
Under review as a conference paper at ICLR 2023

USING BOTH DEMONSTRATIONS AND LANGUAGE IN-
STRUCTIONS TO EFFICIENTLY LEARN ROBOTIC TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Demonstrations and natural language instructions are two common ways to spec-
ify and teach robots novel tasks. However, for many complex tasks, a demon-
stration or language instruction alone contains ambiguities, preventing tasks from
being specified clearly. In such cases, a combination of both a demonstration
and an instruction more concisely and effectively conveys the task to the robot
than either modality alone. To instantiate this problem setting, we train a single
multi-task policy on a few hundred challenging robotic pick-and-place tasks and
propose DeL-TaCo (Joint Demo-Language Task Conditioning), a method for con-
ditioning a robotic policy on task embeddings comprised of two components: a
visual demonstration and a language instruction. By allowing these two modalities
to mutually disambiguate and clarify each other during novel task specification,
DeL-TaCo (1) substantially decreases the teacher effort needed to specify a new
task and (2) achieves better generalization performance on novel objects and in-
structions over previous task-conditioning methods. To our knowledge, this is the
first work to show that simultaneously conditioning a multi-task robotic manipu-
lation policy on both demonstration and language embeddings improves sample
efficiency and generalization over conditioning on either modality alone.

1 INTRODUCTION

A significant barrier to deploying household robots is the inability of novice users to teach new
tasks with minimal time and effort. Recent work in multi-task learning suggests that training on
a wide range of tasks, instead of the single target task, helps the robot learn shared perceptual
representations across the different tasks, improving generalization (Kalashnikov et al., 2021; Yu
et al., 2019; Jang et al., 2021; Shridhar et al., 2021). We study the problem of how to more efficiently
specify new tasks for multi-task robotic policies while also improving performance.

Previous multitask policies condition only on a single modality during evaluation: one-hot embed-
dings, language embeddings, or demonstration/goal-image embeddings. Each has limitations.

One-hot encodings for each task (Kalashnikov et al., 2021; Ebert et al., 2021) suffice for learning a
repertoire of training tasks but perform very poorly on novel tasks where the one-hot embedding is
out of the training distribution. A one-hot embedding space does not leverage semantic similarity
between tasks to more rapidly learn additional tasks, as each pair of distinct tasks, no matter how
semantically similar, differ by the same distance in one-hot embedding space.

Conditioning a policy on a goal-image (Nair et al., 2017; 2018; Nasiriany et al., 2019) or train-
ing on video demonstrations (Smith et al., 2020; Young et al., 2020) often suffers from ambiguity,
especially when there are large differences between the environment of the demonstration and the
environment the robot is in. This hinders robots from inferring the true intention of the demonstra-
tion. For example, if we provide a demonstration video of swiveling the faucet to the right side of
the sink and turning on the water so that it flows into some dirty dishes, any of these tasks could rea-
sonably be inferred: (i) turning on the faucet, (ii) turning on the faucet and swiveling it to the right
side of the sink, (iii) wetting the dirty dishes. When the robot encounters a kitchen sink with the
dirty dishes on the left side of the sink, it is unclear which of these possible tasks it should perform.

In language-conditioned policies (Blukis et al., 2018; 2019; Mees et al., 2021; 2022), issues of
ambiguity are often even more pronounced, since humans specify similar tasks in very linguistically

1

Under review as a conference paper at ICLR 2023

Training
Train a single multi-task policy on hundreds of tasks.

Testing
One-shot generalization to ~100 new tasks (new objects, colors, shapes).

Multitask Policy

Demo
encoder

Language
encoder

Randomly selected task 𝑈𝑖Training Buffer

Learning Algorithm

Contrastive
Learning

Demo Instruction
“Put vase-shaped object

in back bin.”

Learn
demo + language
contextual
associations
during training…

Task 𝑼𝟏

Instruction: “Put circular table in red bin.”
Demos:

Task 𝑼𝟐

Instruction: “Put yellow object in left bin.”
Demos:

…

Task 𝑼𝒏

Instruction: “Put vase-shaped object in back bin.”
Demos:

RGB State

Action Multitask Policy

Demo
encoder

Language
encoder

Test task 𝑉𝑗
Demo Instruction

“Put trapezoidal object
in green bin.”

Action

Validation Buffer

Task 𝑽𝟏
Instruction: “Put metal plate in front bin.”
Single Demo:

Task 𝑽𝟐
Instruction: “Put black-white object in left bin.”
Single Demo:

…

Task 𝑽𝒎
Instruction: “Put trapezoidal object in green bin.”
Single Demo:

𝒛𝒅𝒆𝒎𝒐 𝒛𝒍𝒂𝒏𝒈 𝒛𝒅𝒆𝒎𝒐 𝒛𝒍𝒂𝒏𝒈

…To leverage
both modalities

to resolve task
ambiguities

during testing.

RGB State

Figure 1: DeL-TaCo Overview. Unlike current multitask methods that condition on a single task
specification modality, DeL-TaCo simultaneously conditions on both language and demonstrations
during training and testing to resolve any ambiguities in either task specification modality, enabling
better generalization to novel tasks and significantly reducing teacher effort for specifying new tasks.

dissimilar ways and often speak at different levels of granularity, skipping over common-sense steps
and details while bringing up other impertinent information. Grounding novel nouns and verbs not
seen during training compounds these challenges.

We posit that in a broad category of tasks, current unimodal task representations are often too ineffi-
cient and ambiguous for novel task specification. In these tasks, current task-conditioning methods
would need either a large number of diverse demonstrations to disambiguate the intended task, or a
long, very detailed, fine-grained language instruction. Both are difficult for novice users to provide.
We argue that conditioning the policy on both a demonstration and language not only ameliorates
the ambiguity issues with language-only and demonstration-only specifications, but is much easier
and more cost-effective for the end-user to provide.

We propose DeL-TaCo (Figure 1), a new task embedding scheme comprised of two component
modalities that contextually complement each other: demonstrations of the target task and corre-
sponding language descriptions. To our knowledge, this is the first work to demonstrate that speci-
fying new tasks to robotic multi-task policies simultaneously with both demonstrations and language
reduces teacher effort in task specification and improves generalization performance, two important
characteristics of deployable household robots. With bimodal task embeddings, ambiguity is bidi-
rectionally resolved: instructions disambiguate intent in demonstrations, and demonstrations help
ground novel noun and verb tokens by conveying what to act on, and how. To learn several hundred
tasks, we train a single imitation learning (IL) policy, conditioned on joint demonstration-language
embeddings, to predict low-level continuous-space actions for a robot given image observations.
Task encoders are trained jointly with the policy, making our model fully differentiable end-to-end.

To summarize, our main contributions are as follows: (1) We present a broad distribution of highly-
randomized simulated robotic pick-and-place tasks where instructions or demonstrations alone are
too ambiguous and inefficient at specifying novel tasks. (2) We propose a simple architecture, DeL-
TaCo, for training and integrating demonstrations and language into joint task embeddings for few-
shot novel task specification. This framework is flexible and learning algorithm-agnostic. (3) We
show that DeL-TaCo significantly lowers teacher effort in novel task-specification and improves
generalization performance over previous unimodal task-conditioning methods. Additional materi-
als can be viewed at https://sites.google.com/view/del-taco-learning.

2 RELATED WORK

2.1 MULTI-TASK LEARNING

The most straightforward way to condition multi-task policies is through one-hot vectors (Ebert
et al., 2021; Kalashnikov et al., 2021; Walke et al., 2022; Yu et al., 2021). We instead use embed-
ding spaces that are shaped with pretrained language models so that semantically similar tasks are

2

https://sites.google.com/view/del-taco-learning

Under review as a conference paper at ICLR 2023

encoded in similar regions of the embedding space, which helps improve generalization. Multi-task
robotic policies have also been studied in other settings and contexts that do not fall under the class of
approaches we take in this paper, such as hierarchical goal-conditioned policies (Gupta et al., 2022),
probabilistic modeling techniques (Wilson et al., 2007), distillation and transfer learning (Parisotto
et al., 2015; Teh et al., 2017; Xu et al., 2020; Rusu et al., 2015), data sharing (Espeholt et al., 2018;
Hessel et al., 2019), gradient-based techniques (Yu et al., 2020), policy modularization (Andreas
et al., 2017; Devin et al., 2017) and task modularization (Yang et al., 2020).

2.2 LEARNING WITH LANGUAGE AND DEMONSTRATIONS

Language-Conditioned Multitask Policies. Our work largely tackles the same problem as BC-
Z (Jang et al., 2021) of generalizing to novel tasks with multi-task learning. BC-Z trains a video
demonstration encoder to predict the pretrained embeddings of corresponding language instructions,
while jointly training a multi-task imitation learning policy conditioned on either the instruction or
demonstration embeddings. Lynch & Sermanet (2021); Mees et al. (2021) learn a similar policy
conditioned on either language or goal images. All of these approaches learn to map a demonstra-
tion or goal image to a similar embedding space as its corresponding language instruction. During
training, Mees et al. (2022) uses both demonstrations and language to learn associations between
demonstration embeddings and language-conditioned latent plans, but during evaluation, only uses
the language embedding to produce a latent plan. With a slightly different architecture, Shao et al.
(2020) learn a policy that maps natural language verbs and initial observations to full trajectories by
training a video classifier on a large dataset of annotated human videos.

While all of these prior approaches use both demonstrations and language during training, their
policies are conditioned on either a language instruction or visual image/demonstration embedding
during testing. By contrast, ours is conditioned on both demonstration and language embeddings
during training and testing, which we show improves generalization performance and reduces human
teacher effort on a broad category of tasks.

Pretrained Multi-modal Models for Multitask Policies. Another recent line of work leverages
pretrained vision-language models to learn richer vision features for downstream policies. CLI-
Port (Shridhar et al., 2021) uses pre-trained CLIP (Radford et al., 2021) to learn robust Transporter-
based (Zeng et al., 2020) robot policies. Our method resembles CLIPort, its 3-dimensional successor
PerAct (Shridhar et al., 2022), and the previously mentioned multi-task policy methods in that we
train on expert trajectories associated with language task descriptions, but in CLIPort and PerAct,
the policy is only conditioned on language during training and testing; demonstrations are used only
as buffer data for imitation learning. Our method, however, learns tasks during training or testing by
using both language and a demonstration to condition the policy.

ZeST (Cui et al., 2022) and Socratic Models (Zeng et al., 2022) demonstrate that pretrained vision-
language models encode valuable information for robotic goal selection and task specification.
R3M (Nair et al., 2022) pretrains a ResNet (He et al., 2015) policy backbone on language-annotated
videos from Ego4D (Grauman et al., 2021) to boost downstream task performance. While our mo-
tivation is similar to ZeST in using a pretrained language model to leverage the structure of the
pretrained embedding space, we assume access to both language and demonstrations for learning
novel tasks and condition on task embeddings from both, which is unlike the ZeST and R3M prob-
lem settings where the policies are not directly task-conditioned.

2.3 OTHER APPLICATIONS OF LANGUAGE FOR ROBOTICS

Hierarchical Learning with Language. Our approach can be loosely framed as hierarchical learn-
ing, where we have two high-level task encoders that output language and demonstration embed-
dings, both of which the low-level policy is conditioned on to output actions. Prior work has used
language instructions in hierarchical learning for shaping high-level plan vectors (Mees et al., 2022)
or skill representations (Garg et al., 2022), which are then fed to a low-level policy to output the ac-
tion. Karamcheti et al. (2021) use an autoencoder-based architecture to predict higher-dimensional
robot actions from lower-dimensional controller actions and language instructions, where the lan-
guage is fed into both the encoder and decoder. All of these prior approaches condition on a single
high-level policy, whereas ours incorporates guidance from two high-level encoders for both demon-

3

Under review as a conference paper at ICLR 2023

strations and language to learn novel tasks, giving the low-level policy access to certain information
expressible only through their combination.

Language for Rewards and Planning. Language has also been used for reward shaping in RL
(Nair et al., 2021; Goyal et al., 2019; 2020). Pretrained language models have also been leveraged
for their ability to propose plans in long-horizon tasks (Huang et al., 2022; Ahn et al., 2022; Chen
et al., 2022). While we work with IL instead of RL and mainly deal with highly variable pick-
and-place tasks, we do not use language for training reward functions or for planning, though our
multi-modal task specification framework is compatible with these additional uses of language.

3 PROBLEM SETTING

3.1 MULTI-TASK IMITATION LEARNING

We define a set of n tasks {Ti}ni=1 and split them into training tasks U and test tasks V , where (U, V)
is a bipartition of {Ti}ni=1. For each task Ti, we assume access to a set of m expert trajectories
{τij}mj=1 and a single language description li. Given continuous state space S, continuous action
space A, and task embedding space Z , the goal is to train a Markovian policy π : S × Z → Π(A)
that maps the current state and task embeddings to a probability distribution over the continuous
action space.

During training, we assume access to a buffer Dtrain of trajectories for only the tasks in U and their
associated natural language descriptions. We define each trajectory as a fixed-length sequence of
state-action pairs τij =

[(
s
(i)
0,j , a

(i)
0,j

)
,
(
s
(i)
1,j , a

(i)
1,j

)
, ...

]
, where j is the trajectory index for task

Ti ∈ U with task embedding zi. We use behavioral cloning (BC) (Hussein et al., 2017; Pomerleau,
1988) to update the parameters of π to maximize the log probability of π

(
a
(i)
t,j

∣∣s(i)t,j , zi

)
, though our

framework is agnostic to the learning algorithm and would work for RL approaches as well.

During evaluation, we assume access to a buffer Dval of trajectories for only the tasks in V and their
associated natural language descriptions. Unlike Dtrain where we have m demonstrations for each
task, in Dval we have just a single demonstration for each task. For all test tasks Ti ∈ V , we rollout
the policy for a fixed number of timesteps by taking action at ∼ π(a|st, zi). The zi for all test tasks
is computed beforehand and held constant throughout each test trajectory.

3.2 TASK ENCODER NETWORKS

To obtain the task embedding zi, we have two encoders (which are either trained jointly with policy
π or frozen from a pretrained model): a demonstration encoder, fdemo : τij 7→ zdemo,i mapping
trajectories of task Ti to demonstration embeddings, and a language encoder, flang : li 7→ zlang,i
mapping task instruction strings li to language embeddings. Previous work has explored using
zi as a one-hot task vector, language embedding zlang,i, or goal image/demonstration embedding
zdemo,i, but our approach DeL-TaCo uses task embedding zi = [zdemo,i, zlang,i] based on both the
instruction and demonstration embedding during training and testing to learn novel tasks.

4 METHOD

4.1 ARCHITECTURE

Demonstration and Language Encoders. The encoder fdemo is a CNN network trained from
scratch. Following Jang et al. (2021), we input the demonstration as an array of m × n frames
(in raster-scan order) from the trajectory for faster processing. We use frozen pretrained Distil-
BERT (Sanh et al., 2019) as the encoder flang, where zlang,i is simply the average of all DistilBERT-
embedded tokens in li (we found this works better than taking the [CLS] token embedding). We keep
flang frozen during training for computational efficiency.

Policy Network. We use a ResNet-18 (He et al., 2015) as the visual backbone for the policy π,
followed by a spatial softmax layer (Finn et al., 2016) and fully connected layers.

4

Under review as a conference paper at ICLR 2023

+
Concatenate

ResNet-18

CNN

DistilBERT
(frozen)

Action
𝑥, 𝑦, 𝑧, 𝑔𝑟𝑖𝑝𝑝𝑒𝑟

FiLM

Spatial Softmax

Image obs
embeddings

𝑧𝑑𝑒𝑚𝑜

𝑧𝑙𝑎𝑛𝑔

Policy 𝝅

Demo Encoder 𝒇𝒅𝒆𝒎𝒐

Language Encoder 𝒇𝒍𝒂𝒏𝒈

Contrastive
learning

1024 512 256

FC layers

[6 joint angles]
[x, y, z, gripper]

Current Robot State

Current Image Obs
(48 × 48 × 3)

Task Demonstration

“Put yellow-colored object in
left bin.”

Task Instruction

Figure 2: Method Architecture. DeL-TaCo uses three main networks: the policy π, a demonstra-
tion encoder fdemo, and a language encoder flang. During both training and testing, the policy is
conditioned on the demonstration and language embeddings for the task.

Task Conditioning Architecture. Jang et al. (2021) use FiLM (Perez et al., 2018) layers in the
ResNet backbone of the policy to input the task embedding (which are either from demonstrations
or language). Since our policy conditions on both, the main architectural decision was finding the
best way to feed task embeddings from multiple modalities into the policy.

Empirically, a simple approach performed best. The demonstration embeddings zdemo are fed into
the policy’s ResNet backbone via FiLM, while the language task embeddings zlang and robot pro-
prioceptive state (6 joint angles, end-effector xyz coordinates, and gripper open/close state) are
concatenated to the output of the spatial softmax layer. Our full network architecture is shown in
Figure 2, and hyperparameters are in Appendix B.

4.2 TRAINING AND LOSSES

The training procedure for DeL-TaCo is summarized in Algorithm 1. During each training iteration,
we sample a size k subset of training tasks M = {Tm1

, ..., Tmk
} ⊂ U . Given a trajectory τij for task

Tmi
and corresponding natural language instruction li, we compute the demonstration embeddings

zemb,mi
= fdemo(τij) and language embeddings zlang,mi

= flang(li). We collect the embeddings
of tasks in M in matrices Zdemo = [zdemo,m1

, ..., zdemo,mk
] and Zlang = [zlang,m1

, ..., zlang,mk
].

To train the demonstration encoder, Jang et al. (2021) use a cosine distance loss to directly regress
demonstration embeddings to their associated language embeddings. However, this causes demon-
stration embeddings to be essentially equivalent to the associated language embeddings for each
task, undercutting the value of passing both to our policy. To preserve information unique to each
modality while enabling the language and demonstration embedding spaces to shape each other, we
train with a CLIP-style (Radford et al., 2021) contrastive loss for our demonstration encoder:

Ldemo(Zdemo, Zlang) = CrossEntropy

(
1

β
Z⊤
demoZlang, I

)
(1)

where I is the identity matrix and β is a tuned temperature scalar. We use the standard BC log-
likelihood loss as the policy loss term for some trajectory composed of state-action pairs xt,i,j =(
s
(i)
t,j , a

(i)
t,j

)
extracted from an expert demonstration τij for task Tmi

:

Lpolicy(τij) = −
∑

xt,i,j∈τij

log π
(
a
(i)
t,j

∣∣s(i)t,j , zdemo,mi
, zlang,mi

)
(2)

Both fdemo and π networks are trained jointly with the following loss, for a tuned α > 0:

L(π, fdemo, flang) = Lpolicy(τij) + αLdemo(Zdemo, Zlang) (3)

5

Under review as a conference paper at ICLR 2023

Example Training Tasks Example Test Tasks

Name

Color

Shape

Object
Identifier Type

“Put circular table in red bin.” “Put metal plate in front bin.”

“Put yellow-colored object in left bin.” “Put black and white colored object in left bin.”

“Put vase-shaped object in back bin.” “Put trapezoidal prism-shaped object in back bin.”

Figure 3: A selection of training and test tasks annotated by their language instructions, grouped
by the three object identifier types. All 6 container identifiers are seen in both training and testing.

Where Lpolicy(τij) is summed over all trajectories in the batch of training tasks M (we omit this
double summation in Equation 2 for brevity). Note that the language encoder does not have a loss
term because we use a frozen, pretrained language model and rely on the pretrained embedding
space to shape the demonstration encoding space.

4.3 EVALUATION

During evaluation, we want the robot to perform some novel task Tv ∈ V . Recall that Tv /∈ U ,
our set of training tasks. From our problem setup description in Section 3.1, we have access to a
validation task buffer Dval with a single demonstration τv and a natural language instruction lv of
task Tv . We encode the demonstration with fdemo and the language with flang and pass both task
embeddings to the policy. Details are summarized in Algorithm 2.

Algorithm 1 DeL-TaCo: Training
Input: Dtrain

1: while not done do
2: M ← k random train tasks from U
3: Sample Xi = {τij}b−1

j=0 ∼ Dtrain

4: X ← {Xi|Ti ∈M}
5: L← {li|Ti ∈M} // Lang. instructions
6: Zdemo ← fdemo(X) // Demo encoder
7: Zlang ← flang(L) // Language encoder
8: Update π, fdemo on L(π, fdemo, flang) //

per Eqn. 3
9: end while

Algorithm 2 DeL-TaCo: Evaluation
Input: Dval

1: for validation task Tv in V do
2: Get 1 demo τv and language lv from Dval
3: zdemo = fdemo(τv) // Encode demo
4: zlang = flang(lv) // Encode language
5: for time t = 0, ...,H − 1 do
6: Take action at ∼ π(a|st, zdemo, zlang)
7: end for
8: end for

5 EXPERIMENTS

We empirically investigate the following questions: (1) Does there exist a distribution of tasks that
are more clearly specified with both language and demonstrations rather than either alone? (2)
Does conditioning with both language instructions and video demonstrations with DeL-TaCo im-
prove generalization performance on novel tasks? (3) If so, how much teacher effort is reduced by
specifying a new task with both language and demonstrations than with either modality alone?

5.1 SETUP

Environment. We develop a Pybullet (Coumans & Bai, 2007-2022) simulation environment with
a WidowX 250 robot arm, 32 possible objects of diverse colors and shapes for manipulation, and 2
different containers. The action space is continuous, representing an (x, y, z) change in the robot’s
end effector position, plus the binary gripper state (closed/opened). We subdivide the workspace

6

Under review as a conference paper at ICLR 2023

into four quadrants. Two quadrants are randomly chosen to contain the two different containers, and
three of the 32 possible objects are dropped at random locations in the remaining two quadrants.
RGB image observations are size 48× 48× 3 and fed into the policy. As mentioned in Section 4.1,
the input format of each demo for fdemo is an m× n array of images extracted from the trajectory.
Details are in Appendix E.

Task Objective. To explore the first question, we design the following set of pick-and-place tasks
where the objective is to grasp the target object and place it in the target container. Both the target
object and container can be inferred from the demonstration and language instruction. In every task,
the scene contains three visually distinct objects (of which exactly one of them is the target object)
and two visually distinct containers (of which exactly one of them is the target container). Thus,
a robotic policy that disregards both the task demonstration and instruction and picks any random
object and places it into any random container would solve the task with 1-in-6 odds.

Language Instructions for Each Task. Figure 3 shows a selection of our training and test tasks.
Each task is specified through language with a single template-based instruction of the format “put
[target object identifier] in [target container identifier].”

We make this environment more challenging by having task language instructions that refer to the
containers either by their color or quadrant position and the objects by either their name, color, or
shape. We use six different container identifiers in the task instructions to convey which container to
drop the object in: red, green, front, back, left, and right. Thus, if the robot is provided a demonstra-
tion of picking up a cup and placing it in the red container in the front left quadrant, and it encounters
an environment with the containers in different locations, it does not know whether to place the cup
in the red, front, or left container. This ambiguity can only be resolved with the language instruction.
Conversely, aspects of the task, such as which object to grasp, are most clearly expressed through
the demonstration rather than the instruction, since for novel tasks, the language instruction contains
object identifiers unfamiliar to the policy. The task instructions also refer to the objects through dif-
ferent types of identifiers: their unique names (32 strings such as “fountain vase”), color (8 strings
such as “black-and-white colored object”), or shape (10 strings such as “trapezoidal prism shaped
object”).

The multiple identifiers help simulate ambiguity that arises from informal human instructions, where
different humans may refer to the same object or container through different attributes, enabling
demonstrations and instructions to complement each other when the robot learns a new task. In
total, there are 50 target object identifiers (32 + 8 + 10) and 6 target container identifiers, giving us
300 pick-and-place tasks. We train and evaluate on a bipartition of these 300 tasks. See Appendix A
for a list of all our train and test tasks.

Success Metric. In calculating the success rate, a successful trajectory is defined as one that (1)
picks up the correct object on the scene, and (2) places it in the correct container on the scene.
Appendix C contains details on the number of seeds and trials from which we calculated success
rates and standard deviations.

Data. Using a scripted policy, we collect an average of 130 successful demonstrations for each
training task, and a single successful demonstration for each test task. All demonstrations are 30
timesteps long. Depending on our experimental scenario (see Section 5.2), we train on roughly 65%
to 80% of the 300 tasks and evaluate on the remaining ones, which means that our training buffer
contains a total of roughly 26,000-31,000 trajectories.

5.2 GENERALIZATION PERFORMANCE ON NOVEL TASKS

To test generalization, we run experiments under two scenarios: (A) generalization to novel objects,
colors and shapes, and (B) generalization to only novel colors and shapes.

5.2.1 SCENARIO A: NOVEL OBJECTS, COLORS, AND SHAPES

Table 1 (plots in Figure 8) shows our results in experimental scenario A, where we train on 24/32
objects, 4/8 colors, and 5/10 shapes (a total of 198 training tasks) and evaluate on the remaining 102
tasks. This is relatively challenging, as the robot must not only know how to pick-and-place the 8/32
objects it has never seen during training, but must also understand instructions that refer to these
novel objects by either their name, color, or shape.

7

Under review as a conference paper at ICLR 2023

Table 1: Evaluation on Novel Objects, Colors, and Shapes. (p) = pretrained.
Demo Encoder Language Encoder Task Conditioning Success Rate ± SD (%)

– – One-hot (lower bound) 6.6± 1.3
– – One-hot Oracle (upper bound) 28.7± 2.3

CLIP (p)
Language-only 13.7± 1.9

Demo-only 8.0± 1.9
DeL-TaCo (ours) 15.3 ± 1.8

– DistilBERT (p) Language-only 10.4± 1.6
CNN – Demo-only 14.6± 2.2
CNN DistilBERT (p) DeL-TaCo (ours) 19.9 ± 1.8

Table 2: Evaluation on Novel Colors and Shapes. (p) = pretrained.
Demo Encoder Language Encoder Task Conditioning Success Rate ± SD (%)

– DistilBERT (p) Language-only 15.8± 2.8
CNN – Demo-only 17.0± 2.7
CNN DistilBERT (p) DeL-TaCo (ours) 26.3 ± 4.1

We lower-bound the performance of our task conditioning methods by first running a one-hot con-
ditioned policy, with the expectation that it performs worse than conditioning on language and/or
demonstrations for the reasons mentioned in Section 1. As an upper-bound, we directly train a
one-hot oracle on only the 102 evaluation tasks and evaluate on those same tasks. No other method
in the table is trained on any evaluation tasks. (For consistency, the one-hot oracle is trained on the
same number of trajectories per evaluation task as the other methods are per training task.)

Next, we examine the performance of policies conditioned with only language, with only one
demonstration, and with both (DeL-TaCo). The language-only policies do not involve training
fdemo, and only the language instruction embeddings are fed into the policy via FiLM during train-
ing and testing. The demo-only policies train fdemo as shown in Algorithm 1, but during training
and testing, only the demonstration embedding zdemo is passed into the policy via FiLM. Thus, our
demo-only and language-only policies largely mirror the training and architecture of BC-Z (Jang
et al., 2021) conditioned on demonstration or language. DeL-TaCo (ours) conditions on both demon-
stration and language during training and testing, as shown in Algorithms 1 and 2.

When using pretrained DistilBERT as flang and a lightweight CNN for fdemo, DeL-TaCo achieves
the highest performance, increasing the success rate of the second-best conditioning method, demo-
only, from 14.6% to 19.9%, getting significantly closer to the 28.7% upper-bound attained by
the one-hot oracle. Both methods using demonstration embeddings outperform the language-
conditioned policy perhaps because a visual demonstration is important in conveying the nature
of the chosen object and how the robot should manipulate it. Note that both the demo-only and
DeL-TaCo policies train the fdemo CNN from scratch without any pretraining, so they must learn to
ground object and container identifiers from training demonstrations alone.

Finally, to evaluate DeL-TaCo when both fdemo and flang are pretrained, we use pretrained
CLIP (Radford et al., 2021) as the task encoder (with its language transformer as flang and vision
transformer as fdemo) and freeze it during training. The language-only policy performs significantly
better than the video-only policy most likely because CLIP’s visual transformer was trained mostly
on real-world images and without further finetuning, does not know how to sufficiently differentiate
between the simulation demonstrations of different tasks in our problem setting. Despite this, DeL-
TaCo modestly outperforms conditioning on language-only or demo-only, demonstrating the value
of our method even with frozen pretrained models.

5.2.2 SCENARIO B: NOVEL COLORS AND SHAPES

In Table 2 (plots in Figure 9), we train on 32/32 objects, 4/8 colors, and 5/10 shapes, and evaluate
on the rest—an easier setting as all objects were seen during training. Since evaluation tasks in this
scenario only refer to objects by their color or shape, we up-sample the color and shape training
tasks to be 50% of each training batch (such up-sampling was not done in scenario A).

We take the highest-performing fdemo and flang models from Table 1 and again compare condi-
tioning on language, demonstrations, and both. Compared to Table 1, all methods increase their
success rate in this easier scenario. The novel color and shape task demonstrations contain more

8

Under review as a conference paper at ICLR 2023

Table 3: Value of Language. Evaluation on Novel Objects, Colors, and Shapes.
Task Conditioning Demo-only DeL-TaCo (ours)

demos per test-task finetuned on 0 10 25 50 100 0
Success Rate (%) 14.6 14.9 17.4 20.0 24.2 19.9

± SD (%) ±2.2 ±1.6 ±2.7 ±2.4 ±2.5 ±1.8

ambiguity than the novel object demonstrations because the task with language instruction “put the
blue object in the left bin” might have a demonstration where the robot manipulates the blue cup, but
the test-time environment might contain a blue table instead. This added ambiguity likely explains
the increased importance of language and the wider 9.7% performance gap between DeL-TaCo and
demo-only task conditioning.

Analysis. Overall, we see that on this wide range of tasks, language and demonstrations together do
help disambiguate each other during task specification—answering our first question; this leads to
better generalization performance on novel tasks—answering our second question.

5.3 HOW MANY DEMONSTRATIONS IS LANGUAGE WORTH?

To answer our third question, we re-examine experimental scenario A (testing on novel objects, col-
ors, and shapes). However, here we further finetune the demo-only policy on a variable number of
test-task expert demonstrations. Results are shown in Table 3 (plots in Figure 9). The demo-only
policy only starts to match and surpass DeL-TaCo (underlined) when it is finetuned on 50 demon-
strations (underlined) per evaluation task (a total of around 5,000 demonstrations for all test tasks
combined). This suggests that surprisingly, specifying a new task to DeL-TaCo with a single demon-
stration and language instruction performs as well as specifying a new task to a demo-only policy
with a single demonstration and finetuning it on 50 additional demonstrations of that task. This
showcases the immense value of language in supplementing demonstrations for novel task specifi-
cation, significantly reducing the effort involved in teaching robots novel tasks over demonstration-
only methods.

6 CONCLUSION

When specifying tasks through language or demonstrations, ambiguities can arise that hinder robot
learning, especially when the demonstrations or instructions were provided in an environment that
does not perfectly align with the environment the robot is in. In this paper, we showed a problem
setting of learning 300 highly diverse pick and place tasks and propose a simple framework, DeL-
TaCo, to resolve ambiguity during task specification by using both language and demonstrations
during both training and testing. Two main obstacles to deploying household robotic systems are
the inability to generalize to new environments and tasks, and prohibitively high end-user effort
needed to teach robots these new tasks. Our results show progress on both fronts: over previous
task-conditioning methods, DeL-TaCo improves generalization performance to new tasks by 5−9%
and reduces human effort on our set of tasks by roughly 50 expert demonstrations per task.

Limitations and Future Work. Our work leaves a number of areas for improvement. First, we
experiment only with pick-and-place tasks. Future work may need more interpretable modular en-
coders to handle a wider diversity of manipulation skills and temporally-extended tasks. Second,
we used a rigid set of template-based language instructions for each task, but our framework would
likely benefit from a more diverse instruction set of human paraphrases for each task. Third, we did
not find pretrained vision-language models, such as CLIP, to increase performance in our simulation-
based environment, most likely because of the domain mismatch between our simulation objects and
the more real-world-centric images CLIP was trained on. Investigating ways to better leverage pre-
trained vision-language models for multimodal task specification, in tandem with real-world robotic
tasks and real-world human demonstrations, would be a promising line of future research.

9

Under review as a conference paper at ICLR 2023

7 REPRODUCIBILITY STATEMENT

Please see our appendix for details needed to replicate our results. In particular, Appendix A pro-
vides the full list of our 300 tasks, instructions, and objects, as well as train and test task splits.
Appendix B contains architectural hyperparameters and details for network layers, initialization,
and optimizer settings. The remaining appendices detail aspects of our training/evaluation processes
that were not fully described in the main text of our paper.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey,
Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as I can and not as I say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International Conference on Machine Learning (ICML), 2017.

Valts Blukis, Dipendra Misra, Ross A. Knepper, and Yoav Artzi. Mapping navigation instructions to
continuous control actions with position-visitation prediction. In Conference on Robot Learning
(CoRL), 2018.

Valts Blukis, Yannick Terme, Eyvind Niklasson, Ross A. Knepper, and Yoav Artzi. Learning to map
natural language instructions to physical quadcopter control using simulated flight. In Conference
on Robot Learning (CoRL), 2019.

Boyuan Chen, Fei Xia, Brian Ichter, Kanishka Rao, Keerthana Gopalakrishnan, Michael S. Ryoo,
Austin Stone, and Daniel Kappler. Open-vocabulary queryable scene representations for real
world planning. In arXiv preprint arXiv:2209.09874, 2022.

Erwin Coumans and Yunfei Bai. Bullet and pybullet, physics simulation for games, visual effects,
robotics and reinforcement learning. https://pybullet.org, May 2007-2022.

Yuchen Cui, Scott Niekum, Abhinav Gupta, Vikash Kumar, and Aravind Rajeswaran. Can founda-
tion models perform zero-shot task specification for robot manipulation? Learning for Dynamics
and Control Conference, 2022.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In International Conference on
Robotics and Automation (ICRA), 2017.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International Conference on Machine Learning,
pp. 1407–1416. PMLR, 2018.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep spatial
autoencoders for visuomotor learning. In International Conference on Robotics and Automation
(ICRA), 2016.

Divyansh Garg, Skanda Vaidyanath, Kuno Kim, Jiaming Song, and Stefano Ermon. Lisa: Learn-
ing interpretable skill abstractions from language, 2022. URL https://arxiv.org/abs/
2203.00054.

10

https://pybullet.org
https://arxiv.org/abs/2203.00054
https://arxiv.org/abs/2203.00054

Under review as a conference paper at ICLR 2023

Prasoon Goyal, Scott Niekum, and Raymond Mooney. Using natural language for reward shaping
in reinforcement learning. 2019. URL https://arxiv.org/abs/1903.02020.

Prasoon Goyal, Scott Niekum, and Raymond Mooney. Pixl2r: Guiding reinforcement learning
using natural language by mapping pixels to rewards. 2020. URL https://arxiv.org/
abs/2007.15543.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, et al.
Ego4d: Around the world in 3,000 hours of egocentric video. arXiv preprint arXiv:2110.07058,
2021.

Abhishek Gupta, Corey Lynch, Brandon Kinman, Garrett Peake, Sergey Levine, and Karol Haus-
man. Demonstration-bootstrapped autonomous practicing via multi-task reinforcement learning.
arXiv preprint arXiv:2203.15755, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado van
Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 3796–3803, 2019.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In arXiv preprint arXiv:2207.05608, 2022.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. In ACM Computing Surveys, 2017.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. BC-z: Zero-shot task generalization with robotic imitation learning. In 5th
Annual Conference on Robot Learning, 2021. URL https://openreview.net/forum?
id=8kbp23tSGYv.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Siddharth Karamcheti, Megha Srivastava, Percy Liang, and Dorsa Sadigh. Lila: Language-informed
latent actions. In 5th Annual Conference on Robot Learning, 2021. URL https://arxiv.
org/pdf/2111.03205.

Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data.
Robotics: Science and Systems, 2021. URL https://arxiv.org/abs/2005.07648.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark
for language-conditioned policy learning for long-horizon robot manipulation tasks, 2021. URL
https://arxiv.org/abs/2112.03227.

Oier Mees, Lukas Hermann, and Wolfram Burgard. What matters in language conditioned imitation
learning. arXiv preprint arXiv:2204.06252, 2022.

Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, and Sergey
Levine. Combining self-supervised learning and imitation for vision-based rope manipulation. In
International Conference on Robotics and Automation (ICRA), 2017.

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2018.

Suraj Nair, Eric Mitchell, Kevin Chen, Brian Ichter, Silvio Savarese, and Chelsea Finn. Learning
language-conditioned robot behavior from offline data and crowd-sourced annotation. In 5th An-
nual Conference on Robot Learning, 2021. URL https://arxiv.org/pdf/2109.01115.

11

https://arxiv.org/abs/1903.02020
https://arxiv.org/abs/2007.15543
https://arxiv.org/abs/2007.15543
https://openreview.net/forum?id=8kbp23tSGYv
https://openreview.net/forum?id=8kbp23tSGYv
https://arxiv.org/pdf/2111.03205
https://arxiv.org/pdf/2111.03205
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2112.03227
https://arxiv.org/pdf/2109.01115

Under review as a conference paper at ICLR 2023

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. 2019.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, 2018.

Dean Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Conference on
Neural Information Processing Systems (NeurIPS), 1988.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

Andrei Rusu, Sergio Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Krikpatrick, Raz-
van Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distillation. arXiv
preprint arXiv:1511.06295v2, 2015.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. In Conference on Neural Information Processing
Systems (NeurIPS), 2019.

Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jeannette Bohg. Concept2robot: Learn-
ing manipulation concepts from instructions and human demonstrations. In Proceedings of
Robotics: Science and Systems (RSS), 2020.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Proceedings of the 5th Conference on Robot Learning (CoRL), 2021.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. Conference on Robot Learning, 2022.

Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine. Avid: Learning
multi-stage tasks via pixel-level translation of human videos. In Robotics Science and Systems
(RSS), 2020.

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia
Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning.
arXiv preprint arXiv:1707.04175, 2017.

Homer Walke, Jonathan Yang, Albert Yu, Aviral Kumar, Jedrzej Orbik, Avi Singh, and Sergey
Levine. Don’t start from scratch: Leveraging prior data to automate robotic reinforcement learn-
ing. In Proceedings of the 6th Conference on Robot Learning (CORL), 2022.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine
learning, pp. 1015–1022, 2007.

Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and Jieping Ye. Knowledge transfer in multi-task
deep reinforcement learning for continuous control. arXiv preprint arXiv:2010.07494, 2020.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. arXiv preprint arXiv:2003.13661, 2020.

Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Gupta, Pieter Abbeel, and Lerrel Pinto.
Visual imitation made easy, 2020.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019.

12

Under review as a conference paper at ICLR 2023

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
Conservative data sharing for multi-task offline reinforcement learning. Advances in Neural In-
formation Processing Systems, 34, 2021.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rear-
ranging the visual world for robotic manipulation. In Proceedings of the 4th Conference on Robot
Learning (CoRL), 2020.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Van-
houcke, and Pete Florence. Socratic models: Composing zero-shot multimodal reasoning with
language. arXiv, 2022.

13

Under review as a conference paper at ICLR 2023

Appendices

A ALL TASKS, INSTRUCTIONS, AND TRAIN-TEST SPLIT

A.1 LIST OF TASKS

All 300 tasks are shown below, by object identifier (rows) and container identifier (columns). The
colors denote groups of tasks which guide our train and test task splits, and the cell numbers denote
the task indices.

• Scenario A (novel objects, colors, and shapes) trains on all gray tasks and tests on

yellow , blue , and green tasks.

• Scenario B (novel colors, shapes) trains on all gray and yellow tasks and tests on blue
and green tasks.

Object Identifier Type Object Identifier Container Identifier
green red front back left right

name

conic cup 0 50 100 150 200 250
fountain vase 1 51 101 151 201 251
circular table 2 52 102 152 202 252

hex deep bowl 3 53 103 153 203 253
smushed dumbbell 4 54 104 154 204 254
square prism bin 5 55 105 155 205 255

narrow tray 6 56 106 156 206 256
colunnade top 7 57 107 157 207 257

stalagcite chunk 8 58 108 158 208 258
bongo drum bowl 9 59 109 159 209 259

pacifier vase 10 60 110 160 210 260
beehive funnel 11 61 111 161 211 261

crooked lid trash can 12 62 112 162 212 262
toilet bowl 13 63 113 163 213 263
pepsi bottle 14 64 114 164 214 264
tongue chair 15 65 115 165 215 265

modern canoe 16 66 116 166 216 266
pear ringed vase 17 67 117 167 217 267
short handle cup 18 68 118 168 218 268

bullet vase 19 69 119 169 219 269
glass half gallon 20 70 120 170 220 270

flat bottom sack vase 21 71 121 171 221 271
trapezoidal bin 22 72 122 172 222 272
vintage canoe 23 73 123 173 223 273

bathtub 24 74 124 174 224 274
flowery half donut 25 75 125 175 225 275

t cup 26 76 126 176 226 276
cookie circular lidless tin 27 77 127 177 227 277

box sofa 28 78 128 178 228 278
two layered lampshade 29 79 129 179 229 279

conic bin 30 80 130 180 230 280
jar 31 81 131 181 231 281

color

black and white 32 82 132 182 232 282
brown 33 83 133 183 233 283
blue 34 84 134 184 234 284
gray 35 85 135 185 235 285
white 36 86 136 186 236 286
red 37 87 137 187 237 287

orange 38 88 138 188 238 288
yellow 39 89 139 189 239 289

shape

vase 40 90 140 190 240 290
chalice 41 91 141 191 241 291

freeform 42 92 142 192 242 292
bottle 43 93 143 193 243 293
canoe 44 94 144 194 244 294
cup 45 95 145 195 245 295

bowl 46 96 146 196 246 296
trapezoidal prism 47 97 147 197 247 297

cylinder 48 98 148 198 248 298
round hole 49 99 149 199 249 299

A.2 TASK INSTRUCTION FORMAT

As mentioned in Section 5.1, we use the following template as the language instruction for each task:
“Put [target object identifier string] in [target container identifier string].” For each object identifier,
we build a string referring to the target obj in a specific format shown in Table 4.

14

Under review as a conference paper at ICLR 2023

Table 4: Object Identifier String Format for each Object Identifier Type.
Object Identifier Type Target Object Identifier String

Name “[object color] colored, [object shape] shaped [object name]”
Color “[object color] colored object”
Shape “[object shape] shaped object”

Example task instructions (with target object identifier and target container strings underlined):

• Task 4: “Put black and white colored, chalice shaped smushed dumbbell in green bin.”
• Task 292: “Put cup shaped object in right bin.”

A.3 TRAIN AND TEST SPLIT VISUALIZATIONS

We visually show our train-test splits on objects (Figure 4), colors (Figure 5), and shapes (Figure
6).

T
ra
in

O
b
je
ct
s

T
es
t

O
b
je
ct
s

Figure 4: Train-Test Object Split. Objects are shown in raster-scan task-index order, so the object
in the second row from top, second column from left, is the “bongo drum bowl”, which is associated
with task index 9.

15

Under review as a conference paper at ICLR 2023

Train Colors Test Colors

White

Red

Orange

Yellow

Black and
White

Blue

Brown

Gray

Figure 5: Train-Test Color Split.

Train Shapes Test Shapes

Vase

Canoe

Freeform Bottle

Chalice

Cup

Trapezoidal Prism

Cylinder Round Hole

Bowl

Figure 6: Train-Test Shape Split.

B DETAILED ARCHITECTURE AND HYPERPARAMETERS

B.1 POLICY π AND DEMONSTRATION ENCODER fdemo ARCHITECTURE

See Figure 7 for a detailed diagram of the policy and demonstration encoder (for a higher-level
overview, see Figure 2). For the policy backbone, we use a ResNet-18 architecture but made changes
to the strides and number of channels to adapt the network to our small image size. Hyperparameters
are shown in Tables 5 and 6.

B.2 TRAINING HYPERPARAMETERS

Table 7 shows our IL training hyperparameters.

16

Under review as a conference paper at ICLR 2023

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘(𝑐𝑖𝑛, 𝑐𝑜𝑢𝑡)

𝑥: 𝑐𝑖𝑛, ℎ, 𝑤

conv3x3 (stride 1)

𝑥: 𝑐𝑜𝑢𝑡, ℎ, 𝑤

BatchNorm, ReLU

conv3x3 (stride 1)

BatchNorm

𝐹𝑖𝐿𝑀𝐵𝑙𝑜𝑐𝑘(𝑐𝑜𝑢𝑡)

+

ReLU

𝑜𝑢𝑡: 𝑐𝑜𝑢𝑡, ℎ, 𝑤

𝑧𝑑𝑒𝑚𝑜

𝑧𝑑𝑒𝑚𝑜

𝑥: 𝑐, ℎ, 𝑤

𝛾
learned

projection

𝛽
learned

projection

∗

+

𝑜𝑢𝑡: 𝑐, ℎ, 𝑤

𝐹𝑖𝐿𝑀𝐵𝑙𝑜𝑐𝑘(𝑐)

conv7x7 (stride 1)

BatchNorm, ReLU

MaxPool3x3 (stride 2)

𝑥: 16,48,48

𝑥: 16,24,24

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 16,16

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 16,16

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 16,32

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 32,32

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 32,64

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 64,64

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 64,128

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 128,128

𝑥: 128,24,24

Spatial Softmax

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠: 256, 𝑧𝑙𝑎𝑛𝑔: 768, 𝑟𝑜𝑏𝑜𝑡 𝑠𝑡𝑎𝑡𝑒: 10,

Concat

FC Layers [1024, 512, 256]

𝑎𝑐𝑡𝑖𝑜𝑛: 𝑥, 𝑦, 𝑧, 𝑔𝑟𝑖𝑝𝑝𝑒𝑟

conv3x3 (stride 1)
MaxPool2x2 (stride 2), ReLU

𝑥: 16,24,48

conv3x3 (stride 1)
MaxPool2x2 (stride 2), ReLU

𝑥: 16,12,24

conv3x3 (stride 1)
ReLU, Flatten

𝑥: 4608,

FC Layers [1024, 512, 256]

𝑧𝑑𝑒𝑚𝑜: 768,

𝐼𝑚𝑎𝑔𝑒 𝑜𝑏𝑠: 3,48,48 𝐷𝑒𝑚𝑜: 3,48,96

Policy 𝝅

Demo Encoder 𝒇𝒅𝒆𝒎𝒐

Figure 7: Detailed Architecture of the Policy and Demonstration Encoder.

Table 7: Imitation learning hyperparameters. In each training iteration, we sample 16 random
tasks from our training buffer and get 64 samples for each task, for a total batch size of 1024.

Attribute Value
Number of Tasks per Batch 16
Batch Size per Task 64
Learning Rate 3× 10−4

Task Encoder weight (α in L) 10.0
Contrastive Learning Temperature (β in Ldemo) 0.1

17

Under review as a conference paper at ICLR 2023

Table 5: Policy π hyperparameters.
Attribute Value
Input Height 48
Input Width 48
Input Channels 3
Number of Kernels [16, 32, 64, 128]
Kernel Sizes [7, 3, 3, 3, 3]
Conv Strides [1, 1, 1, 1, 1]
Maxpool Stride 2
Fully Connected Layers [1024, 512, 256]
Hidden Activations ReLU
FiLM input size 768
FiLM hidden layers 0
Spatial Softmax Temperature 1.0
Learning Rate 3× 10−4

Policy Action Distribution Multivariate Isotropic Gaussian N (µ, σ)
Policy Outputs (µ, σ)
Image Augmentation Random Crops
Image Augmentation Padding 4

Table 6: fdemo CNN hyperparameters.
Attribute Value
Demonstration frames First and last timesteps
Demonstration image array size (m,n) (1, 2)
Input Height (m· Image height) 48
Input Width (n· Image width) 96
Input Channels 3
Output Size 768
Kernel Sizes [3, 3, 3]
Number of Kernels [16, 16, 16]
Strides [1, 1, 1]
Fully Connected Layers [1024, 512, 256]
Hidden Activations ReLU
Paddings [1, 1, 1]
Pool Type Max 2D
Pool Sizes [2, 2, 1]
Pool Strides [2, 2, 1]
Pool Paddings [0, 0, 0]
Image Augmentation Random Crops
Image Augmentation Padding 4

C SUCCESS RATE CALCULATION DETAILS

To avoid reporting cherry-picked results, we detail our success rate calculation methodology here.

We run each setting with three random seeds for 800k-900k training steps. An evaluation
set, which we define as rolling out the policy for 2 trials per task for all of the test tasks,
is run every 10k training steps. Thus, there are a total of 80-90 evaluation sets that occur
throughout training. Let seed i attain the success rate r(i, j) on evaluation set j. Let J =
top 10 evaluation set indices for the quantity meanir(i, j). Our reported success rate and standard

18

Under review as a conference paper at ICLR 2023

deviation in the tables are calculated as the following equations:

Reported Success Rate = meanj∈J(meanir(i, j))
Reported Standard Deviation = meanj∈J(stddevir(i, j))

Scenario A: Since there are 102 test tasks, each success rate in Tables 1 and 3 is computed from:

2 trials
test task

× 102 test tasks
evaluation set

× 10 evaluation sets
seed

× 3 seeds = 6120 evaluation trials

Scenario B: Applying the same calculation for the 54 tasks in Scenario B, each success rate in
Table 2 is computed from 3240 evaluation trials.

For Table 3, the best final checkpoint of the three demo-only policy seeds from Table 1 was taken
for finetuning.

D LEARNING CURVE FOR ALL EXPERIMENTS

0K 100K 200K 300K 400K 500K 600K 700K 800K
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Su
cc

es
s R

at
e

Novel Objects, Colors, and Shapes

0K 100K 200K 300K 400K 500K 600K 700K 800K
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Su
cc

es
s R

at
e

Novel Objects, Colors, and Shapes (CLIP-Pretrained Task Encoder)

DeL-TaCo (ours)
language-only

demo-only
onehot

onehot oracle CLIP: DeL-TaCo (ours)
CLIP: language-only

CLIP: demo-only
onehot

onehot oracle

Figure 8: Table 1 learning curves, where all methods are evaluated novel objects, colors, and shapes.
Left: fdemo is a trained-from-scratch CNN and flang is pretrained DistilBERT. Right: fdemo and
flang are from pretrained CLIP. The same upper and lower one-hot bounds (dotted) are shown in
both the left and right plots.

0K 100K 200K 300K 400K 500K 600K 700K 800K
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

Su
cc

es
s R

at
e

Novel Colors, and Shapes

0K 50K 100K 150K 200K 250K 300K
Timesteps

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Su
cc

es
s R

at
e

Demo-Only Policy Finetuning (by # Demos per test task)

DeL-TaCo (ours) language-only demo-only DeL-TaCo (ours)
0

10
25

50
100

Figure 9: Table 2 and 3 learning curves. Left: Evaluation only on novel colors and shapes. Right:
Evaluation on novel objects, colors, and shapes, using a trained-from-scratch CNN as fdemo and
pretrained DistilBERT as flang. The performance of the demo-only policy and DeL-TaCo pol-
icy from Table 1 (also depicted in the left plot of Figure 8) are shown as lower and upper dotted
lines, respectively. The solid lines indicate performance during 300k finetuning steps when given x
demonstrations per test-task, where x is indicated in the legend.

19

Under review as a conference paper at ICLR 2023

E DEMONSTRATION FORMATTING FOR fdemo

We represent each demonstration as an m × n image array consisting of observations from the
first timestep, the last timestep, and mn − 2 other randomly selected timesteps from the trajectory,
arranged in raster-scan order. For our CLIP experiments, we use (m,n) = (2, 2) because CLIP per-
forms a center square crop on each input image, so we made the demonstration array square. When
using our trained-from-scratch fdemo, we used (m,n) = (1, 2) for computational efficiency. This
sufficed for our tasks because pick-and-place was not a particularly long horizon task, so including
more frames did not improve performance.

20

	Introduction
	Related Work
	Multi-task Learning
	Learning with Language and Demonstrations
	Other Applications of Language for Robotics

	Problem Setting
	Multi-task Imitation Learning
	Task Encoder Networks

	Method
	Architecture
	Training and Losses
	Evaluation

	Experiments
	Setup
	Generalization Performance on Novel Tasks
	Scenario A: Novel Objects, Colors, and Shapes
	Scenario B: Novel Colors and Shapes

	How many demonstrations is language worth?

	Conclusion
	Reproducibility Statement
	All Tasks, Instructions, and Train-Test Split
	List of Tasks
	Task Instruction Format
	Train and Test Split Visualizations

	Detailed Architecture and Hyperparameters
	Policy and Demonstration Encoder fdemo architecture
	Training Hyperparameters

	Success Rate Calculation Details
	Learning Curve for All Experiments
	Demonstration formatting for fdemo

