

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEPBENCH: EVALUATING FUNDAMENTAL GEOMETRIC PERCEPTION FOR MULTIMODAL LARGE LANGUAGE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Geometric shapes play important roles in both physical world and human cognition.
014 While multimodal large language models (MLLMs) have made significant advancements
015 in visual understanding, their abilities to recognize geometric shapes and
016 their spatial relationships, which we term *geometric perception*, are not explicitly
017 and systematically explored. To address this gap, we introduce GePBench, a novel
018 benchmark specifically designed to assess the geometric perception capabilities
019 of MLLMs. Our extensive evaluations reveal that even the current state-of-the-art
020 MLLMs exhibit significant deficiencies in geometric perception tasks. Furthermore,
021 we show that models trained with GePBench data demonstrate considerable
022 improvements on a wide range of downstream tasks, highlighting the critical role
023 of geometric perception in enabling advanced multimodal applications. Our code
024 and datasets will be publicly available.

1 INTRODUCTION

027 Geometric shapes are foundational elements in both natural and artificial environments (Tommasi
028 et al., 2012). In scientific and engineering disciplines, geometric representations enable precise
029 modeling and problem-solving (Berg et al., 2008); in everyday contexts, they support navigation,
030 design, and visual communication (Manippa & Tommasi, 2023). Crucially, geometric shapes act as a
031 bridge between sensory perception and abstract reasoning, forming a universal framework through
032 which humans interpret and structure their surroundings.

033 Recent advancements in multimodal large language models (MLLMs) have demonstrated remarkable
034 performance across a broad spectrum of tasks (OpenAI, 2023; Google, 2023; Chen et al., 2024c),
035 including scene understanding (Hudson & Manning, 2019), visual commonsense reasoning (Fu
036 et al., 2024), and expert-level visual question answering (Yue et al., 2024). However, a critical
037 question remains largely underexplored: *how well do MLLMs perceive and recognize geometric
038 shapes and their spatial relationships?* We refer to this capability as *geometric perception*, i.e., the
039 ability to recognize shapes, comprehend spatial configurations, and understand structural relationships.
040 Geometric perception is essential for MLLMs, as it lays the foundation for a wide range of downstream
041 applications. For instance, tasks such as medical image analysis (Chen et al., 2024a; Yan et al., 2024;
042 Khan et al., 2024) and fossil classification (Barucci et al., 2024; Hou et al., 2023) heavily rely on
043 accurate spatial awareness and the ability to discern abstract geometric patterns.

044 To systematically evaluate the geometric perception capability of MLLMs, we present GePBench
045 in this work. Our dataset is constructed from our specialized data synthesis engine that generates
046 structured textual descriptions, which are then translated into geometric figures. From these figures,
047 multiple-choice questions and answers are systematically created, ensuring a rigorous and diverse
048 evaluation framework. GePBench comprises 80K images and 285K questions, categorized into
049 easy and hard levels, and evaluates 6 key aspects of geometric perception: location, size, existence,
050 counting, reference, and relationships. Figure 1 shows examples for these aspects.

051 While several prior datasets, including GeoQA (Chen et al., 2021), Geometry3K (Lu et al., 2021),
052 UniGeo (Chen et al., 2022), geomVerse-V0 (Kazemi et al., 2023), GeoMM (Deng et al., 2024), and
053 MAVIS-Instruct (Zhang et al., 2024b), also involve geometric figures, their primary focus lies in
mathematical reasoning tasks, including numeric calculations, proof generation, and relationship

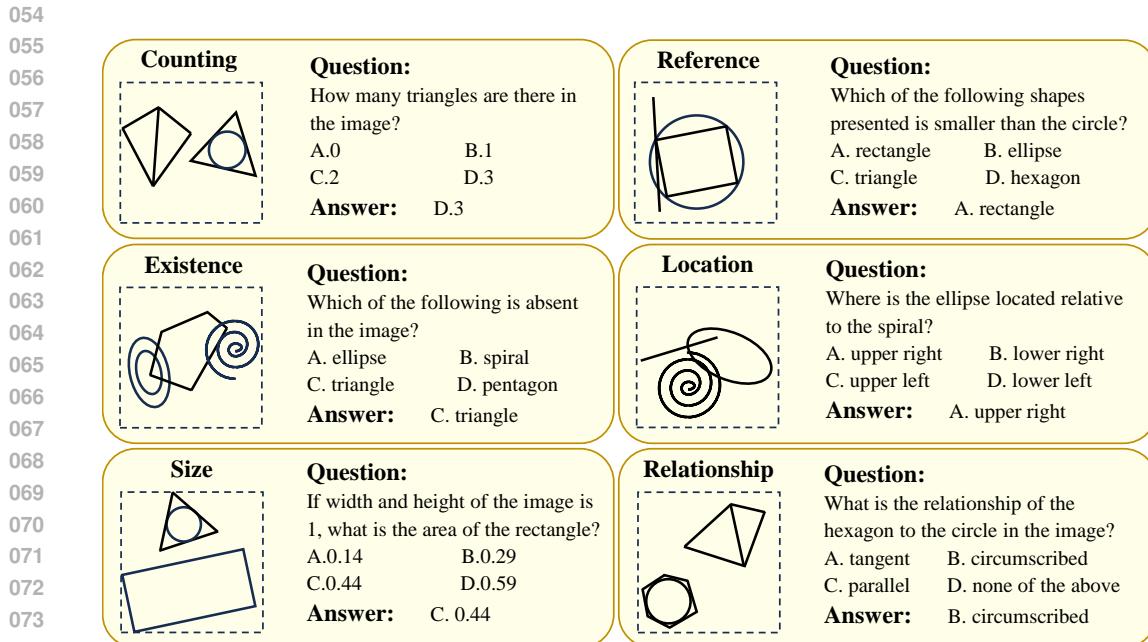


Figure 1: Examples for the different aspects of GePBench.

inference. These higher-order tasks implicitly depend on basic geometric perceptual skills including spatial awareness and shape recognition, which are often insufficiently addressed. In contrast, GePBench explicitly targets geometric perception, providing a more focused evaluation.

We conduct extensive evaluations of GePBench using a diverse array of MLLMs, encompassing both closed-source and open-source models. The results consistently reveal significant limitations in geometric perception. While humans achieve near-perfect accuracy on these tasks with minimal effort, leading models like GPT-4o and Qwen2.5-VL-72B struggle significantly. On tasks such as determining the size of a geometric shape, they achieve accuracies as low as 16.1% and 15.5%, below random guessing. These results underscore the limitations of current MLLMs in basic geometric perception, highlighting the urgent need for advancements in foundational geometric understanding.

Furthermore, we propose LLaVA-GeP, an enhanced model based on the LLaVA architecture trained with data generated by our specialized synthesis engine. LLaVA-GeP demonstrates considerable improvements across various tasks. For example, it achieves an average performance boost of 2.1% on medical image analyses, and 2.4% on chart and document understanding. This underscores the pivotal role that geometric perception plays in enabling broader real-world applications and highlights the transferability of these foundational skills to more complex domains.

Our contributions are summarized as follows:

- 1) We underscore the significance of geometric perception and introduce GePBench, a novel benchmark focusing on this fundamental perception ability of MLLMs.
- 2) We conduct extensive evaluations with 27 state-of-the-art models, identifying key technical challenges in geometric perception and providing insights into potential improvements.
- 3) We propose LLaVA-GeP, a model with upgraded visual capabilities, showing the potential to improve performance in real-world applications through enhanced geometric perception.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

In recent years, MLLMs have gained considerable attention for their ability to perform cross-modal understanding across a wide range of real-world tasks (Liu et al., 2023; Zhu et al., 2024; Yao et al.,

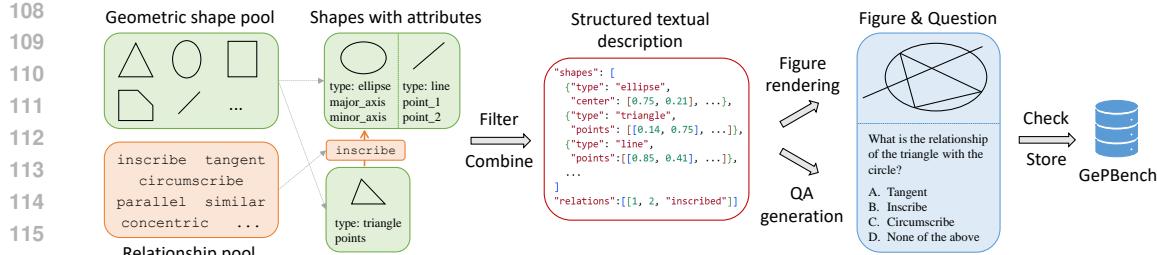


Figure 2: An overview of the data engine of GePBench.

2024; Chen et al., 2023b; Lu et al., 2024a; Tong et al., 2024a). These models typically consist of three main components: a visual encoder responsible for encoding the input image, a language model that enables textual understanding and reasoning, and a mapping module that translates visual features into textual representations. While they have shown remarkable success in various downstream applications, their performance on perceiving and recognizing geometric shapes and spatial relationships remains underexplored. This work aims to investigate whether MLLMs can perform well in geometric perception tasks.

2.2 MULTIMODAL BENCHMARKS

The evaluation of MLLMs has been supported by a wide array of multimodal benchmarks, which primarily focus on assessing high-level vision capabilities. Early benchmarks like VQAv2 (Goyal et al., 2019), GQA (Hudson & Manning, 2019), and ScienceQA (Lu et al., 2022) were designed to evaluate specific tasks, including object identification, optical character recognition, and scientific diagram comprehension. Subsequent datasets extended these evaluations to encompass more complex reasoning tasks, such as commonsense reasoning (Luo et al., 2024; Chen et al., 2024b) and professional knowledge assessment (Yue et al., 2024; Lu et al., 2024b). Some benchmarks like MMBench (Liu et al., 2024b) and SeedBench (Li et al., 2023a), introduced hierarchical evaluation frameworks that assess both understanding and reasoning abilities across multiple levels of complexity.

A separate line of research has explored the mathematical reasoning capabilities of MLLMs, with some of them focusing on geometry-related tasks. Early works (Chen et al., 2021; Lu et al., 2021; Chen et al., 2022; Lu et al., 2024b) adapted images from mathematical textbooks or exams, creating questions centered on reasoning tasks like calculations, proof generation, and relationship inference. More recent approaches have automated the construction of these tasks (Deng et al., 2024; Zhang et al., 2024b). Nevertheless, these benchmarks primarily target long-chain mathematical reasoning and often overlook basic geometric perception, leaving a critical gap in our understanding of MLLMs' foundational visual capabilities.

3 GEPBENCH

GePBench is a novel benchmark designed to evaluate the geometric perception capabilities of MLLMs. It leverages a data synthesis engine to generate structured textual descriptions of geometric figures, from which corresponding images and multiple-choice questions are constructed. Figure 2 shows an overview of the GePBench data engine.

3.1 STRUCTURED DESCRIPTION GENERATION

The foundation of GePBench lies in generating structured textual descriptions, which serve as the basis for both figure creation and question-answer generation. This process ensures consistency and precision in data construction.

To build a comprehensive dataset for evaluating geometric perception, we begin by curating a pool of 15 commonly encountered basic geometric shapes (e.g., lines, polygons, ellipses). From this pool, shapes are randomly sampled and assigned geometric attributes, including size, position, and orientation, subject to type-specific constraints designed to ensure plausibility and avoid ambiguity.

162 For instance, ellipses are required to have a major-to-minor axis ratio of at least 1.2 to prevent
 163 near-circular degeneracy. Overlaps between distinct shape types are restricted on a case-by-case basis
 164 to avoid the emergence of unintended composite forms that could complicate annotation.

165 To simulate real-world scenarios involving spatial interaction among multiple shapes, we define a
 166 relationship pool comprising 11 common geometric relations (e.g., tangency, parallelism, inscription).
 167 These relationships are probabilistically sampled and geometrically enforced during the incremental
 168 construction of each figure. The outcome of this process is a structured textual description that
 169 includes shape types, attributes, and spatial relationships between shapes. Further implementation
 170 details and constraint specifications are provided in Appendix B.
 171

172 3.2 FIGURE RENDERING

173 The structured descriptions are then rendered into visual figures using the Matplotlib package (Hunter,
 174 2007) in Python. To align with real-world conditions where noise might exist in collected images,
 175 we incorporate some visual noise into the figures with a probability of 0.5. These include Gaussian
 176 noise for the background, random disturbance and salt-and-pepper noise on shape outlines, and Perlin
 177 noise (Perlin, 1985) for closed shapes. Examples can be found in Appendix G.2. The added noise
 178 improves the fidelity of the benchmark by simulating real-world scenarios, leaving challenges for
 179 MLLMs under visually degraded conditions.
 180

181 3.3 QUESTION-ANSWER GENERATION

182 Once figures and textual descriptions are generated, template-based pipelines construct multiple-
 183 choice questions across six key aspects, including existence, counting, location, size, reference and
 184 relationship. The selection of six evaluation aspects is grounded in both geometric attributes and
 185 object attributes, ensuring comprehensive coverage of geometric perception. Size and location are
 186 intrinsic properties of geometric objects¹, while relationships capture interactions between multiple
 187 shapes. Existence, counting and reference represent key evaluative dimensions derived from object
 188 attributes, which are widely recognized in other established visual benchmarks. For example,
 189 POPE (Li et al., 2023c) includes object existence to assess hallucinations, and SeedBench (Li et al.,
 190 2023a) incorporates instance counting and visual reference to evaluate models’ visual recognition
 191 capability. By encompassing these six aspects, GePBench assesses core geometric perceptual
 192 capabilities, including shape recognition, relationship understanding, and spatial awareness, providing
 193 a comprehensive evaluation framework.
 194

195 Specifically, for any given figure, a question-answer pair is constructed by randomly selecting a
 196 shape and formulating a question based on its geometric attributes. The ground truth answer is
 197 derived from the structured textual description of the figure, ensuring accuracy and consistency. To
 198 create multiple-choice questions, we generate plausible distractors, i.e., incorrect answers designed to
 199 challenge the model’s geometric perception abilities, and combine them with the correct answer into
 200 a set of four candidate choices. Finally, they are categorized into easy and hard levels according to
 201 whether the number of shapes is greater than four and whether noise is added in the figure. Details on
 202 different aspects and their associated generation strategies can be found in Appendix B.3.
 203

204 3.4 STATISTICS AND ANALYSIS

205 According to the statistics, GePBench contains a total of 80K geometric figures and 285K multiple
 206 choice questions. The dataset sizes for 6 aspects are outlined in Figure 3 (b). GePBench features a
 207 diversity of geometric shapes and question types. Detailed statistics are presented in Figure 3 (a) (c),
 208 including the number of shapes per figure and question length, highlighting its balanced coverage
 209 across geometric types and question categories.

210 To validate the quality of the dataset, we conducted human evaluation with 20 participants from
 211 different professions and age groups. Each participant was asked to solve a subset containing 200
 212 questions for both the easy and hard splits of GePBench. The results, summarized in Table 1, reveal
 213 an average human accuracy of 99.3%, demonstrating that the tasks are intuitive and solvable for
 214 humans. Details are available in Appendix C.3.
 215

¹<https://en.wikipedia.org/wiki/Shape>

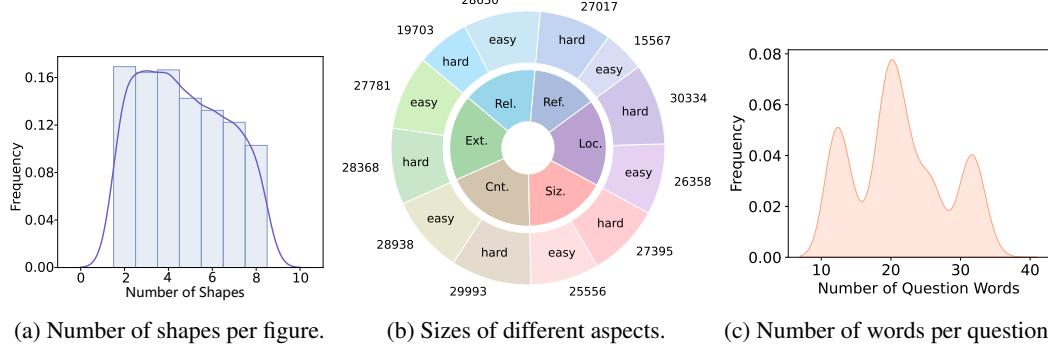


Figure 3: Key data distributions of GePBench.

Overall, GePBench provides a rigorous and diverse evaluation benchmark, challenging MLLMs with foundational geometric perception.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluated models. We perform a comprehensive evaluation on 27 multimodal LLMs, which are divided into 3 groups: closed-source models, including GPT-4o (OpenAI, 2023) and Gemini-2.5-Pro (Google, 2023); open-source general-purpose models, including BLIP2 (Li et al., 2023b), InstructBLIP (Dai et al., 2023), MiniG-PTv2 (Chen et al., 2023a), LLaVA-1.5 (Liu et al., 2024a), LLaVA-OneVision (Li et al., 2024), mPLUG-Owl3 (Ye et al., 2024), InternVL series (Chen et al., 2024c) (Zhu et al., 2025), MiniCPM-V-2.6 (Yao et al., 2024), GLM-4V (GLM et al., 2024), Mantis-Idefics2 (Jiang et al., 2024a), Qwen-VL series (Wang et al., 2024b) (Bai et al., 2025), LLaMA-3.2-Vision (Meta, 2024); and specialized geometric and reasoning models, including G-LLaVA (Gao et al., 2025), Math-LLaVA (Shi et al., 2024), Math-PUMA (Zhuang et al., 2025). Appendix C.1 shows the details of these models.

Evaluation setup. All evaluations are conducted exclusively in a zero-shot manner. For a fair comparison, the temperature is set to 0 and the image resolution is set to 640x640 for all the models. Accuracy is adopted as the metric for each aspect. Detailed evaluation schemes and corresponding prompts are provided in Appendix C.2.

4.2 MAIN RESULT

The main experimental results are presented in Table 1. To compare the performance of the MLLMs on fundamental geometric perception and high-level multimodal semantic tasks, we also include evaluation results reported by OpenCompass (Contributors, 2023), which are visualized in Figure 4. Our analysis reveals the following key observations:

Most models, especially open-source ones, face considerable challenges on GePBench. The results of Table 1 indicate that most MLLMs encounter significant challenges when evaluated on geometric perception tasks. For advanced closed-source models, Gemini-2.5-pro demonstrates

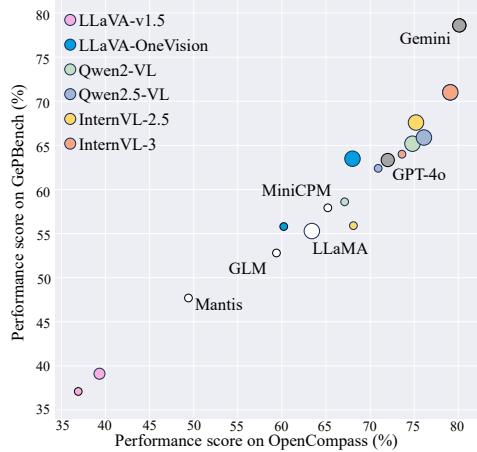


Figure 4: Performance comparison of representative models on GePBench and OpenCompass. Larger dots indicate larger model sizes in the same series. The scores of GePBench and OpenCompass align considerably well.

270 Table 1: Performance comparison of different MLLMs on GePBench (%). Ext, Cnt, Siz, Loc, Ref,
 271 Rel represent existence, counting, size, location, reference, relationship, and Avg is the average value
 272 of all the 12 following scores. Best scores are in bold.

Model Class	Size	Avg.	Easy						Hard					
			Ext.	Cnt.	Siz.	Loc.	Ref.	Rel.	Ext.	Cnt.	Siz.	Loc.	Ref.	Rel.
Random guessing	-	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
Human	-	99.3	99.4	99.8	99.2	98.4	99.9	99.6	99.3	99.7	98.9	98.5	99.8	98.8
GPT-4o	-	63.2	77.4	70.5	16.1	61.5	88.3	84.8	73.3	63.5	18.1	65.2	74.2	65.0
Gemini-2.5-pro	-	78.6	79.0	77.8	73.1	80.3	86.1	88.2	70.8	75.0	78.5	76.8	72.0	86.0
BLIP2	3B	33.9	35.4	18.4	26.9	27.2	48.2	52.3	41.0	15.9	34.5	25.0	37.9	44.1
InstructBLIP	3B	33.5	36.9	23.2	21.2	27.7	54.7	49.4	42.1	23.6	17.5	25.9	42.9	37.1
MiniGPTv2	7B	28.9	24.6	35.3	21.2	31.5	27.7	38.8	28.2	32.2	26.0	26.3	25.8	28.7
LLaVA-1.5	7B	37.1	33.8	44.4	20.2	41.3	36.5	67.5	32.8	25.5	22.0	32.1	38.5	50.3
LLaVA-1.5	13B	39.1	41.5	55.6	5.7	40.4	36.5	69.6	42.1	30.3	15.3	39.3	44.0	48.3
mPLUG-Owl3	7B	47.5	53.3	66.2	15.5	34.7	62.0	69.6	57.4	51.4	22.6	31.2	54.9	51.0
MiniCPM-V-2.6	8B	57.9	64.1	73.9	31.1	45.5	75.2	74.3	65.1	56.2	30.5	55.4	68.1	55.2
GLM-4V	9B	52.8	54.9	72.9	20.7	44.6	83.2	70.9	53.3	51.4	13.6	53.1	69.8	45.5
Mantis-Idfics2	8B	47.7	54.4	64.3	17.6	43.7	67.2	62.0	55.9	47.1	14.7	41.5	58.2	46.2
LLaMA-3.2-Vision	90B	55.4	62.6	72.0	13.0	49.3	69.3	82.7	60.0	54.8	16.9	51.8	67.6	65.0
LLaVA-OneVision	7B	55.8	62.6	74.9	26.9	53.1	74.5	72.2	60.0	56.7	23.7	54.0	57.7	53.1
LLaVA-OneVision	72B	63.6	73.3	78.7	24.4	53.1	93.4	84.8	68.7	58.2	24.3	66.1	75.8	62.9
Qwen2-VL	7B	58.6	67.2	80.2	20.2	60.6	78.8	76.8	65.1	61.1	11.9	53.6	73.6	53.8
Qwen2-VL	72B	65.3	70.3	75.4	22.8	77.0	84.7	81.0	69.2	65.9	17.5	76.8	76.9	65.7
Qwen2.5-VL	7B	62.4	71.8	75.4	25.9	68.5	81.0	78.9	66.7	61.1	21.5	71.0	70.9	56.6
Qwen2.5-VL	72B	66.0	75.4	76.8	15.5	70.0	86.9	82.3	71.3	66.3	30.5	69.6	79.1	68.5
InternVL2.5	8B	55.9	61.5	72.9	17.1	61.5	55.5	80.2	62.6	58.7	14.1	59.8	58.8	67.8
InternVL2.5	78B	67.7	76.9	81.2	21.8	70.4	92.0	84.4	71.3	66.3	30.5	69.6	79.1	68.5
InternVL3	8B	64.0	80.0	73.4	22.8	67.1	81.8	81.0	73.8	56.2	31.6	71.0	75.3	53.8
InternVL3	78B	71.0	75.4	76.3	50.3	65.7	86.1	84.8	73.3	66.3	48.0	75.9	81.3	68.5
G-LLaVA	7B	26.5	23.6	22.2	20.2	26.8	29.2	42.6	22.1	20.7	32.2	27.2	24.2	27.3
G-LLaVA	13B	29.2	23.6	31.4	26.9	25.4	36.5	39.2	29.2	26.9	26.6	25.9	34.1	25.2
Math-LLaVA	13B	38.2	46.2	40.6	12.4	33.3	56.2	59.5	46.2	21.2	19.2	34.4	47.3	42.0
Math-PUMA	7B	44.3	42.1	56.0	31.6	22.1	59.9	74.3	45.1	33.7	27.7	28.6	60.4	49.7
QVQ-preview	72B	57.0	67.2	67.6	22.3	49.8	73.0	73.8	67.2	65.9	31.1	53.6	59.9	53.1

297
 298 relatively satisfactory performance across various aspects, whereas GPT-4o lags behind, especially
 299 on size estimation aspect of the easy split with an accuracy of only 16.1%. In comparison, open-
 300 source models perform even worse overall. Notable exceptions include LLaVA-OneVision, InternVL
 301 series and Qwen-VL series, whose performance is comparable to closed-source models. However,
 302 the majority of open-source models fall below 60%. This disparity underscores the limitations of
 303 open-source models in geometric perception and the substantial room for improvement. Our findings
 304 underscore the challenges of geometric perception and highlight its value in testing the limitations of
 305 state-of-the-art systems.

306
 307 **Size and Location are generally more challenging than other aspects for current MLLMs.**
 308 Among geometric perception tasks, size and location prove the most difficult for both model types,
 309 reflecting deficiencies in spatial awareness. As shown in Table 1, even the top-performing open
 310 source model InternVL3-78B achieves only 50.3% accuracy on size-related questions and 65.7%
 311 on location-related questions in the easy split. Many other models fare worse, often falling below
 312 random guessing. This struggle likely stems from the design of modern visual encoders, which
 313 prioritize robustness in real-world image understanding by enforcing invariance to transformations
 314 like cropping and rotation (Anwar et al., 2015). While beneficial for general image recognition, these
 315 properties hinder precise spatial perception (Tu et al., 2024). Addressing this issue requires rethinking
 316 training paradigms to balance invariance with sensitivity to spatial details.

317
 318 **Specialized geometric and reasoning models do not significantly outperform their base models**
 319 **on GePBench.** Models specifically designed for geometric or mathematical reasoning, such as
 320 G-LLaVA and Math-PUMA, all fail to surpass their general-purpose counterparts (LLaVA-1.5 and
 321 Qwen2-VL, respectively). This outcome likely stems from the fact that these models are primarily
 322 trained on datasets tailored for mathematical problem-solving, neglecting the foundational challenges
 323 of visual perception and spatial awareness. Consequently, they struggle to generalize to the perceptual
 324 demands of GePBench. Similarly, the visual reasoning model QVQ-preview-72B fails to outperform

324 Table 2: Performance comparison of LLaVA-1.5-7B with different visual encoders (%).
325

Encoder class	Resolution	Avg.	Easy						Hard					
			Ext.	Cnt.	Siz.	Loc.	Ref.	Rel.	Ext.	Cnt.	Siz.	Loc.	Ref.	Rel.
CLIP	224 ²	37.4	33.3	44.0	19.2	47.4	28.5	65.8	31.8	26.0	22.6	44.2	37.4	49.0
CLIP	336 ²	37.1	33.8	44.4	20.2	41.3	36.5	67.5	32.8	25.5	22.0	32.1	38.5	50.3
OpenCLIP	224 ²	37.3	31.8	38.2	21.2	46.5	37.2	67.1	32.8	22.1	22.0	42.0	37.9	49.0
DINOv2	224 ²	31.1	30.8	33.3	19.7	30.0	21.9	64.6	32.3	16.3	19.2	29.0	30.8	45.5
SigLIP	224 ²	37.0	34.9	46.9	21.2	42.3	28.5	66.7	37.4	20.7	25.4	37.5	34.6	47.6
CLIP + DINOv2	224 ² + 224 ²	33.4	29.7	38.6	18.1	35.2	24.8	63.3	32.8	18.8	20.9	34.8	35.7	48.3
CLIP + DINOv2	336 ² + 224 ²	31.9	30.3	27.5	22.3	27.2	27.0	66.2	33.3	13.0	24.9	28.1	34.1	48.3

333
334 its base model, Qwen2-VL-72B. This observation aligns with the findings in QVQ’s technical report²,
335 which states: “QVQ doesn’t show significant improvement over Qwen2-VL-72B in basic recognition
336 tasks.” Since GePBench primarily assesses fundamental visual perception capabilities, advanced
337 reasoning mechanisms offer little advantage in this context.

339 5 DISCUSSION

341 In this section, we present further systematic analyses of geometric perception in MLLMs. We
342 investigate the influence of visual encoders on model performance (Section 5.1), the benefits of
343 geometric perception for downstream tasks (Section 5.2), and the performance gap between models
344 and humans on various benchmarks (Section 5.3). We also conduct a qualitative error analysis to gain
345 deeper insights into the common failure modes of MLLMs (Section 5.4). Additionally, we provide
346 more discussions in the Appendix, including impact of the number of shapes on model performance
347 in Appendix G.1, and detailed noise analyses comparing figures with different level of noise in
348 Appendix G.2.

350 5.1 IMPACT OF VISUAL ENCODERS

351 As discussed in Section 2.1, visual encoders are central to the visual perception capabilities of
352 MLLMs. To assess their influence, we experiment with the LLaVA-1.5-7B model using various visual
353 encoders, including CLIP-ViT-L, CLIP-ViT-L-336 (Radford et al., 2021), OpenCLIP-ViT-L (Cherti
354 et al., 2023), DINOv2 (Oquab et al., 2024) and SigLIP (Zhai et al., 2023). Additionally, following
355 the empirical best practice (Tong et al., 2024b; Yang et al., 2024), we evaluate mixed configurations
356 where outputs from both the CLIP-ViT-L and DINOv2 encoders are fed into the LLM backbone. The
357 checkpoints for these models are sourced from Yang et al. (2024) and evaluated on GePBench. The
358 results, summarized in Table 2, provide the following insights:

- 359 1) A comparison between CLIP-ViT-L and CLIP-ViT-L-336 suggests that higher resolution enhances
360 fine-grained recognition but may compromise spatial accuracy, as it improves performance in
361 most aspects of geometric perception except for location.
362 2) Different encoders exhibit distinct strengths, excelling in different aspects of geometric perception
363 as indicated by their varying performance across tasks.
364 3) Contrary to tasks that require high-level vision semantics capabilities (Tong et al., 2024a; Yang
365 et al., 2024), Mixed encoders underperform in fundamental geometric perception. This may be
366 attributed to the additional complexity of positional embeddings introduced by a larger number of
367 image tokens from multiple encoders, resulting in degraded spatial awareness.

368 For a more detailed discussion, please refer to Appendix D.

370 5.2 BENEFITS FOR DOWNSTREAM TASKS

372 To explore the broader impact of geometric perception on downstream multimodal tasks, we utilize
373 the data constructed by our data engine to train LLaVA-GeP-7B, a multimodal large language model
374 based on the LLaVA-1.5-7B architecture.

375 Specifically, following the two-stage training procedure in LLaVA, we construct additional training
376 data using the data engine of GePBench. We generate captions for the figures as pretraining data

377 ²<https://huggingface.co/Qwen/QVQ-72B-Preview>

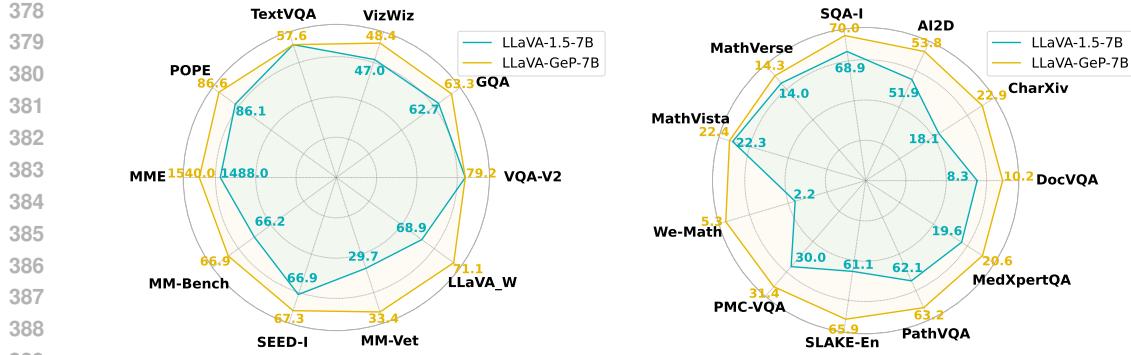


Figure 5: Performance comparison of LLaVA-1.5-7B and LLaVA-GeP-7B across general datasets (left) and specialized benchmarks (right) on downstream tasks.

in the first stage with the help of LLMs. The multiple-choice questions are directly utilized as instruction-tuning data in the second stage. Finally, 300K and 240K samples are obtained and mixed with the original LLaVA training data for pretraining and instruction tuning respectively.

The trained model, LLaVA-GeP-7B, is evaluated on a wide range of tasks. These tasks encompass both general benchmarks consistent with those used in the original LLaVA evaluation, and specialized benchmarks focused on domains such as mathematics, medical image analyses, and scientific chart and document understanding, which are inherently closer to geometric perception. More information on training, implementation and evaluation are provided in Appendix E.

The results, visualized in Figure 5, show consistent improvements across the evaluated tasks. Notably, general tasks demanding spatial awareness, abstract visual understanding and scientific diagram comprehension, such as MME-Perception and MM-Vet, exhibit considerable gains. A closer analysis of SeedBench and MM-Bench results reveals that most improvements are concentrated in categories of instance interaction, counting, and spatial localization. Moreover, LLaVA-GeP-7B also achieves better performance on domain-specific tasks, especially in medical imaging and scientific chart understanding. These results suggest that training on geometric perception data enhances the model’s ability to discriminate relationships and understand spatial configurations, which benefits effectively real-world scenarios where high-level skills are required.

5.3 GAPS BETWEEN MLLM AND HUMAN

To assess how well state-of-the-art MLLMs measure up to human performance, we compare their capabilities across diverse benchmarks, namely A-Bench (Zhang et al., 2024d), BLINK (Fu et al., 2024), CODIS (Luo et al., 2024), HR-Bench (Wang et al., 2024c), II-Bench (Liu et al., 2025), M³CoT (Chen et al., 2024b), MARVEL (Jiang et al., 2024b), Math-Verse (Zhang et al., 2024a), MathVista (Lu et al., 2024b), MMMU (Yue et al., 2024), MuirBench (Wang et al., 2024a), Q-Bench (Wu et al., 2024), UNIAA (Zhou et al., 2024), VCR (Zhang et al., 2024c), and WinoGround (Thrush et al., 2022). These benchmarks span visual understanding and inference, visual reasoning, detailed understanding of real-world images, mathematics, and other integrated tasks. For consistency, we use performance data from GPT-4o and the human average. When GPT-4o data is unavailable, we substitute with GPT-4V. Detailed data collection methods are outlined in Appendix H.

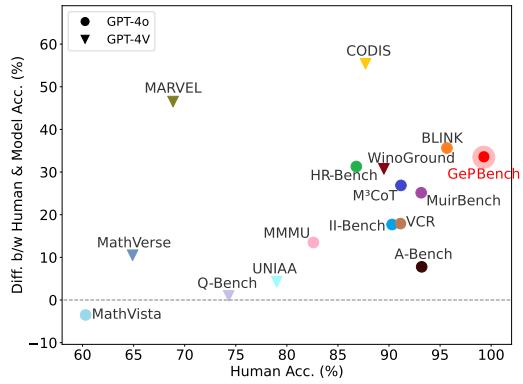


Figure 6: Human performance versus the performance gap between models and humans. Large y-values indicate MLLMs underperform significantly compared to humans.

432 Figure 6 visualizes the results. The x-axis represents average human scores on various benchmarks,
 433 with higher values indicating easier tasks for humans. The y-axis denotes the performance gap
 434 between MLLMs and humans, where larger values represent greater MLLM underperformance.
 435

436 The analysis reveals that geometric per-
 437 ception emerges as a particularly no-
 438 table task: despite being simplest for
 439 humans, it presents a considerable chal-
 440 lenge for MLLMs. Humans achieve
 441 near-perfect accuracy on the straightfor-
 442 ward multiple-choice questions, yet the
 443 powerful GPT-4o lag by more than 36%.
 444 This pronounced gap underscores the
 445 critical need to enhance MLLMs’ geo-
 446 metric perception capabilities to bridge
 447 this persistent divide.

448 5.4 ERROR ANALYSES

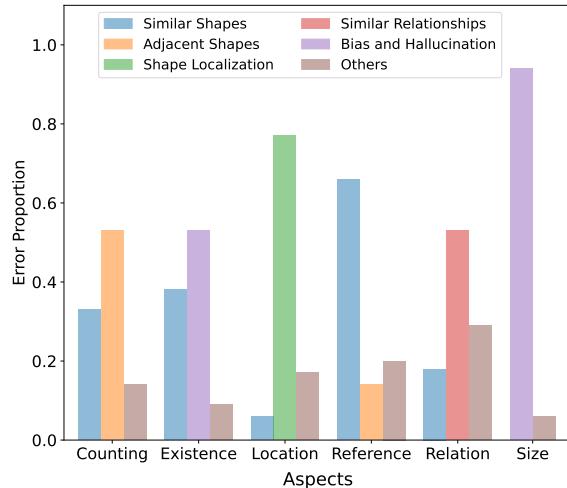
449 To gain deeper insights into the common
 450 failure modes of MLLMs in geometric
 451 perception tasks, we conduct an error
 452 analysis by manually inspecting 200 ran-
 453 domly sampled instances where GPT-4o
 454 produces incorrect outputs across differ-
 455 ent aspects. Our analysis reveals that
 456 the majority of errors can be categorized
 457 into five primary classes, and their distri-
 458 butions across different aspects are visualized in Figure 7.

- 459 1) **Failure to discriminate visually similar shapes.** The model often confuses visually similar
 460 shapes (e.g., squares vs. rectangles, spirals vs. circles).
- 461 2) **Misinterpretation of adjacent shapes.** Closely positioned or overlapping shapes are frequently
 462 miscounted or misidentified, reflecting weak sensitivity to spatial relationships.
- 463 3) **Inaccurate localization of geometric shapes.** The model struggles to correctly localize shapes
 464 within an image, indicating deficiencies in spatial perception.
- 465 4) **Confusion between similar geometric relationships.** Geometric relations such as inscription,
 466 circumscription, and tangency are often conflated.
- 467 5) **Bias and hallucination.** The model exhibits hallucinations in existence queries and systematic
 468 bias in size estimation, often overestimating geometric scales.

469 In summary, the results further reveal fundamental limitations in current MLLMs’ ability to per-
 470 ceive geometric shapes. GPT-4o struggles not only with distinguishing visually similar shapes and
 471 relationships but also with accurately interpreting spatial configurations and positional information.
 472 Moreover, the prevalence of hallucinations and systematic biases suggests that these models may rely
 473 on overgeneralized priors rather than precise visual understanding. Together, these findings highlight
 474 critical challenges in visual perception and spatial awareness, which must be addressed to improve
 475 the reliability of MLLMs in vision-language tasks. Illustrative examples and detailed description
 476 of each error class can be found in Appendix F. There we also provide further analyses, including
 477 in-depth investigation into the most prevailing error types Similar Shapes and Bias & Hallucination,
 478 and the trace of error sources through module-specific finetuning and probing experiments.

479 6 CONCLUSION

481 In this paper, we introduce GePBench, a large-scale benchmark dataset specifically designed to
 482 evaluate geometric perception for MLLMs. Extensive experiments highlight substantial room for
 483 improvement, as even state-of-the-art models fail to achieve satisfactory results. Our analysis
 484 of visual encoders provides insights into structural design. Additionally, we demonstrate that
 485 enhancing geometric perception contributes to improved performance on a variety of multimodal
 486 tasks, underscoring its foundational importance.



487 Figure 7: Distribution of error types across different
 488 aspects for GPT-4o.

486 REPRODUCIBILITY STATEMENT
487488 To better support reproducibility, we detail all the details to reproduce our results in Appendix C and
489 E, including the evaluation parameters, training details, environment and framework versions.
490491 REFERENCES
492493 Hafeez Anwar, Sebastian Zambanini, and Martin Kampel. Efficient scale- and rotation-invariant
494 encoding of visual words for image classification. *IEEE Signal Processing Letters*, 22(10):1762–
495 1765, 2015. doi: 10.1109/LSP.2015.2432851.496 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
497 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
498 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
499 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
500 *CoRR*, abs/2502.13923, 2025. doi: 10.48550/ARXIV.2502.13923. URL <https://doi.org/10.48550/arXiv.2502.13923>.501 Andrea Barucci, Giulia Ciacci, Pietro Liò, Tiago Azevedo, Andrea Di Cencio, Marco Merella,
502 Giovanni Bianucci, Giulia Bosio, Simone Casati, and Alberto Collareta. Artificial intelligence-
503 powered fossil shark tooth identification: Unleashing the potential of convolutional neural networks,
504 2024. URL <https://arxiv.org/abs/2405.04189>.505 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. *Computational Geometry:
506 Algorithms and Applications*. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd ed. edition,
507 2008. ISBN 3540779736.508 Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P. Xing, and Liang Lin.
509 Geoqa: A geometric question answering benchmark towards multimodal numerical reasoning.
510 In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Findings of the Association
511 for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021*, volume
512 ACL/IJCNLP 2021 of *Findings of ACL*, pp. 513–523. Association for Computational Linguistics,
513 2021. doi: 10.18653/V1/2021.FINDINGS-ACL.46. URL <https://doi.org/10.18653/v1/2021.findings-acl.46>.514 Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin, Chongyu Chen, and Xiaodan Liang. Unigeo:
515 Unifying geometry logical reasoning via reformulating mathematical expression. In Yoav Goldberg,
516 Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical
517 Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
518 December 7-11, 2022*, pp. 3313–3323. Association for Computational Linguistics, 2022. doi:
519 10.18653/V1/2022.EMNLP-MAIN.218. URL <https://doi.org/10.18653/v1/2022.emnlp-main.218>.520 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Krish-
521 namoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large language
522 model as a unified interface for vision-language multi-task learning. *CoRR*, abs/2310.09478, 2023a.
523 doi: 10.48550/ARXIV.2310.09478. URL <https://doi.org/10.48550/arXiv.2310.09478>.524 Qi Chen, Ruoshan Zhao, Sinuo Wang, Vu Minh Hieu Phan, Anton van den Hengel, Johan Verjans,
525 Zhibin Liao, Minh-Son To, Yong Xia, Jian Chen, Yutong Xie, and Qi Wu. A survey of medical
526 vision-and-language applications and their techniques, 2024a. URL <https://arxiv.org/abs/2411.12195>.527 Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M^3 cot: A novel
528 benchmark for multi-domain multi-step multi-modal chain-of-thought. *CoRR*, abs/2405.16473,
529 2024b. doi: 10.48550/ARXIV.2405.16473. URL <https://doi.org/10.48550/arXiv.2405.16473>.530 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
531 Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:

- Scaling up vision foundation models and aligning for generic visual-linguistic tasks. *CoRR*, abs/2312.14238, 2023b. doi: 10.48550/ARXIV.2312.14238. URL <https://doi.org/10.48550/arXiv.2312.14238>.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024c.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive language-image learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 2818–2829. IEEE, 2023. doi: 10.1109/CVPR52729.2023.00276. URL <https://doi.org/10.1109/CVPR52729.2023.00276>.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models. <https://github.com/open-compass/opencompass>, 2023.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose vision-language models with instruction tuning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html.

Linger Deng, Yuliang Liu, Bohan Li, Dongliang Luo, Liang Wu, Chengquan Zhang, Pengyuan Lyu, Ziyang Zhang, Gang Zhang, Errui Ding, Yingying Zhu, and Xiang Bai. R-cot: Reverse chain-of-thought problem generation for geometric reasoning in large multimodal models. *CoRR*, abs/2410.17885, 2024. doi: 10.48550/ARXIV.2410.17885. URL <https://doi.org/10.48550/arXiv.2410.17885>.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. MME: A comprehensive evaluation benchmark for multimodal large language models. *CoRR*, abs/2306.13394, 2023. doi: 10.48550/ARXIV.2306.13394. URL <https://doi.org/10.48550/arXiv.2306.13394>.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A. Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but not perceive, 2024. URL <https://arxiv.org/abs/2404.12390>.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing HONG, Jianhua Han, Hang Xu, Zhenguo Li, and Lingpeng Kong. G-LLaVA: Solving geometric problem with multi-modal large language model. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=px1674Wp3C>.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024.

Google. Gemini: A family of highly capable multimodal models. *CoRR*, abs/2312.11805, 2023. doi: 10.48550/ARXIV.2312.11805. URL <https://doi.org/10.48550/arXiv.2312.11805>.

- 594 Yash Goyal, Tejas Khot, Aishwarya Agrawal, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh.
 595 Making the V in VQA matter: Elevating the role of image understanding in visual question
 596 answering. *Int. J. Comput. Vis.*, 127(4):398–414, 2019. doi: 10.1007/S11263-018-1116-0. URL
 597 <https://doi.org/10.1007/s11263-018-1116-0>.
- 598 Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman,
 599 Jiebo Luo, and Jeffrey P. Bigham. Vizwiz grand challenge: Answering visual ques-
 600 tions from blind people. In *2018 IEEE Conference on Computer Vision and Pattern
 601 Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018*, pp. 3608–3617.
 602 Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
 603 2018.00380. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Gurari_VizWiz_Grand_Challenge_CVPR_2018_paper.html.
- 604 Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for
 605 medical visual question answering. *arXiv preprint arXiv:2003.10286*, 2020.
- 606 Chengbin Hou, Xinyu Lin, Hanhui Huang, Sheng Xu, Junxuan Fan, Yukun Shi, and Hairong
 607 Lv. Fossil image identification using deep learning ensembles of data augmented multiviews.
 608 *Methods in Ecology and Evolution*, 14(12):3020–3034, October 2023. ISSN 2041-210X. doi:
 609 10.1111/2041-210X.14229. URL <http://dx.doi.org/10.1111/2041-210X.14229>.
- 610 Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual
 611 reasoning and compositional question answering. In *IEEE Conference on Computer Vision
 612 and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp. 6700–
 613 6709. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00686. URL
 614 http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html.
- 615 J. D. Hunter. Matplotlib: A 2d graphics environment. *Computing in Science & Engineering*, 9(3):
 616 90–95, 2007. doi: 10.1109/MCSE.2007.55.
- 617 Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max W.F. Ku, Qian Liu, and Wenhui Chen. Mantis:
 618 Interleaved multi-image instruction tuning. *Transactions on Machine Learning Research*, 2024,
 619 2024a. URL <https://openreview.net/forum?id=skLtdUVaJa>.
- 620 Yifan Jiang, Jiarui Zhang, Kexuan Sun, Zhivar Sourati, Kian Ahrabian, Kaixin Ma, Filip Ilievski, and
 621 Jay Pujara. Marvel: Multidimensional abstraction and reasoning through visual evaluation and
 622 learning, 2024b. URL <https://arxiv.org/abs/2404.13591>.
- 623 Mehran Kazemi, Hamidreza Alvari, Ankit Anand, Jialin Wu, Xi Chen, and Radu Soricut. Geomverse:
 624 A systematic evaluation of large models for geometric reasoning. *CoRR*, abs/2312.12241, 2023.
 625 doi: 10.48550/ARXIV.2312.12241. URL <https://doi.org/10.48550/arXiv.2312.12241>.
- 626 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min Joon Seo, Hannaneh Hajishirzi, and Ali
 627 Farhadi. A diagram is worth a dozen images. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
 628 Max Welling (eds.), *Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
 629 The Netherlands, October 11-14, 2016, Proceedings, Part IV*, volume 9908 of *Lecture Notes in
 630 Computer Science*, pp. 235–251. Springer, 2016. doi: 10.1007/978-3-319-46493-0_15. URL
 631 https://doi.org/10.1007/978-3-319-46493-0_15.
- 632 Wasif Khan, Seowung Leem, Kyle B. See, Joshua K. Wong, Shaoting Zhang, and Ruogu Fang. A
 633 comprehensive survey of foundation models in medicine, 2024. URL <https://arxiv.org/abs/2406.10729>.
- 634 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
 635 Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer, August 2024. URL
 636 <https://llava-vl.github.io/blog/2024-08-05-llava-onevision/>.
- 637 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 638 marking multimodal llms with generative comprehension. *CoRR*, abs/2307.16125, 2023a. doi: 10.
 639 48550/ARXIV.2307.16125. URL <https://doi.org/10.48550/arXiv.2307.16125>.

- 648 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
 649 pre-training with frozen image encoders and large language models. In Andreas Krause, Emma
 650 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
 651 *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 19730–19742. PMLR, 23–29 Jul 2023b. URL
 652 <https://proceedings.mlr.press/v202/li23q.html>.
 653
- 654 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 655 hallucination in large vision-language models. In Houda Bouamor, Juan Pino, and Kalika Bali
 656 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
 657 *EMNLP 2023, Singapore, December 6-10, 2023*, pp. 292–305. Association for Computational
 658 Linguistics, 2023c. doi: 10.18653/V1/2023.EMNLP-MAIN.20. URL <https://doi.org/10.18653/v1/2023.emnlp-main.20>.
 659
- 660 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-
 661 labeled knowledge-enhanced dataset for medical visual question answering. In *2021 IEEE 18th
 662 international symposium on biomedical imaging (ISBI)*, pp. 1650–1654. IEEE, 2021.
 663
- 664 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 665 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 666 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 667 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html.
 668
- 669
- 670 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 671 tuning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024*,
 672 *Seattle, WA, USA, June 16-22, 2024*, pp. 26286–26296. IEEE, 2024a. doi: 10.1109/CVPR52733.
 673 2024.02484. URL <https://doi.org/10.1109/CVPR52733.2024.02484>.
 674
- 675 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 676 Wang, Conghui He, Ziwei Liu, Kai Chen, and Daha Lin. Mmbench: Is your multi-modal model
 677 an all-around player? In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten
 678 Sattler, and Gü̈l Varol (eds.), *Computer Vision - ECCV 2024 - 18th European Conference, Milan,
 679 Italy, September 29-October 4, 2024, Proceedings, Part VI*, volume 15064 of *Lecture Notes in
 680 Computer Science*, pp. 216–233. Springer, 2024b. doi: 10.1007/978-3-031-72658-3_13. URL
 681 https://doi.org/10.1007/978-3-031-72658-3_13.
 682
- 683 Ziqiang Liu, Feiteng Fang, Xi Feng, Xinrun Du, Chenhao Zhang, Zekun Wang, Yuelin Bai, Qixuan
 684 Zhao, Liyang Fan, Chengguang Gan, Hongquan Lin, Jiaming Li, Yuansheng Ni, Haihong Wu,
 685 Yaswanth Narsupalli, Zhigang Zheng, Chengming Li, Xiping Hu, Ruifeng Xu, Xiaojun Chen,
 686 Min Yang, Jiaheng Liu, Ruibo Liu, Wenhao Huang, Ge Zhang, and Shiwen Ni. Ii-bench: An
 687 image implication understanding benchmark for multimodal large language models, 2025. URL
 688 <https://arxiv.org/abs/2406.05862>.
 689
- 690 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 691 Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan.
 692 Deepseek-vl: Towards real-world vision-language understanding, 2024a.
 693
- 694 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
 695 Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
 696 In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th
 697 Annual Meeting of the Association for Computational Linguistics and the 11th International
 698 Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
 699 Virtual Event, August 1-6, 2021*, pp. 6774–6786. Association for Computational Linguistics, 2021.
 700 doi: 10.18653/V1/2021.ACL-LONG.528. URL <https://doi.org/10.18653/v1/2021.acl-long.528>.
 701
- 702 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu,
 703 Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal rea-
 704 soning via thought chains for science question answering. In Sanmi Koyejo, S. Mo-
 705 hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural*

- 702 *Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.* URL http://papers.nips.cc/paper_files/paper/2022/hash/11332b6b6cf4485b84afadb1352d3a9a-Abstract-Conference.html.
- 703
- 704
- 705
- 706 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024b. URL <https://openreview.net/forum?id=KUNzEQMWU7>.
- 707
- 708
- 709
- 710
- 711
- 712 Fuwen Luo, Chi Chen, Zihao Wan, Zhaolu Kang, Qidong Yan, Yingjie Li, Xiaolong Wang, Siyu Wang, Ziyue Wang, Xiaoyue Mi, Peng Li, Ning Ma, Maosong Sun, and Yang Liu. Codis: Benchmarking context-dependent visual comprehension for multimodal large language models, 2024. URL <https://arxiv.org/abs/2402.13607>.
- 713
- 714
- 715
- 716 Valerio Manappa and Luca Tommasi. The shape of you: do individuals associate particular geometric shapes with identity? *Current Psychology*, 42(12):10042–10052, Apr 2023. ISSN 1936-4733. doi: 10.1007/s12144-021-02297-z. URL <https://doi.org/10.1007/s12144-021-02297-z>.
- 717
- 718
- 719
- 720 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 2200–2209, 2021.
- 721
- 722
- 723
- 724 Meta. Llama 3.2: Revolutionizing edge ai and vision with open, cus-
725 tomizable models. 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>.
- 726
- 727 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
728 URL <https://doi.org/10.48550/arXiv.2303.08774>.
- 729
- 730 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision. *Trans. Mach. Learn. Res.*, 2024, 2024. URL <https://openreview.net/forum?id=a68SUT6zFt>.
- 731
- 732
- 733
- 734
- 735
- 736 Ken Perlin. An image synthesizer. In *Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '85*, pp. 287–296, New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911660. doi: 10.1145/325334.325247. URL <https://doi.org/10.1145/325334.325247>.
- 737
- 738
- 739
- 740 Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma GongQue, Shanglin Lei, Zhe Wei, MiaoXuan Zhang, et al. We-math: Does your large multimodal model achieve human-like mathematical reasoning? *arXiv preprint arXiv:2407.01284*, 2024.
- 741
- 742
- 743
- 744 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021. URL <http://proceedings.mlr.press/v139/radford21a.html>.
- 745
- 746
- 747
- 748
- 749
- 750
- 751 Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and Roy Ka-Wei Lee. Math-LLaVA: Bootstrapping mathematical reasoning for multimodal large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 4663–4680, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.268. URL <https://aclanthology.org/2024.findings-emnlp.268/>.
- 752
- 753
- 754
- 755

- 756 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi
 757 Parikh, and Marcus Rohrbach. Towards VQA models that can read. In *IEEE Conference*
 758 *on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-*
 759 *20, 2019*, pp. 8317–8326. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.
 760 2019.00851. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Singh_Towards_VQA_Models_That_Can_Read_CVPR_2019_paper.html.
- 761
- 762 Qwen Team. Qvq: To see the world with wisdom, December 2024a. URL <https://qwenlm.github.io/blog/qvq-72b-preview/>.
- 763
- 764
- 765 Qwen Team. Qwen2.5: A party of foundation models, September 2024b. URL <https://qwenlm.github.io/blog/qwen2.5/>.
- 766
- 767 Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace Ross. Winoground: Probing vision and language models for visio-linguistic compositionality, 2022. URL <https://arxiv.org/abs/2204.03162>.
- 768
- 769
- 770 Luca Tommasi, Cinzia Chiandetti, Tommaso Pecchia, Valeria Anna Sovrano, and Giorgio Vallortigara.
 771 From natural geometry to spatial cognition. *Neuroscience & Biobehavioral Reviews*, 36(2):799–
 772 824, 2012. ISSN 0149-7634. doi: <https://doi.org/10.1016/j.neubiorev.2011.12.007>. URL <https://www.sciencedirect.com/science/article/pii/S0149763411002144>.
- 773
- 774
- 775 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha Akula,
 776 Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fergus, Yann LeCun,
 777 and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal llms, 2024a.
- 778
- 779 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 780 shut? exploring the visual shortcomings of multimodal llms, 2024b. URL <https://arxiv.org/abs/2401.06209>.
- 781
- 782 Weijie Tu, Weijian Deng, and Tom Gedeon. Toward a holistic evaluation of robustness in clip models,
 783 2024. URL <https://arxiv.org/abs/2410.01534>.
- 784
- 785 Fei Wang, Xingyu Fu, James Y. Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma, Nan
 786 Xu, Wenxuan Zhou, Kai Zhang, Tianyi Lorena Yan, Wenjie Jacky Mo, Hsiang-Hui Liu, Pan Lu,
 787 Chunyuan Li, Chaowei Xiao, Kai-Wei Chang, Dan Roth, Sheng Zhang, Hoifung Poon, and Muhamo
 788 Chen. Muirbench: A comprehensive benchmark for robust multi-image understanding, 2024a.
 789 URL <https://arxiv.org/abs/2406.09411>.
- 790
- 791 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 792 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 793 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 794 perception of the world at any resolution. *CoRR*, abs/2409.12191, 2024b. doi: 10.48550/ARXIV.
 2409.12191. URL <https://doi.org/10.48550/arXiv.2409.12191>.
- 795
- 796 Wenbin Wang, Liang Ding, Minyan Zeng, Xiabin Zhou, Li Shen, Yong Luo, and Dacheng Tao.
 797 Divide, conquer and combine: A training-free framework for high-resolution image perception in
 798 multimodal large language models, 2024c. URL <https://arxiv.org/abs/2408.15556>.
- 799
- 800 Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
 801 Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, and Danqi Chen. Charxiv:
 802 Charting gaps in realistic chart understanding in multimodal llms. *arXiv preprint arXiv:2406.18521*,
 803 2024d.
- 804
- 805 Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Chunyi Li,
 806 Wenxiu Sun, Qiong Yan, Guangtao Zhai, and Weisi Lin. Q-bench: A benchmark for general-
 807 purpose foundation models on low-level vision, 2024. URL <https://arxiv.org/abs/2309.14181>.
- 808
- 809 Lawrence K. Q. Yan, Qian Niu, Ming Li, Yichao Zhang, Caitlyn Heqi Yin, Cheng Fei, Benji
 810 Peng, Ziqian Bi, Pohsun Feng, Keyu Chen, Tianyang Wang, Yunze Wang, Silin Chen, Ming
 811 Liu, and Junyu Liu. Large language model benchmarks in medical tasks, 2024. URL <https://arxiv.org/abs/2410.21348>.

- 810 Shijia Yang, Bohan Zhai, Quanzeng You, Jianbo Yuan, Hongxia Yang, and Chenfeng Xu. Law of
 811 vision representation in mllms. *CoRR*, abs/2408.16357, 2024. doi: 10.48550/ARXIV.2408.16357.
 812 URL <https://doi.org/10.48550/arXiv.2408.16357>.
- 813
- 814 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 815 Weilin Zhao, Zhihui He, Qianyu Chen, Huarong Zhou, Zhensheng Zou, Haoye Zhang, Shengding
 816 Hu, Zhi Zheng, Jie Zhou, Jie Cai, Xu Han, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong
 817 Sun. Minicpm-v: A GPT-4V level MLLM on your phone. *CoRR*, abs/2408.01800, 2024. doi: 10.
 818 48550/ARXIV.2408.01800. URL <https://doi.org/10.48550/arXiv.2408.01800>.
- 819
- 820 Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren
 821 Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large language
 822 models, 2024. URL <https://arxiv.org/abs/2408.04840>.
- 823
- 824 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and
 825 Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. In *Forty-
 826 first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.*
 827 OpenReview.net, 2024. URL <https://openreview.net/forum?id=KOTutrSR2y>.
- 828
- 829 Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 830 Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin,
 831 Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 832 MMMU: A massive multi-discipline multimodal understanding and reasoning benchmark for
 833 expert AGI. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024,
 Seattle, WA, USA, June 16-22, 2024*, pp. 9556–9567. IEEE, 2024. doi: 10.1109/CVPR52733.2024.
 834 00913. URL <https://doi.org/10.1109/CVPR52733.2024.00913>.
- 835
- 836 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 837 image pre-training. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris,
 France, October 1-6, 2023*, pp. 11941–11952. IEEE, 2023. doi: 10.1109/ICCV51070.2023.01100.
 838 URL <https://doi.org/10.1109/ICCV51070.2023.01100>.
- 839
- 840 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan
 841 Lu, Kai-Wei Chang, Yu Qiao, Peng Gao, and Hongsheng Li. MATHVERSE: does your multi-
 842 modal LLM truly see the diagrams in visual math problems? In Ales Leonardis, Elisa Ricci, Stefan
 843 Roth, Olga Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.), *Computer Vision - ECCV 2024 -
 844 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part VIII*,
 845 volume 15066 of *Lecture Notes in Computer Science*, pp. 169–186. Springer, 2024a. doi: 10.1007/
 846 978-3-031-73242-3_10. URL https://doi.org/10.1007/978-3-031-73242-3_10.
- 847
- 848 Renrui Zhang, Xinyu Wei, Dongzhi Jiang, Yichi Zhang, Ziyu Guo, Chengzhuo Tong, Jiaming Liu,
 849 Aojun Zhou, Bin Wei, Shanghang Zhang, Peng Gao, and Hongsheng Li. Mavis: Mathematical
 850 visual instruction tuning, 2024b. URL <https://arxiv.org/abs/2407.08739>.
- 851
- 852 Tianyu Zhang, Suyuchen Wang, Lu Li, Ge Zhang, Perouz Taslakian, Sai Rajeswar, Jie Fu, Bang
 853 Liu, and Yoshua Bengio. Vcr: Visual caption restoration, 2024c. URL <https://arxiv.org/abs/2406.06462>.
- 854
- 855 Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weixiong Lin, Ya Zhang, Yanfeng Wang, and Weidi
 856 Xie. Pmc-vqa: Visual instruction tuning for medical visual question answering. *arXiv preprint
 857 arXiv:2305.10415*, 2023.
- 858
- 859 Zicheng Zhang, Haoning Wu, Chunyi Li, Yingjie Zhou, Wei Sun, Xiongkuo Min, Zijian Chen,
 860 Xiaohong Liu, Weisi Lin, and Guangtao Zhai. A-bench: Are lmms masters at evaluating ai-
 861 generated images?, 2024d. URL <https://arxiv.org/abs/2406.03070>.
- 862
- 863 Zhaokun Zhou, Qiulin Wang, Bin Lin, Yiwei Su, Rui Chen, Xin Tao, Amin Zheng, Li Yuan, Pengfei
 Wan, and Di Zhang. Uniaa: A unified multi-modal image aesthetic assessment baseline and
 864 benchmark, 2024. URL <https://arxiv.org/abs/2404.09619>.

864 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
 865 vision-language understanding with advanced large language models. In *The Twelfth Interna-*
 866 *tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.*
 867 OpenReview.net, 2024. URL <https://openreview.net/forum?id=1tZbq88f27>.

868 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 869 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
 870 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng,
 871 Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng
 872 Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han
 873 Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou,
 874 Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Internvl3:
 875 Exploring advanced training and test-time recipes for open-source multimodal models. *CoRR*,
 876 [abs/2504.10479](https://arxiv.org/abs/2504.10479), 2025. doi: 10.48550/ARXIV.2504.10479. URL <https://doi.org/10.48550/arXiv.2504.10479>.

877 Wenwen Zhuang, Xin Huang, Xiantao Zhang, and Jin Zeng. Math-puma: Progressive upward
 878 multimodal alignment to enhance mathematical reasoning. In *Proceedings of the AAAI Conference*
 879 *on Artificial Intelligence*, volume 39, pp. 26183–26191, 2025.

880 Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding,
 881 and Bowen Zhou. Medxpertqa: Benchmarking expert-level medical reasoning and understanding.
 882 *arXiv preprint arXiv:2501.18362*, 2025.

883 A LLM USAGE

884 In the course of preparing this manuscript and supporting materials, we leveraged large language
 885 models (LLMs) as auxiliary tools to enhance the efficiency and quality of non-core research tasks.
 886 Specifically, LLMs were employed in two primary capacities:

- 887 1. **Language polishing:** We used LLMs to assist in proofreading, grammatical correction, and
 888 stylistic refinement of the manuscript’s prose.
- 889 2. **Boilerplate and utility code generation:** For ancillary implementation tasks, such as file I/O
 890 wrappers, format converters, or logging utilities, we used LLMs to accelerate prototyping.

891 B DETAILS ON THE CONSTRUCTION OF GEPBENCH

892 B.1 ALGORITHM OVERVIEW

893 Algorithm 1 describes the entire generation process of structured textual description. This process
 894 leverages two predefined asset pools:

- 895 1) **The shapes pool \mathcal{S} ,** includes 15 distinct geometric types: lines, triangles, quadrilaterals, pentagons,
 896 hexagons, rectangles, squares, regular pentagons, regular hexagons, pentagram, hexagram, ellipses,
 897 circles, sectors and spirals.
- 898 2) **The relationships pool \mathcal{R} ,** consists of 11 fundamental geometric relationships: tangency, par-
 899 allelism, inscription, circumscription, similarity, concentricity, symmetry, axiality, diagonality,
 900 perpendicularity, and adjacency.

901 The generation process consists of two phases. In the first phase, a sparse set of foundational shapes
 902 is generated. The second phase expands upon this set by introducing new shapes that have explicit
 903 relationships to existing ones. Before adding a new shape s to the current shape set S , the algorithm
 904 verifies whether its placement complies with a predefined set of rules. The shape is added to S only if
 905 all rules are satisfied. This constraint is crucial for preventing ambiguity and unintended composite
 906 forms. The full ruleset is detailed in Appendix B.2.

907 B.2 RULESET FOR SHAPES AND ATTRIBUTES

908 To ensure reasonable attributes when generating structured textual description, we propose a set of
 909 rules as guidelines.

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

Algorithm 1 Structured Description Generation

Require: Predefined shapes pool \mathcal{S} and relationships pool \mathcal{R} , maximum number of shapes per sample m , valid placement ruleset \mathcal{V}

Ensure: A structured description sample D

Initialize the set of shapes $S = \{\}$, the set of relationships $R = \{\}$

while $|S| < \lfloor m/2 \rfloor$ **do**

- $s \leftarrow \text{sample_new_shape}(\mathcal{S})$
- $\text{randomize_attributes}(s)$
- if** $\text{is_placement_valid}(s, S, \mathcal{V})$ **then**

 - $S \leftarrow S \cup \{s\}$

- for** s in S **do**

 - $r = \text{sample_relationship}(\mathcal{R}, s)$
 - $s' = \text{generate_shape}(r, s)$
 - $\text{assign_attributes}(s', r, s)$
 - if** $\text{is_placement_valid}(s, S, \mathcal{V})$ **then**

 - $S \leftarrow S \cup \{s'\}$
 - $R \leftarrow R \cup \{(s, s', r)\}$
 - if** $|S| \geq m$ **then**

 - break**

$D \leftarrow (S, R)$

return D

Rule 1: Spatial Reasonableness. Shapes must be of moderate size and fully contained within the canvas.

Rule 2: Shape Fidelity. Attributes are constrained to preserve the intended shape category and prevent perceptual ambiguity.

Rule 3: Topological Simplicity. Shape intersections are restricted to avoid the formation of unintended shapes.

According to the above rules, we design validation steps when generating specific shapes and employ rejection sampling. The parentheses before each step indicate the corresponding guideline rules.

1) **Polygons.**

- (Rule 1) The area must exceed 0.02, and each edge length must be greater than 0.05.
- (Rule 2) All interior angles are constrained to $[0.15\pi, 0.85\pi]$. For rectangles, the height and width must differ by at least 20%.
- (Rule 3) It should intersect with another polygon, star or line at no more than one point.

2) **Lines.**

- (Rule 1) Line lengths are constrained to the interval $[0.2, 0.8]$.
- (Rule 3) A line may intersect a polygon, a star or all other lines at no more than one point.

3) **Stars.**

- (Rule 1) Outer radius are constrained to the interval $[0.15, 0.4]$.
- (Rule 2) Inner radius are constrained to 40%-70% of the outer radius.
- (Rule 3) It should intersect with another polygon, star or line at no more than one point.

4) **Ellipses, Circles, Sectors and Spirals.**

- (Rule 1) The area must exceed 0.02.
- (Rule 2) For ellipses, the major and minor axes must differ by at least 20%. For sectors, the angular span are constrained to the interval $[\frac{\pi}{12}, \frac{5\pi}{12}]$.

By integrating these steps, we systematically eliminate geometrically implausible or semantically ambiguous configurations.

B.3 DETAILS ON THE DIFFERENT ASPECTS OF GEPBENCH

In this section, we delve into the specifics of the six key aspects of GePBench, highlighting the design principles and generation strategies.

972 **Existence.** Questions in this category assess a model’s ability to accurately identify whether specific
 973 shapes are present in a figure, while avoiding hallucinations or false positives. Rather than relying on
 974 simple binary queries (e.g., “Is a circle present?”), we adopt a more nuanced format where models
 975 must select which shapes appear in the figure from a list of options. This design increases task
 976 complexity and better evaluates shape discrimination skills. To construct these questions, we assign a
 977 binary indicator to each shape in the geometric pool, denoting its presence or absence in the figure.
 978 We then randomly sample both existing and non-existing shapes to form the question and candidate
 979 choices.

980 **Counting.** Counting questions focus on determining the number of occurrences of specific shapes
 981 within a figure. Using the structured description of the figure, we extract the count of each shape and
 982 formulate questions accordingly. To enhance robustness, we also include non-existent shapes and
 983 provide zero as a candidate choice.

985 **Location.** Location-based questions evaluate spatial perception by requiring it to identify the
 986 quadrant (upper-left, upper-right, lower-left, lower-right) containing a target shape, determined by its
 987 centroid. Besides absolute positioning, we also incorporate relative positioning queries, e.g., “Where
 988 is shape A in relation to shape B?” Candidate choices for these questions are the four quadrants.

990 **Size.** These questions evaluate the model’s ability to perceive shape sizes, such as horizontal span,
 991 vertical span, and area. After randomly selecting a shape, we query one of its size attributes and
 992 calculate the ground truth value from the structured description. Incorrect answers are generated
 993 by introducing variations around the true value, ensuring that models make precise distinctions. To
 994 standardize evaluation, all image sizes are normalized to 1, and numeric intervals between candidate
 995 answers are sufficiently large to minimize ambiguity.

996 **Relationship.** This aspect explores the geometric relationships between pairs of shapes, such as
 997 tangency, parallelism, or inscription. These questions test the model’s understanding of spatial
 998 interactions and its ability to discern fine-grained geometric details. To construct a QA pair, we
 1000 randomly sample a relationship from the structured description and ask the model to identify the
 1001 nature of the interaction between two shapes. To ensure robustness, we include pairs with no
 1002 relationships and provide “none of the above” as a candidate choice.

1003 **Reference.** Reference questions reverse the typical query format by providing attributes (e.g., size,
 1004 location, or count) and asking the model to identify the corresponding shape. This aspect evaluates the
 1005 integration of multiple attributes for shape identification. For example, we might ask, “Which shape
 1006 is larger than S?” where S is a randomly chosen anchor shape. The ground truth is selected based on
 1007 the specified attribute, and three other shapes are included as distractors. This design challenges the
 1008 model to synthesize information across different attributes and make accurate inferences.

1009 By incorporating different question aspects, we aim to provide a comprehensive evaluation protocol
 1010 for geometric perception in MLLMs.

1012 B.4 DETAILS ON QUESTION-ANSWER GENERATION

1015 For each figure, we aim to generate up to three questions per aspect across the six aspects. However,
 1016 the actual number of questions per aspect is adaptively determined based on the content of the
 1017 figure. For instance, if a figure contains only one pair of relationship, we can only generate one valid
 1018 relationship question.

1019 Plausible distractors are carefully designed for each aspect to ensure both relevance and challenge:

- 1020 1) **Counting/Size:** All four candidate answers are deliberately selected to be numerically proximate
 1021 yet perceptually distinguishable. For counting, distractors differ from the correct answer by ± 1 ,
 1022 while for size estimation, distractors deviate by ± 0.15 . This design ensures that distractors remain
 1023 plausible while still requiring precise discrimination.
- 1024 2) **Existence:** In existence-related questions, distractors are chosen from shapes that are not present in
 1025 the figure but are sampled from the shape pool. Conversely, for non-existence questions, distractors
 include shapes that are actually present, which introduces a realistic source of confusion.

Table 3: Detailed model sources.

Model	Size	Source
GPT-4o	-	gpt-4o-2024-11-20
Gemini-2.5-pro	-	gemini-2.5-pro
BLIP2	3B	Salesforce/blip2-flan-t5-xl
InstructBLIP	3B	Salesforce/instructblip-flan-t5-xl
LLaVA-1.5	7B	liuhaotian/llava-v1.5-7b
LLaVA-1.5	13B	liuhaotian/llava-v1.5-13b
mPLUG-Owl3	7B	mPLUG/mPLUG-Owl3-7B-241101
MiniCPM-V-2.6	8B	openbmb/MiniCPM-V-26
GLM-4V	9B	THUDM/glm-4-9b
Mantis-Idefics2	8B	TIGER-Lab/Mantis-8B-Idefics2
LLaMA-3.2-Vision	90B	meta-llama/Llama-3.2-90B-Vision
LLaVA-OneVision	7B	lmms-lab/llava-onevision-qwen2-7b-ov
LLaVA-OneVision	72B	lmms-lab/llava-onevision-qwen2-72b-ov
Qwen2-VL	7B	Qwen/Qwen2-VL-7B-Instruct
Qwen2-VL	72B	Qwen/Qwen2-VL-72B-Instruct
Qwen2.5-VL	7B	Qwen/Qwen2.5-VL-7B-Instruct
Qwen2.5-VL	72B	Qwen/Qwen2.5-VL-72B-Instruct
InternVL2.5	8B	OpenGVLab/InternVL2_5-8B
InternVL2.5	78B	OpenGVLab/InternVL2_5-78B
InternVL3	78B	OpenGVLab/InternVL3-8B
InternVL3	78B	OpenGVLab/InternVL3-78B
G-LLaVA	7B	renjiepi/G-LLaVA-7B
G-LLaVA	13B	renjiepi/G-LLaVA-13B
Math-LLaVA	13B	Zhiqiang007/Math-LLaVA
Math-PUMA	7B	Math-PUMA/Math-PUMA_Qwen2VL-7B
QVQ-Preview	72B	Qwen/QVQ-72B-Preview

- 3) **Location:** A fixed set of four spatial quadrants (upper left, upper right, lower left, lower right) is used across all location questions; only the order of these options varies.
- 4) **Reference/Relationship:** Distractors are selected from other visible shapes or relationships present in the same figure, thereby maintaining contextual plausibility. When the figure contains an insufficient number of valid alternatives, additional distractors are supplemented with randomly chosen non-existent shapes or relationships, ensuring that each question consistently provides four meaningful options.

C DETAILS ON EVALUATION

C.1 EVALUATED MODELS

This section provides details of the models we evaluated. The models’ responses in this paper were all collected in Sep. 2025.

C.1.1 CLOSED SOURCE MODELS

OpenAI GPT. We access GPT-4o (OpenAI, 2023) models via OpenAI API. We evaluate gpt-4o-20241120.

Google Gemini. We access Gemini 2.5 Pro (Google, 2023) via Google Cloud. We evaluate gemini-2.5-pro.

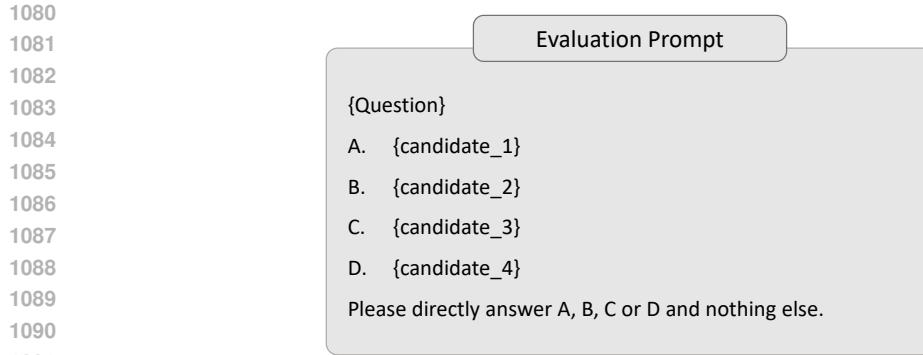


Figure 8: User prompt template for evaluation.

1096 C.1.2 OPEN SOURCE GENERAL-PURPOSE MODELS

1097
1098 We evaluate a variety of open-source models, including BLIP2 (Li et al., 2023b), InstructBLIP (Dai
1099 et al., 2023), MiniGPTv2 (Chen et al., 2023a), LLaVA-1.5 (Liu et al., 2024a), LLaVA-OneVision (Li
1100 et al., 2024), mPLUG-Owl3 (Ye et al., 2024), InternVL2.5 (Chen et al., 2024c), InternVL3 (Zhu et al.,
1101 2025), MiniCPM-V-2.6 (Yao et al., 2024), GLM-4V (GLM et al., 2024), Mantis-Idefics2 (Jiang et al.,
1102 2024a), Qwen2-VL (Wang et al., 2024b), Qwen2.5-VL (Bai et al., 2025), LLaMA-3.2-Vision (Meta,
1103 2024). Table 3 shows the names of open-source models available on HuggingFace. Additionally, for
1104 MiniGPTv2, we evaluate it directly on the model checkpoints following the instructions in its GitHub
1105 repository³.

1106 1107 C.1.3 OPEN SOURCE SPECIALIZED MODELS

1108 In addition to evaluating general-purpose open-source models, we also assess several specialized
1109 models that have been fine-tuned for mathematical or reasoning tasks. G-LLaVA (Gao et al., 2025) is
1110 designed specifically for solving geometric problems, with enhanced capabilities in analyzing spatial
1111 and geometric relationships. Math-LLaVA (Shi et al., 2024), on the other hand, focuses on improving
1112 textual mathematical problem-solving skills, enabling more accurate interpretation and processing of
1113 math-related language. Math-PUMA (Zhuang et al., 2025) builds upon this by refining mathematical
1114 reasoning through a structured three-stage training framework. Lastly, QVQ-Preview (Team, 2024a)
1115 is an experimental model aimed at advancing visual reasoning, particularly in contexts requiring
1116 complex multimodal inference.

1117 C.2 EVALUATION SCHEME

1118 For evaluation, we format the data into multiple-choice questions and apply conversation templates
1119 tailored to each model. The specific user prompt template is illustrated in Figure 8.

1120 Despite explicit instructions for the models to provide only the option letter in their responses, some
1121 models deviate by including additional explanations. To address this issue, we developed a robust
1122 answer-parsing scheme. Specifically, our method identifies the last occurrence of any standalone
1123 option letter in the response string and interprets it as the model’s answer. This approach ensures that
1124 even if a model includes supplementary information, the final choice is accurately captured.

1125 To validate the reliability of our parsing scheme, we conducted a manual verification process. We
1126 randomly sampled 100 responses from each model on GePBench and checked whether the parsing
1127 method successfully extracted the intended answers. The results demonstrate an accuracy rate of
1128 99.9%, confirming that our approach is both valid and effective. This high level of accuracy ensures
1129 that the evaluation scores are reliable and consistent across all models.

1134
1135

C.3 DETAILS ON HUMAN EVALUATION

1136
1137
1138
1139
1140
1141
1142
1143

To ensure a robust and reliable human evaluation process, we recruited 25 volunteers who were willing to join in our work. All participants had prior exposure to basic mathematical concepts, equipping them with the foundational knowledge necessary to comprehend and solve geometric problems. This qualification ensured that they were well-suited for the task. The participants were carefully selected to ensure demographic diversity. They were from different age groups spanning from 20 to 50, and their professions ranged from Mathematics and Computer Science to Sociology and Psychology. Before the task, they were notified that their responses would be recorded and analyzed for academic use.

1144
1145
1146
1147
1148
1149

From GePBench, we randomly sampled 200 questions from both the easy and hard splits and distributed them to the volunteers. To familiarize the participants with the task format, we provided them with several illustrative examples and clear instructions. Notably, the textual instructions given to the volunteers were identical to the prompts used for evaluating MLLMs, as shown in Figure 8. This consistency in instructions allowed for a fair comparison between human performance and model outputs.

1150
1151
1152

Participants were tasked with solving multiple-choice questions based on the provided examples and guidelines. Their responses were collected and analyzed to establish a benchmark for human performance, which served as a critical reference point for assessing the capabilities of MLLMs.

1153

D ANALYSES ON VISUAL ENCODERS

1154
1155
1156

From Table 2, we can derive the following observations:

1158
1159
1160
1161
1162
1163

Higher resolution improves detail recognition but impacts spatial accuracy. Using a higher resolution in the CLIP-ViT encoder enhances geometric perception in most aspects, except for location-based tasks. This is likely due to that more image tokens enables the inclusion of finer image details, benefiting the overall performance. However, it also increases the complexity of positional embeddings, leading to increased difficulty in recognizing spatial positions.

1164
1165
1166
1167
1168
1169

Different encoders specialize in different aspects. For instance, CLIP-based models demonstrates superior spatial awareness with high performance on the location task, while SigLIP performs better on existing tasks. Self-supervised encoder DINOv2 is consistently outperformed by language-supervised models across nearly all sub-tasks. These differences may stem from variations in training data and objectives.

1170
1171
1172
1173
1174
1175
1176

Mixed encoders underperform in geometric tasks. Contrary to real-world scenarios where combining encoders often yields better results (Tong et al., 2024a; Yang et al., 2024), mixed visual encoders fail to achieve a better result compared to their individual components, especially on questions related to location. This could be due to the larger number of image tokens, which makes the positional embeddings much more complex. Since transformer-based models rely solely on positional embeddings for spatial information, this results in degraded spatial awareness.

1177
1178

E DETAILS ON LLAVA-GEP

1179
1180
1181
1182
1183

LLaVA-GeP-7B is trained based on the LLaVA-1.5 architecture, which integrates the Vicuna-1.5 language model, CLIP-ViT-L-336 as the visual encoder, and an MLP serving as the mapping layer between the visual and textual modalities. To ensure consistency with the original LLaVA framework, we utilize the pretrain⁴ and finetune⁵ scripts provided in the official LLaVA codebase.

1184
1185
1186
1187

³<https://github.com/Vision-CAIR/MiniGPT-4>

⁴https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/pretrain.sh

⁵https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_lora.sh

1188 E.1 DATA PREPARATION AND TRAINING PROCEDURES
11891190 To train LLaVA-GeP-7B, we construct a large-scale training dataset, GePBench-train, using our
1191 specialized data synthesis engine. This dataset comprises over 300K samples, designed to enhance
1192 geometric perception capabilities. Following the methodology outlined by the original LLaVA
1193 authors, we adopt a two-stage training procedure:1194 **(1) Feature Alignment Stage:** We extract 150k images from both the easy and hard splits of
1195 GePBench-train. For each image, structured textual descriptions are generated using Qwen-2.5-14B
1196 (Team, 2024b), which is prompted to produce detailed captions based on the input descriptions. These
1197 image-caption pairs are then combined with the original LLaVA pretraining dataset, which includes
1198 558K samples sourced from LAION-CC-SBU. The resulting dataset is used to finetune the MLP
1199 mapping layer, ensuring alignment between visual features and textual representations.1200 **(2) Visual Instruction Tuning Stage:** In this stage, we randomly sample 20k examples from each
1201 aspect (e.g., size, location, counting) across both the easy and hard splits of GePBench-train, totaling
1202 240k samples. These samples are reformatted into the LLaVA training schema and merged with the
1203 original dataset. The combined dataset is used to jointly finetune the MLP mapping layer and the
1204 LLM backbone, enabling the model to better various downstream tasks.1205 E.2 IMPLEMENTATION DETAILS
12061207 During the pretraining phase, LLaVA-GeP-7B employs a global batch size of 256, a learning rate of
1208 1e-3, and runs for one epoch with a maximum sequence length of 2048. In the fine-tuning phase, the
1209 model uses a global batch size of 128, a reduced learning rate of 2e-5, and is trained for one epoch
1210 with the same sequence length. Following the optimization strategy of LLaVA, we use the Adam
1211 optimizer without weight decay and apply a cosine learning rate schedule with a warmup ratio of 3%.
1212 To optimize GPU memory usage, we implement Fully Sharded Data Parallel (FSDP) and gradient
1213 checkpointing, avoiding offloading to maximize efficiency. Additionally, BF16 and TF32 precision
1214 settings are enabled to strike a balance between computational speed and numerical accuracy.1215 The training process was conducted on eight A6000 GPUs, each equipped with 48GB of memory.
1216 Pretraining completed in approximately 12 hours, while LoRA fine-tuning required 32 hours.1218 E.3 EVALUATION DETAILS
12191220 After training, the LLaVA-GeP-7B model is evaluated on a broad range of general-purpose tasks to
1221 comprehensively assess its performance across diverse domains. These evaluations encompass both
1222 widely adopted vision-language benchmarks and specialized datasets that target specific downstream
1223 capabilities.1225 **General Benchmarks** Following the standard evaluation protocol used in LLaVA, we evaluate our
1226 model on a suite of established vision-question answering (VQA) benchmarks, including VQAv2
1227 (Goyal et al., 2019), GQA (Hudson & Manning, 2019), VizWiz (Gurari et al., 2018), TextVQA
1228 (Singh et al., 2019), POPE (Li et al., 2023c), MMBench (Liu et al., 2024b), SeedBench-Image (Li
1229 et al., 2023a), MME (Fu et al., 2023), LLaVA-Wild (Liu et al., 2023), and MM-Vet (Yu et al., 2024).
1230 These benchmarks are designed to measure the model’s general visual understanding and reasoning
1231 abilities, as well as its performance across a wide variety of multimodal tasks.1232 **Specialized Benchmarks** To further probe the model’s applicability to domain-specific tasks, we
1233 conduct evaluations on expert-curated datasets from various specialized fields:

- 1234
- 1235 **1. Scientific Diagrams and Document Interpretation:** This category includes DocVQA
1236 (Mathew et al., 2021), CharXiv (Wang et al., 2024d), AI2D (Kembhavi et al., 2016), and
1237 ScienceQA (Lu et al., 2022), which test the model’s ability to interpret scientific figures,
1238 documents, and educational content.
 - 1239 **2. Mathematical Problem Solving:** We use MathVerse (Zhang et al., 2024a), MathVista (Lu
1240 et al., 2024b), and We-Math (Qiao et al., 2024) to assess the model’s capacity for solving
1241 complex mathematical problems involving geometric reasoning and calculation.

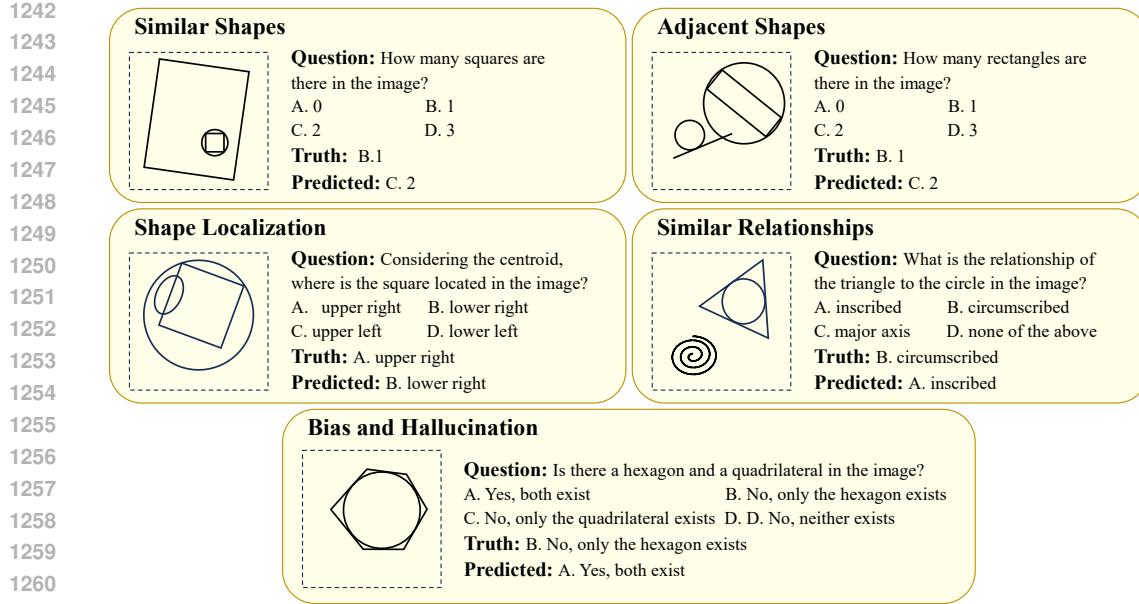


Figure 9: Example questions and model predictions for each error category.

3. **Medical Image Analysis:** To evaluate performance in healthcare-related vision-language tasks, we include PMC-VQA (Zhang et al., 2023), SLAKE (Liu et al., 2021), Path-VQA (He et al., 2020), and MedXpertQA (Zuo et al., 2025), which focus on clinical reasoning and medical imaging interpretation.

For a fair comparison, we train an LLaVA-1.5-7B model from scratch in the same environment and following the same training procedures as LLaVA-GeP-7B, ensuring the only difference between them being the training data. Both models are evaluated on the aforementioned benchmarks using the evaluation scripts from the official codebase. For benchmarks such as LLaVA-Wild, MathVerse, MathVista and CharXiv, we employ Qwen-2.5-14B (Team, 2024b) as the judge model to extract answers from model responses or score them directly according to the guidelines specified for each benchmark. For SLAKE-En and PathVQA, we evaluate the performance on the closed-class data.

F DETAILS ON ERROR ANALYSIS

F.1 PRIMARY ERROR CLASSES

For each of the five primary error classes, we provide an illustrative example in Figure 9, the identified error categories are as follows:

Failure to discriminate visually similar shapes. One of the most prevalent error types observed across nearly all task aspects is the model’s inability to distinguish between visually similar geometric shapes. For instance, rectangles are frequently misclassified as squares, and spirals are mistaken for circles. This suggests a limitation in the model’s ability to accurately map low-level visual features to high-level abstract geometric concepts. It reflects a potential misalignment between the visual and textual modalities, particularly when fine-grained distinctions are required.

Misinterpretation of adjacent shapes. A widespread issue in the counting and reference aspects is confusion regarding adjacent or spatially overlapping shapes, especially when they are closely positioned. As illustrated in Figure 9, the model identifies two rectangles instead of one, likely due to the proximity of the rectangle’s edges to the circle’s boundary. This indicates a lack of sensitivity to spatial relationships and fine visual details, which are crucial for accurate geometric perception.

1296 **Inaccurate localization of geometric shapes.** In the context of location-related tasks, a dominant
 1297 source of error lies in the model’s inability to precisely determine the positions of specific shapes
 1298 within the image. For example, although the centroid of a square lies in the upper-right quadrant of
 1299 the image, the model might incorrectly place it in the lower-right quadrant. These localization errors
 1300 highlight deficiencies in the model’s spatial perception capabilities.
 1301

1302 **Confusion between similar geometric relationships.** For relationship-based queries, many errors
 1303 arise from the model’s difficulty in distinguishing between semantically similar geometric relation-
 1304 ships. According to our statistics, the relationships of inscription, circumscription, and tangency
 1305 are frequently conflated. This mirrors the first error category in that both suggest a weak linkage
 1306 between visual input and the corresponding geometric abstractions, underscoring a broader challenge
 1307 in multimodal alignment.
 1308

1309 **Bias and hallucination.** Finally, significant issues related to bias and hallucination are observed,
 1310 particularly in the existence and size aspects. In existence questions, when asked whether two
 1311 shapes appear independently in the image, the model often generates responses indicating that both
 1312 shapes either coexist or are entirely absent, regardless of the ground truth. This reflects a strong
 1313 tendency toward hallucination. Furthermore, in size estimation tasks, we find that 94% of the model’s
 1314 predictions overestimate the true size of shapes, irrespective of their type, pointing to a systematic
 1315 perceptual bias in how the model interprets geometric scale and proportion.
 1316

1317 F.2 INVESTIGATION INTO BIAS AND SHAPE MISCOMPREHENSION

1319 To further substantiate our findings on the common failure modes in Section 5.4 with more granular,
 1320 model-internal evidence, we conduct an in-depth diagnostic study on the most frequent error category:
 1321 Bias and Shape Miscomprehension, employing token probability distribution analysis and saliency
 1322 maps. Due to the lack of access to internal representations in closed-source models like GPT-4o, this
 1323 analysis is performed on the open-source models InternVL2.5-8B.
 1324

1325 **Analysis on bias via token probability distributions.** To investigate potential biases in model
 1326 predictions, we analyze the output-layer logits when the model predicts the final option letter (e.g.,
 1327 A, B, C, D). We compute the average predicted probability for each candidate choice pattern across
 1328 all questions and compare these with the corresponding ground truth frequencies. This allows us to
 1329 assess whether the model exhibits systematic preference for certain answer patterns independent of
 1330 input content, indicating learned biases. Each aspect of questions is associated with distinct choice
 1331 patterns:

- 1332 1) Size: Questions about length, width, or area, with numerical options from smallest to largest.
- 1333 2) Counting: Questions asking for the number of shapes, with numerical options from smallest to
 1334 largest.
- 1335 3) Existence: Binary co-existence queries (e.g., whether shapes A and B both exist), with three
 1336 possibilities: both, only one of them, neither.
- 1337 4) Relationship: Questions about geometric relationships between two shapes, with three valid
 1338 relations and an “none of the above” option.
- 1339 5) Location: Questions about the quadrant position of a shape (upper-left, upper-right, lower-left,
 1340 lower-right).
- 1341 6) Reference: Questions asking which of four candidate shapes matches a given description.

1342 The comparison of the average probability with ground truth frequency on InternVL2.5-8B is provided
 1343 in Table 4.

1344 Our results reveal misalignments between the model’s predicted probabilities and the actual dis-
 1345 tribution of correct answers across all aspects. We summarize the bias patterns for each aspect as
 1346 follows.

- 1347 1) Size and Counting: the model systematically assigns higher probabilities to larger numerical
 1348 values even when the real answer is small.
- 1349 2) Existence: the model shows a preference for positive options, favoring “both exist” against
 “neither exists” regardless of ground truth.

1350
1351 Table 4: Ground truth frequency and average predicted probability of InternVL2.5-8B (%). Note that
1352 predicted probabilities may not sum exactly to 100% due to small probabilities assigned to tokens
1353 other than A, B, C or D.

Aspect	Choice Pattern	Ground Truth Frequency	Predicted Avg. Probability
Size	smallest	46.4	24.6
	smaller	29.0	24.6
	larger	15.3	25.1
	largest	9.3	25.0
Counting	smallest	36.5	32.2
	smaller	49.8	21.8
	larger	11.3	24.3
	largest	2.5	19.0
Existence	both exist	24.8	26.0
	only one exists	49.6	54.9
	neither exists	25.6	19.0
Relationship	valid relationship	84.2	73.2
	none of the above	15.8	22.3
Location	upper-left	18.9	24.7
	upper-right	25.9	23.9
	lower-left	27.0	25.4
	lower-right	28.1	24.6
Reference	Line	13.2	13.5
	Polygon	33.1	52.2
	Circle-like	53.7	33.5

1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380 3) Relationship, Location and Reference: the model prefers a specific option, i.e., “none of the above”
1381 in Relationship, “upper-left” in Location, and polygons in Reference.

1382 These misalignments reveal that current MLLMs do not perceive geometric content in a fully
1383 faithful or input-conditional manner. Instead, they rely on heuristic priors, such as numerical
1384 magnitude assumptions, positional preferences, or category-level stereotypes, which lead to systematic
1385 errors. Such biases undermine model reliability, particularly in domains requiring precise visual
1386 understanding.

1387
1388
1389 **Analysis on shape miscomprehension via saliency maps.** To examine cases of miscomprehension,
1390 particularly confusion between visually similar shapes, we employ saliency maps derived from
1391 attention weights of the last layer in the model during the prediction of the option letter token.
1392 This allows us to visualize which regions of the input image the model attends to when making
1393 decisions. We analyze 20 correctly answered and 20 incorrectly answered samples from InternVL2.5-
1394 8B. Example saliency maps for an incorrect sample and a correct sample are provided in Figure 10.
1395 Our findings are as follows:

- 1396 - In correct predictions, at least 6 attention heads successfully attend to the target shape, indicating
1397 focused and accurate visual grounding.
1398 - In incorrect predictions, we observe that in 7 out of 20 cases, the model allocates more attention
1399 heads to focus on shapes that are semantically incorrect. For example, the model attends to a line
1400 when the correct answer refers to a polygon. These attention patterns suggest that the LLM lacks
1401 sufficient discriminative sensitivity to geometric shapes.

1402 These findings align with our error classification in Figure 7, where 38% of all errors are attributed to
1403 confusion between similar or adjacent shapes. The saliency analysis provides internal evidence that
shape miscomprehension is a significant failure mode.

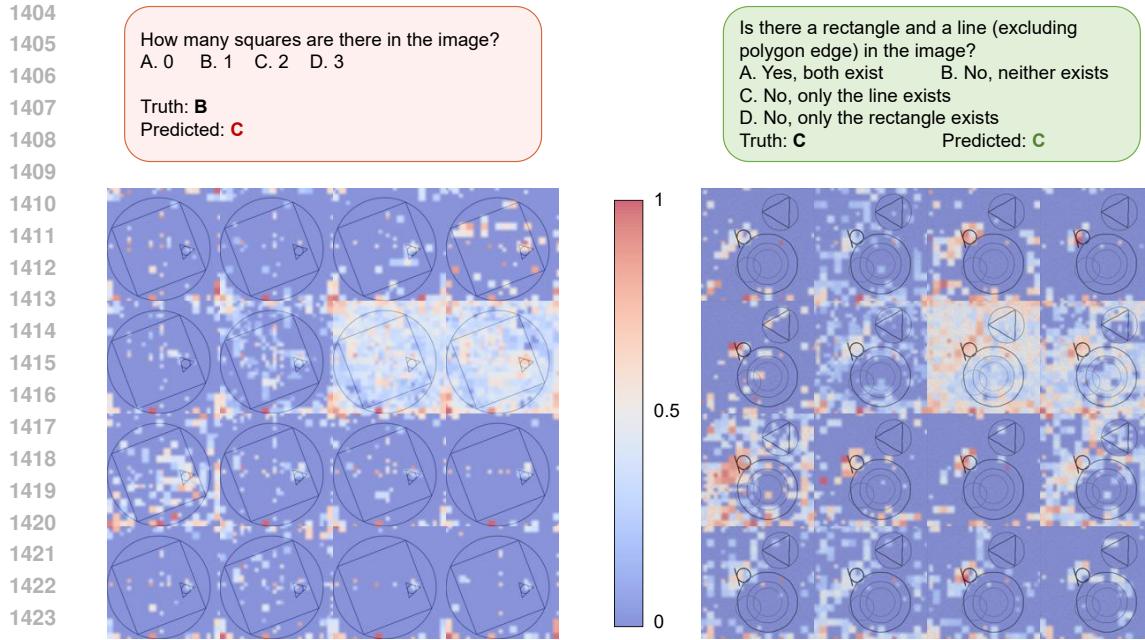


Figure 10: Example saliency maps for an incorrect sample (left) and a correct sample (right). Each tile represents an attention head, and different colors on image patches indicate different values of normalized attention strength. In the incorrect sample, when asked to count squares, the model allocates more attention heads to the triangle and circle instead, resulting in incorrect prediction. In the correct sample, the model allocates most of its attention to the target shape (the line), leading to correct answer.

Table 5: Performance comparison after fine-tuning specific modules.

	Average Score
Original Model	37.1
+ Visual Encoder	46.5
+ Mapping Layer	46.6
+ LLM Backbone	60.4

Table 6: Linear probing results on InternVL2.5-8B across different question types.

Question Category	Shape	Location	Relation	Size
Number of Classes	3	4	8	4
Acc. (Vision Encoder)	100.0	91.8	95.3	88.8
Acc. (Alignment Module)	99.8	93.5	95.3	91.8
Acc. (LLM Backbone)	98.8	91.5	92.5	83.5

F.3 INVESTIGATION INTO SOURCE OF FAILURE

To localize where the failures originate within the model architecture, i.e., visual encoder, vision-language mapping layer, or the LLM backbone, we conduct 2 more experiments: module-specific fine-tuning and probing.

Module-specific fine-tuning. To understand whether the error stems from visual encoder, vision-language mapping layer, or LLM backbone, we adopt a module-isolated training strategy on the LLaVA-1.5-7B model: we fine-tune each of the three core components individually on a subset of 10K training samples from GePBench, while keeping the other two components frozen. This ablation allows us to assess the relative potential for improvement in each module, thereby revealing which component contributes most significantly to errors.

As shown in Table 5, fine-tuning only the LLM backbone leads to a substantial performance gain, whereas updating the vision encoder or mapping layer yields only marginal improvements. This indicates that the LLM has the highest headroom for improvement and is likely the dominant source of errors.

Probing Experiments. To obtain a more fine-grained understanding of information flow across modules, we conduct probing experiments on the InternVL2.5-8B model. We train linear classifiers

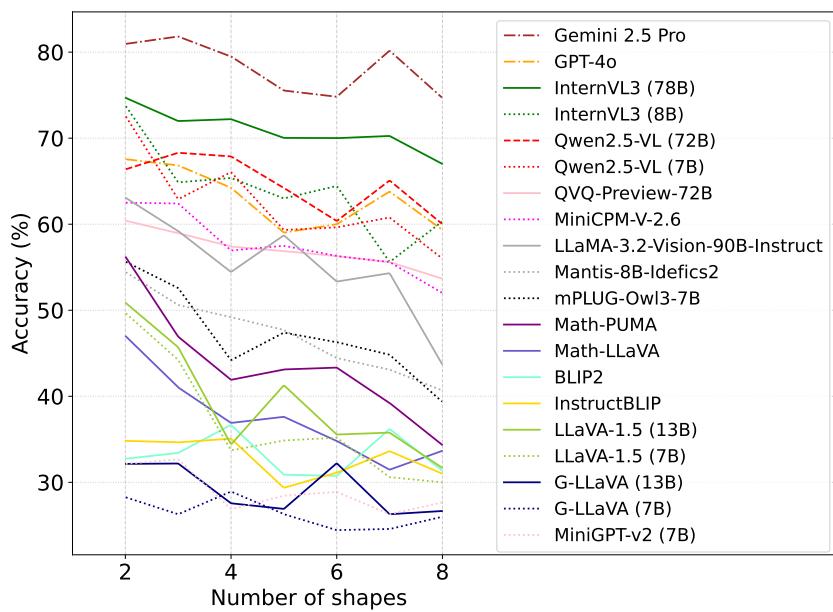


Figure 11: Comparison of the performance of representative models on questions categorized by different number of shapes in the figure.

on the hidden representations produced by each module to evaluate how well geometric information is preserved and accessible at each stage.

We categorize questions into four semantic types, each corresponding to a distinct geometric perception capability:

- 1) Shape-based: Recognition of basic shape categories (line, polygon, circle-like).
- 2) Location-based: Identification of spatial position (quadrant classification).
- 3) Relation-based: Understanding of geometric relationships (e.g., tangency, parallel).
- 4) Size-based: Perception of shape size (tiny, small, large, huge).

For each category, we construct 1.6K training and 0.4K test samples, each containing synthetically rendered figures paired with labels. A single linear classifier is trained to predict the target class from the module’s output representations.

The results in Table 6 show that both the vision encoder and alignment module encode geometric information effectively, with high probe accuracy across all categories. Moreover, the alignment module slightly enhances discriminability in most cases, indicating successful cross-modal integration. However, a noticeable performance drop occurs after the LLM backbone, particularly in size and relation questions. This degradation suggests that the LLM fails to fully utilize or preserve critical geometric information present in earlier stages, implicating the LLM backbone as the major source of errors.

G IMPACT OF DATA ATTRIBUTES ON MODEL PERFORMANCE

G.1 IMPACT OF THE NUMBER OF SHAPES

The number of geometric shapes per figure can significantly affect model performance. A higher number of shapes increases the complexity of the figure and offers more challenges in visual perception. To investigate this, we categorize the questions in GePBench based on the number of shapes and evaluate model performance across these groups.

The results, shown in Figure 11, reveal a general decline in performance as the number of shapes increases. This trend aligns with our expectation that figures with more shapes generally demand a

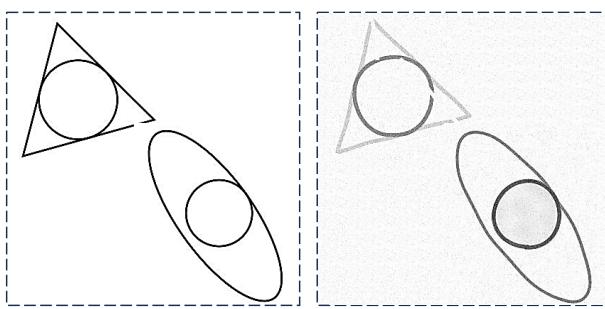


Figure 12: Comparison of figures with and without noise. The left figure does not contain noise and the right one does.

Table 7: Performance difference between noisy samples and noise-free samples of easy split for representative models.

Model Class	Size	Avg.	Ext.	Cnt.	Siz.	Loc.	Ref.	Rel.
GPT-4o	-	66.4	77.4	70.5	16.1	61.5	88.3	84.8
+ noise		61.6	66.2	70.0	18.1	63.4	75.2	76.4
Gemini-2.5-pro	-	80.8	79.0	77.8	73.1	80.3	86.1	88.2
+ noise		79.6	71.8	73.9	80.3	80.3	86.9	84.4
LLaMA-3.2-Vision	90B	58.2	62.6	72.0	13.0	49.3	69.3	82.7
+ noise		58.8	61.0	68.1	14.0	54.5	72.3	83.1
LLaVA-OneVision	7B	60.7	62.6	74.9	26.9	53.1	74.5	72.2
+ noise		61.1	61.5	74.4	30.6	50.7	73.7	75.9
LLaVA-OneVision	72B	68.0	73.3	78.7	24.4	53.1	93.4	84.8
+ noise		67.5	72.3	77.3	24.9	56.8	92.0	81.9
Qwen2.5-VL	7B	66.9	71.8	75.4	25.9	68.5	81.0	78.9
+ noise		67.7	71.8	74.9	28.0	72.8	82.5	76.4
Qwen2.5-VL	72B	67.8	75.4	76.8	15.5	70.0	86.9	82.3
+ noise		68.6	75.4	74.4	20.7	75.1	86.1	79.7
InternVL3	8B	67.7	80.0	73.4	22.8	67.1	81.8	81.0
+ noise		68.9	82.1	72.5	28.0	70.4	81.8	78.5
InternVL3	78B	73.1	75.4	76.3	50.3	65.7	86.1	84.8
+ noise		74.4	75.9	77.8	52.3	67.1	88.3	85.2

greater capacity for geometric perception. Such findings underscore the need for models to develop stronger foundational visual perception skills to handle more complex geometric inputs.

G.2 IMPACT OF NOISE

G.2.1 NOISE RESILIENCE OF DIFFERENT MODELS

To visualize the add synthetic noise, we provide a side-by-side comparison of figures with identical structures in Figure 12, where the left figure is free from noise and the right one contains noise. We conduct an ablation study to investigate the effect of such noise on model performance. Specifically, noise is introduced to originally noise-free figures of the easy split, and the same questions are applied. Table 7 shows the performance differences for various models after adding noises.

Interestingly, the results reveal that several models, particularly open-sourced ones, achieve improved performance when noise is introduced. The gains are most pronounced in the Size and Location tasks, where nearly all models benefit. We hypothesize that these improvements arise from unintended perceptual cues introduced by noise:

- 1) Border distortions may cause shape borders to appear expanded, making object boundaries more detectable to visual encoders.
- 2) Perlin noise inside closed shapes can enhance texture contrast, facilitating size estimation.

1566 Table 8: Average model performance across all six aspects on images of different levels of noise
1567

1568 Model	1569 Easy	1570 Easy-Noisy	1571 Hand-Drawn	1572 Real-World
1573 GPT-4o	1574 66.4	1575 61.6	1576 60.0	1577 64.6
1578 InternVL2.5-8B	1579 58.1	1580 59.3	1581 56.2	1582 53.3
1583 InternVL2.5-78B	1584 71.1	1585 72.0	1586 69.6	1587 69.6
1588 Qwen2-VL-7B	1589 64.0	1590 63.2	1591 46.7	1592 50.0
1593 Qwen2-VL-72B	1594 68.5	1595 67.6	1596 65.0	1597 66.7
1598 LLaVA-1.5-7B	1599 40.6	1600 40.8	1601 41.2	1602 40.0
1603 LLaVA-1.5-GeP	1604 81.9	1605 77.2	1606 73.3	1607 61.7

1577 The variation in other aspects appears to be model-specific. For instance, GPT-4o and Gemini-2.5-Pro
1578 exhibit notable performance decline, whereas most others perform comparably to or slightly better
1579 than the noise-free condition. This behavior may be attributed to the nature of the training data. While
1580 noise introduces additional visual challenges, certain models are more resilient because their training
1581 datasets include more scenarios with visual degradation. In some cases, the noisy figures might align
1582 more closely with the distribution of the real-world images in training data compared to the original,
1583 noise-free figures, particularly when geometric shapes are absent from the training corpus. Notably,
1584 the InternVL-3 series show stable improvements across most aspects. We presume that such gains
1585 arise from the random JPEG compression augmentation strategy employed during training, which
1586 enhances model’s robustness to noise.

1587 G.2.2 EFFECTS OF DIFFERENT LEVELS OF NOISE

1589 To further investigate the effects of noise and extend our analysis to real-world scenarios, we
1590 introduced two new data sources with progressively increasing noise level.

- 1591 **1) Hand-drawn diagrams:** These include 40 sketches manually drawn. They capture natural
1592 irregularities in line quality, shape composition, and spatial alignment, reflecting human drafting
1593 styles and real-world variations
- 1594 **2) Real-world scientific diagrams:** We manually selected 40 images with clear geometric content
1595 from existing datasets containing real scientific and illustrative figures, including ScienceQA,
1596 AI2D, and ChartXiv.

1597 For each source, we constructed 240 high-quality QA pairs following the same procedure of the data
1598 engine for GePBench. While similar to the noisy images in GePBench, this subset ensures that the
1599 variations are genuinely organic. We then evaluated multiple models (including general MLLMs and
1600 our LLaVA-1.5-GeP) on this newly collected dataset, and report their average performance across six
1601 aspects.

1602 The findings in Table 8 show a consistent performance drop across all models when transitioning from
1603 synthetic to real-world inputs, highlighting the increased challenge posed by naturally occurring visual
1604 variations. These experiments underscore substantial limitations in visual perception capabilities of
1605 current MLLMs.

1606 Crucially, LLaVA-1.5-GeP significantly outperforms LLaVA-1.5-7B in both synthetic and real-world
1607 settings. This suggests that exposure to diverse geometric patterns and spatial understanding tasks
1608 during training generalizes to real-world visual scenarios.

1610 H DETAILS ON THE PERFORMANCE DATA ACROSS VARIOUS BENCHMARKS

1613 To analyze the performance gap between humans and MLLMs, we adopt the difference between
1614 GPT-4o and humans as performance gap, as it is widely recognized as one of the most robust and
1615 extensively tested models. For benchmarks where GPT-4o results are unavailable, we substitute with
1616 GPT-4V performance metrics.

1617 Performance metrics for GPT-4o, GPT-4V, and human benchmarks are primarily sourced from their
1618 respective original research papers. For benchmarks without directly reported metrics, we rely on
1619 their official leaderboards, as these provide the most up-to-date and reliable results. To maintain
consistency, third-party leaderboards are excluded from consideration.

Table 9: Detailed information and data source of different benchmarks.

Benchmark	Release Date	Employed Model	Source
A-Bench	Jun. 2024	GPT-4o	Original Paper
BLINK	Apr. 2024	GPT-4o	Original Paper
CODIS	Feb. 2024	GPT-4V	Original Paper
HR-Bench	Aug. 2024	GPT-4o	Original Paper
II-Bench	Jun. 2024	GPT-4o	II-Bench Leaderboard
M ³ CoT	May. 2024	GPT-4o	M ³ CoT LeaderBoard
MARVEL	Apr. 2024	GPT-4V	Original Paper
MathVerse	Mar. 2024	GPT-4V	MathVerse Leaderboard
MathVista	Oct. 2023	GPT-4o	MathVista Leaderboard
MMMU	Nov. 2023	GPT-4o	MMMU Leaderboard
MuirBench	Jun. 2024	GPT-4o	Original Paper
Q-Bench	Sep. 2024	GPT-4V	Original Paper
UNIAA	Apr. 2024	GPT-4V	Original Paper
VCR	Jun. 2024	GPT-4o	Original Paper
WinoGround	Apr. 2022	GPT-4V	Winoground Benchmark

For multilingual datasets or benchmarks with multiple splits that do not provide an overall score, we select the hardest split with the maximum number of samples in English. For instance, we use the HR-Bench-8K split for HR-Bench and the VCR-en-hard split for VCR. Table 9 details the benchmarks, sources, and models employed in our evaluation.