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Abstract

Abstract reasoning, as one of the hallmarks of human intelligence, involves col-
lecting information, identifying abstract rules, and applying the rules to solve new
problems. Although neural networks have achieved human-level performances
in several tasks, the abstract reasoning techniques still far lag behind due to the
complexity of learning and applying the logic rules, especially in an unsupervised
manner. In this work, we propose a novel framework, ARII, that learns rule rep-
resentations for Abstract Reasoning via Internal Inferences. The key idea is to
repeatedly apply a rule to different instances in hope of having a comprehensive
understanding (i.e., representations) of the rule. Specifically, ARII consists of a rule
encoder, a reasoner, and an internal referrer. Based on the representations produced
by the rule encoder, the reasoner draws the conclusion while the referrer performs
internal inferences to regularize rule representations to be robust and generalizable.
We evaluate ARII on two benchmark datasets, including PGM and I-RAVEN. We
observe that ARII achieves new state-of-the-art records on the majority of the
reasoning tasks, including most of the generalization tests in PGM. Our codes are
available at https://github.com/Zhangwenbo0324/ARII.

1 Introduction

Abstract reasoning, the ability to extract patterns and rules from concrete instances and apply them
to solve new problems, is one of the hallmarks of human intelligence. It is a critical topic to endow
neural networks with the capacity of abstract reasoning on the road from artificial intelligence (AI) to
human-like intelligence. As “thinking in pictures” is one of the most effortless and natural ways for
humans to perform inference, Raven’s Progressive Matrices (RPM) test [1] is a widely accepted task
to evaluate AI’s reasoning ability. As shown in Fig 1, an RPM problem contains an incomplete 3× 3
matrix where the bottom-right entry is missing. The subjects are aware that the rows in the matrix
implicitly share identical rules and are asked to pick the suitable answer from the choices that would
best complete the missing entry. Considering that the RPM test is shown to be highly correlated with
real intelligence [2] in cognitive and psychological science, AI community recently presents a huge
interest in this task to explore the model’s capacity of abstract reasoning [3, 4, 5, 6, 7].

In the early years, computational models for RPM usually assume access to the symbolic representa-
tions of images and thus solve RPM with heuristics. Recently, various neural networks are proposed
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Figure 1: An example of RPM problem and the general solution of ARII. ARII repeatedly applies the
rule in internal inference in hope of a deep “understanding” of the rule.

to accomplish abstract reasoning with the help of abundant reasoning data (such as Procedurally Gen-
erated Matrices dataset (PGM) [5], Relational and Analogical Visual rEasoNing dataset (RAVEN) [7],
and Impartial-RAVEN dataset (I-RAVEN) [8]). These models mainly treat the RPM problem as a
classification task based on the rules hidden in rows or columns. For example, Contrastive Perceptual
Inference Network (CoPINet) [9] utilizes contrast effect to improve the feature extraction capacity [7].
Scattering Composition Learner (SCL) designs compositions of neural networks according to the
specific characteristics in RPM (e.g., the number of the attributes) [10].

Although existing models have achieved impressive performance on abstract reasoning, the critical
capacity, i.e., generalization to different environments remains unsolved [5, 11, 12, 13, 14]. In
particular, Małkiński [15] reports that, the performances of the current models would significantly
decrease even if the test images changes slightly [5, 11, 12, 13]. For example, one of the generalization
regimes (i.e., an evaluation task) in the PGM dataset is extrapolation, where the model is trained
on the images with color or size restricted to the lower half of the value set and tested on images
taking these values from the upper half. Multi-Layer Relation Network (MLRN) [13] achieves nearly
perfect accuracy in the normal test of the PGM dataset, but fails completely in the extrapolation
regime, yielding only slightly above chance. This reveals that these models are just overfitted to
the specific data rather than mastering the reasoning essence, also reflected by low generalization
to distracting features [16]. This paper provides a novel framework that ameliorates the reasoning
generalizability by learning robust rule representations. To achieve it, we make two assumptions of
the rule representation for abstract reasoning. On the one hand, we assume the space of the abstract
rules is finite and usually not large. Thus, we propose a rule encoder that produces discrete rule
representations by vector quantisation [17]. On the other hand, we assume the rule representations
should be invariant to specific instances or distracting features. In human reasoning, people usually
apply an abstract rule to different instances several times to deepen the understanding of the rule. We
mimic this cognitive process by introducing an internal inference process based on the learned rule
representations. Specifically, we randomly mask one panel of the first two rows and ask the referrer
to infer the masked panel based on the rule representation. We perform the internal inference multiple
times to make the rule representation invariant to specific instances. Based on these instance-invariant
representations, conclusions can be made according to the specific context images. Therefore, we
call our model ARII, the abbreviation of “abstract reasoning via internal inferences.”

We first conduct comprehensive empirical experiments on the I-RAVEN [8] datasets. Compared with
the current state-of-the-art models (e.g., SCL [10] and CoPINet [9]), experiments show that ARII
achieves new records on four of the seven single training tasks in the I-RAVEN datasets. As the
generalization tests can better reflect the real reasoning ability of a model, we also evaluate ARII on
the seven generalization regimes of the PGM dataset and observe that ARII outperforms the other
competing methods in five regimes. To summarize, our contributions include:

• We propose a novel framework that learns rule representations for abstract reasoning by
internal inferences. In particular, we introduce a rule encoder to produce discrete rule
representations by vector quantisation. We design an internal inference process to learn an
instance-invariant and robust rule representation.
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• Our model achieves superior results to state-of-the-art methods on the majority of tasks (four
out of seven) on I-RAVEN and better generalization performance on most PGM regimes.

• Visualization results on the rule representations indicate that the learned representations
can be automatically clustered with respect to the rule categories. Deep analysis shows that
we can identify some features in the discrete representations for a specific reasoning rule,
validating that the representations are interpretable and instance-invariant.

2 Related Work

RPM problems are firstly investigated in the cognitive science community to better understand
intelligence, and many computational models are proposed to address this test since 1990s. For
example, Carpenter et al. [2] develop a production system that takes hand-coded textual descriptions
of problems as input and predicts the answer. Overall, these cognitive models mainly solve specific
problem sets2 with only a limited number of hand-craft instances in cognitive science [19, 20, 21].

Recently, RPM problems have gained a lot of attention in the AI field to explore abstract reasoning
capability. The PGM [5] together with the RAVEN dataset [7] expands the size of RPM instances
through automatic generation algorithms, serving as the benchmark datasets for deep learning network
to study abstract reasoning. However, Hu et al. [8] found severe defects (a short cut for predictions)
existing in the RAVEN dataset and created an unbiased version called I-RAVEN dataset to solve it.
Therefore, we evaluate our method on the PGM and I-RAVEN rather than RAVEN.

Based on the above datasets, various end-to-end approaches have been proposed to study the abstract
reasoning ability. The typical architectures in computer vision, that simply use CNN as visual feature
extractor followed by MLP [3] or LSTM [5, 22] to process the features from all the image panels,
are shown to lack the reasoning ability and struggle in the RPM test. To improve the reasoning
capacity, Relation Network [23] is equipped and extended in many models, including Wild Relation
Network [5] and Multi-scale Relation Network [24].

Although the above models obtain elegant performance on RAVEN and I-RAVEN, they still fail to
achieve satisfactory generalization results on PGM, reflecting the overfitting issue of these reasoning
models. Auxiliary labels [25, 11, 16] are therefore utilized to develop representations that are
amenable to generalization by informing the meta-targets (i.e., labels which encode relevant relations
and attributes). However, it requires additional prior information, which is not a general way to
address the reasoning problem.

Our work is closely related to several advanced abstract reasoners, such as the SCL [10] and
MXGNet [11], a multi-layer multiplex graph neural net. In particular, ARII uses the splitting and
grouping embeddings and row-wise embeddings in SCL and MXGNet, respectively. Our work is
also connected with neuro-symbolic methods for logical reasoning [26, 27, 28, 29, 30, 31, 32]. For
instance, Logic Tensor Networks integrates neural networks with first-order fuzzy logic to perform
reasoning with logical formulas. Different from these studies, ARII explicitly maintains a discrete rule
representation for abstract reasoning and introduces a novel internal inference process to enforce the
rule representation to be robust. The internal inference can be viewed as one type of self-supervised
learning algorithm for the rule representation learning, where we mask parts of the context matrix
and require the model to reconstruct it. But the traditional self-supervised learning models are usually
trained first and finetuned for the downstream tasks afterwards [33, 34, 35]. Different from them,
we explore an interesting strategy that performs the internal inference and the supervised learning
simultaneously.

3 Methodology

3.1 Problem formulation

The RPM test is conducted on a 3×3 matrix where the rows comply with an identical rule. Subjects
are presented with an incomplete matrix where an entry on the third row is missing, and are asked to
select a candidate answer from the choice set to complete the matrix.

2Standard Progressive Matrices [18] contains 60 problems
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Formally speaking, a RPM problem contains 16 image panels X = {xi}16i=1 divided into 8 context
images Xc = {xi}8i=1 and 8 candidate answer images Xa = {xi}16i=9. The 8 context images are
placed in a 3× 3 matrix with the last element blank. For each particular data point, the three rows in
the matrix implicitly share the identical abstract rule. Given the X , the machine is asked to select a
candidate answer image from Xa to best complete the matrix (i.e. adhering to the underlying abstract
rule in context images). The correct answer is denoted by x∗, where x∗ ∈ Xa.

3.2 The ARII model

ARII consists of three modules: the rule encoder, the reasoner, and the internal inferrer. The
rule encoder induces rule representations from the context matrix. The inferrer performs internal
inferences to regularize the rule representations to be robust and instance invariant. The reasoner
draws the reasoning conclusion based on the rule representations. The rest of this section elaborates
on these components and the training process.

3.3 Rule encoder

To tackle this reasoning problem, an ideal reasoning process is to figure out the underlying rule based
on the given context images. To achieve this, we aim to learn the rule representations r using an
effective encoder. In principle, the rule can be extracted from particular row of images. But the above
extraction has the potential to make mistakes since a single row of images may satisfy multiple rules.
Therefore, to guarantee the adequate information for rule extraction, we propose to encode the first
two rows of images to represent the underlying rule, given by

r1&2 = RuleEnc({xi}6i=1), (1)
where r1&2 stands for the representation of the rule underlying the first two rows in the given matrix.
Rule-Enc stands for the rule encoder in the ARII model. In the rest of this section, we first obtain the
image encodings and then build rule representations based on the encodings of the involved images.

Image encodings. As each row contains three separated images, we adopt convolutional neural
network (CNN) blocks to get the feature map (f ) for each image separately.

fi = CNN(xi), i = 1, 2. . . , 6. (2)
Once we get the feature map, we further fuse the features of different positions in the feature map.
Intuitively, the rule of RPM is highly correlated with visuospatial ability [36] and usually lies in the
same position of different panels. Therefore, we first divide the feature map into multiple groups;
each group can be considered to contain information from a certain position. Then we apply a fully
connected layer (FC) to each group to further extract group features, and concatenate the group
features into output features, computed by

zi = ImageEnc(xi) = ||Kz

k [FC(fk
i )], i = 1, 2. . . , 6, (3)

where || stands for the concatenation operation of the vectors. fk
i is k-th group features after splitting

original fi into Kz groups. Similar to the scattering transformation in SCL [10], the group features
{fk

i } are divided evenly from the feature map fi. Finally, the Kz new groups of the features are
concatenated (denoted by ||Kz

k ) to obtain the i-th image encodings zi.

Continuous rule representations. Next, the rule encoder fuses the image encodings and extracts the
rule representations. Similar to the processing of images, we extract the relation corresponding to the
different positions of the six image encodings as Fig 2. Specifically, the encodings of six images are
first divided into Kr groups independently. The groups at the same location in six image encodings
are combined together and fed into a fully connected layer to further extract the relation feature.
Finally, the multiple relation features are merged to form rule features as follows:

rc = ||Kr

k [FC(||6i=1z
k
i )], (4)

where zk
i is the k-th group of the i-th image encodings zi. ||6i=1z

k
i means six k-th group features

from encodings are concatenated, and fed into a fully connected layer (FC) to get the k-th relation
features. We further merge the Kr relation features and obtain the continuous rule representations rc.

Discrete rule representations. Note that the above rule representations rc are continuous and
dependent on the specific instances. In this work, we assume the space of the abstract rules is finite
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Figure 2: The architecture of ARII. ARII comprises three modules, namely, the rule encoder, the
reasoner and the internal inferrer.

and usually not large. Based on this assumption, the discrete and finite representations are more
suitable to describe abstract rules.

Therefore, we propose to discretize the latent representations of the rules via vector quantisation (VQ)
[17]. The general idea of VQ is to use a finite number of vectors (denoted as codebook) to build the
rule space. It outputs the closest vector from the codebook for the given input (Appendix Fig 1). In
particular, the rule encoder maintains a discrete codebook E ∈ RKe×D. Ke is the number of the
discrete code, and D is the dimensionality of each discrete code Ek. We measure the L2 distance
between the continuous representation rc and code vectors in the codebook. For each vector rlc in
rc ∈ RKr×D, where Kr is the number of the continuous vector and D is the dimensionality of each
continuous vector rlc, the code vector that yields the minimum distance is taken to obtain the discrete
rule representation ql. The detailed computations are

ql = Ek, where k = argmin
j∈{1,...,Ke}

∥rlc − Ej∥2, (5)

where ql is the closest quantized vector for the continuous vector rlc. Via vector quantisation, we can
find the closest code for the given continuous rule representations, i.e.,

r1&2 = RuleEnc({xi}6i=1) = ||Kr

l=1[ql]. (6)
To make the above vector quantisation work, we need to train both the neural networks and the
codebook in the rule encoder towards the minimum of the distance between the continuous and
discrete representations. The objective function of vector quantisation for a particular data point is

J vq(X) = ||sg(rc)− r1&2||22 + ||rc − sg(r1&2)||22, (7)
where sg(·) is stop-gradient operation during computation. In this way, we can derive the discrete
rule representations, which is expected to be interpretable and instance-invariant.

3.4 Reasoner

The reasoner is to draw conclusions (i.e., the selection of answer images) based on the extracted rule
and the specific context (i.e., the images on the third row). That is, the reasoner applies the extracted
rule to the third row and figures out which candidate answer could best complete the missing entry.

According to this standard, we therefore extract the rule that the third row implicates. Since we have
8 candidate answer images (i.e., Xa), there are 8 rules for the third row with the different answer
images in the missing entry. However, the rule encoder is designed to take two rows of images as
inputs and yield the rule representations. Therefore, we combine the third row with the first row to
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derive the rule that these two rows implicitly share, computed by

rj1&3 = RuleEnc({xi|i = 1, 2, 3, 7, 8, j}), j = 9, . . . , 16 (8)

where rj1&3 denotes the rule representations of the rule underlying the first and the third row when the
third row is completed with the j-th answer image. Similarly, we can obtain the rule representations
of the rule underlying the second and third row, given by

rj2&3 = RuleEnc({xi|i = 4, 5, 6, 7, 8, j}), j = 9, . . . , 16 (9)
Based on the derived rule representations for the third row, the reasoner next measures the similarity
between these rule representations and the reference rule (i.e., r1&2) and selects the most similar one
as the prediction. In particular, the reasoner measures the similarity of two rules by calculating the
inner product of the corresponding representations. For example, the similarity between the rule r1&3

and the reference rule is calculated by

sim(rj1&3, r1&2) =
er

j
1&3·r1&2∑16

j=9 e
rj
1&3·r1&2

, j = 9, . . . , 16, (10)

where sim(·) is the similarity function of two rule representations. Similarly, the reasoner derives the
similarity between the rule r2&3 and the reference rule by

sim(rj2&3, r1&2) =
er

j
2&3·r1&2∑16

j=9 e
rj
2&3·r1&2

, j = 9, . . . , 16. (11)

Based on the similarities between individual rules, the reasoner then predicts the candidate answer y.

y = argmax
j∈{9,...,16}

1

2
[sim(rj1&3, r1&2) + sim(rj2&3, r1&2)]. (12)

For the optimization of the reasoner, we adopt the cross entropy loss to guide the reasoner to select
the correct answer, given by

J re(X) = −1

2
[log sim(r∗1&3, r1&2) + log sim(r∗2&3, r1&2)] (13)

3.5 Internal inferences

Human usually applies an abstract rule to different instances for several times to deepen the under-
standing of the rule. We suppose that the underlying rules are independent of specific instances and
can be reused in different problems that share the same rules. Therefore we mimic this cognitive
process by performing internal inferences based on the rule representations. In the internal inference,
we introduce another reasoner to address the reasoning task on the two rows of images when the rule
representations are available. In this way, our method ARII could also better “understand” the rule
and have more robust rule representations. A robust rule representation is insensitive to the sample
noises and thus benefits the overall reasoning ability[37].

In particular, the first and second rows are used in internal inference process. We first extract the rule
representations r1&2 of these rows and then randomly mask one of the six images {xi}6i=1 by a white
blank image. We coin the blank image as x̂m, where m is the index of the masked images. Thus, the
masked two rows can be expressed by

Im = {xi|i ∈ {1, 2, 3, 4, 5, 6}\m} ∪ {x̂m} (14)
where {1, 2, 3, 4, 5, 6}\m stands for a set excluding the index m and we insert blank image x̂m in
the original m-th position. Next, we introduce another neural network named inferrer that takes the
rule representations and the encodings of the images in the masked two rows as inputs.

x̃m = Inferrer(ImageEnc(Im), r1&2), (15)
where Inferrer is another CNN model. x̃m stands for the predicted image for the incomplete rows,
and ImageEnc(Im) derives the encoding of Im by Equation 2 and 3. To avoid using additional data
in our internal inference, we formulate the above prediction as to the generation process. That is to
say, the inferrer aims to generate the masked image xm at the pixel level.

In addition, we repeat the above internal inferences for 6 times by masking each image to learn more
robust rule representations. We adopt mean squared error (MSE) as the objective function to optimize
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Table 1: Test accuracy of individual models on I-RAVEN.
Test Accuracy (%)

Model Average Center 2×2 Grid 3×3 Grid L-R U-D O-IC O-IG

LSTM [7] 12.5 12.3 13.3 12.8 12.7 10.3 12.9 13.1
WReN [5] 17.8 23.3 18.1 17.4 16.5 15.2 16.8 17.3
CNN+MLP [5] 12.9 12.9 13.2 12.7 11.5 13.5 12.9 13.7
Resnet-18 [7] 14.5 20.8 12.9 14.3 13.2 13.4 13.8 12.9
LEN [16] 28.4 42.5 21.1 19.9 27.6 28.1 32.9 27.0
CoPINet [9] 38.6 50.4 30.9 28.5 40.0 40.8 42.7 36.9
SCL [10] 85.4 99.8 72.4 64.2 99.5 99.4 98.6 64.2
Ours 91.1 98.9 88.2 78.9 97.8 90.3 98.7 85.1

the inferrer as well as the rule encoder. In this way, we obtain the overall objective function J if by
collecting the predictions of these internal inference processes, given by

J if(Xc) =
1

6

6∑
m=1

||xm − x̃m)||22 (16)

3.6 Optimization of ARII

As introduced in the section on problem formulation, the major goal of our method ARII is to select a
candidate answer image for the incomplete matrix as accurately as possible (as shown in Equation 13).
In the meanwhile, we assume the rule representations are discrete and can be reused in internal
inferences. That is, apart from the major goal, we have two additional objectives, i.e., the objective of
the vector quantisation process and the objective of the internal inferences. Therefore, we combine
these three objectives together for the optimization of the individual components of ARII, given by

J =
∑
X∈D

λreJ re(X) + λvqJ vq(X) + λifJ if(Xc), (17)

where the context images Xc is parts of the given data point X and D is the dataset. λre, λvq and λif
are the three hyper-parameters that coordinates the importance of the components in ARII.

4 Experiment

4.1 Datasets

PGM. Each matrix in PGM is governed by abstract rules, which are sampled from a rule set
R = {[s, o, a] : s ∈ S, o ∈ O, a ∈ A}, where S, O, A are primitive sets of relations, objects and
attributes, respectively. S = {progression, XOR, OR, AND, consistent union}, O = {shape, line},
A = {size, type, color, position, number}. There are eight regimes in PGM. The easiest one is
called neutral where the training and test set are sampled from the same distribution, and the
others are generalization regimes where the training and test data differ in the pre-defined ways.
The generalization regimes consists of seven variants: interpolation, extrapolation, held-out triples
(H.O.Triples), held-out attribute pairs (H.O.A.P.), held-out pairs of triples (H.O.T.P.), held-out shape-
colour (H.O.S-C) and held-out line-type (H.O.L-T). More details can be found in Barrett et al. [5].

RAVEN and I-RAVEN. The RAVEN and I-RAVEN datasets are extensions to PGM. They share an
identical set of attributes but differ in the following attributes: progression, constant and arithmetic.
I-RAVEN is adapted from RAVEN dataset for its biased answer sets which may lead to a shortcut
solution that only candidate answers can yield accurate answers [8]. In our experiments, we first
evaluate the models’ reasoning ability on I-RAVEN since it is easier than PGM.

4.2 Competing methods and implementation details

We compare our model with several state-of-the-art models, including CNN + LSTM [5], ResNet-
based [38] image classifier, Wild ResNet [5], Wild Relation Network (WReN) [5], Contrastive
Perceptual Inference network (CoPINet) [9], Logic Embedding Network (LEN) [16], Scattering
Compositional Learner (SCL) [10], Stratified Rule-Aware Network (SRAN) [8], Multi-scale Relation
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Table 2: Test accuracy of different models on PGM
Test Accuracy (%)

Model Neutral Interpolation H.O.A.P. H.O.T.P. H.O.Triples H.O.L-T H.O.S-C Extrapolation

CNN MLP [5] 33.0 - - - - - - -
CNN LSTM [5] 35.8 - - - - - - -
ResNet-50 [5] 42.0 - - - - - - -
Wild-ResNet [5] 48.0 - - - - - - -
CoPINet [9] 56.4 - - - - - - -
WReN β = 0 [5] 62.6 64.4 27.2 41.9 19.0 14.4 12.5 17.2
VAE-WReN [39] 64.2 - 36.8 43.6 24.6 - - -
MXGNet β = 0 [11] 66.7 65.4 33.6 43.3 19.9 16.7 16.6 18.9
LEN β = 0 [16] 68.1 - - - - - - -
DCNet [12] 68.6 59.7 - - - - - 17.8
T-LEN β = 0 [16] 70.3 - - - - - - -
SRAN [8] 71.3 - - - - - - -
Rel-Base [40] 85.5 - - - - - - 22.1
SCL [10] 88.9 - - - - - - -
MRNet [24] 93.4 68.1 38.4 55.3 25.9 30.1 16.9 19.2
MLRN [13] 98.0 57.8 - - - - - 14.9
Ours 88.0 72.0 50.0 64.1 32.1 16.0 12.7 29.0

Table 3: Ablation study on two regimes in PGM
Regime w/o discretization w/o internal inference w/o both ARII

H.O.A.P 47.5 32.0 36.6 50.0
Interpolation 69.5 54.2 51.1 72.0

Network (MRNet) [24], and Multi-Layer Relation Network (MLRN) [13]. Note that our model is
trained end to end and needs solely the ground truth answer label without auxiliary information
(i.e., rule labels). We report the result of the baseline models trained without auxiliary labels for fair
comparison. Please refer to Appendix A for more implementation details of ARII.

4.3 Results

Table 1 shows the test performance of individual models on I-RAVEN dataset. We observe that the
typical architectures in computer vision, that simply use CNN as visual feature extractor followed
by MLP or LSTM, fail to yield satisfactory reasoning results. More advanced models for abstract
reasoning such as LEN and SCL significantly improve the performance. In particular, the previous
state-of-the-art model SCL achieves nearly 100% accuracy on the configurations of Center, L-R, U-D,
and O-IC, but SCL could not make similar success on the other configurations. We conjecture that
the reasoning complexity of these four configurations is relatively low and easy. As for our method,
ARII performs similarly to SCL on the above four configurations but largely outperforms it on the
other three more difficult configurations, leading to a notably higher average score on I-RAVEN.

In addition, Table 2 presents the performance on the PGM dataset. For the neutral regime, our
model achieves a decent result that is better than majority of baseline models, although it does not
outperform state-of-the-art models such as MRNet and MLRN. Note that MLRN achieves near
perfect accuracy in the neutral regime due to the sophisticated design which could not be applied to
other problems. More importantly, the neutral regime is not our main focus of metric, since it could
hardly indicate the reasoning ability and generalization towards real intelligence.

PGM also allows us to investigate the generalization capacity of the models under various regimes.
We observe from Table 2 that although MLRN achieves superior performance on neutral, it is
prone to overfitting and performs poorly on the interpolation and extrapolation regimes, clearly
indicating MLRN is overfitted to the neutral setting. On the contrary, the proposed internal inference
in ARII serves as the regularities of the rule representations, making the rule representations robust
and instance-invariant. As a result, our model outperforms all other methods on five of the seven
generalization regimes in PGM dataset. In particular, the accuracy of ARII increases by a sizable
margin over the baselines in the H.O.A.P. and H.O.T.P. regimes (around 10%), further validating the
superior generalization ability of abstract reasoning.
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Figure 3: Visualization of rule embeddings extracted from rule encoder. Each point stands for the
rule representation from a data point in the test set.
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Figure 4: The selected frequencies of codes in rule representations. We take the rules related to the
line object and the color attribute as examples. Similar results for other rules are in Appendix Fig 2.

4.4 Ablation study

We analyze ARII in more detail to validate the effectiveness of the proposed components on two
regimes in the PGM dataset (Table 3). In the H.O.A.P. regime, the performance of ARII without dis-
cretization decreases by 2.5%, which shows that discrete representation plays its role in generalization
of abstract reasoning. The performance is also largely declined by 18% when the internal inference is
removed, suggesting that the internal inference is vital to learn a more robust rule representation for
abstract reasoning. Similar results can be found in the interpolation regime.

We further conduct ablation studies to investigate the impact of generation in internal inference, the
combinatorial benefit of r1&3 and r2&3 in the reasoner, and effectiveness of the internal inference to
other models. Please see Appendix B-D for more discussion.

4.5 Visualization of rule representations

Then, we try to validate whether ARII has learned the instance-invariant representations. We first
obtain all the rule representations in the test set of the interpolation regime of PGM, and use the
representations derived from the problems which contain only a single rule (i.e., a triple {[s, o, a]}).
The rule representations are projected to 2D space by t-distributed stochastic neighbor embedding
(t-SNE) [41] in Fig 3. We observe that the rule representations are clustered according to individual
rule triples. Note that these clusters for each rule are formed without supervision of the rule labels.
And the representations are extracted from the generalization test set which has a different distribution
from the training set. The clustered representations show that these rule representations are universal
and independent to the specific instances, even to the out-of-distribution brand new instances.

Taking one step further, we investigate whether the discrete rule representation is interpretable. In
particular, we want to see the composition of the representations for each specific rule. Here, we take
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the rules related to the line object and the color attribute (totally five rules, i.e., [s ∈ S, line, color],
denoted by the [·,line, color] rules) as an example. We first collect the rule representations from all
the instances governed by these rules, which are sampled from the codebook E. Then we calculate
the selected frequencies of the codes at the 30-th position in the rule representations and visualize
their distributions. Fig 4 (a-e) shows that all the five rules share the same codes E358 and E181 in
their top-3 codes, indicating that the codes E358 and E181 are very relevant to the [·,line, color] rules.
In addition, these codes are also specific to these rules, since they rarely appear in the dissimilar rules
such as the rule [progression, shape, size] (Fig 4 (f)). These results reveal that the rule representations
learned by ARII are moderately interpretable. Besides, we conduct a classification experiment to see
whether the rules can be classified from the rule representations. The classification accuracy based on
the rule representations from ARII is 72.1%, largely higher than a baseline model SRAN [8] that
yields 59.4%. This indicates the superiority of ARII which can capture the underlying rules and learn
more robust rule representations.

5 Limitations

Abstract reasoning is the ability that consciously applies logic from premises to conclusion [42, 43].
For neural networks, they use different layers of the distributed neurons to implicitly represent the
premises, the logic and the temporal results, and formulate the final conclusion-making process as
the classification or generation task. Therefore, neural networks lack in explaining how they perform
induction and reasoning. Although our method takes one step further to build interpretable rule
representations, it is still far from the goal of a fully interpretable, robust, and accurate reasoner for
general reasoning. Another limitation of this work is the image encoder, which relies on the rigid
spatial structure and is difficult for learning new rules in other abstract reasoning problems. The
general object detector pre-trained on natural images is a potential solution.

6 Conclusion

In this work, we propose a novel architecture ARII that learns robust rule representations for abstract
reasoning via internal inferences. Experiments on benchmark datasets (I-RAVEN and PGM) show
that ARII outperforms previous state-of-the-art methods without using auxiliary annotations on the
majority of the reasoning tasks. Moreover, the rule representations of ARII present meaningful and
interpretable characteristics, facilitating the exploration of the composition of rules in future work.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61836004
and 62206192, and a grant from Institute Guo Qiang, Tsinghua University.

References
[1] John C Raven and JH Court. Raven’s progressive matrices. Western Psychological Services

Los Angeles, CA, 1938.

[2] Patricia A Carpenter, Marcel A Just, and Peter Shell. What one intelligence test measures:
a theoretical account of the processing in the raven progressive matrices test. Psychological
review, 97(3):404, 1990.

[3] Dokhyam Hoshen and Michael Werman. Iq of neural networks. arXiv preprint
arXiv:1710.01692, 2017.

[4] Ke Wang and Zhendong Su. Automatic generation of raven’s progressive matrices. In IJCAI,
2015.

[5] David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring abstract
reasoning in neural networks. In ICML, pages 511–520, 2018.
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