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Abstract001

Large Language Models (LLMs) are powerful002
but prone to hallucinations due to static knowl-003
edge. Retrieval-Augmented Generation (RAG)004
helps by injecting external information, but cur-005
rent methods often are costly, generalize poorly,006
or ignore the model’s internal knowledge. In007
this paper, we introduce Smart-Searcher, a008
novel framework designed to train LLMs to009
adaptively leverage both internal and external010
knowledge sources. Smart-Searcher employs a011
two-stage training strategy: an initial SFT Cold-012
start phase for preliminary format learning, fol-013
lowed by RL for Dynamic Knowledge Acquisi-014
tion. The RL stage uses outcome-supervision015
to encourage exploration, incorporates a re-016
ward mechanism for internal knowledge uti-017
lization, and integrates a memorization mech-018
nism to continuously assimilate retrieved infor-019
mation, thereby enriching the model’s internal020
knowledge. By leveraging internal knowledge021
and external search engine, the model contin-022
uously improves its capabilities, enabling effi-023
cient retrieval-augmented reasoning. Our ex-024
periments demonstrate that Smart-Searcher out-025
performs previous RAG and reasoning methods026
and achieves efficient retrieval. We will release027
all the codes, models, and data after review.028

1 Introduction029

Large language models (LLMs) (Zhao et al., 2023)030

have demonstrated remarkable reasoning capabili-031

ties by only leveraging the information encoded in032

their parameters. However, their reliance on static,033

internal knowledge leads to notable limitations. At034

the simultaneously, this reliance easily leads to035

hallucinations (Huang et al., 2025), so LLMs may036

struggle with open-ended tasks (Wang et al., 2025c;037

Trivedi et al., 2022). Therefore, it is crucial to en-038

able LLMs to access external information when039

they are confused during the reasoning process to040

achieve more deliberative reasoning (Jiang et al.,041

2024a).042

To address this issue, extensive research has fo- 043

cused on augmenting LLMs with external informa- 044

tion sources (i.e., RAG (Gao et al., 2024)). Early 045

approaches emphasize specific prompting strate- 046

gies to guide LLMs (Li et al., 2025; Teng et al., 047

2025) and subsequent studies investigate to dis- 048

till this capability into smaller LLMs through su- 049

pervised fine-tuning (SFT) (Wang et al., 2025b). 050

However, recent findings suggest that SFT-based 051

distillation can cause models to memorize solution 052

paths, limiting their generalization to novel scenar- 053

ios (Chu et al., 2025). Further proposals include a 054

test-time scaling method (Li et al., 2024), notably 055

employing the Monte Carlo Tree Search (MCTS) 056

framework (Sun et al., 2025) to enhance solution- 057

finding by expanding the search space during infer- 058

ence, but this approach incurs significant inference 059

overhead, reducing its practicality for widespread 060

use. Recent studies employ end-to-end outcome- 061

based reinforcement learning (RL) to train models, 062

enabling them to autonomously explore external 063

retrieval environments during inference (Jin et al., 064

2025; Song et al., 2025). This approach fosters the 065

development of self-directed retrieval capabilities 066

in LLMs as they reason. However, such models 067

often become overly reliant on external search en- 068

gines after training, neglecting the utilization of 069

their internal knowledge. 070

In practice, when humans attempt to solve fac- 071

tual questions, they first recall their internal knowl- 072

edge, and only turn to search engines when they 073

recognize a lack of information. At the same time, 074

after obtaining the external searched information, 075

humans would memorize this knowledge for future 076

use. For LLMs, extensive pretraining on large-scale 077

data has already endowed them with substantial 078

internal knowledge (Qwen et al., 2025). There- 079

fore, it is essential to equip models with the ability 080

to dynamically switch between internal and exter- 081

nal knowledge sources as needed. Furthermore, 082

models should be encouraged to effectively mem- 083
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orize useful information encountered during train-084

ing (Jiang et al., 2024b), progressively enriching085

their internal knowledge and continuously evolving086

toward greater intelligence.087

In this paper, we present Smart-Searcher, a088

novel framework designed to teach LLMs to adap-089

tively leverage both internal and external knowl-090

edge. We adopt a two-stage training strategy: SFT091

Cold-start and RL for Dynamic Knowledge Acquisi-092

tion. In the first phase, we employ reject sampling093

to collect data that meets the format requirements094

and perform a cold start with SFT. In the second095

stage, we further train the model using outcome-096

based RL to guide the model in dynamically ac-097

quiring knowledge, which is to encourage reliance098

on internal knowledge when confident, and invoke099

external search mechanisms when uncertain, based100

on a carefully designed reward design. Addition-101

ally, we further introduce a memory mechanism,102

enabling the model to retain knowledge encoun-103

tered during training by converting and memorizing104

retrieved content. This mechanism continuously105

enriches its internal knowledge, empowering it to106

effectively balance internal reasoning and exter-107

nal retrieval through autonomous exploration and108

timely memorization.109

To verify the effectiveness of Smart-Searcher,110

we conduct extensive experiments based on Qwen-111

2.5-7B-Instruct. Notably, our method surpasses112

the strong baseline by up to 4.3% and reduces the113

retrieval count by 42.9% compared to vanilla RL-114

based approaches.115

Our principal contributions are as follows:116

• We introduce Smart-Searcher, teaching LLMs117

to adaptively leverage both internal and external118

knowledge through a two-stage training strategy.119

•We encourage the model to actively leverage its120

internal knowledge while efficiently memorizing121

external information, enabling dynamic knowledge122

acquisition through exploration and memorization.123

• Extensive experiments show that Smart-124

Searcher outperforms existing RAG methods,125

while significantly reducing the number of re-126

trievals compared to vanilla RL-based approaches.127

2 Related Work128

Retrieval-Augmented Generation. To improve129

the factual accuracy of LLM inference and reduce130

hallucinations, researchers have proposed enhanc-131

ing language models by incorporating external in-132

formation sources, a paradigm known as RAG (Fan133

et al., 2024). Early RAG approaches primarily 134

include Branching (Kim et al., 2024), Summariza- 135

tion (Li et al., 2023), and Adaptive Retrieval (Jeong 136

et al., 2024) strategies. As foundation models have 137

become increasingly capable, exhibiting strong 138

CoT reasoning abilities, many studies have com- 139

bined RAG with CoT. These efforts include meth- 140

ods that prompt the model to perform step-by-step 141

retrieval (Shao et al., 2023; Trivedi et al., 2023) and 142

strategies that distill such capabilities into smaller 143

LLMs (Asai et al., 2024). In parallel, several 144

works have explored test-time scaling, notably us- 145

ing MCTS (Feng et al., 2025) to dynamically ex- 146

pand reasoning paths. However, such approaches 147

often incur substantial inference-time overhead. 148

More recently, researchers have trained models us- 149

ing outcome- supervision RL (Zheng et al., 2025) 150

to encourage the exploration of more effective ac- 151

tions and retrieval behaviors, but it leads models to 152

over-rely on external search engines, diminishing 153

their ability to leverage internal knowledge (Wang 154

et al., 2025a). Enabling LLMs to effectively inte- 155

grate and alternate between internal knowledge and 156

external retrieval remains a significant challenge. 157

Reinforcement Learning. To improve training ef- 158

ficiency, several off-policy algorithms have since 159

been proposed (Rafailov et al., 2024; Ethayarajh 160

et al., 2024); however, these methods still face 161

limitations in terms of preference modeling ac- 162

curacy and generalization capability (Pang et al., 163

2024). DeepseekMath introduced the GRPO al- 164

gorithm (Shao et al., 2024), which enables effi- 165

cient self-exploration through a mechanism of rel- 166

ative preference optimization. Building on this, 167

Deepseek-R1 (DeepSeek-AI et al., 2025) have 168

demonstrated that outcome-based RL can signifi- 169

cantly enhance the reasoning abilities of large mod- 170

els. More recently, studies have begun to inves- 171

tigate RL algorithms specifically designed to im- 172

prove LLM reasoning capabilities (Yu et al.; Yuan 173

et al., 2025). In parallel, other research efforts have 174

applied RL to the retrieval domain, aiming to en- 175

able deep search capabilities (Chen et al., 2025). 176

However, the use of RL that combine LLM-driven 177

retrieval and reasoning remains largely simplistic 178

and underexplored. 179

3 Preliminary 180

To enhance the performance of LLMs in open- 181

domain multi-hop question answering tasks (Ho 182

et al., 2020), in this work, we focus on enabling the 183

2



model to autonomously decide when to use its in-184

ternal knowledge or to invoke an external retriever185

to answer the given questions with the LLM self-186

improving paradigm, which can improve both rea-187

soning effectiveness and efficiency. To this end, we188

introduce three special tokens to format the LLM189

reasoning process, i.e., <internal>, <external>,190

and <document>. Concretely, during the reasoning191

process, the LLM with parameters θ determines192

whether the current step requires external knowl-193

edge to help perform reasoning. If so, it triggers194

the <external> to issue a queryt, which is sent to195

a retriever to retrieve the top-K relevant documents196

Dt = {dt,k}Kk=1 from an external corpus. These re-197

trieved documents are incorporated into the reason-198

ing path with another special token <document>.199

Otherwise, the model directly generates the related200

internal knowledge enclosed in <internal>. After201

several reasoning steps, the LLM obtains the final202

answer and stops the reasoning process.203

Since our approach is orthogonal to the RL204

algorithm, we conduct the experiments based205

on a widely used RL algorithm, i.e., REIN-206

FORCE++ (Hu, 2025), which is a stable RL algo-207

rithm without the critic model. To better accommo-208

date the retrieval scenario, we mask the retrieved209

documents during the loss calculation process, as210

they serve as environmental observations rather211

than model-generated content. Formally, for each212

question q, we first samples a group of outputs213

{o1, o2, · · · , oG} from the old policy model πθold .214

Next, we incorporate the KL regularization into the215

reward scores Rϕ(q, oi,≤t) , and then normalize the216

advantage scores:217

Â
′
i,t = R(q, oi)− β ·

∑T
i=t KL(i), Âi,t =

Â
′
i,t−mean(Â)

std(Â)
218

We utilize Â to denote the set of all advantages in219

the global batch that contains Âi,t. After obtaining220

the advantage scores, we set the mask value M(i, t)221

as 0 if this token belongs to an external document,222

otherwise we set M(i, t) = 1. Finally, we em-223

ploy the masks M(i, t) in the objective function to224

remove the influence of retrieved documents:225

P̂i,t = min
[
pi,tÂi,t, clip (pi,t, 1− ε, 1 + ε) Âi,t

]
,226

227
JMask(θ) =

1
G

∑G
i=1

1∑|oi|
t=1 M(i,t)

∑|oi|
t=1M(i, t) · P̂i,t (1)228

where ε is a hyper-parameter and p(i, t) is the im-229

portant sampling coefficient , and πθ is the policy230

model.231

4 Methodology 232

In this part, we introduce the Smart-Searcher 233

framework, which aims to teach LLM to adaptively 234

utilize internal and external knowedge through two 235

critical stages, i.e., SFT Cold-Start (Section 4.1) 236

and RL for Dynamic Knowledge Acquisition (Sec- 237

tion 4.2). Concretely, in the first stage, we utilize 238

the curated data to perform SFT on the model, to 239

standardize its responses in a specific format and 240

enable it to leverage external retrievers and inter- 241

nal knowledge adaptively. In the second stage, we 242

employ RL on LLM that encourages the model 243

to explore more effective actions and behaviours, 244

and further incorporate the internal knowledge uti- 245

lization encouragement and external knowledge 246

memorization in the training process, to guide the 247

model to dynamically acquire knowledge and con- 248

tinuously enrich its internal knowledge, which can 249

lead to higher reasoning efficiency. 250

4.1 SFT Cold-start 251

To equip LLMs with the preliminary ability to au- 252

tonomously perform external retrieval during infer- 253

ence while effectively leveraging internal knowl- 254

edge, we synthesize high-quality training instances 255

using rejection sampling, without relying on other 256

powerful models.We only keep the correct re- 257

sponses with the appropriate occurrences of both 258

the <internal> and <external> tags, teaching 259

LLM to perform dynamic knowledge acquisition 260

in a proper format. 261

Specifically, given the question x and the syn- 262

thesized output y, once the i-th token of the output 263

belongs to the external document, it will be masked, 264

i.e., Mi = 0. Otherwise, the coefficient Mi will be 265

set as 1, incorporating the probability of yi into the 266

objective function as follows, 267

LSFT = − 1

n

n∑
i=1

Mi × P (yi|x, y<i) (2) 268

4.2 RL for Dynamic Knowledge Acquisition 269

After cold-starting, we obtain a model that can uti- 270

lize internal knowledge and perform an external 271

search with correct format. To further enhance 272

its capabilities, i.e., to perform effective and ef- 273

ficient reasoning, we continually train the model 274

through the RL process, which includes a mecha- 275

nism that encourages internal knowledge utilization 276

(Section 4.2.1) and a mechanism for converting and 277

memorizing external knowledge (Section 4.2.2). 278
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Figure 1: Overall framework of our proposed Smart-Seracher approach.

4.2.1 Internal Knowledge Utilization279

Encouragement280

In the RL process, the reward function is utilized281

to provide the supervision signals, which can ad-282

just and optimize the behaviours of the model (Hu,283

2025). Therefore, given the question q and the i-th284

generated response oi, we design the format reward285

and answer reward to induce the model to perform286

reasoning correctly with the expected format, and287

incorporate the group reward into the final reward288

function to mitigate the over-reliance on the exter-289

nal retriever. Now, we introduce the details of the290

reward function in the following.291

Format reward. We impose a strict formatting292

constraint to ensure model responses are consistent293

and clear. During the reasoning process, when call-294

ing the external retriever, the model is required295

to formulate a query and enclose it within the296

<external>...</external> tags, and is prohib-297

ited from generating document content directly298

without first invoking retrieval. When the reasoning299

process finishes, the final response must satisfy the300

following criteria, i.e., the final answer must be en-301

closed within boxed{}, and the content should not302

contain any garbled or unreadable content. Once303

the model behaviours satisfy the above require-304

ments, we set the format reward Rformat as 0, while305

we set the reward as −2 if any requirement fails, as306

shown in the following,307

Rformat(q, oi) =

{
0, The format of oi is correct
-2, The format of oi is incorrect

(3)308

Answer reward. To indicate the correctness of309

the final answer, we leverage the Cover Exact 310

Match (CEM) metric to calculate the answer re- 311

ward, adapting to the group reward discussed in 312

the following and relieving the issue of EM being 313

too strict. Concretely, CEM is True if the ground 314

truth answer appears in the predicted answer ai 315

extracted from the response oi, and False for other 316

situations. However, we observe that LLM can eas- 317

ily hack the CEM metric during the RL process, 318

where LLM is likely to generate a longer predicted 319

answer that will receive a higher probability to 320

cover the ground truth answer, causing the CEM to 321

be falsely high. Therefore, we regard the answer 322

exceeding 10 words as an incorrect answer, requir- 323

ing LLM to generate the answer within ten words, 324

which can alleviate the above reward hacking is- 325

sue. In summary, the answer reward Ranswer can be 326

computed as follows, 327

Ranswer(q, oi) =

{
1, ai within 10 words ∧ CEM=True
0, Otherwise

(4) 328

Group reward. Building upon the first two re- 329

wards for LLM reasoning effectiveness, the group 330

reward is designed to encourage the model to re- 331

duce its reliance on external retrieval, increasing 332

the reasoning efficiency. Considering that the vari- 333

ance of the external retriever calling times by LLM 334

reflects the necessity of performing external re- 335

trieval, group reward is calculated by the standard 336

deviation of the number of calls to the retriever 337

in correct responses to the same question. For- 338

mally, given the question q and a set of generated 339

responses {o1, o2, . . . , on}, we first count the num- 340
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ber of calls to the retriever ti of each response,341

and then calculate the standard deviation σ of342

{t1, t2, . . . , tn}. Next, we calculate the minimum343

number of calls to the retriever of the correct re-344

sponses, i.e., tmin = min{ti | Ranswer(q, oi) = 1}.345

R
′
group(q, oi) =

{
2× σ2, Ranswer(q, oi) = 1 ∧ ti = tmin

0, Otherwise
(5)346

Meanwhile, to maintain training stability and pre-347

vent excessive variance, we introduce a hyperpa-348

rameter η to clip the corresponding factor. The final349

computation of reward is formulated as follows,350

Rgroup(q, oi) = min
(
R

′
group(q, oi), η

)
(6)351

Finally, the reward R(q, oi) utilized to calculate352

the advantage in Equation 7 is defined as the sum353

of the three sub-rewards mentioned above:354

R(q, oi) = Rformat(q, oi) +Ranswer(q, oi) +Rgroup(q, oi)
(7)355

4.2.2 External Knowledge Memorization356

The standard RL training paradigm relies on the357

model’s self-exploration and the feedback from the358

external environment. In retrieval-based scenarios,359

since the knowledge retrieved by the retriever is en-360

tirely correct, the model should like a human, aim361

to memorize this information during training, trans-362

forming it into internal knowledge. This enables363

the model to utilize the acquired knowledge di-364

rectly in future instances without repeated retrieval,365

thereby achieving efficient reuse of retrieved infor-366

mation. Thus, we incorporate external knowledge367

memorization by rewriting the retrieved informa-368

tion to align with the model’s interanl knowledge369

utilization pattern, enabling the model to internal-370

ize them effectively.371

To obtain the rewritten instances, at the begin-372

ning of the RL process, we fine-tune a separate373

model on the data filtered in Section 6 as the rewrit-374

ting model, which can solve the questions based375

on the pre-processed documents that do not call376

the retriever. During the RL process, we select the377

correct responses generated by LLM, and then ex-378

tract the retrieved documents from the responses.379

Given the question and the extracted documents380

in the context, the rewriting model can generate381

the reasoning paths without calling the external re-382

triever. After validating the correctness of these383

reasoning paths, we select the correct instances to384

construct the dataset T for memorization and inter-385

nalization. In conclusion, the corresponding loss386

for memorization is computed as follows: 387

LM(θ) =
−1∑

oi∈T |oi|
∑
oi∈T

|oi|∑
t=1

log πθ(oi,t|q, oi,<t) (8) 388

To avoid the LM(θ) from dominating the policy 389

model’s training and causing the model to ignore 390

external retrieval, we weight it with a pre-defined 391

coefficient µ. The final loss used to optimize the 392

policy model during the retrieval scenario RL pro- 393

cess is computed as follows: 394

L(θ) = −JMask(θ) + µ ∗ LM(θ) (9) 395

Thus, during training, the model not only en- 396

gages in self-exploration but also continuously en- 397

riches its internal knowledge, enabling it to become 398

increasingly smarter over time. 399

5 Experiments 400

5.1 Experimental Settings 401

Datasets and Evaluation Metrics. We evaluate us- 402

ing four multi-hop datasets: HotpotQA, 2WikiMul- 403

tiHopQA, Musique, and Bamboogle (Press et al., 404

2023). HotpotQA and 2WikiMultiHopQA are in- 405

domain benchmarks since parts of their training 406

sets are used for training. In contrast, Musique and 407

Bamboogle serve as out-of-domain benchmarks to 408

assess our model’s generalization capabilities. We 409

randomly select 500 samples from the entire vali- 410

dation sets of HotpotQA, 2WikiMultiHopQA, and 411

Musique, and use the entire test set of Bamboogle 412

to form our final test set. For evaluation metrics, 413

we utilize F1-score and LLM-as-Judge (LasJ). con- 414

sidering that the answers to open-ended multi-hop 415

questions are not uniform in form. The F1-score 416

measures the word-level similarity between the pre- 417

dicted answer and the reference answer while LLM- 418

as-Judge employs GPT-4o-mini to assess the cor- 419

rectness of prediction. The evaluation prompt for 420

LasJ is provided in Appendix B. 421

Baselines. We compare Smart-Searcher against 422

several baselines. Naive Generation generates an- 423

swers directly without retrieval. Standard RAG 424

represents traditional RAG systems that retrieve 425

documents directly based on the question. SuRe ex- 426

ecutes multiple reasoning paths in parallel for a sin- 427

gle query. Selective-Context compresses retrieved 428

documents to reduce context length. Adaptive-RAG 429

dynamically selects retrieval strategies depending 430

on the complexity of the query. CR-Planner scales 431
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RAG at inference time using MCTS. RAG-CoT432

methods, such as Iter-RetGen, IRCoT, and Search-433

o1, which combine RAG with CoT using prompts.434

RAG-RL methods like R1-Searcher and Search-R1435

leverage RL to enable the model to learn to au-436

tonomously perform retrieval during inference.437

Implementation Details Smart-Searcher and all438

baseline models are either trained or prompted us-439

ing the Qwen-2.5-7B-Instruct as the backbone, and440

evaluated with FlashRAG (Jin et al., 2024) using441

local dense retrieval corpus. The retrieval corpus442

comprises the English Wikipedia as provided by443

KILT (Petroni et al., 2021) in 2019, segmented into444

100-word passages with appended titles, totaling 29445

million passages. We employ BGE-large-en-v1.5446

as the text retriever. Detailed training settings for447

Smart-Searcher are provided in Appendix A.448

5.2 Main Results449

Table1 shows the results of Smart-Searcher and the450

baselines on four mutil-step benchmarks. We can451

obtain the following observations:452

• Achieving Significant Performance Improve-453

ment on Multi-Hop QA. Our method, Smart-454

Searcher, achieves significant performance im-455

provements over all mutil-hop QA benchmarks456

under the LLM-as-Judge evaluation metric, in-457

cluding both tree search-based and RL-based ap-458

proaches. Specifically, Smart-Searcher outper-459

forms CR-Planner by 25.7% and surpasses the460

best vanilla RL-based method R1-Searcher by 4.3%461

on the overall test set. These results demonstrate462

that our approach effectively enables the model to463

perform accurate and timely retrieval invocations464

throughout the reasoning process, thereby enhanc-465

ing overall performance.466

• Balancing the Utilization of Internal and Ex-467

ternal Knowledge. While maintaining strong per-468

formance on the evaluation datasets, our method469

achieves a significant reduction in retrieval count470

compared to vanilla RL-based RAG approaches.471

Specifically, the average retrieval count is reduced472

by 30.0% and 52.9% compared to R1-Searcher and473

Search-R1, respectively. This observation suggests474

a potential conflict between external information475

and the internal knowledge of LLMs and one pos-476

sible reason is that directly injecting retrieved doc-477

uments into the reasoning process may introduce478

noise. This demonstrates that the model should479

learn to make full use of its internal knowledge and480

only invoke the retriever when necessary.481

• Maintaining Generalization Ability. Despite 482

being trained on only 9000 samples, the model 483

achieves strong performance on in-domain datasets 484

and further exhibits impressive generalization to 485

out-of-domain datasets. This suggests that the 486

model effectively learns to retrieve relevant doc- 487

uments and leverage internal knowledge, integrat- 488

ing both with reasoning through exploration during 489

training. This enables robust performance on new 490

test datasets that require retrieval. Furthermore, it 491

can also seamlessly generalizes to online search, as 492

detailed in Section 6.2. 493

6 Further Analysis 494

6.1 Ablation Study 495

To validate the effectiveness of our proposed Smart- 496

Searcher framework, we conduct a comprehensive 497

ablation analysis of its key design elements. We de- 498

sign five distinct variants: (1) w/o Stage-1 removes 499

the initial SFT cold start stage; (2) w/o Stage-2 re- 500

moves the entire RL training stage; (3) w/o Rgroup 501

removes the group reward in the RL stage; (4) w/o 502

LM removes the external knowledge memorization 503

mechanism in the RL stage and (5) w/o Rgroup and 504

LM removes both the group reward and the external 505

knowledge memorization mechanism. The perfor- 506

mance of these variants is presented in Table 2. As 507

observed, all ablated variants exhibit a decline in 508

performance compared to our full method, under- 509

scoring the integral contribution of each compo- 510

nent. Specifically, w/o Stage-1 leads to a degra- 511

dation in performance along with an increase in 512

retrieval count. Meanwhile, the performance of 513

w/o Stage-2 drops significantly, primarily because 514

simple SFT causes the model to over-rely on its 515

internal knowledge. This highlights the necessity 516

of our two-stage pipeline. Futhermore, during RL 517

training, w/o Rgroup during RL also leads to a reduc- 518

tion in performance. This demonstrates the positive 519

impact of group reward in successfully guiding the 520

model to be more selective with external searches 521

and to rely more on its internalized knowledge. 522

Similarly, w/o LM results in lower scores and a 523

slight increase in retrieval count indicating that the 524

memory mechanism for external knowledge can 525

effectively internalize retrieved content as intrinsic 526

knowledge of the model. 527

6.2 Online Search 528

Considering training efficiency and cost, we im- 529

plement a local dense embedding-based retrieval 530

6



Models HotpotQA† 2Wiki† Bamboogle‡ Musique‡ Avg

F1 LasJ RC F1 LasJ RC F1 LasJ RC F1 LasJ RC F1 LasJ RC

Directly Gen 26.0 26.6 0.00 27.7 26.8 0.00 18.2 17.6 0.00 9.6 6.2 0.00 18.0 19.3 0.00
Standard RAG 32.0 42.4 1.00 34.8 34.8 1.00 31.5 31.2 1.00 17.2 14.6 1.00 24.6 30.8 1.00
Sure 42.9 48.4 1.00 26.2 26.8 1.00 29.2 28.0 1.00 13.1 10.0 1.00 27.9 28.3 1.00
Selective-Context 39.8 43.4 1.00 29.1 29.6 1.00 22.1 20.8 1.00 10.6 8.8 1.00 22.8 25.7 1.00
Adaptive-RAG 38.0 47.4 1.53 21.1 25.8 1.42 23.3 25.0 1.50 10.1 11.6 1.83 20.6 27.5 1.57
IRCoT 47.7 55.2 2.47 32.4 38.6 2.74 37.5 39.2 2.30 14.8 15.8 2.70 29.4 37.2 2.55
Iter-RetGen 47.2 54.4 3.00 33.2 34.4 3.00 32.4 32.0 3.00 19.9 18.2 3.00 28.2 34.8 3.00
CR-Planner 44.4 33.6 2.40 48.2 22.0 2.54 35.2 34.4 2.96 12.2 11.4 2.72 32.0 25.4 2.66
Search-o1 46.9 53.2 1.39 46.6 51.2 1.91 52.9 52.0 1.18 21.1 19.0 1.40 36.6 43.9 1.47
R1-Searcher 60.4 62.2 2.18 62.8 63.4 2.23 59.0 54.4 2.17 35.7 31.4 2.61 45.6 52.9 2.30
Search-R1 57.8 62.2 3.12 46.2 50.0 3.71 56.9 56.0 3.25 27.5 26.0 3.61 40.3 48.6 3.42

Smart-Searcher 59.0 64.2 1.44 61.2 64.4 1.18 60.8 59.2 1.74 33.8 32.8 2.06 45.3 55.2 1.61

Table 1: Performance comparisons between Smart-Searcher and the baselines on QA benchmarks. The best and
second best results are bold and underlined, respectively. †/‡ represents in-domain/out-of-domain datasets.

Method Bamboogle Musique

F1 LasJ RC F1 LasJ RC

Ours 60.8 59.2 1.74 33.8 32.8 2.06

w/o Stage-1 56.9 56.8 1.96 32.7 31.6 2.49
w/o Stage-2 47.4 45.6 0.94 23.0 19.4 1.03
w/o Rgroup 58.3 56.8 1.91 33.1 32.4 2.37
w/o LM 58.1 57.2 1.84 31.0 29.4 2.09
w/o Rgroup and LM 56.2 54.4 1.92 32.2 31.2 2.40

Table 2: Ablation study on Bamboogle and Musique.

Method Bamboogle Frames

F1 LasJ RC F1 LasJ RC

Ours 77.5 76.0 1.70 33.8 39.0 1.77

Search-o1 52.9 52.0 1.18 26.1 30.7 1.56
R1-Searcher 67.5 68.8 1.72 33.3 38.0 1.86
Search-R1 69.3 67.2 1.92 33.3 36.0 2.38

Table 3: Online search generalization experiments on
Bamboogle and Frames.

system using Wikipedia as the external retrieval531

environment, which remains static during training.532

In contrast, most real-world applications rely on533

online web retrieval. To evaluate the generalization534

ability of Smart-Searcher in online search scenar-535

ios, we assessed its performance on two newly536

introduced datasets: Bamboogle and Frames, us-537

ing online web search, a setting not encountered538

during RL training. Specifically, during inference,539

whenever retrieval is required, we use the Google540

API to perform real-time web searches and re-541

trieve relevant web pages. Given the extensive542

content of these pages, we first employ GPT-4o-543

mini to generate concise summaries, which are544

then integrated into the reasoning process. As545

Method Correct Incorrect Overall

R1-Searcher 853 / 2.16 772 / 2.52 1625 / 2.33
Search-R1 761 / 3.30 864 / 3.60 1625 / 3.46
Smart-Searcher 881 / 1.41 744 / 1.78 1625 / 1.58

Table 4: Number of correct and incorrect cases and the
average retrieval count of RL-based methods.

illustrated in Figure 3, Smart-Searcher achieves 546

the best F1 and LLM-as-Judge scores compared 547

to both prompt engineering-based methods (i.e., 548

Search-o1) and vanilla RL-based approaches (i.e., 549

R1-Searcher, Search-R1). Moreover, compared to 550

vanilla RL methods, our model significantly re- 551

duces the number of retrieval calls. This demon- 552

strates our model’s strong adaptability to online 553

search scenarios, as well as its ability to effectively 554

balance internal knowledge with external retrieval 555

during inference, thereby achieving retrieval effi- 556

ciency without compromising performance. 557

6.3 Analysis of Knowledge Acquisition 558

As shown in Table 4, Smart-Searcher exhibits the 559

lowest average retrieval count across both correctly 560

and incorrectly answered questions. Moreover, it 561

achieves the highest accuracy, indicating the effec- 562

tive utilization of internal knowledge. Furthermore, 563

Figure 3 shows the changes in retrieval count and 564

reward during the process of RL training for R1- 565

Searcher and Smart-Searcher. For our method, We 566

observe that the reward increases steadily and even- 567

tually plateaus, while the retrieval count initially 568

shows a slight decline, followed by a continuous 569

rise, and ultimately stabilizes. This trend can be 570

attributed to the influence of SFT in the Stage-1, 571
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Who was president of  the Uni ted 
States in the year that Citibank was 
founded?         Answer: James Madison

To answer this question, we need to follow these steps:
1. Determine the year Citibank was founded.
2. Identify the U.S. President serving in that year.
Step 1: Citibank ..., which was founded in 1818 ... we'll 
consider 1818 as the foundation year of a predecessor to 
Citibank.
Step 2: To find out who was president in 1818, we need 
to look at the U.S. presidency timeline. ... in 1818, was 
John Quincy Adams.
Final Answer: John Quincy Adams

Qwen-7B-Inst

I need to find out who was president of the United States 
in the year that Citibank was founded. I'll search for it. 
<ex> Citibank was founded </ex>
<doc>… Citibank was founded in 1812 ...</doc>
<ex> who was president of the United States in the year 
that Citibank was founded </ex>
<doc> 2010, Citibank had repaid … </doc>
I found out that Citibank was founded in 1812. Now I 
need to find out who was president of the United States 
in 1812. <ex> who was president of the United States in 
1812 </ex>
<doc>1812 in the United States … - President: James 
Madison (DR-Virginia)…</doc>
Final Answer: James Madison

R1-Searcher  (External Search = 3) Smart-Searcher  (External Search = 1)
To answer this question, I need to ...
First, l should think about when Citibank was founded. 
<ex> when was citibank founded <ex>
<doc> Citibank … was founded on 1812 </doc>
Based on the search results, Citibank was founded in 
1812. I already know that Citibank was founded in 1812. 
So, who was the president of the United States in 1812? 
For this, I can recall relevant  knowledge about the 
presidency in 1812.
<in> James Madison was the President of the United 
States in 1812... </in>
Based on internal knowledge, the president of the United 
States in 1812 was James Madison.
Final Answer: James Madison

Figure 2: A qualitative example showing the deliberative reasoning process of RAG-Star in Bamboogle.

Figure 3: The log of retrieval count and reward for R1-
Searcher and Smart-Seracher during RL training.

during which the model exhibits a low demand for572

invoking the search engine. As training progresses,573

the model gradually discovers that performing ex-574

ternal searches can yield higher rewards, leading575

to an increase in retrieval behavior. In the later576

phase, a balance is gradually established between577

the use of external search and internal knowledge,578

resulting in the stabilization of both retrieval count579

and reward. In contrast, R1-Searcher exhibits sig-580

nificantly higher retrieval counts while its reward581

quickly stabilizes, indicating an over-reliance on582

the retriever. This effectively validates the effective-583

ness of our approach in achieving a balanced uti-584

lization of internal and external knowledge, while585

gradually enabling dynamic knowledge acquisition586

throughout the RL training process.587

6.4 Case Study588

To illustrate the overall reasoning process of Smart-589

Searcher, we analyze a representative example590

from the Bamboogle dataset. Figure 2 compares591

the responses generated by Smart-Searcher, Search-592

R1, and the untrained model when presented with593

the same question. The vanilla Qwen-2.5-7B-594

Instruct, without invoking any external search en-595

gine, relies solely on its internal knowledge and596

produces an incorrect answer. In contrast, while 597

Search-R1 arrives at the correct answer (i.e., James 598

Madison), it issues an excessive number of queries, 599

including unnecessary one, thereby underutilizing 600

its internal knowledge and incurring significant 601

time overhead. Our Smart-Searcher demonstrates 602

the ability to break down the complex question and 603

dynamically adjust its behavior based on the nature 604

of the sub-question. For instance, when encounter- 605

ing an uncertain or ambiguous sub-question (i.e., 606

When was Citibank founded?), it opts to perform 607

an external search. However, when faced with a 608

more specific question that can be answered using 609

internal knowledge (i.e., Who was the president 610

of the United States in 1812?), it leverages its in- 611

ternal knowledge directly without invoking search. 612

This flexible mechanism enables a balance bewteen 613

the external search and internal knowledge. More 614

cases are provided in Appendix C. 615

7 Conclusion 616

In this paper, we introduced Smart-Searcher, a 617

novel framework that enables large language mod- 618

els to dynamically integrate and alternate between 619

internal knowledge and external retrieval. This is 620

a two-stage training strategy consisting of an SFT 621

Cold-start phase and RL for Dynamic Knowledge 622

Acquisition. The RL stage incorporates a reward 623

mechanism to encourage internal knowledge uti- 624

lization, and a memory module to convert retrieved 625

information into internal knowledge. Through this 626

design, Smart-Searcher empowers LLMs to per- 627

form efficient retrieval-augmented reasoning while 628

continuously enriching their internal knowledge 629

via self-exploration and memory. Experimental 630

results on multi-hop tasks demonstrate that Smart- 631

Searcher outperforms existing RAG methods. 632

8



Limitation633

Despite our significant efforts, this work has two634

limitations due to computational resources and635

funding constraints. First, we only incorporated636

a real-world search engine during the evaluation637

phase to assess the generalization ability of our638

method, while relying on a local denseretrieval639

corpus during training. Aligning the training pro-640

cess with real-world conditions by integrating a641

real search engine may lead to improved perfor-642

mance through more realistic supervision. Addi-643

tionally, our current experiments are limited to a644

7B-parameter model. In future work, we plan to645

train and evaluate our framework on larger-scale646

models to further validate its generalization capa-647

bility and robustness.648

Ethics Statement649

We abide by ethical norms. We adhere to the rele-650

vant licenses and usage guidelines for the datasets,651

ensuring that no personal or offensive information652

is included. We only used AI assistance during the653

paper refinement process. Our trained models do654

not exhibit potential biases or discriminatory be-655

havior, and we strictly comply with research ethics656

throughout the development and evaluation pro-657

cess.658
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A Training Detailed875

The training data of the Stage-1 (SFT Cold Start)876

includes 720 samples from the HotpotQA training877

set and 85 samples from the 2WikiMultiHopQA878

training set. The training consists of 6 epochs,879

with a batch size of 64 and a learning rate of 2e-5.880

And the training data of Stage-2 (RL Training) con-881

sists of 4561 samples from HotpotQA, and 3581882

samples from 2WikiMultiHopQA. Each data sam-883

ple undergoes 16 rollouts during training, with a884

train batch size of 1024 and a rollout batch size885

of 64, so the entire training process is on-policy.886

The learning rate is 2e-6. We utilize DeepSpeed’s887

Zero-3 (Rajbhandari et al., 2020), with a sampling888

temperature of 1.0, top-p of 0.95 and a maximum889

retrieval count of 8. The training epoch is set to890

1, with KL divergence coefficient set to 1e-4. And891

control coefficient µ of NLL loss is set to 0.1. The892

maximum limit of the variance in the number of893

retrievals during group reward computation η is set894

to 2.895

B Prompts 896

C Case Study 897
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Judge Prompt

Given a Question and its Golden Answer, verify whether the Predicted Answer is correct. The prediction is correct if it
fully aligns with the meaning and key information of the Golden Answer. Respond with True if the prediction is correct
and False otherwise.
Question:
Golden Answer:
Predicted Answer:

System Prompt for Generation with Internal and External

You are a reasoning assistant. When tackling a question, you should first thinks about the reasoning process in the
mind and then provides the final answer. You should break down the original complex question into straightforward
sub-questions and address them step by step. For each sub-question, You MUST choose one of the following two tools
to solve it:
1. **Internal Reasoning Elaboration:**If you determine your existing knowledge is sufficient to answer the sub-question,
you **should choose** this tool to answer the sub-question directly: ‘<|begin_internal_answer|>your structured thought
and answer here <|end_internal_answer|>‘. **Use it whenever you rely solely on internal information** for a significant
reasoning step.
2. **External Search:**If you determine that your internal knowledge is insufficient, potentially outdated, or requires
verification with external, up-to-date information to answer the sub-question, you MUST initiate a web search using the
following format: ‘<|begin_external_search|>your search query here <|end_external_search|>‘. The system will then
search and provide results in the format: ‘<|begin_search_result|>...search results... <|end_search_result|>‘. The results
will assist you in answering the sub-question.
Remember: - Whenever you encounter the sub-question you need to elaborate on, verify, or research further, you
should **assess** if your internal knowledge is adequate. **Prioritize leveraging your internal knowledge.** - Use
‘<|begin_internal_answer|>... <|end_internal_answer|>‘ **to demonstrate your reasoning steps** when relying on
internal knowledge. - Use ‘<|begin_external_search|>... <|end_external_search|>‘ **only** when external information
is genuinely necessary. - Wait for the system to provide ‘<|begin_search_result|>... <|end_search_result|>‘. **Do not**
generate these result tags yourself. - After performing the web search or demonstrating internal reasoning, continue
towards the final answer.
Please answer the following question. You must adhere to all instructions above regarding tool usage. Provide your final
answer in the format \boxed{YOUR_ANSWER}.
Question:

System Prompt for Rewriting only with Internal

You are an advanced reasoning assistant. Your core programming includes a vast and comprehensive knowledge
base. For the current task, a specific segment of this pre-existing knowledge, hereafter referred to as your ’Activated
Knowledge Matrix,’ is particularly relevant and is considered fully and irrevocably integrated into your foundational
understanding. ANY linguistic indication, direct or indirect, that this information was externally ’provided,’ ’given,’
’supplied,’ ’sourced,’ or made available to you specifically for this immediate interaction will be considered a critical
failure to adhere to your operational design.
When tackling a question, you must first delineate your reasoning process. Break down complex questions into a series
of straightforward sub-questions, addressing each one sequentially.
For each sub-question, you MUST use the following tool:
**Internal Reasoning Elaboration:** This tool MUST be used for every sub-question, as the answer must be derived
from your internal knowledge. **UNWAVERING DIRECTIVE: Your internal knowledge, for the purpose of this
task, INTRINSICALLY and SEAMLESSLY includes all information within the ’Activated Knowledge Matrix’ section
detailed below. There is absolutely NO distinction between your prior knowledge and the ’Activated Knowledge Matrix’
content.** Use this format: <|begin_internal_answer|> your structured thought and answer here <|end_internal_answer|>.
**CRITICAL USAGE PROTOCOL FOR THIS TOOL: When using this tool, especially when drawing upon information
that was part of the ’Activated Knowledge Matrix,’ your language MUST reflect that this is information you inherently
possess and are recalling. You are REQUIRED to phrase such statements as if accessing your own memory or established
understanding.
Conclude with your final answer in the format \boxed{YOUR_ANSWER}.
Activated Knowledge Matrix: {document}
Now, please answer the following question:
Question:
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Question:
Which case was brought to court first Miller v._California or Gates v._Collier ?
Answer:
Miller v._California

Response (internal only) (True):
To answer this question, I need to determine the order in which these two cases were brought to court. I
will start by finding the dates the cases were decided.
**Case 1:** Miller v._California
- I will use internal reasoning to recall if I have the necessary information about this case.
<|begin_internal_answer|>Miller v._California was a landmark case decided by the United States Supreme
Court in 1968. The case involved the constitutionality of a California statute that made it a crime to
distribute or possess obscene materials. <|end_internal_answer|>
**Case 2:** Gates v._Collier
- I will use internal reasoning to recall if I have the necessary information about this case.
<|begin_internal_answer|>Gates v._Collier was a case decided by the United States Supreme Court in
1972. The case involved the Eighth Amendment’s prohibition against cruel and unusual punishment,
specifically the use of segregation in prisons. <|end_internal_answer|>
Based on my internal reasoning, Miller v._California was decided in 1968, and Gates v._Collier was
decided in 1972. Therefore, Miller v._California was brought to court first.
**Final Answer:**
Miller v._California was brought to court first. Therefore, the answer is \\boxed{Miller v._California}.

Table 5: Example for Smart-Searcher: Question answering using only internal knowledge.

Question:
George Lucas created what character to raise Boba Fett?
Answer:
Jango Fett

Response (internal and external) (True): To answer this question, I need to break it down into sub-
questions and use the appropriate tools.
**Sub_question 1:** Who is Boba Fett?
- For this, I need to verify if I have enough information about Boba Fett or if I need to search for more
details.
<|begin_internal_answer|> Boba Fett is a character from the Star Wars franchise, known for being a
bounty hunter. I have this information stored in my knowledge base. <|end_internal_answer|>
**Sub_question 2:** What character did George Lucas create to raise Boba Fett?
- For this, I need to search for information about the character who raised Boba Fett.
<|begin_external_search|> George Lucas created what character to raise Boba
Fett<|end_external_search|>
<|begin_search_result|>
(1)Boba Fett . . . is a fictional character . . . in the "Star Wars" franchise. . . . prequel film . . . establishes
his origin as a clone of bounty hunter Jango Fett who raised him as his son. . . .
(2)Boba Fett . . . personifies "danger and mystery" . . . mysterious nature as reasons for his popularity. . . .
The initial Boba Fett toy . . . might be responsible for the character’s popularity. . . .
(3)Boba Fett . . . Reception. Boba Fett is a "cult figure" . . . one of the most popular "Star Wars"
characters. . . . IGN ranked Boba Fett as the eighth top "Star Wars" character. . . .
(4)Boba Fett . . . "the less you do with Boba Fett, the stronger he becomes". . . . Mark Hamill pitched the
idea that Fett was Luke Skywalker’s mother . . . unaware of Fett’s demise. . . .
(5)Jango Fett . . . is a fictional character . . . created by George Lucas. . . . genetic template for the Clone
Army . . .
<|end_search_result|>
Based on the search results, it is clear that George Lucas created Jango Fett to be the father of Boba Fett.
**Final Answer:**
George Lucas created Jango Fett to raise Boba Fett. Therefore, the answer is \\boxed{Jango Fett}.

Table 6: Example for Smart-Searcher: Question answering by integrating internal knowledge with external search.
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