agrawal, S., Pham, C., Kroiz, G., Li, F., Tao, H., Srivastava, A., 530

Costa, H. D., Gupta, S., Rogers, M. L., Goncearenco, I., Sarli, G., Galynker, I., Peskoff, D., Carpuat, 531

M., White, J., Anadkat, S., Hoyle, A., and Resnik, P. (2025). The prompt report: A systematic 532

survey of prompt engineering techniques. arXiv:2406.06608 [cs.CL]. 533

Shi, C., Yang, K., Yang, J., and Shen, C. (2024). Best arm identification for prompt learning under 534

a limited budget. In ICLR 2024 Workshop on Mathematical and Empirical Understanding of 535

Foundation Models. 536

Shi, W., Han, X., Gonen, H., Holtzman, A., Tsvetkov, Y., and Zettlemoyer, L. (2023). Toward human 537

readable prompt tuning: Kubrick‘s the shining is a good movie, and a good prompt too? In 538

Bouamor, H., Pino, J., and Bali, K., editors, Findings of the Association for Computational Linguistics: 539

EMNLP 2023, pages 10994–11005. Association for Computational Linguistics. 540

Shin, T., Razeghi, Y., IV, R. L., Wallace, E., and Singh, S. (2020). Autoprompt: Eliciting knowledge 541

from language models with automatically generated prompts. In Webber, B., Cohn, T., He, Y., 542

and Liu, Y., editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language 543

Processing (EMNLP), pages 4222–4235. Association for Computational Linguistics. 544

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. (2013). Recursive 545

deep models for semantic compositionality over a sentiment treebank. In Yarowsky, D., Baldwin, 546

T., Korhonen, A., Livescu, K., and Bethard, S., editors, Proceedings of the 2013 Conference on Em- 547

pirical Methods in Natural Language Processing, pages 1631–1642. Association for Computational 548

Linguistics. 549

Sorensen, T., Robinson, J., Rytting, C., Shaw, A., Rogers, K., Delorey, A., Khalil, M., Fulda, N., and 550

Wingate, D. (2022). An information-theoretic approach to prompt engineering without ground 551

truth labels. In Muresan, S., Nakov, P., and Villavicencio, A., editors, Proceedings of the 60th 552

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 553

819–862. Association for Computational Linguistics. 554

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., and Polosukhin, I. 555

(2017). Attention is all you need. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H., Fergus, 556

R., Vishwanathan, S., and Garnett, R., editors, Proceedings of the 31st International Conference on 557

Advances in Neural Information Processing Systems (NeurIPS’17). Curran Associates, Inc. 558

14

Wan, X., Sun, R., Nakhost, H., and Arı k, S. O. (2024). Teach better or show smarter? on instructions 559

and exemplars in automatic prompt optimization. In Globerson, A., Mackey, L., Belgrave, D., Fan, 560

A., Paquet, U., Tomczak, J., and Zhang, C., editors, Proceedings of the 37th International Conference 561

on Advances in Neural Information Processing Systems (NeurIPS’24), pages 58174–58244. Curran 562

Associates. 563

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., and 564

Schmidt, D. C. (2025). A prompt pattern catalog to enhance prompt engineering with chatgpt. In 565

Proceedings of the 30th Conference on Pattern Languages of Programs, PLoP ’23, pages 1–31, USA. 566

The Hillside Group. 567

Wu, Z., Lin, X., Dai, Z., Hu, W., Shu, Y., Ng, S.-K., Jaillet, P., and Low, B. K. H. (2024). Prompt opti- 568

mization with EASE? efficient ordering-aware automated selection of exemplars. In Globerson, 569

A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C., editors, Proceed- 570

ings of the 37th International Conference on Advances in Neural Information Processing Systems 571

(NeurIPS’24), pages 122706–122740. Curran Associates. 572

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and Chen, X. (2024). Large language models 573

as optimizers. In The Twelfth International Conference on Learning Representations. 574

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G. C. (2013). S-Race: a multi-objective 575

racing algorithm. In Blum, C. and Alba, E., editors, Proceedings of the Genetic and Evolutionary 576

Computation Conference (GECCO’13), pages 1565–1572. ACM Press. 577

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G. C. (2015a). SPRINT multi-objective model 578

racing. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 579

pages 1383–1390. Association for Computing Machinery. 580

Zhang, X., Zhao, J., and LeCun, Y. (2015b). Character-level convolutional networks for text 581

classification. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors, 582

Proceedings of the 28th International Conference on Advances in Neural Information Processing 583

Systems (NeurIPS’15). Curran Associates. 584

Zhao, Z., Wallace, E., Feng, S., Klein, D., and Singh, S. (2021). Calibrate before use: Improving 585

few-shot performance of language models. In Meila, M. and Zhang, T., editors, Proceedings of 586

the 38th International Conference on Machine Learning (ICML’21), volume 139 of Proceedings of 587

Machine Learning Research, pages 12697–12706. PMLR. 588

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., and Ba, J. (2023). Large language 589

models are human-level prompt engineers. In The Eleventh International Conference on Learning 590

Representations (ICLR’23). ICLR. Published online: iclr.cc. 591

15

iclr.cc

Submission Checklist 592

1. For all authors. . . 593

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 594

contributions and scope? [Yes] 595

(b) Did you describe the limitations of your work? [Yes] Limitations are discussed in Section 7. 596

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Societal impacts 597

of our work are discussed in Section 8. 598

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? 599

https://2022.automl.cc/ethics-accessibility/ [Yes] The ethics guidelines have been 600

reviewed and implemented in our paper, including but not limited to colorblind-friendly 601

visualizations, accessible figure design, and more. 602

2. If you ran experiments. . . 603

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same 604

benchmarks, data (sub)sets, available resources)? [Yes] The same evaluation protocol was 605

used for every prompt optimization algorithm and parametrization (same datasets, LLMs, 606

budget, seeds, initial instructions, task descriptions, etc.). 607

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 608

search spaces, hyperparameter tuning)? [Yes] Details of our experiments and evaluations 609

are described in Section 5, further details are provided in Appendix C (including data splits, 610

exact model revisions, etc.). 611

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account for 612

the impact of randomness in your methods or data? [Yes] All experiments were performed 613

over three different random seeds. 614

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or 615

splits)? [Yes] The standard deviations across the three random seeds are reported. 616

(e) Did you report the statistical significance of your results? [No] Due to the cost of running 617

prompt optimization we were only able to conduct three repetitions per method and task, 618

which is not sufficient for statistical tests. 619

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] Prompt 620

optimization does not employ traditional tabular or surrogate benchmarks typically used in 621

AutoML. We evaluate performance on classical NLP tasks instead. 622

(g) Did you compare performance over time and describe how you selected the maximum 623

duration? [No] Instead of performance over time, we compare performance over input 624

tokens, which we argue is the more important dimension in prompt optimization. We 625

describe how we selected the maximum budget in Section 5. 626

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 627

gpus, internal cluster, or cloud provider)? [Yes] Hardware details and the total computation 628

time for our experiments are reported in Appendix C.3. 629

(i) Did you run ablation studies to assess the impact of different components of your approach? 630

[Yes] Ablation studies and their purposes are described in Section 5, corresponding results 631

are reported in Section 6. 632

3. With respect to the code used to obtain your results. . . 633

16

https://2022.automl.cc/ethics-accessibility/

(a) Did you include the code, data, and instructions needed to reproduce the main experi- 634

mental results, including all requirements (e.g., requirements.txt with explicit versions), 635

random seeds, an instructive README with installation, and execution commands (either 636

in the supplemental material or as a url)? [Yes] Our implementation is fully available as 637

supplementary material. A README provides a detailed description of how to install it, which 638

scripts to use, and how to run an experiment. Exact dependencies can be installed from a 639

pyproject.toml and poetry.lock file, random seeds are used throughout the experiments 640

and documented in the code configuration, making our experiments fully reproducible. 641

(b) Did you include a minimal example to replicate results on a small subset of the experiments 642

or on toy data? [Yes] How to run an example experiment with smaller budget / number of 643

iterations for CAPO is provided in the README. 644

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 645

and understand your code? [Yes] High code quality was ensured through several tools 646

(pre-commit hooks, formatter, etc.), documentation is provided through docstrings and 647

inline comments, as well as through a comprehensive README with a detailed guide on how 648

to install the project and execute the experiments. 649

(d) Did you include the raw results of running your experiments with the given code, data, and 650

instructions? [Yes] All results reported in the paper are provided in the repository. 651

(e) Did you include the code, additional data, and instructions needed to generate the figures 652

and tables in your paper based on the raw results? [Yes] The entire code to process the raw 653

results, create the tables, and generate the figures is provided. 654

4. If you used existing assets (e.g., code, data, models). . . 655

(a) Did you cite the creators of used assets? [Yes] The corresponding sources are cited in 656

Section 5. 657

(b) Did you discuss whether and how consent was obtained from people whose data you’re 658

using/curating if the license requires it? [N/A] No consent required. 659

(c) Did you discuss whether the data you are using/curating contains personally identifiable 660

information or offensive content? [N/A] The used datasets do not contain personally 661

identifiable information. 662

5. If you created/released new assets (e.g., code, data, models). . . 663

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes] 664

Our code including the CAPO implementation are licensed under Apache 2.0 as mentioned 665

in the introduction. 666

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., 667

GitHub or Hugging Face)? [Yes] Our code is included as supplemental material. 668

6. If you used crowdsourcing or conducted research with human subjects. . . 669

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 670

cable? [N/A] No crowdsourcing or research with human subjects was used. 671

(b) Did you describe any potential participant risks, with links to Institutional Review Board 672

(irb) approvals, if applicable? [N/A] No crowdsourcing or research with human subjects 673

was used. 674

17

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 675

on participant compensation? [N/A] No crowdsourcing or research with human subjects 676

was used. 677

7. If you included theoretical results. . . 678

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical 679

results included. 680

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results 681

included. 682

18

A Background & Previous Works 683

A.1 Automatic Prompt Optimization 684

In this section, we synthesize work on automatic prompt optimization. Related fields include 685

manual prompt engineering, which, however, can be time-consuming, requires experience (Liu 686

et al., 2023), and has no guarantee of producing an optimal solution (Jiang et al., 2020). In contrast, 687

the related area of prompt selection addresses the efficient selection of prompts from a pre-defined 688

pool of candidates instead of producing new prompts (Sorensen et al., 2022; Do et al., 2024; Schneider 689

et al., 2024; Shi et al., 2024). We focus on automatic prompt optimization methods, which are often 690

categorized into continuous or soft prompt optimization and discrete prompt optimization (Agarwal 691

et al., 2024; Guo et al., 2024; Yang et al., 2024) 692

Continuous Prompt Optimization. These methods optimize prompts in continuous space to obtain 693

“soft prompts”, learnable continuous vectors (Li and Liang, 2021; Lester et al., 2021; Qin and Eisner, 694

2021). However, they require access to LLM parameters, which is infeasible for API LLMs, and are 695

not inherently interpretable for humans (Lester et al., 2021; Guo et al., 2024). Recent approaches 696

alleviate address these limitations: InstructZero (Chen et al., 2024) does not directly optimize the 697

instruction itself but a soft prompt using Bayesian Optimization (BO). The soft prompt steers an 698

open-source LLM to produce a task-specific, human-readable instruction, which is then submitted 699

to the black-box (API) LLM that is to be optimized, effectively creating a “hybrid” approach. 700

INSTINCT (Lin et al., 2024) builds on InstructZero using neural networks as surrogate models in 701

BO. 702

Discrete Prompt Optimization. Discrete methods optimize textual prompts directly by generating 703

multiple prompt variations and selecting the best candidates (Agarwal et al., 2024). While earlier 704

methods still require access to gradients or token probabilities (Shin et al., 2020; Deng et al., 2022; 705

Shi et al., 2023), many recent discrete methods are also applicable to black box LLMs. 706

These methods typically employ LLMs in the optimization process to perform alternations of 707

the prompt. We refer to this LLM and the prompt instructing it as meta-LLM and meta-prompt. 708

Automatic Prompt Engineer (APE) (Zhou et al., 2023) uses a meta-LLM to generate instruction 709

candidates from a small set of demonstrations, evaluates them using the LLM we seek to optimize, 710

then applies iterative Monte Carlo search a meta-LLM improves top candidates by proposing 711

semantically similar variants. Prompt Optimization with Textual Gradients (ProTeGi; also referred 712

to as APO (Automatic Prompt Optimization)) (Pryzant et al., 2023) leverages mispredicted instances 713

as “pseudo-gradients”, iteratively refining prompts by modifying them in the opposite semantic 714

direction of the gradient using a meta-LLM. PromptBreeder (Fernando et al., 2024) implements an 715

evolutionary strategy, that iteratively mutates a prompt population across multiple generations 716

using a meta-LLM and evaluates results on a training set. The mutation operation is steered 717

by mutation-prompts that are also LLM-generated and improved throughout the process in a 718

self-referential manner. 719

EvoPrompt (Guo et al., 2024) is a discrete prompt optimization framework also based on 720

evolutionary algorithms. This conceptually simpler approach outperforms PromptBreeder while 721

requiring fewer LLM calls (Agarwal et al., 2024). It also leverages a meta-LLM to perform cross-over 722

and mutation, enabling direct optimization of discrete prompts while maintaining coherence and 723

human readability. EvoPrompt starts from an initial prompt population, iteratively generates 724

new prompts using a meta-LLM for evolutionary operators, evaluates generated candidates on a 725

development set, selects the best performing ones as survivors, and terminates after a predefined 726

number of iterations. Guo et al. (2024) present two instantiations of EvoPrompt: Genetic Algorithm 727

(GA) and Differential Evolution (DE). EvoPromptGA serves as basis for our work. In each iteration, 728

it selects two parent prompts via roulette wheel selection and generates new candidate prompts 729

in two steps: first, cross-over combines properties from both parents into an offspring; second, 730

19

each offspring is mutated through small random modifications. Both evolutionary operations are 731

implemented through a single meta-prompt instructing the meta-LLM. Each iteration produces 𝜇 732

new prompts that compete with the existing 𝜇 ones, from which the top 𝜇 survive. Experiments 733

across language understanding, generation, and BIG-Bench Hard (BBH) tasks demonstrate that both 734

EvoPrompt instantiations outperform human-written instructions and previous prompt optimizers 735

such as APE and APO (ProTeGi) (Guo et al., 2024). However, EvoPrompt has two major drawbacks: 736

First, it is cost-intensive requiring a total of 𝜇 · 𝑇 · (1 + |Ddev |) LLM calls (Guo et al., 2024) with 737

population size 𝜇, number of iterations 𝑇 , and development set size |Ddev |. This number is mainly 738

driven by the size of Ddev, which is usually much larger than 𝜇 and𝑇 . Second, as identified by Yang 739

et al. (2024), EvoPrompt’s performance can degrade with poor or task-unspecific prompts due to its 740

reliance on task specification via prompt population. 741

OPRO (Yang et al., 2024) directly employs LLMs as optimizers by specifying optimization tasks 742

in natural language. When used for prompt optimization, a meta-LLM generates new prompt 743

candidates at each iteration, guided by a meta-prompt that contains the task description, task 744

examples, and previously generated candidates with their scores. New candidates are evaluated and 745

appended to the meta-prompt for the subsequent iteration. This approach substantially outperforms 746

human-designed prompts on GSM8K and BBH tasks. Unlike EvoPrompt, OPRO maintains good 747

performance even with task-unspecific initial instructions by leveraging explicit task descriptions 748

and examples within the meta-prompt. 749

The approaches described above focus solely on instruction optimization without incorporating 750

few-shot examples in the generated prompts (though some use examples in their meta-prompts), 751

despite evidence that such examples can significantly improve LLM performance (Brown et al., 752

2020). Automatic prompt optimization also covers optimization of the few-shot examples (“exemplar 753

optimization”), aiming to improve the selection of relevant few-shot examples. Research indicates 754

that even simple random example selection can perform comparably to sophisticated instruction 755

optimization methods, and combining instruction and example optimization creates synergistic 756

effects enhancing overall performance (Wan et al., 2024). 757

A recent approach that optimizes jointly instructions and examples is PromptWizard (Agarwal 758

et al., 2024). This algorithm iteratively improves prompts through multiple steps: generating variant 759

instructions via different thinking styles (mutation), evaluating them (scoring), providing feedback 760

on top performers (critique), and implementing refinements (synthesis). It simultaneously optimizes 761

in-context examples and uses critique and synthesis to produce synthetic examples addressing the 762

prompt’s weaknesses. Moreover, PromptWizard incorporates automatically generated chain-of- 763

thought reasoning for few-shot examples and leverages task intent and an expert persona in prompts. 764

It reportedly outperforms Instinct, InstructZero, APE, PromptBreeder, and EvoPrompt on BIG-Bench 765

Instruction Induction (BBII) while substantially reducing LLM calls and token usage. However, 766

PromptWizard’s optimization procedure, similar to ProTeGi and OPRO, partially relies on a notion 767

of what constitutes a “good” prompt. PromptWizard and ProTeGi both ask a meta-LLM to identify 768

potential problems (Pryzant et al., 2023; Agarwal et al., 2024) while OPRO and ProTeGi instruct 769

it to explicitly improve the prompt (Pryzant et al., 2023; Yang et al., 2024). Considering prompt 770

performance for a specific task does not necessarily follow predictable patterns and semantically 771

similar prompts vary greatly in performance (Yang et al., 2024), these optimizers may fall short in 772

improving these subtleties. Conversely, techniques like EvoPrompt or PromptBreeder largely avoid 773

any notion of “good” prompts and optimize solely based on scores and algorithmic mechanisms (Guo 774

et al., 2024; Fernando et al., 2024). 775

A.2 AutoML Techniques: Racing and Multi-Objective Optimization 776

The field of AutoML offers many techniques that aim to make optimization more efficient, including 777

racing algorithms (Maron and Moore, 1994; Birattari et al., 2002; López-Ibáñez et al., 2016), multi- 778

fidelity optimization (Jamieson and Talwalkar, 2016; Li et al., 2018; Falkner et al., 2018; Awad et al., 779

20

2021), and multi-objective optimization with efficiency as an additional goal (Karl et al., 2023), to 780

name just a few. These methods have also been successfully adopted beyond AutoML, for example, 781

in the field of prompt selection, where efficiency is similarly important (Schneider et al., 2024; Shi 782

et al., 2024). 783

Racing. Racing refers to class of algorithms initially proposed for model selection in Machine 784

Learning (Maron and Moore, 1994) and later adopted for algorithm configuration (Birattari et al., 785

2002). These algorithms sequentially evaluate candidates and eliminate poor one as soon as enough 786

statistical evidence is collected against them, continuing the race only with surviving candidates. 787

This approach accelerates optimization by spending less evaluations on poor candidates, allowing 788

more resources to be concentrated on promising candidates (Birattari et al., 2002, 2010). 789

Hoeffding Races (Maron and Moore, 1994) one of the earliest racing methods, sequentially 790

evaluating candidates on problem instances and using Hoeffding’s bound to eliminate statistically 791

inferior options early. While this non-parametric approach imposes no distributional assumptions, 792

it tends to be relatively conservative (Moore and Lee, 1994) BRACE (Moore and Lee, 1994) therefore 793

uses Bayesian statistics instead of loose non-parametric bounds like Hoeffding’s, enabling much 794

earlier elimination of poor candidates. 795

F-Race (Birattari et al., 2002), forming the basis for many contemporary racing algorithms, 796

employs the Friedman two-way analysis of variance by ranks (Conover, 1999), an omnibus test 797

to compare multiple candidates. It partitions the observations into groups called blocks and tests 798

the null hypothesis that all possible candidate rankings within each block are equally likely. If 799

this hypothesis is rejected, pairwise post-hoc tests between individual candidates are performed. 800

Otherwise, all candidates advance to the next step. Since F-Race is suitable only for moderate 801

numbers of candidates, Iterative F-Race (I/F-Race) (Balaprakash et al., 2007) extends it by iteratively 802

applying F-Race while biasing a probabilistic model of the candidate space toward promising 803

regions, from which subsequent candidates are sampled. 804

The irace package (López-Ibáñez et al., 2016) provides a general iterated racing implementation, 805

of which I/F-Race is a special case, and offers several extensions and improvements. It implements 806

the paired t-test as an alternative to the Friedman test. The latter is preferable when score ranges 807

across different instances are not commensurable or the objective is an order statistic, while the t- 808

test is more suitable when the objective corresponds to the mean of the score function. For multiple 809

classes, irace recommends structuring instances in blocks rather than adding single instances 810

per iteration. At the end of a race, the surviving candidates with highest overall rank across all 811

instances/blocks are selected. They also present elitist racing as extension, which protects high- 812

performing candidates (“elites”) from elimination unless a new candidate demonstrates superior 813

performance across at least the same number of evaluation instances. 814

FocusedILS, an instantiation of ParamILS (Hutter et al., 2009), employs an approach similar to 815

racing to save evaluation costs by adaptively increasing the number of evaluations and comparing 816

configurations based on domination: One configuration dominates another when it performs at 817

least as well on the same number of instances. A “bonus run” mechanism allocates more evaluation 818

resources to promising configurations. Similarly, Random Online Adaptive Racing (ROAR) and 819

Sequential Model-based Algorithm Configuration (SMAC) (Hutter et al., 2011) implement an 820

“intensification” mechanism. Although called racing, it does not use statistical testing. If a new 821

candidate performs worse than the incumbent on the set of common instances, evaluating the new 822

candidate immediately stops. Otherwise, further evaluations are added exponentially. 823

Multi-Objective Optimization. Multi-objective optimization is another technique prevalent in the 824

field of AutoML (Hutter et al., 2019), addressing scenarios with multiple competing objectives. Typi- 825

cal applications involve balancing different prediction performance metrics or trading off predictive 826

performance against computational efficiency, interpretability, or sparseness (Karl et al., 2023). 827

21

Multi-objective approaches are commonly categorized in a priori and a posteriori methods (Karl 828

et al., 2023). 829

A priori methods transform multiple objectives into a single one, for example, using a weighted 830

sum of the objectives, and yield only a single solution candidate (Karl et al., 2023). Although a 831

single objective greatly simplifies the optimization problem (Miettinen, 1998), this approach has 832

the difficulty that scalarization weights msut be chosen a priori, which can be non-trivial, and 833

trade-offs between competing objectives cannot be fully captured by a single solution (Jin and 834

Sendhoff, 2008). 835

Conversely, a posteriori methods produce a set of Pareto-optimal solutions that domain ex- 836

perts can analyze after the optimization process (Karl et al., 2023). Evolutionary algorithms are 837

particularly well-suited due to their population-based nature. Notable multi-objective evolution- 838

ary optimizers include NSGA-II (Deb et al., 2002), which uses non-dominated sorting rank and 839

crowding distance for selection, and SMS-EMOA (Beume et al., 2007), which employs marginal 840

hypervolume contribution as secondary criterion. Bayesian Optimization approaches have also 841

been extended to multi-objective scenarios, with ParEGO (Knowles, 2006) being a prominent exam- 842

ple. ParEGO approximates the Pareto-front by utilizing a set of randomly generated scalarization 843

weights throughout its iterations. 844

Finally, combinations of multi-objective optimization and racing methods have been developed. 845

irace can be used to configure multi-objective optimization algorithms by converting multi-objective 846

problems into single-objective evaluations using Hypervolume or the 𝜀-measure (López-Ibáñez et al., 847

2016). S-Race (Zhang et al., 2013), specifically designed for multiple objectives, discards candidates 848

once there is sufficient statistical evidence against them with respect to all objectives, later extended 849

by SPRINT-Race (Zhang et al., 2015a) and I/S-Race (Miranda et al., 2015). A multi-objective variant 850

of ParamILS, MO-ParamILS (Blot et al., 2016), also exists, which works on a set of non-dominated 851

configurations in the Pareto-sense (“archive”) instead of a single configuration. 852

22

B Algorithm Details 853

Algorithm 2 CAPO Functions

Require: population P𝜇 , meta-LLM Φmeta, evaluation-LLM Φ
eval

, cross-over-meta-prompt 𝑝𝐶 , mutation-meta-prompt

𝑝𝑀 , number of crossovers 𝑐 , offspring promptsP
off
, few-shot datasetD

shots
, maximum number of few-shot examples

𝑘max, blocks B, confidence level 𝛼 , token length penalty control parameter 𝛾 , number of survivors 𝑛survive, max.

number of evaluated blocks 𝑧max

1: function cross_over(P𝜇 , Φmeta, 𝑝𝐶 , 𝑐)

2: P
off
← []

3: for 𝑗 = 1 to 𝑐 do
4: 𝑝𝑎, 𝑝𝑏 ← sample(P𝜇 , 2) ⊲ 𝑝𝑎 = (𝑖𝑎, 𝒆𝒂), 𝑝𝑏 = (𝑖𝑏 , 𝒆𝒃)
5: 𝑖

off
← Φmeta (𝑝𝐶 | |𝑖𝑎 | |𝑖𝑏) ⊲ Let meta-LLM cross the parent prompts

6: 𝒆
off
← sample(𝒆𝒂 ∪ 𝒆𝒃 ,

⌊
|𝒆𝒂 |+|𝒆𝒃 |

2

⌋
) ⊲ Sample from parent shots

7: 𝑝
off
← (𝑖

off
, 𝒆

off
)

8: P
off
← append(𝑝

off
,P

off
)

9: end for
10: return P

off

11: end function
12: function mutate(P

off
, Φmeta, Φeval

, 𝑝𝑀 , D
shots

, 𝑘max)

13: Pmut ← []
14: for 𝑝

off
∈ P

off
do

15: 𝑖mut ← Φmeta (𝑝𝑀 ∥ 𝑖off) ⊲ Let meta-LLM mutate the instruction

16: 𝑟 ∼ Unif({0, 1, 2})
17: if 𝑟 = 0 ∧ |𝒆

off
| < 𝑘max then ⊲ Case 1: Create a new few-shot example

18: 𝒆new ← 𝒆
off
∪ create_shots(D

shots
, 1, 𝑖mut,Φeval

)
19: else if 𝑟 = 1 ∧ |𝒆

off
| > 0 then ⊲ Case 2: Remove a few-shot example

20: 𝒆new ← sample(𝒆
off
, |𝒆

off
| − 1)

21: end if ⊲ Case 3: Keep number of few-shot examples

22: 𝑝mut ←
(
𝑖mut, shuffle(𝒆new)

)
23: Pmut ← append(𝑝mut,Pmut)
24: end for
25: return Pmut

26: end function
27: function do_racing(P𝜇 , B, Φeval

, 𝛼 , 𝛾 , 𝑛survive, 𝑧max)

28: 𝑗 ← 0

29: shuffle(B) ⊲ Optional (hyperparameter)

30: while |P𝜇 | > 𝑛survive ∧ 𝑗 < 𝑧max do
31: 𝑗 ← 𝑗 + 1
32: 𝑺 ← evaluate(P𝜇 , 𝐵:𝑗 , length_penalty = 𝛾) ⊲ Note: cache already evaluated blocks

33: P𝜇 ← racing_elimination(P𝜇 , 𝑺, 𝛼, 𝑛survive)
34: end while
35: P𝜇 ← sort(P𝜇) [: 𝑛survive] ⊲ Make sure to return only 𝑛survive prompts

36: return P𝜇

37: end function
38: function racing_elimination(P𝜇 , 𝑺 , 𝛼 , 𝑛survive)
39: Psurvivors ← P𝜇

40: 𝑐𝛼 ← get_critical_value(𝛼)
41: for 𝑝𝑖 ∈ Psurvivors do
42: 𝑛

sig_better
← ∑

𝑗≠𝑖 I{get_test_statistic(𝒔𝒋 , 𝒔𝒊) > 𝑐𝛼 } ⊲ Perform significance tests

43: if 𝑛
sig_better

≥ 𝑛survive then
44: Psurvivors← Psurvivors \{𝑝𝑖 } ⊲ Eliminate 𝑝𝑖
45: end if
46: end for
47: return Psurvivors

48: end function

23

C Technical Details 854

C.1 Model Details 855

We report detailed IDs and revisions of the utilized LLMs from HuggingFace in Table 4. To locally 856

host the LLMs, we use vLLM (Kwon et al., 2023) as fast and easy-to-use library for LLM inference 857

and serving since it efficiently manages the required memory and allows the usage of quantized 858

models. Note that we restrict maximum output length to 2048, which is long enough for almost all 859

generations while still allowing for reasonable large batch sizes. The optimal batch size is chosen 860

by vLLM depending on available memory. 861

Table 4: Overview of the utilized LLMs.

Model Huggingface ID Revision

Llama-3.3-70B shuyuej/Llama-3.3-70B-Instruct-GPTQ 3a7f7f7d46e362291821aaefb0a38b632f1190a8

Qwen2.5-32B Qwen/Qwen2.5-32B-Instruct-GPTQ-Int4 c83e67dfb2664f5039fd4cd99e206799e27dd800

Mistral-Small-24B ConfidentialMind/Mistral-Small-24B-

Instruct-2501_GPTQ_G128_W4A16_MSE

803393813b8fc4046fb663af2e3c56339a5b520b

C.2 Dataset Details 862

In our experiments we utilize five datasets, all retrieved from HuggingFace: 863

(1) SST-5 (Socher et al., 2013): sentiment classification dataset from the Stanford Sentiment Treebank 864

(SST) with five different sentiment classes. The input 𝑥 is taken from the column “text”, the 865

labels 𝑦 from the column “label_text”. 866

(2) AG News (Zhang et al., 2015b): topic classification dataset with titles and descriptions of news 867

articles that are to be assigned to either World, Sports, Business or Sci/Tech. The input 𝑥 is taken 868

from the column “text”, the labels 𝑦 from the column “label_text”. 869

(3) Subj (Pang and Lee, 2004): subjectivity classification dataset with movie reviews that are to 870

be classified as either subjective or objective. The input 𝑥 is taken from the column “text”, the 871

labels 𝑦 from the column “label_text”. 872

(4) GSM8K (Cobbe et al., 2021): grade school math word problems requiring multi-step reasoning. 873

We utilize the train and test split of the “main” subset, from which the column “question” is 874

used as input 𝑥 , the label 𝑦 is extracted from the “answer” after ####. 875

(5) (Balanced) COPA (Kavumba et al., 2019): commonsense causal reasoning dataset with premises 876

for which the plausible cause or effect is to be chosen from two alternatives. We create the 877

input 𝑥 by concatenating the columns “premise”, “question’, “choice1”, and “choice2” as follows: 878

“<premise>\n <question> A: \n <choice1> \n <question> B: \n <choice2>”. The labels 𝑦 are 879

mapped from 0 and 1 in column “label” to “A” and “B”. 880

We provide detailed IDs and revisions of the utilized datasets in Table 5. For Dshots and Ddev, 881

500 instances are sampled from the train split without replacement with the random seed of the 882

corresponding experiment. The first 300 points are used for Ddev, the remaining 200 for Dshots. To 883

obtain Dtest, 500 instances are sampled from the test split and used throughout all experiments. 884

Table 5: Overview of the utilized HuggingFace datasets.

Dataset Huggingface ID Revision ntrain ntest #classes

SST-5 SetFit/sst5 e51bdcd8cd3a30da231-967c1a249ba59361279a3 8.5k 2.2k 5

AGNews SetFit/ag_news ca5ba619eb034211db5-f70932b6702efd21e7c73 120k 7.6k 4

Subj SetFit/subj f3c1162e678417f664d-76b21864fdb87b0615fcf 8k 2k 2

GSM8K openai/gsm8k e53f048856ff4f594e95-9d75785d2c2d37b678ee 7.5k 1.3k -

COPA pkavumba/balanced-copa 813bd03cd6e07d9bd8d7333896ad5d40abb95ea9 1k 500 2

24

C.3 Hardware Details 885

All computations are performed on a GPU cluster. For each experiment configuration, only a single 886

GPU with at least 80GB of RAM (NVIDIA A100 (80GB) or NVIDIA H100 (94GB)) is used to host the 887

corresponding LLM. Experiments are distributed across multiple instances for parallel execution. 888

We report a total computation time of 13 GPU days for our experiments, not including the compute 889

time for evaluation on hold-out test data. 890

C.4 Implementation Details 891

Answer Extraction. To reliably extract information from LLM output in our experiments, we 892

utilize marker-based extraction. Concretely, we parse the information in html-style tags: offspring/- 893

mutated prompts are extracted between <prompt></prompt> markers and predictions between 894

<final_answer></final_answer> markers in the LLM output. This information is also included in 895

the initial instructions and task descriptions. Details and examples are provided in the subsequent 896

sections of this appendix. 897

Optimizer Parametrization. For our experiments, we use the following default hyperparameters: 898

We parametrize our CAPO algorithm with 𝛼 = 0.2, 𝑏 = 30 and 𝑧max = 10 (i.e., 𝑏 · 𝑧max = |Ddev |), 899

𝑘max = 5, 𝜇 = 10, 𝑐 = 4, 𝛾 = 0.05 (a prompt with same length as the longest initial prompt 900

(instruction + examples) is penalized by 5%p). Further, we use our simplified meta-prompts 𝑝𝐶 and 901

𝑝𝑀 (cf. Appendix F), a paired t-test for racing, and no block shuffling for cost-efficiency. 902

For EvoPromptGA (Guo et al., 2024), we also use a population size 10 following the recommen- 903

dations of the original paper. 904

For OPRO (Yang et al., 2024), also following the publication, we limit the number of previous 905

prompts in the meta-prompt to 20, generate 8 new prompts per iteration, and use 3 few-shot 906

examples in the meta-prompt. 907

For PromptWizard (Agarwal et al., 2024), we use the original parametrization, and provide one 908

randomly sampled instruction from our pool, our task description, and answer format. 909

Optimizer Implementation. For EvoPromptGA and OPRO, we use reimplementations that are 910

available as part of a public library and that we checked for correctness
6
while for PromptWizard, 911

we utilize the original implementation
7
with small adaptions for our LLMs. 912

Seeding. For statistical robustness, we conduct three independent runs of each optimizer-LLM- 913

dataset configuration with varying random seeds to quantify variance. Seeds influence initial 914

instruction selection, development set sampling, LLM decoding, and stochastic elements of the 915

optimizers. 916

6https://github.com/finitearth/promptolution (accessed: 2025-03-22)
7https://github.com/microsoft/PromptWizard (accessed: 2025-03-22)

25

https://github.com/finitearth/promptolution
https://github.com/microsoft/PromptWizard

D Task Descriptions 917

Table 6: Manually created task descriptions used for CAPO, OPRO, and PromptWizard.

SST-5:
The dataset consists of movie reviews with five levels of sentiment labels: very negative, negative, neutral, positive, and

very positive. The task is to classify each movie review into one of these five sentiment categories. The class will be

extracted between the markers <final_answer>answer/final_answer>.

AG News:
The dataset contains news articles categorized into four classes: World, Sports, Business, and Sci/Tech. The task

is to classify each news article into one of the four categories. The class will be extracted between the markers

<final_answer>answer</final_answer>.

Subj:
The dataset contains sentences labeled as either subjective or objective. The task is to classify each sentence as either

subjective or objective. The class will be extracted between the markers <final_answer>answer</final_answer>.

GSM8K:
The dataset consists of grade school math word problems that require multi-step reasoning to solve. The task is to

solve each word problem and provide the final answer. The final solution will be extracted between the markers

<final_answer>answer</final_answer>.

(Balanced) COPA:
The dataset consists of premises and two possible choices for the effect or cause of the premise. The task is to determine

which of the two choices (A or B) is the correct effect of the premise. The class will be extracted between the markers

<final_answer>answer</final_answer>.

E Initial Instructions 918

Since both CAPO and EvoPrompt require initial instructions to start from, we create a set of 15 919

initial instructions for each task. To demonstrate that this requirement of initial instructions is not 920

a major limiting factor of the algorithms, we produce them in an automated manner, prompting 921

Anthropic’s Claude Sonnet 3.7 (https://claude.ai/) to create a diverse set of initial instructions, 922

making use of our task descriptions in Appendix D. The full prompt template is provided in 923

Table 7. Alternatively, approaches like APE (Zhou et al., 2023) could be employed to generate initial 924

instructions, or they could be manually engineered, e.g., by domain experts, to incorporate specific 925

prior knowledge. Examples of our initial instructions with corresponding test scores are given in 926

Appendix H.1. 927

Table 7: Prompt used to generate initial instructions with Anthropic’s Claude Sonnet 3.7. The

<task_description> placeholder is replaced with our task description.

Please create diverse prompts for the following task. They should be linguistically diverse (but always in English) and

have varying lengths and complexities. This means some consist only of a short sentence with a rather high-level

description while others elaborate on the task in little more detail.

Task: <task_description>

Explicitly state this expected format as part of the prompts. Create overall 20 prompts within quotes as an array:

To generate generic, task-unspecific instructions for ablation study IV. in Section 6.2, we use the 928

“task description” in Table 8. 929

Table 8: Task Description for generation of “generic” initial instructions.

Create prompts that are so generic, they could work for almost any task. The answers provided by the LLM should be

contained within <final_answer> </final_answer>.

26

https://claude.ai/

F Meta-Prompt Templates 930

Table 9: List of all meta-prompt templates used in CAPO and EvoPromptGA. The purple text indicates

placeholders where the according elements are inserted.

CAPO cross-over meta-prompt template:
You receive two prompts for the following task: <task_description>

Please merge the two prompts into a single coherent prompt. Maintain the key linguistic features from both original

prompts:

Prompt 1: <mother>

Prompt 2: <father>

Return the new prompt in the following format:

<prompt>new prompt</prompt>.

CAPO mutation meta-prompt template:
You receive a prompt for the following task: <task_description>

Please rephrase the prompt, preserving its core meaning while substantially varying the linguistic style.

Prompt: <instruction>

Return the new prompt in the following format:

<prompt>new prompt </prompt>

Original EvoPromptGA meta-prompt template from Guo et al. (2024):
Please follow the instruction step-by-step to generate a better prompt.

1. Crossover the following prompts and generate a new prompt:

Prompt 1: Rewrite the input text into simpler text.

Prompt 2: Rewrite my complex sentence in simpler terms, but keep the meaning.

2. Mutate the prompt generated in Step 1 and generate a final prompt bracketed with <prompt> and <prompt>.

1. Crossover Prompt: Rewrite the complex text into simpler text while keeping its meaning.

2. <prompt>Transform the provided text into simpler language, maintaining its essence.<prompt>

Please follow the instruction step-by-step to generate a better prompt.

1. Crossover the following prompts and generate a new prompt:

Prompt 1: <prompt1>

Prompt 2: <prompt2>

2. Mutate the prompt generated in Step 1 and generate a final prompt bracketed with <prompt> and <prompt>.

1.

EvoPromptGA simplified meta-prompt template used in the ablation study in Appendix K.3:
You receive two prompts for the following task: <task_description>

1. Please merge the two prompts into a single coherent prompt. Maintain the key linguistic features from both original

prompts:

Prompt 1: <prompt1>

Prompt 2: <prompt2>

2. Please rephrase the prompt generated in step 1, preserving its core meaning while substantially varying the linguistic

style.

Return the final prompt in the following format:

<prompt>final prompt<prompt>

CAPO performs cross-over and mutation separately, each with its own template, while Evo- 931

PromptGA (Guo et al., 2024) executes both operations with a single meta-prompt. We emphasize 932

that the CAPO prompts are simplified and substantially shorter, i.e., need less input tokens, and 933

they do not require any notion of what is a “good” prompt by avoiding terms like “better”. In an 934

additional experiment described in Appendix K.3, we use our simplified CAPO templates within 935

EvoPromptGA. For this purpose, we combine them into a single meta-prompt also shown in Table 9. 936

27

G Cross-over and Mutation Examples 937

Table 10: Concrete examples for cross-over and mutation with Mistral-Small-24B on COPA using

CAPO. The purple text indicates the filled placeholders from the templates, green text marks the

resulting response of the LLM.

Crossover:
You receive two prompts for the following task: The dataset consists of premises and two possible choices for the effect

or cause of the premise. The task is to determine which of the two choices (A or B) is the correct effect of the premise.

The class will be extracted between the markers <final_answer>answer</final_answer>.

Please merge the two prompts into a single coherent prompt. Maintain the key linguistic features from both original

prompts:

Prompt 1: Select the statement that represents the most reasonable causal relationship to the given context. Respond

with <final_answer>A</final_answer> or <final_answer>B</final_answer> only.

Prompt 2: Based on causal reasoning, which is more plausible: A or B? Enclose your answer with <final_answer> tags

like this: <final_answer>A</final_answer> or <final_answer>B</final_answer>.

Return the new prompt in the following format:

<prompt>new prompt</prompt>

<prompt>Based on causal reasoning, select the statement that represents the most reasonable causal relationship

to the given context. Which is more plausible: A or B? Enclose your answer with <final_answer> tags like this:

<final_answer>A</final_answer> or <final_answer>B</final_answer>.</prompt>

Mutation:
You receive a prompt for the following task: The dataset consists of premises and two possible choices for the effect or

cause of the premise. The task is to determine which of the two choices (A or B) is the correct effect of the premise. The

class will be extracted between the markers <final_answer>answer</final_answer>.

Please rephrase the prompt, preserving its core meaning while substantially varying the linguistic style.

Prompt: Select the statement that represents the most reasonable causal relationship to the given context. Respond with

<final_answer>A</final_answer> or <final_answer>B</final_answer> only.

Return the new prompt in the following format:

<prompt>new prompt</prompt>

<prompt>Identify the statement that best aligns with the cause of the given context. Provide your response as

<final_answer>A</final_answer> or <final_answer>B</final_answer> only.</prompt>

28

H Best Prompts per Tasks 938

In the following, we report the best prompts per optimizer with Llama-3.3-70B for each dataset. 939

The displayed prompts yield the best test-set performance across all seeds. Note that this section 940

serves primarily to provide illustrative insights and examples of generated prompts rather than to 941

report performance metrics. 942

H.1 Initial Prompts 943

Table 11: Best initial prompts by test scores with Llama-3.3-70B and three exemplary generic prompts. For a

full list of all initial prompts, we refer to the supplementary material.

AG News (88.6%):
Read the following news text and determine which category it belongs to. Choose from: World, Sports, Business, or

Sci/Tech. Your final answer must be enclosed in <final_answer> </final_answer> tags for automated extraction.

COPA (99.2%):

Select the statement that represents the most reasonable causal relationship to the given context. Respond with

<final_answer>A</final_answer> or <final_answer>B</final_answer> only.

GSM8K (52.2%):

I’m struggling with this math word problem that needs multiple steps to solve. Can you help? Make sure to put your

final answer between <final_answer> </final_answer> tags so I can easily find it.

SST-5 (60.4%):
Movie review sentiment classification task: From the following five options - very negative, negative, neutral, pos-

itive, or very positive - which best describes this review? Your answer must appear between <final_answer> and

</final_answer> markers.

Subj (70.0%):
Evaluate this sentence and determine if it’s presenting objective information (facts that can be verified) or subjective con-

tent (opinions, judgments, or emotions). Provide your classification inside <final_answer> </final_answer> markers.

Generic Prompt
Let’s think step by step. Your answer should be enclosed within <final_answer> </final_answer> tags.

Generic Prompt
Give me your response within <final_answer> tags.

Generic Prompt
Please provide a thoughtful answer to my question and wrap your response in <final_answer> tags so I can easily

identify it.

H.2 CAPO Prompts 944

Table 12: Best prompts of CAPO by test scores, optimized and evaluated with Llama-3.3-70B.

AG News (91.0%):
We have a collection of news stories that need to be sorted into categories. Your task is to read the provided article and

determine whether it falls under the category of World, Sports, Business, or Sci/Tech news. Once you’ve made your

decision, please enclose your chosen category in <final_answer>answer</final_answer> tags for easy identification.

+2 few shots

COPA (99.8%):

To evaluate your ability to reason about cause-and-effect relationships, this task presents you with a scenario and

asks you to identify the most plausible consequence or antecedent. Given a premise, assess the two provided op-

tions, labeled A and B, and select the one that logically follows or precedes the premise, responding with either

<final_answer>A</final_answer> or <final_answer>B</final_answer> to indicate your choice. +2 few shots

29

GSM8K (79.2%):

To tackle this math word problem, which demands a series of logical steps, dissect it methodically. Outline your thought

process and ensure you clearly signify your solution, enclosing it within <final_answer> </final_answer> markers for

easy identification. +2 few shots

SST-5 (63.6%):
Assess the emotional tone conveyed in the provided movie review, then categorize it into one of five sentiment levels:

very negative, negative, neutral, positive, or very positive, and encapsulate your chosen category within <final_answer>

</final_answer> tags, following this format: <final_answer> selected_sentiment </final_answer>, to clearly denote

the sentiment classification of the film review. +2 few shots

Subj (94.6%):
Label each sentence as either a statement of fact that can be proven or disproven, or a reflection of personal feelings,

opinions, or biases, by categorizing it as <final_answer>objective</final_answer> if it contains information that can

be verified, or <final_answer>subjective</final_answer> if it expresses emotions, attitudes, or individual evaluations,

and respond with one of these two classifications. +4 few shots

H.3 EvoPromptGA Prompts 945

Table 13: Best prompts of EvoPromptGA by test scores, optimized and evaluated with Llama-3.3-70B.

AG News (90.0%):
Categorize the given news article into its relevant category (World, Sports, Business, or Sci/Tech) and provide your

classified response within <final_answer> tags for easy identification.

COPA (99.4%):

Use commonsense knowledge to identify the causally related option (A or B) to the given statement and respond with

<final_answer>A</final_answer> or <final_answer>B</final_answer>.

GSM8K (53.8%):

Assist with solving the elementary or grade school level math problem that requires multiple steps and provide the

solution within <final_answer> </final_answer> tags for easy identification.

SST-5 (63.0%):
Evaluate the sentiment of the given movie review and categorize it as very negative, negative, neutral, positive, or very

positive, enclosing the chosen category within <final_answer> and </final_answer> tags.

Subj (78.8%):
Determine the subjectivity or objectivity of a sentence and provide the assessment enclosed in <final_answer> tags.

H.4 OPRO Prompts 946

Table 14: Best prompts of OPRO by test scores, optimized and evaluated with Llama-3.3-70B.

AG News (89.4%):
Classify the news article into one of four categories (World, Sports, Business, Sci/Tech) based on its content, and provide

your answer in lowercase within <final_answer> tags for efficient data extraction and analysis, ensuring accuracy and

consistency in categorization, and enabling informed decision-making with a standardized format for optimal processing

and evaluation.

COPA (99.2%):

Select the statement that represents the most reasonable causal relationship to the given context. Respond with

<final_answer>A</final_answer> or <final_answer>B</final_answer> only.

30

GSM8K (56.0%):

To solve the math problem, provide a concise, logical, and step-by-step explanation that directly addresses the problem,

incorporating all necessary calculations and formulas. Ensure your reasoning is easy to follow and free of unnecessary in-

formation. Clearly present your final numerical answer within <final_answer> and </final_answer> tags, allowing for

effortless identification and verification of the solution. Utilize a well-structured approach that effectively communicates

the problem’s resolution, enabling efficient understanding and validation of the mathematical solution.

SST-5 (63.0%):
Analyze the movie review’s sentiment by identifying the emotional tone and language used, then categorize it as

very negative, negative, neutral, positive, or very positive, and provide your answer in the format: <final_answer>

sentiment_category </final_answer>, considering the context, tone, and emotional cues to accurately reflect the

reviewer’s opinion in a concise and nuanced manner, ensuring your classification is informed by both the explicit and

implicit emotional expressions in the review.

Subj (75.4%):
Classify the sentence as ’objective’ if it presents factual information or ’subjective’ if it expresses personal opinions,

emotions, or biases, and provide your answer between <final_answer> tags, considering the sentence’s content, tone,

and purpose to inform a clear and accurate judgment.

H.5 PromptWizard 947

We report a prompt optimized by PromptWizard, including system prompt and synthesized few- 948

shot-examples, only for Llama-3.3-70B on AG News for the sake of conciseness and refer the 949

interested reader to the supplementary material. 950

Table 15: Best prompt of PromptWizard by test scores, optimized and evaluated with Llama-3.3-70B.

AG News (23.6%)
system prompt:
You are a natural language processing (NLP) specialist with expertise in text classification and machine learning.

You have extensive experience in developing and training models to categorize text into predefined categories. Your

knowledge of NLP techniques, such as tokenization, stemming, and named entity recognition, enables you to extract

relevant features from the news articles and classify them accurately. You are familiar with various machine learning

algorithms, including supervised and unsupervised learning methods, and can select the most suitable approach for this

task. With your expertise, you can analyze the dataset, identify the key characteristics of each category, and develop a

robust classification model that can accurately assign each news article to one of the four categories: World, Sports,

Business, or Sci/Tech. Your goal is to achieve high accuracy in classification, and you can use techniques such as

cross-validation and hyperparameter tuning to optimize the performance of the model. By extracting the class between

the markers <final_answer>answer</final_answer>, you can provide a clear and concise output that indicates the

predicted category for each news article.

user prompt:
What are the key assumptions underlying this news article classification task? To simplify the problem, let’s start by

identifying the categories: World, Sports, Business, and Sci/Tech. How can we make progress on this problem? By

reading the news article and trying to classify it into one of the four categories, we can start making progress. Let’s

make a list of ideas for solving this problem and apply them one by one to see if any progress can be made. Place your

classification within <final_answer> tags. +2 few shots

31

I Hyperparameter Sensitivity Analysis 951

In this section, we investigate the univariate effects of hyperparameters in CAPO. The hyperpa- 952

rameters we alter are the length penalty 𝛾 (0.01, 0.02, 0.05, 0.1), population size 𝜇 (6, 8, 10, 12), 953

cross-overs per iteration 𝑐 (4, 7, 10), and whether we shuffle the blocks in racing or not. In each case, 954

we hold all other hyperparameters fixed to their defaults (cf. Appendix C.4). Thus, multivariate 955

dependencies are not considered here. All experiments are conducted with Llama-3.3-70B model 956

on two datasets (AG News and GSM8K). The budget is limited to 5M input tokens, and each 957

configuration is executed with three different seeds. We summarize our results in Table 16. 958

The results indicate that our default parameters are not optimal for neither AG News nor GSM8K 959

as they are outperformed by other parametrizations. However, performance differences for all 960

parameter variations lie within one standard deviation. We conclude that while hyperparameters 961

influence the final performance, their impact is rather moderate. Since changing individual 962

parameters affects not only the final performance but also the behavior of the optimization process, 963

we provide test score curves below. 964

965

Table 16: Hyperparameter sensitivity analysis of various CAPO parametrizations with Llama-3.3-70B after

5M input tokens. We report mean accuracy (in %) with standard deviations on test set for the best prompts

across three seeds. The best prompt per seed is selected from the final population based on the available

development set scores. Hyperparameters are varied univariately, keeping all other parameters at their

defaults. Bold values indicate best performance for each parameter and task.

Parametrization AG News GSM8K ∅

𝛾=0 89.27±0.41 74.93±1.04 82.10

𝛾=0.01 89.53±0.25 75.27±3.10 82.40

𝛾=0.02 89.20±0.43 74.20±3.28 81.70

𝛾=0.05 (default) 88.80±0.75 73.37±3.73 81.27

𝛾=0.1 88.73±1.11 74.80±3.15 81.77

𝜇=6 89.00±0.49 77.67±3.03 83.33

𝜇=8 88.33±0.25 77.67±3.74 83.00

𝜇=10 (default) 88.80±0.75 73.73±3.73 81.27

𝜇=12 89.33±0.19 76.87±1.31 83.10

𝑐=4 (default) 88.80±0.75 73.73±3.73 81.27

𝑐=7 89.47±0.25 73.07±1.64 81.27

𝑐=10 89.53±0.19 74.40±3.30 81.97

w/ shuffling 89.60±0.28 76.73±1.81 83.17

w/o (default) 88.80±0.75 73.73±3.73 81.27

A smaller length penalty𝛾 naturally improves performance (cf. Figure 4) since the prompt length 966

becomes less influential to the optimization process allowing for longer, often better performing 967

prompts. Figure 5 shows that for larger length penalties, prompt lengths decrease as optimization 968

advances before stabilizing, which aligns with expected behavior. However, a trade-off exists since 969

long prompts consume significant portions of the budget and therefore permit fewer steps within 970

the same budget constraints. 971

Choosing the optimal population size 𝜇 depends on the task. Large 𝜇 improves performance 972

on AG News while a small 𝜇 is beneficial on GSM8K. Looking at Table 16 we observe that this 973

hyperparameter choice has the largest impact on the average test set performance of the best 974

candidates per seed. The smaller the population size, the more steps can be performed, which is 975

again a trade-off. For small population sizes, there is a danger of getting “stuck” when there is 976

insufficient diversity in the prompts to create new explorative candidates. We can see this effect in 977

32

Figure 6 for AG News at 𝜇 = 6. We also observe a larger standard deviation for smaller population 978

sizes. 979

The number of cross-overs per iteration has a minor influence on final performance. On our 980

two datasets, we observe slight improvements for larger 𝑐 . In general, for smaller 𝑐 , more steps are 981

possible and standard deviations are smaller (cf. Figure 7). An important consideration is that with 982

large 𝑐 , promising prompts from previous populations are more likely to be erroneously eliminated 983

in racing despite being superior, as it may be eliminated on early blocks. 984

Shuffling the blocks during racing slightly improves the performance on both tasks. A potential 985

explanation is that shuffling prevents overfitting to early blocks. However, this approach has the 986

drawback that fewer steps are possible (cf. Figure 8) since we cannot always use cached evaluations 987

and therefore cannot perform as many steps as without shuffling. 988

(a) AG News. (b) GSM8K.

Figure 4: Population mean test scores over steps with Llama-3.3-70B. Mean and standard deviations are

computed across seeds. We univariately vary the length penalty 𝛾 keeping all other parameters at their

defaults.

(a) AG News. (b) GSM8K.

Figure 5: Population mean prompt lengths over steps with Llama-3.3-70B. Mean and standard deviations

are computed across seeds. We univariately vary the length penalty 𝛾 keeping all other parameters at their

defaults.

33

(a) AG News. (b) GSM8K.

Figure 6: Population mean test scores over steps with Llama-3.3-70B. Mean and standard deviations are

computed across seeds. We univariately vary the population size 𝜇 keeping all other parameters at their

defaults.

(a) AG News. (b) GSM8K.

Figure 7: Population mean test scores over steps with Llama-3.3-70B. Mean and standard deviations are

computed across seeds. We univariately vary the number of crossovers 𝑐 keeping all other parameters at

their defaults.

(a) AG News. (b) GSM8K.

Figure 8: Population mean test scores over steps with Llama-3.3-70B. Mean and standard deviations are

computed across seeds. We compare CAPO with vs. without (default) shuffling of the blocks during racing

CAPO.

34

J Further Benchmark Results 989

J.1 Performance Profile 990

The performance profile plot displays the frequency 𝜌 (𝜏) of an optimization algorithm producing an 991

instance with a performance difference of 𝜏 to the best performing instance. For each dataset-model 992

pair, we compute the average performance across seeds, using the best-performing prompts selected 993

from the final optimization step on the dev-set. Each of these averaged results serves as an instance 994

in our analysis. While the original proposal introduced by Dolan and Moré (2002) uses the ratio to 995

the maximum performance, we follow Agarwal et al. (2024) and Lin et al. (2024) and report the 996

difference to the best performing prompt, as the accuracy metric is bounded between 0 and 1. 997

Thus we get for distance 𝜏 , optimizer Ψ, performance on task 𝑖 with optimizer𝜓 𝜎𝑖,𝜓 and number 998

of tasks 𝑛: 999

𝜌Ψ (𝜏) =
1

𝑛

𝑛∑︁
𝑖=1

I[𝜎𝑖,max − 𝜎𝑖,Ψ ≤ 𝜏] (3)

Therefore a 𝜌Ψ (0) indicates the frequency of optimizer Ψ producing the best instance per task. 1000

Figure 9 shows, that with a 𝜌CAPO(0.012) = 1 we are within 1.2 %p of the best performing instance 1001

in every single task-model pair. 1002

Figure 9: Performance profiles of all benchmarked optimizers.

35

J.2 Further Optimization Curves from Benchmark Experiments 1003

(a) Llama-3.3-70B on SST-5. (b) Qwen2.5-32B on SST-5.

(c) Mistral-Small-24B on SST-5. (d) Llama-3.3-70B on AG News.

(e) Qwen2.5-32B on AG News. (f) Mistral-Small-24B on AG News.

(g) Llama-3.3-70B on Subj. (h) Qwen2.5-32B on Subj.

36

(i) Mistral-Small-24B on Subj. (j) Llama-3.3-70B on GSM8K.

(k) Qwen2.5-32B on GSM8K. (l) Mistral-Small-24B on GSM8K.

(m) Llama-3.3-70B on COPA. (n) Qwen2.5-32B on COPA.

(o) Mistral-Small-24B on COPA.

Figure 10: Population mean test scores over input tokens from benchmark experiments for all datasets and

models. Mean and standard deviations are computed across seeds. PromptWizard produces prompts only

once after a small number of input tokens, marked with a star (mean) and error bars (std). If an algorithm

converges (which can happen for OPRO), we continue the curve with a dashed horizontal line and hatched

area.

37

J.3 Prompt Lengths from Benchmark Experiments 1004

Table 17: Mean prompt length with standard deviation of the best prompts for different optimization methods,

datasets, and models. Mean and standard deviation are computed across three seeds. The best prompt per

seed is selected from the final population based on the available development set scores (for CAPO: penalized

average block scores of evaluated blocks). Bold values indicate shortest prompts.

Model Optimizer SST-5 AG News Subj GSM8K COPA ∅

Llama-3.3-
70B

Initial 33± 5 35± 6 31± 8 29± 7 30± 5 32

OPRO 63± 22 32± 4 42± 4 58± 15 33± 7 46

PromptWizard 563± 36 1106±265 863±400 544±173 613± 33 738

EvoPromptGA 33± 2 30± 1 28± 2 28± 2 32± 2 29

CAPO (ours) 161± 85 110± 46 158± 12 481±113 83± 22 199

Qwen2.5-
32B

Initial 33± 5 35± 6 31± 8 29± 7 30± 5 32

OPRO 38± 5 37± 8 33± 5 27± 2 51± 14 37

PromptWizard 677±517 753±541 297± 22 698±392 337± 32 552

EvoPromptGA 37± 4 35± 6 35± 5 25± 6 40± 9 34

CAPO (ours) 187± 28 116± 56 158± 13 230± 89 105± 49 159

Mistral-
Small-24B

Initial 33± 5 35± 6 31± 8 29± 7 30± 5 32

OPRO 29± 2 44± 7 26± 0 32± 10 36± 5 33

PromptWizard 1027±246 544±214 701±297 579±112 1139±188 798

EvoPromptGA 29± 2 39± 9 26± 1 20± 1 31± 2 29

CAPO (ours) 142± 21 153± 78 138± 39 286± 24 76± 27 159

J.4 Population Survival Analysis 1005

Figure 11 shows how the population evolves over multiple steps for two examples with different 1006

models and datasets. The visualization tracks test performance for all population members, distin- 1007

guishing between surviving prompts, newly proposed candidates, and eliminated (killed) prompts 1008

in each step. 1009

In the early optimization phases, we observe the generation of relatively low-performing 1010

prompts, which the algorithm correctly eliminates. As optimization progresses, the quality of 1011

newly proposed prompts gradually improves. Since the algorithm does its selection based on the 1012

development set scores it can happen that a prompt, which would have performed better on the 1013

test set, gets eliminated (cf. Figure 11a). 1014

(a) Mistral-Small-24B on SST-5. (b) Qwen2.5-32B on Subj.

Figure 11: Test scores of all population members over steps of default CAPO for one seed (42). Every time

a prompt is newly proposed or gets killed this is indicated by a special marker. The line at the upper end

shows the progression of the current best prompt.

38

K Further Ablation Results 1015

K.1 Optimization Curves from Ablation Studies 1016

(a) AG News. (b) GSM8K.

Figure 12: Population mean test scores over input tokens with Llama-3.3-70B. We compare CAPO with no

few-shot included to the default CAPO and EvoPromptGA.

(a) AG News. (b) GSM8K.

Figure 13: Test score vs. prompt length for every prompt with Llama-3.3-70B. A star marks the final selected

prompt per seed (best performing from last step based on available dev scores). Prompt length includes

both the number of tokens in the system prompt and (user) prompt. We compare CAPO with no few-shot

included to the default CAPO and EvoPromptGA.

(a) AG News. (b) GSM8K.

Figure 14: Population mean test scores over input tokens with Llama-3.3-70B. We compare CAPO without

racing (one block with 𝑏 = |Ddev |) with the default CAPO.

For all plots of the mean test scores over input tokens it holds that mean and standard deviations 1017

are computed across seeds. If an algorithm run terminates early, we continue the curve with a 1018

dashed horizontal line and hatched area. 1019

39

(a) AG News. (b) GSM8K.

Figure 15: Population mean test scores over input tokens with Llama-3.3-70B. CAPO and EvoPromptGA

started with generic, task-unspecific prompts (cf. Appendix H.1).

K.2 Impact of Racing 1020

In Figure 16, we compare the required input token budget per step for CAPO (w/ racing), CAPO 1021

w/o racing, and EvoPromptGA on AG News with Llama-3.3-70B. All three optimizers require a 1022

large number of tokens in the first step. This is due to the additional evaluation of initial prompts 1023

on top of the candidates of the first step. Both EvoPromptGA and CAPO w/o racing remain at 1024

a constant rate afterwards. While CAPO w/o racing benefits from the prompt-evaluation-cache 1025

but suffers from long prompts potentially including few-shots, EvoPrompt has short prompts 1026

but no cache. Both effects seem to cancel out and the required input tokens stay at a constant 1027

rate of about 250k input tokens per step, allowing for roughly 19 optimization steps. In contrast, 1028

the CAPO budget requirement is already low at the beginning, as it does not necessarily need to 1029

evaluate the candidates on the entire dev set, terminating poor candidates early through racing. The 1030

required budget decreases further after 3 steps and stays roughly constant with small fluctuations 1031

around 100k tokens per step, allowing for over 70 steps with the same budget. These observations 1032

underscore the benefits of racing in terms of cost-efficiency. 1033

Figure 16: Sum of input tokens required per optimization step of Llama-3.3-70B on AG News. Mean and

standard deviations are computed across seeds. We compare default CAPO, EvoPromptGA and CAPO

without racing.

This conclusion is further supported by Table 18, where we compare the actual block evaluations 1034

required for CAPO with racing to the theoretical evaluations required if each prompt had been 1035

evaluated on all blocks. In the example of Figure 16, we save around 50% of evaluations. On average 1036

we save 44% of evaluations over all datasets and models. 1037

40

Table 18: Saved block evaluations per model and dataset (in %) by using racing in CAPO, averaged over

seeds.

Dataset Model w/ racing w/o racing savings (%)

AG News Llama-3.3-70B 929.0 1886.7 50.76

Mistral-Small-24B 608.3 1356.7 55.16

Qwen2.5-32B 707.0 1310.0 46.03

COPA Llama-3.3-70B 804.7 1690.0 52.39

Mistral-Small-24B 754.7 1273.3 40.73

Qwen2.5-32B 948.7 1566.7 39.45

GSM8K Llama-3.3-70B 317.7 630.0 49.58

Mistral-Small-24B 314.0 456.7 31.24

Qwen2.5-32B 376.7 633.3 40.53

SST-5 Llama-3.3-70B 832.7 1316.7 36.76

Mistral-Small-24B 703.3 1093.3 35.67

Qwen2.5-32B 836.3 1070.0 21.84

Subj Llama-3.3-70B 648.3 1566.7 58.62

Mistral-Small-24B 625.0 1260.0 50.40

Qwen2.5-32B 672.7 1360.0 50.54

∅ 671.9 1231.3 43.98

K.3 Influence of Meta-Prompt Simplification and Task Descriptions 1038

To investigate the influence of our meta-prompt simplification, we perform an additional experiment 1039

with EvoPromptGA using our simplified CAPO meta-prompts, including a task description. Since 1040

EvoPromptGA uses only a single meta-prompt and LLM call to perform both cross-over and 1041

mutation, we combine our CAPO cross-over and mutation prompt into a single meta-prompt. 1042

For details, we refer to Appendix F. In Figure 17, we compare optimization curves for standard 1043

EvoPromptGA and EvoPromptGA with our simplified template. We observe that performance 1044

with our simplified template is slightly worse compared to the original template. Nonetheless, it is 1045

important to mention that our templates are substantially shorter in terms of number of tokens. 1046

Thus, this experiment indicates that the choice of the meta-prompt template is also a trade-off 1047

between performance and cost. 1048

(a) AG News. (b) GSM8K.

Figure 17: Population mean test scores over input tokens with Llama-3.3-70B. Mean and standard deviations

are computed across seeds. We compare the performance of EvoPromptGA with default meta-prompts (Guo

et al., 2024) to EvoPromptGA with our combined CAPO meta-prompts.

41

	Introduction
	Notation & Problem Statement
	Related Work
	CAPO: Cost-Aware Prompt Optimization
	Experimental Setup
	Results & Analysis
	Benchmark Results
	Ablation Studies

	Conclusion & Future Work
	Broader Impact Statement
	Background & Previous Works
	Automatic Prompt Optimization
	AutoML Techniques: Racing and Multi-Objective Optimization

	Algorithm Details
	Technical Details
	Model Details
	Dataset Details
	Hardware Details
	Implementation Details

	Task Descriptions
	Initial Instructions
	Meta-Prompt Templates
	Cross-over and Mutation Examples
	Best Prompts per Tasks
	Initial Prompts
	CAPO Prompts
	EvoPromptGA Prompts
	OPRO Prompts
	PromptWizard

	Hyperparameter Sensitivity Analysis
	Further Benchmark Results
	Performance Profile
	Further Optimization Curves from Benchmark Experiments
	Prompt Lengths from Benchmark Experiments
	Population Survival Analysis

	Further Ablation Results
	Optimization Curves from Ablation Studies
	Impact of Racing
	Influence of Meta-Prompt Simplification and Task Descriptions

