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ABSTRACT

In this work, we introduce Multimodal Context (MiCo), a scalable pretraining
framework designed to advance omni-modal intelligence—an AI system capable of
understanding and learning from multiple modalities to achieve universal represen-
tation learning. MiCo allows for efficient scaling of both the number of modalities
and the volume of data, along with model parameters, during the pretraining phase.
We evaluate the pretrained models across a diverse set of tasks, including: (i)
single-modality perception benchmarks covering 10 distinct modalities, (ii) 25
cross-modal tasks spanning retrieval, question-answering, and captioning, and
(iii) 18 large-scale multimodal language model benchmarks. MiCo consistently
delivers state-of-the-art results, setting 37 new benchmarks across these tasks. The
pretrained models, along with the collected datasets and codebase, will be made
publicly available to support the development of omni-modal intelligence and
broader research in multimodal learning.

1 INTRODUCTION

In the development of artificial intelligence, scalable pre-training has emerged as a promising pathway
towards general intelligence (Radford et al., 2019; OpenAI, 2023; Brown et al., 2020; Radford et al.,
2021; Bubeck et al., 2023). Additionally, pre-training has been established as an effective approach
for learning more general and transferable representations across various modalities. For example,
CLIP (Radford et al., 2021) constructs million-scale text-image pairs for cross-modal contrastive
learning, making it one of the most impactful foundation models in the community (Rombach et al.,
2022; Poole et al., 2022). Researchers have further extended the capabilities of CLIP (Radford

Temporal Video Paired Normal Maps

“Change a place, Will my life be better? when leaving here, I 
know nothing When the hustle and bustle of the city covers 
up the trembling of the heart, I always fantasize about a 
completely different life… Still far away In the scenery that I 
could not reach when I was a child, I started to hear ”

Visual Content Caption

Paired Depth

Audio Paired Caption
“A man is speaking in a foreign language while 
music plays in the background. ”,  “The music is 
playing” , “a male voice is being recorded.” .

Video Paired Audio

Training Omni-modal Intelligence

Learning Universal Representations

Working

Figure 1: Omni-modal Pretraining. We propose collecting large-scale omni-modal paired data, including text,
image, video, depth, and normal maps, to learn universal representations.

et al., 2021) to more data modalities, e.g. audio (Guzhov et al., 2022), point clouds (Xue et al.,
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2023), and more comprehensive tasks, e.g. reasoning about images/ videos with large language
models (LLMs) (Liu et al., 2024; Li et al., 2023d). The main contributions of CLIP (Radford et al.,
2021) are two-fold: collecting web-scale text-image data and proposing a scalable vision-language
pretraining paradigm. As more modalities e.g. audio, video, and 3D content, are getting widely
used in this multimodal era (Han et al., 2023a; Li et al., 2023d; Ding et al., 2023; Girdhar et al.,
2023; Rombach et al., 2022; Poole et al., 2022), such developments present additional challenges,
including multimodal misalignment, misinterpretation, and bias amplification, in achieving coherent
multimodal understanding with LLMs.

In this paper, we aim to enhance the comprehensive abilities of CLIP in visual understanding and
further bolster its multimodal capacities across audio, video, 3D content, and more, as illustrated
in Figure 1. This is significantly challenging. Therefore, we shift our focus from training a general
multimodal model to understanding how the human brain performs coherent multimodal cognition.
As outlined in Richard Mayer’s Cognitive Theory of Multimedia Learning (Mayer, 2002), our
brain processes multimedia signals through two distinct channels—auditory and visual—in sensory
memory, as depicted in Figure 2. The sensory memory integrates these signals with prior knowledge
through words, transforming new multimedia information into long-term memory. Notably, 1)
multimedia signals in the brain share channels, and 2) words function as the reasoning interface in
our brain.

(b) Brain-Inspired Omni-modal Learning Architecture

“Interface” Modality

“Knowledge” Modality

(a) Dual-Channel Multimodal Cognition Theory

Photos

Words

Working

Ears

Eyes

Sensory Memory

Prior 
Knowledge

Interface

Learned 
Representations

Generative Reasoning

Omni-Encoder (ViT)

Alignment

LLM

ViT

Figure 2: Multimedia Cognition Process in Brain Inspires our Design. We split diverse modalities into two
types and employ individual neural networks to learn representations from each type respectively.

Inspired by these insights, we categorize diverse modalities into two types: “knowledge modality”
and “interface modality”. Knowledge modalities, primarily derived from raw sensors, contribute
knowledge in diverse formats. For example, images and depth maps offer visual knowledge, while
audio and video provide auditory and spatiotemporal knowledge. The language modality, developed
by humans, is inherently more abstract and naturally functions as the interface modality, facilitating
learning, reasoning, and the coordination of knowledge. To this end, we design an omni-modal
learning architecture, illustrated in Figure 2 (b), with two distinct branches: one for knowledge
modalities and one for the interface modality, i.e. natural language. The knowledge and interface
modalities are aligned through a novel generative reasoning method, as detailed in § 3.3.

In addition to the architecture design, the next challenge is how to further enhance the benefits of
integrating multiple data modalities. In Transformer (Vaswani et al., 2017), context relationship
assigns a unique vector to each input position in a sequence and improves sequence modeling
by capturing the sequential relationship among tokens. Moreover, since different modalities (e.g.,
text, image, audio) offer complementary information, integrating these sources fosters a more
comprehensive understanding of the data. Modeling token sequences from different modalities under
the same context can help the model understand modality characteristics and joint semantics.

Therefore, we propose the Multimodal Context (MiCo) framework. We first map different modalities
into a joint embedding space by sharing backbone networks. Then we build contextual relation-
ships by joint context embeddings to enhance coherent multimodal understanding, as shown in
Figure 1. Subsequently, we employ omnimodal contrastive learning, omnimodal feature matching,
and omnimodal caption generation processes for pretraining (detailed in § 3.4). Moreover, MiCo
can incorporate existing text-image, text-audio, and text-video datasets for joint multimodal context
learning (§ 3.3), which leads to better omni-modal learning capacity, further modality extensibility,
and easier scalability of multimodal data. Meanwhile, we explore the stability of MiCo in pretraining
modalities, model parameters, and data scales (detailed in Figure 6).
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(a) Masked Modelling with Autoencoders (b) Contrastive Learning (c) Multimodal Context (Ours) 

“When leaving here, I know nothing. When 
the hustle and bustle of the city covers up the 
trembling of the heart”

“A trio of roses in soft 
hues of pink and coral”

SimCLR, MoCo, etc.

CLIP

BERT, MAE, AudioMAE, etc.

General-purpose, Single-modality Transferable, 
Modality Tuples

Omni-modality, Transferable, 
General- purpose

Visual Caption

Audio Caption

1. Feature Contrastive learning

2. Token Masked Generation

Figure 3: Evolution of Pretraining Paradigms. Masked modeling (He et al., 2022; Huang et al., 2022; Devlin
et al., 2019) has shown great success in single-modality general-purpose understanding. Contrastive learning (He
et al., 2020; Radford et al., 2021; Chen et al., 2020) distinguishes transferable features with modality tuples. We
aim to achieve general-purpose omni-modal understanding and learn transferable, universal representations.

As shown in Figure 3, we compare MiCo with existing pretraining approaches. With omnimodal
contrastive learning, omnimodal feature matching, and omnimodal caption generation processes,
MiCo successfully integrates the advantages of both masked modeling and contrastive learning. In
other words, MiCo represents the next-generation evolution of masked modeling (He et al., 2022;
Huang et al., 2022; Devlin et al., 2019) and contrastive learning methods (He et al., 2020; Radford
et al., 2021; Chen et al., 2020) for the multimodal era, offering significant benefits in omni-modal
learning, strong transferability, and general-purpose representations. To thoroughly evaluate the
effectiveness of MiCo, we conduct extensive experiments on universal single-modality perception
benchmarks, cross-modal retrieval, captioning, and question-answer (QA) benchmarks, as well as
zero-shot QA benchmarks for multimodal large language models. MiCo achieves impressive results
across these benchmarks, establishing more than 37 new state-of-the-art (SOTA) performances and
showing remarkable improvements of over 20% on some benchmarks. These results compellingly
illustrate that MiCo is a promising next-generation pretraining paradigm for the multimodal era.

2 RELATED WORK

Vision-Language Pretraining. MCAN (Yu et al., 2019b) first aligns vision and language features
by stacking deep cross-attention blocks. Then more works (Wang et al., 2021b;c; 2022b;c) scale their
models and improve the vision-language fusion process to build better alignment. VL-BERT (Su et al.,
2019) introduced the Masked Language Model (MLM) paradigm, focusing on generic tasks across
both vision and language modalities. Then Oscar (Li et al., 2020) proposed to enrich the representation
of object semantics by integrating visual and textual content. Subsequent frameworks have further
refined and extended these capabilities. Notably, VinVL (Zhang et al., 2021), SimVLM (Wang
et al., 2021c), VLMO (Wang et al., 2021b), ALBEF (Li et al., 2021a), and Florence (Yuan et al.,
2021) have explored and demonstrated the advantages of joint representations that ensure semantic
consistency across the visual and natural language. Additionally, the versatility of multimodal
models extends into specialized applications such as few-shot learning (Alayrac et al., 2022), and
sequence-to-sequence (Wang et al., 2022b; Yu et al., 2022). BEiT-v3 (Wang et al., 2022c) employs a
cross-modal mask-and-reconstruction process with partially shared parameters.

More-Modality Pretraining. MMV (Alayrac et al., 2020) pioneered multimodal pretraining using
text, video, and audio pairs. They proposed multimodal contrastive learning for alignment. Then
VATT (Akbari et al., 2021) further developed pretraining multiple modalities with transformers. After
CLIP (Radford et al., 2021), more works (Zhang et al., 2023c; Girdhar et al., 2023; Guzhov et al.,
2022; Xue et al., 2023; Xu et al., 2021; Wang et al., 2024) propose to adapt pretrained CLIP models
to more modalities including point cloud, depth, audio, video, etc. Another direction is to exploit
multimodal complementary benefits and construct more modality pairs such as VAST (Chen et al.,
2023b) and VALOR (Chen et al., 2023a), which improve the abilities for multimodal understanding.

Despite significant advancements in multimodal learning, several key challenges impede the de-
velopment of comprehensive omni-modal intelligence: 1) Focus on Vision-Language: Current
methods (Wang et al., 2022c; 2021b; Li et al., 2020; Wang et al., 2021c) predominantly cater to
vision-language tasks. The inflexibility of these works limits the extension with more modalities such
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as video, audio, etc. 2) Architectural Constraints: The development of architectures capable of
handling a broader array of modalities is still in its nascent stages. Crafting scalable and efficient
multimodal learning architectures presents a significant challenge. 3) Data Availability: There is a
notable scarcity of publicly accessible datasets including multimodal paired data (video, depth, audio,
and captions). 4) Multimodal Benefits: Although leveraging the synergistic benefits of multiple
modalities is crucial (Fei et al., 2022), understanding and optimizing the interaction between highly
disparate modalities remains a complex and largely unexplored area.

3 MULTIMODAL CONTEXT

3.1 LARGE-SCALE DATA COLLECTION

We use the HD-VILA (Xue et al., 2022) dataset, which contains 371.5K hours of 720p (1280× 720)
videos. We remove video clips that are shorter than 5s or longer than 30s. Then, we collect a
dataset containing 1.7M paired video clips (∼510M frames), audio, and subtitles {(xV ,x

V
T ,xA)}.

Then we enrich the dataset by adding captions to video frames (images), and audio with pre-
trained captioners (Chen et al., 2023b), getting (xI ,x

I
T ) and (xA,x

A
T ). Finally, we use pre-

trained monocular depth estimation models (Fu et al., 2024; Eftekhar et al., 2021)1 to gener-
ate depth and normal maps, getting (xI ,xD,xN ). Thus, we collect million-scale multimodal
paired data {(xI ,xD,xN ,xI

T ), (xA,x
A
T ), (xV ,x

V
T )}, where xT ,xI ,xA,xV , and xD denote the

modality-specific samples of text captions, image, audio, video clips, depth, and normal maps. We
split our dataset into several subsets including 1M, 10M, 110M, and 334M multimodal data pairs,
and we provide detailed illustrations in Appendix C.

3.2 ARCHITECTURE DESIGN FOR OMNI-MODAL LEARNING

We first investigate several variants of encoder architectures with four data modalities. With our
collected data, we pretrain architectures for 300K steps by the same contrastive (Radford et al.,
2021) and masked-generation loss functions (Wang et al., 2022c) (details in Appendix B). We take
the captioning and retrieval tasks on image, audio, and video modalities as the main evaluation
benchmark for designing architectures.

Architectural Designs. We construct the vanilla architecture from CLIP (Radford et al., 2021). A text
encoder of Transformer (Vaswani et al., 2017) takes text inputs and outputs text embeddings zT , and
an image encoder of Vision Transformer (Dosovitskiy et al., 2021) takes image input xI ∈ R3×H×W

and outputs image embeddings zI , respectively.

(ii) Text Encoder Only

Text Encoder (BERT)

(iii) LLM Decoder Only

LLM (LLama2) LLM

(iv) ViT + LLM

ViT

(i) Modality-Specific

ViT ViT ViT BERT

Figure 4: Options of Architecture Design for Omni-Modal Pretraining.

As shown in Figure 4, we propose 4 architectures for omni-modal learning: i) Modality-specific
encoders for each modality, employing individual transformers to extract multimodal embeddings,
then fuse them as BEiT-3 (Wang et al., 2022c). ii) BERT (text encoder) as a unified multimodal
encoder to extract multimodal embeddings and generates texts. iii) LLM (text decoder) as a unified
multimodal encoder and text generator. iv) A ViT as a unified multimodal encoder besides text, and
an LLM deals with text embeddings and generation.

Empirical Discovery. Referring to Table 1, we conclude that: 1) Pure language models are difficult
to retrieval tasks. Both (ii) and (iii) deliver a significant performance drop in retrieval tasks. 2)
No more than 2 Encoders. Comparing (i) with (ii) & (iii), we observe that additional encoders are

1Geowizard (Fu et al., 2024) delivers significantly better annotations, while DPT (Eftekhar et al., 2021)
predicts much faster (about 34̃.7× faster). We use the Geowizard to annotate the high-quality data about 2M.
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Table 1: Architecture Design of Omni-Modal Learning Paradigm. We the ViT-g and Llama-2-7B (Touvron
et al., 2023) in this table. We pretrain models for 300k steps, then evaluate performances on the MSRVTT,
VATEX, AudioCaps, ClothoV2, COCO, and Flicker datasets for caption (CIDEr) and retrieval tasks (R@1).

Architecture
Video Audio Image

MSRVTT VATEX AudioCaps ClothoV2 COCO Flickr
CIDEr (%) R@1 (%) R@1 (%) CIDEr (%) R@1 (%) R@1 (%)

(i) Modality-Specific 74.3 73.5 42.3 22.3 65.2 88.4
(ii) Text Encoder (BERT) 77.0 53.2 23.1 43.9 46.7 51.6
(iii) LLM (LLama-2-7B) 75.2 60.3 14.7 43.6 60.8 81.3
(iv) ViT + LLM 77.9 79.5 49.7 47.2 67.5 90.5

beneficial for retrieval tasks; however, a comparison between (i) and (iv) suggests that discrepancies
among multiple encoders can also hinder multimodal alignment. 3) Language is an individual branch
for alignment. Comparing (ii) & (iii), with (iv), improvements are significant in both retrieval and
captioning.

3.3 MULTIMODAL CONTEXT CONSTRUCTION

Preliminary. The context is proposed to assign a unique vector to each token in a sequence (Vaswani
et al., 2017), which reinforces potential relevance between positions. Different modalities (e.g., text,
image, audio) provide complementary information. Learning multimodal context leads to a more
holistic and nuanced understanding of data. It can also leverage the strengths of each modality and
guide the model to understand the interactions between different types of information. Therefore, we
seek to construct the context relationship across diverse modalities and extend the learning capacity
to omni-modalies. We provide the overview of MiCo pretraining paradigm in Figure 5.

Single Dataset with Multimodal Paired Data. As mentioned in § 3.1, we build a dataset with
multimodal paired data {(xI ,xD,xN ,xI

T ), (xA,x
A
T ), (xV ,x

V
T )}, then we employ the omni-modal

encoder f(·; θ) to extract features zI , zA, zV , zD, and zN , then use text encoder to extract text
features zT . Therefore, we construct the context by a top-down design: 1) For the whole multimodal
embeddings, they share the same position embeddings EPos to build a modality-fused context
relationship across diverse modalities. 2) Then, for each specific context, they’re labeled by modality
embeddings including EI

M,EA
M ,EV

M ,ED
M ,EN

M , etc to indicate modality types. 3) Within the same
modality context, we employ the context embeddings EI

C to construct uni-modal context relationships.
Thus, the construction of the multimodal context can be formulated as:

zI = [z1
I , z

2
I , · · · , z

LI

I ] +EI
C, for each modality,

z = [zI +EI
M, zA +EA

M , zV +EV
M , zD +ED

M , zN +EN
M ] +EPos,

(1)

where EI
C is up to the sample length of a specific modality. Meanwhile, the text features of specific

captions can be easily concatenated, where their position embeddings E′
Pos are also shared:

zT = [zI
T , z

A
T , z

V
T ] +E′

Pos. (2)

Multiple Datasets Combination of Cross-Modal Datasets. Besides multimodal paired data, our
proposed paradigm can also leverage existing web-scale text-image, text-audio, and text-video
datasets to jointly pretraining models towards omni-modal universal representations. Given datasets
DI = {(xj

I ,x
j
T )}

NI
j=1,DA = {(xj

A,x
j
T )}

NA
j=1, and DV = {(xj

V ,x
j
T )}

NV
j=1, each pair of data possess

local and simple context, for example, a pair of text-image data (xI ,xT ) corresponds to a simple
context (zI +EPos,E

′
Pos), which may limit the learned representations of models. We propose to

build the multimodal context by cross-dataset joint sampling with sampling context embedding ESam:

(xI ,x
I
T ) = Sample(DI), (xA,x

A
T ) = Sample(DA), (xV ,x

V
T ) = Sample(DV ),

zI = f(xI ; θ) +ET−I
Sam , zI

T = f ′(xT ; θ
′) +ET−I

Sam , for each modality,

z = [zI +EI
M, zA +EA

M , zV +EV
M ] +EPos, zT = [zI

T , z
A
T , z

V
T ] +E′

Pos.

(3)

In this way, we successfully combine existing multiple cross-modal datasets towards learning omni-
modal universal representations by building more universal and complicated multimodal contexts
(Equation 3) for pretraining models, therefore, MiCo can outperform existing pretraining methods by
better generalization learning ability, modality extensibility, and easier for scaling data.
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Omni-Encoder (ViT) Text Encoder / LLM

Paired DepthTemporal Video Video Paired Audio Paired Normal

“Change a place, 
Will my life be better? 
when leaving here I 

know nothing”

Visual Content Caption

…

“A man is speaking in 
a foreign language 
while music plays in 
the background. ”,  

Audio Paired Caption

* * * *

… … … * … * …

T1

T2

T3

T4

…

TN

V1 VN D1 DN A1 AN

Omni-Modal Contrastive Learning Omni-Modal Feature Matching Omni-Modal Caption Generation

V1 VN

D1 DN

A1 AN

“Will you choose to travel and 
update your mind?”

“A  man is speaking with music 
playing in the background”

Causal Inference

Concatenate

Masked

Logits

Working

Figure 5: Overview of Multimodal Context Pretraining Paradigm. We use a shared ViT for multimodal
feature extraction, and another branch is to employ a text encoder. We concatenate these multimodal sequences
as multimodal contexts and perform contrastive learning and masked modeling.

3.4 PRETRAINING OBJECTIVES

Omni-modal Contrastive Learning. The omni-modality representations are denoted as z. Sub-
sequently, z and zT are projected into the same space using MLPs. The omni-modal contrastive
learning is formulated by the dot product of z and zT . We use vz and vT to denote projected vectors:

LCon = −1

2

NB∑
i=1

log
exp(τ · < vzi , v

T
i >)∑NB

j=1 exp(τ · < vzi , v
T
j >))

− 1

2

NB∑
i=1

log
exp(τ · < vzi , v

T
i >))∑NB

j=1 exp(τ · < vzj , v
T
i >))

, (4)

where < ·, · >, NB and τ denote the dot product, batch size, and a learnable parameter.

Omni-modal Feature Matching Process is designed to improve the semantic alignment between
multimodal (knowledge modalities) and textual features. We employ an MLP layer to perform binary
predictions pv of (z, zT ). Following a hard negative mining strategy(Li et al., 2021a), we assigns
y = 1 if features are matched, and y = 0 otherwise.

LMatch = E(vz
i ,v

T
i )∼(Z,T ) [y log pv + (1− y) log (1− pv)] (5)

Omni-modal Caption Generation Process. We employ conditional causal masked (60%) language
modeling for generative omni-modal reasoning. In specific, a single-directional causal attention mask
is used to avoid information leakage, and the masked tokens are reconstructed using a prediction
layer of BERT (Devlin et al., 2019). We use cm and c<m to denote masked tokens and former tokens,
respectively.

LGen = −E(vT
i ,vT

i )∼(V,T ) logP (cm | c<m, vz) (6)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

1) Single-modality Understanding § 4.2 (following previous practices (Radford et al., 2021; Zhang
et al., 2023c; Girdhar et al., 2023) in fine-tuning & zero-shot setting in classification and forecasting
tasks), 2) Cross-modality Understanding § 4.3 (following BEiT-3 (Wang et al., 2022c), VAST (Chen
et al., 2023b) in fine-tuning and dataset splits for Caption, QA, and retrieval tasks), and 3) Multimodal
Understanding with Large Language Models § 4.4 (following LLava (Liu et al., 2023a), VideoChat (Li

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

et al., 2023f), OneLLM (Han et al., 2023a) in multimodal zero-shot QA). Detailed experimental
settings including datasets introduction, splits, and evaluation metrics can be found in our Appendix C.

Implementation Details. We implement our pretraining paradigm with ViT backbone scaling from
ViT-B (8 NVIDIA Tesla A100 GPUs) to ViT-g (128 NVIDIA Tesla A100 GPUs). It takes about 2∼6
days for pretraining. We pretrain models 200k steps for ViT-B, 300k steps for ViT-L and ViT-g. The
initial learning rate is set to 1e-4, and a linear decay schedule is used. The batch size on each GPU is
set to 1,024. More implementation details can be found in the Appendix B.
Table 2: State-of-the-art Abilities of MiCo for Omni-modal Perception. We report the Accuracy (%) of
MMLU (Hendrycks et al., 2020), IN-1K (Deng et al., 2009), K700 (Kay et al., 2017), NYU-D (Nathan Silberman
& Fergus, 2012), Ego4D (Grauman et al., 2022), Indian Pines, and Fraud datasets, R@1 (%) for MSR-VTT (Xu
et al., 2016b) and SYSU (Wu et al., 2017), mAP for AS-2M (Gemmeke et al., 2017), F1-score for Fraud, and
Mean Absulte Error↓ for PCQM4M and Global Weather Forecasting (Wu et al., 2023) benchmarks. We detail
tasks and previous SOTA methds in the Appendix.

Methods (Backbone) Text Image Video Depth Audio Thermal IMU Graph Time-Series Hyperspectral Tabular
MMLU IN-1K K700/MSR-VTT NYU-D AS-2M SYSU Ego4D PCQM4M Global Weather IP Fraud

ImageBind (ViT-H) 43.6 80.2 42.9/36.8 54.0 43.4 72.6 25.0 0.815↓ 8.439↓ 83.6 0.847
Meta-Trans (ViT-L) 37.3 88.1 33.2/31.5 41.5 38.9 71.3 73.9 0.886↓ 7.892↓ 78.1 0.809
Absolute SOTA 90.0 91.0 92.1/62.8 76.7 48.6 77.9 52.5 0.123 7.602↓ 98.0 0.860
MiCo (ViT-g) [Ours] 68.9 89.8 91.6/64.3 84.6 50.5 80.3 77.2 0.742↓ 7.834↓ 98.5 0.913

4.2 EVALUATION ON SINGLE-MODALITY UNDERSTANDING

Exceptional Omni-modal Perception Abilities. As shown in Table 2, MiCo achieves state-of-the-
art performances on a range of benchmarks across 10 modalities. For text understanding (MMLU),
MiCo attains the accuracy of 68.9%, outperforming both ImageBind (Girdhar et al., 2023) (43.6%)
and Meta-Transformer (Zhang et al., 2023c) (37.3%). In image recognition (IN-1K), MiCo delivers
Top-1 Acc. of 89.8%. On K700 and MSR-VTT, MiCo achieves 91.6% for Acc. and R@1 of
64.3%, outperforming existing retrieval methods. Regrading 3D singe-view tasks (NYU-D), MiCo
outperforms the absolute SOTA (Girdhar et al., 2022) by +7.9%. On AS-2M, MiCo achieves the
mAP of 50.5%, which is better than BEATS-3 (Chen et al., 2022a) by +1.9%. MiCo also excels
in thermal sensing (SYSU) and IMU tasks (Ego4D), MiCo achieves an accuracy of 80.3% and
77.2%, respectively. These results highlight MiCo’s comprehensive and outstanding performances,
establishing it as a powerful model for omni-modal perception.
Table 3: Powerful Cross-Modal Abilities. We evaluate MiCo on the mainstream cross-modal tasks including
11 retrieval tasks (COCO (Lin et al., 2014), Flickr (Plummer et al., 2015), ClothoV1 (Drossos et al., 2020),
ClothoV2 (Drossos et al., 2020), AudioCaps (Kim et al., 2019), MSRVTT (Xu et al., 2016a), YouCook2 (Zhou
et al., 2018), VALOR-32K (Chen et al., 2023a), VATEX (Wang et al., 2019), DEDeMo (Anne Hendricks et al.,
2017), and ANET (Yu et al., 2019a)), 7 caption tasks (COCO, ClothoV1, ClothoV2, AudioCaps, MSRVTT,
YouCook2, VALOR-32K), and 6 QA tasks (TGIF (Li et al., 2016), MSVD (Xu et al., 2017), VQAv2 (Goyal
et al., 2017a), MSRVTT, MUSIC (Li et al., 2022), and ANET) with the metrics of R@1, CIDEr, and Acc.
Impressively, MiCo archives 20 new SoTA performances.

Image

Text-to-Image Retrieval Image Caption Visual QA

COCO Flickr Flickr(ZS) COCO TGIF MSVD VQAv2

SOTA 68.3 (Li et al., 2023c) 90.3 (Wang et al., 2022c) 89.7 (Li et al., 2023c) 154.9* (Wang et al., 2022a) 78.7 (Chen et al., 2023a) 60.2 (Kuo et al., 2023) 84.3 (Chen et al., 2022b)
MiCo 68.1 91.1 ↑ 0.8 90.1 ↑ 0.4 152.4 78.9 ↑ 0.2 60.4 ↑ 0.2 80.5

Audio

Text-to-Audio Retrieval Audio Caption

ClothoV1 ClothoV2 AudioCaps ClothoV1 ClothoV2 AudioCaps

SOTA 17.5 (Chen et al., 2023a) 21.5 (Mei et al., 2023) 42.2 (Mei et al., 2023) 42.3 (Chen et al., 2023a) 48.8 (Mei et al., 2023) 78.7 (Mei et al., 2023)
MiCo 21.2 ↑ 3.7 23.3 ↑ 1.8 41.0 49.6 ↑ 7.3 50.8 ↑ 2.0 66.2

Video-Audio

Text-to-Video-Audio Retrieval

MSRVTT YouCook2 VALOR-32K VATEX DiDeMo ANET

SOTA 54.4 (Chen et al., 2023a) 31.3 (Li et al., 2021b) 73.2 (Chen et al., 2023a) 76.9 (Chen et al., 2023a) 57.6 (Chen et al., 2023a) 63.4 (Chen et al., 2023a)
MiCo 64.3 ↑ 9.9 51.3 ↑ 20.0 78.7 ↑ 5.5 81.3 ↑ 4.4 63.6 ↑ 6.0 68.5 ↑ 5.1

Video-Audio

Video-Audio Caption Video-Audio QA

MSRVTT YouCook2 VALOR-32K MSRVTT MUSIC ANET

SOTA 74.0 (Chen et al., 2023a) 190.0 (Ko et al., 2023) 61.5 (Chen et al., 2023a) 49.2 (Chen et al., 2023a) 78.9 (Chen et al., 2023a) 48.6 (Chen et al., 2023a)
MiCo 79.3 ↑ 5.3 197.8 ↑ 7.8 62.8 ↑ 1.3 50.4 ↑ 1.2 79.7 ↑ 0.8 51.0 ↑ 2.4

4.3 EVALUATION ON CROSS-MODAL UNDERSTANDING

Table 3 illustrates the powerful performances of MiCo on 25 cross-modal benchmarks, achieving
more than 20 new SOTA performances. For text-to-image retrieval, MiCo achieves outstanding
results with R@1 of 68.1% on COCO, and 91.1% on Flickr, outperforming previous SOTA methods.
For VQA, MiCo demonstrates robust performance with accuracy scores of 78.9% on TGIF, 60.4% on
MSVD, and 80.5% on VQA v2, highlighting its strong visual comprehension and reasoning abilities.
In text-to-audio retrieval, MiCo achieves outstanding performances of 21.2% on ClothoV1, 23.3%
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Table 4: Evaluation on LLM Benchmarks. The MLLM evaluation involves 6 VQA tasks (GQA (Hudson
& Manning, 2019), VQAv2 (Goyal et al., 2017b), OKVQA (Marino et al., 2019), TextVQA (TVQA) (Singh
et al., 2019), ScienceQA (SQA) (Lu et al., 2022) and Vizwiz (Gurari et al., 2018)), 2 image captioning tasks
(Nocaps (Agrawal et al., 2019) and Flickr30K (Plummer et al., 2015)), and 4 multimodal benchmarks (MME (Fu
et al., 2023), MM Bench (MMB) (Liu et al., 2023c), MMVet (Yu et al., 2023) and SEED (Li et al., 2023a)). The
evaluation metrics for VQA and captioning tasks are accuracy and CIDEr, respectively.

Method LLM Visual Question Answering Image Caption MM Benchmark
GQA VQAv2 OKVQA TVQA SQA Vizwiz NoCaps Flickr MME MMB MMVet SEED

Vision Specialist LLM
Flamingo-9B (Alayrac et al., 2022) Chinchilla-7B - 51.8 44.7 30.1 - 28.8 - 61.5 - - - -
Flamingo-80B (Alayrac et al., 2022) Chinchilla-70B - 56.3 50.6 31.8 - 31.6 - 67.2 - - - -
BLIP-2 (Li et al., 2023c) Vicuna-7B - - - 40.1 53.8 - 107.5 74.9 - - - -
BLIP-2 (Li et al., 2023c) Vicuna-13B 41.0 41.0 - 42.5 61 19.6 103.9 71.6 1293.8 - 22.4 -
InstructBLIP (Dai et al., 2023) Vicuna-7B 49.2 - - 50.1 60.5 34.5 123.1 82.4 - 36 26.2 -
InstructBLIP (Dai et al., 2023) Vicuna-13B 49.5 - - 50.7 63.1 34.3 121.9 82.8 1212.8 - 25.6 -
IDEFICS-9B (Laurençon et al., 2023) LLaMA-7B 38.4 50.9 38.4 25.9 - 35.5 - 27.3 - 48.2 - -
IDEFICS-80B (Laurençon et al., 2023) LLaMA-65B 45.2 60.0 45.2 30.9 - 36.0 - 53.7 - 54.5 - -
LLaMA-Ad.v2 (Gao et al., 2023) LLaMA-7B 43.9 - 55.9 43.8 54.2 - 42.7 30.5 972.7 38.9 31.4 32.7
Qwen-VL (Bai et al., 2023) Qwen-7B 57.5 78.2 56.6 61.5 68.2 38.9 120.2 81.0 1487.5 60.6 - 58.2
LLaVA-v1.5 (Liu et al., 2023a) Vicuna-7B 62.0 78.5 - 58.2 66.8 50.0 - - 1510.7 64.3 30.5 58.6

Multimodal Generalist LLM
ImageBind-LLM (Han et al., 2023b) LLaMA-7B 41.1 - - 24.0 51.4 - 29.6 23.5 775.7 - - -
ChatBridge-13B (Zhao et al., 2023) Vicuna-13B 41.8 - 45.2 - - - 115.7 82.5 - - - -
AnyMAL-13B (Moon et al., 2023) LLaMA2-13B - 59.6 33.1 24.7 52.7 24.4 - - - - - -
AnyMAL-70B (Moon et al., 2023) LLaMA2-70B - 64.2 42.6 32.9 70.8 33.8 - - - - - -
OneLLM-7B [CVPR’24] LLaMA2-7B 59.5 71.6 58.9 34.0 63.4 45.9 115.9 78.6 1392.0 60.0 29.1 61.2

MiCo-Chat-7B Qwen2-7B 66.5 79.5 59.6 63.4 77.5 49.1 128.5 79.8 1574.6 70.4 49.3 69.2

Table 5: Zero-Shot Audio & Video generative benchmark with LLMs. We evaluate models by audio
captioning on Clotho Caption (Drossos et al., 2020), audio QA on Clotho AQA (Lipping et al., 2022) and
video-based generative performance benchmark (Maaz et al., 2023) using the same Vicuna-7B.

Method 0-shot Clotho Caption Clotho AQA
CIDEr SPIDEr Acc.

FeatureCut (Ye et al., 2022) ✗ 43.6 27.9 -
Wavcaps (Mei et al., 2023) ✗ 48.8 31.0 -
MWAFM (Li et al., 2023b) ✗ - - 22.2
Pengi (Deshmukh et al., 2023) ✗ - 27.1 64.5

ChatBridge-13B (Zhao et al., 2023) ✓ 26.2 - -
OneLLM-7B ✓ 29.1 19.5 57.9

MiCo-Chat-7B [Ours] ✓ 33.3 21.9 63.9

Method Cor. Det. Con. Tem. Cons.

VideoLLaMA (Zhang et al., 2023b) 1.96 2.18 2.16 1.82 1.79
VideoChat (Li et al., 2023e) 2.23 2.50 2.53 1.94 2.24
Video-ChatGPT (Maaz et al., 2023) 2.40 2.52 2.62 1.98 2.37
BT-Adapter (Liu et al., 2023b) 2.68 2.69 3.27 2.34 2.46
LLaMa-VID (Li et al., 2023g) 2.96 3.00 3.53 2.46 2.51

MiCo-Chat-7B [Ours] 3.00 3.01 3.61 2.49 2.71

Table 6: Zero-shot Video QA with LLMs. In comparison with leading methods, we report results with 1 token
for each frame, where Res. indicates image resolution.

Method LLM Res. MSVD-QA MSRVTT-QA ActivityNet-QA
Acc Score Acc Score Acc Score

FrozenBiLM (Yang et al., 2022) DeBERTa-V2 224 32.2 – 16.8 – 24.7 –
VideoLLaMA (Zhang et al., 2023a) Vicuna-7B 224 51.6 2.5 29.6 1.8 12.4 1.1
LLaMA-Adapter (Gao et al., 2023) LLaMA-7B 224 54.9 3.1 43.8 2.7 34.2 2.7
VideoChat (Li et al., 2023e) Vicuna-7B 224 56.3 2.8 45.0 2.5 26.5 2.2
Video-ChatGPT (Maaz et al., 2023) Vicuna-7B 224 64.9 3.3 49.3 2.8 35.2 2.7
LLaMA-VID (Li et al., 2023g) Vicuna-7B 224 69.7 3.7 57.7 3.2 47.4 3.3
VideoChat2 (Li et al., 2023f) [CVPR’24] Vicuna-7B 224 70.0 3.9 54.1 3.3 49.1 3.3

MiCo-Chat-7B Vicuna-7B 224 73.7 4.1 60.1 3.6 50.1 3.3

on ClothoV2, and 41.0% on AudioCaps, while in audio captioning, it achieves 49.6% on ClothoV1,
and 50.8% on ClothoV2, all outperforming previous best results. For text-to-video retrieval, MiCo
sets new SOTA performances with metrics of 64.3% R@1 on MSRVTT and 81.3% on VATEX,
and in video-audio caption, it achieves impressive performances of 79.3% on MSRVTT, 197.8% on
YouCook2, and 62.8% on VALOR-32K. Finally, in video-audio QA, MiCo also delivers superior
performances of 50.4% on MSRVTT, 79.9% on MUSIC, and 51.0 on ANET. These results collectively
highlight MiCo’s exceptional and versatile capabilities in cross-modal comprehension and reasoning
tasks, establishing it as a promising direction in this field.

4.4 EVALUATION ON MULTIMODAL UNDERSTANDING WITH LARGE LANGUAGE MODELS

MiCo highlights its Omni-modal Zero-shot Comprehension and Reasoning Abilities. Beyond
traditional caption, retrieval, and QA tasks, we also evaluate the abilities of MiCo aligned with
LLMs for zero-shot multimodal QA. We use ChatBridge (Zhao et al., 2023) as our baseline and
Vicuna-7B as the large language model for each modality. As shown in Table 4, 5, and 6, MiCo-Chat-
7B shows outstanding performances across both Vision LLMs and Multimodal LLMs. It directly
delivers outstanding performances on the SQA (77.5%), MMB (70.4%), MMVet (49.3%), and SEED
(69.2%) benchmarks while another 4 competitive performances. Besides, MiCo-Chat-7B also delivers
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Table 7: Ablation Study on pretraining modalities, data scale, pretraining process, and parameters. Our default
setting is to pretrain a base model for 30k steps with 10M data using all objective functions and evaluate it on the
MSRVTT, VATEX, DIDEMO, MSVD, AudioCaps, ClothoV2, COCO, and Flicker datasets for retrieval tasks.

Model Factors
Video Audio Image Average

MSRVTT(VA) VATEX(VA) DIDEMO(VA) MSVD(V) AudioCaps(A) ClothoV2(A) COCO(I) Flickr(I)

Pretraining Modalities
(a) I 39.7 57.3 38.4 39.7 10.2 4.4 50.2 75.7 39.4
(b) I+3D 42.0 58.5 38.1 40.1 10.8 4.2 51.2 76.9 40.2
(c) I+A 37.6 56.2 30.8 36.2 22.0 14.5 46.8 71.0 39.4
(d) I+V 41.7 60.9 39.2 42.6 12.2 5.1 51.3 77.0 41.3
(e) I+V+A 42.2 61.1 40.1 41.2 23.4 15.4 48.7 74.2 43.2
(f) I+V+A+3D 45.7 ↑ 6.0 64.0 ↑ 6.7 42.7 ↑ 4.3 42.8 ↑ 3.1 24.6 ↑ 14.4 15.9 ↑ 11.5 49.9 77.1 ↑ 1.4 45.3 ↑ 5.9

Data Scale
(h) 1M 44.2 63.2 40.1 40.7 21.9 11.2 48.2 77.5 43.4
(i) 10M 45.7 64.0 42.7 42.8 24.6 15.9 49.9 77.1 45.3
(j) 110M 48.5 65.7 41.7 43.0 26.3 17.1 49.6 78.1 46.3
(k) 334M 49.1 ↑ 4.9 66.3 ↑ 3.1 43.2 ↑ 3.1 44.1 ↑ 3.4 27.0 ↑ 5.1 17.5 ↑ 6.3 51.5 ↑ 3.3 80.9 ↑ 3.4 47.5 ↑ 4.1

Pretraining Process
(l) LCon 40.1 57.4 39.1 41.4 23.1 14.4 47.4 73.7 42.1
(m) LCon + LMatch 43.9 61.4 38.0 41.6 23.6 15.5 48.8 74.3 43.4
(n) LCon + LMatch + LGen 45.7 ↑ 5.6 64.0 ↑ 6.6 42.7 ↑ 3.6 42.8 ↑ 1.4 24.6 ↑ 1.5 15.9 ↑ 1.5 49.9 ↑ 2.5 77.1 ↑ 3.4 45.3 ↑ 3.2

Model Scale
(o) Base-86M 45.7 64.0 42.7 42.8 24.6 15.9 49.9 77.1 45.3
(p) Large-331M 58.2 72.0 57.2 52.8 31.6 18.7 60.8 87.5 54.9
(q) Giant-1.3B 62.5 ↑ 16.8 79.9 ↑ 15.9 61.1 ↑ 18.4 56.0 ↑ 13.2 37.4 ↑ 12.8 20.8 ↑ 4.9 67.1 ↑ 17.2 90.7 ↑ 13.6 59.4 ↑ 14.1

significantly impressive performances on both zero-shot caption and QA tasks on audio and video
modalities, where MiCo-Chat-7B achieves 6 new SOTA performances including Clotho Caption,
AQA, MSVD-QA, MSRVTT-QA, ActivityNet-QA. These results are important proof that the MiCo
pretraining paradigm shows a promising direction in developing large omni-modal models.
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Figure 6: Scalability of MiCo. Loss curves under scaling factors (modality, data, parameters, process) settings.

4.5 ABLATION STUDY: SCALABILITY

Scaling Modalities. From (a) to (f), we gradually scale up input modalities. In Figure 6, all
modalities (I+V+A+3D) achieves the highest scores, highlighting the importance and effectiveness of
MiCo for diverse multimodal inputs.

Scaling Multimodal Data. From (h) to (k) in Table 7, we investigate the impact of the omni-modal
data scale from 1M to 334M. It proves that the MiCo has great potential for further scaling.

Pretraining Objectives. From (l) to (n), we analyze the impact of each pretraining objective. The
combination of contrastive, matching, and generative losses (LCon + LMatch + LGen) yields the best
performance, demonstrating the value of multiple complementary objectives.

Scaling Parameters. From (o) to (q), we assess the effect of model size. Larger models, particularly
the Giant-1.3B, show superior performance, confirming that increasing model parameters with MiCo
enhances learning and generalization abilities across diverse modalities.

5 CONCLUSION AND LIMITATION

In this paper, we propose a novel framework, termed MiCo, to train foundation models with enhanced
visual perception abilities and omni-modal capacities. With experiments on a reasonably large scale of
both model and data, we conclude that the key to omni-modal learning is to simulate the multimedia
cognition process of the human brain. In MiCo, we use image, depth, and normal maps to simulate
the fundamental visual perception ability, distance spatial awareness, and geometry awareness of
human visual cognition. In addition, captions, audio, and video provide prior knowledge, auditory
perception, and spatial-temporal awareness. In future work, we plan to enhance our joint pretraining
by incorporating additional modalities, including optical flow, IMU data, and event files, etc. We
believe MiCo is an important attempt to simulate the multimedia cognition of human brains, and we
expect it could inspire future works to develop more powerful omni-modal foundation models.
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