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Abstract

Tables are recognized for their high informa-
tion density and widespread usage, serving as
essential sources of information. Seeking infor-
mation from tables (TIS) is a crucial capability
for Large Language Models (LLMs), serving as
the foundation of knowledge-based Q&A sys-
tems. However, this field presently suffers from
an absence of thorough and reliable evaluation.
This paper introduces a more reliable bench-
mark for Table Information Seeking (TabIS).
To avoid the unreliable evaluation caused by
text similarity-based metrics, TabIS adopts a
single-choice question format (with two op-
tions per question) instead of a text generation
format. We establish an effective pipeline for
generating options, ensuring their difficulty and
quality. Experiments conducted on 12 LLMs
reveal that while the performance of GPT-4-
turbo is marginally satisfactory, both other pro-
prietary and open-source models perform in-
adequately. Further analysis shows that LLMs
exhibit a poor understanding of table structures,
and struggle to balance between TIS perfor-
mance and robustness against pseudo-relevant
tables (common in retrieval-augmented sys-
tems). These findings uncover the limitations
and potential challenges of LLMs in seeking
information from tables. We release our data
and code to facilitate further research in this
field.

1 Introduction

Tables are widespread and rich sources of infor-
mation across the web and in various documents.
Statistics show that the number of tables on inter-
net web pages has reached several hundred mil-
lion (Lehmberg et al., 2016); in the corporate envi-
ronment, the number of tables in Excel-like spread-
sheet files has exceeded 115 million (Wang et al.,
2020). Precisely seeking relevant information from
tables is crucial for a wide array of real-world appli-
cations, including financial analysis, scientific re-
search, etc. Recently, the remarkable advancements
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Figure 1: A table-to-text generation example (simpli-
fied) to show the unreliable evaluation issue: higher
values on surface-level metrics like BLEU and ROUGE
do not guarantee better results. Target cells are high-
lighted.

of Large Language Models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; OpenAl, 2023a; Tou-
vron et al., 2023; Google, 2023) have transformed
the approach of information retrieval, moving from
fetching specific passages to directly providing an-
swers. However, the effectiveness of LLMs in
seeking information from tables remains underex-
plored.

Some efforts have been made to evaluate the
capabilities of LLMs in Table Information Seek-
ing (TIS), but there are unreliable evaluation is-
sues with the used evaluation metrics. Previous
studies (Zhao et al., 2023b) mainly use table-to-
text generation (TTG) as a test bench to assess the
TIS abilities of LLMs. TTG aims at transform-
ing complex tabular data into comprehensible de-
scriptions tailored to users’ information seeking
needs. The Evaluation relies heavily on surface-
level metrics such as BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004), or on metrics based on
model predictions such as NLI-Acc (Chen et al.,
2020a). Given that LLM responses can greatly dif-
fer in style from the reference answers, using these
metrics can lead to inconsistent and unreliable eval-



uations. An example of this issue is illustrated
in Figure 1 where a fine-tuned model’s incorrect
description receives higher BLEU/ROUGE scores
than the correct output from GPT-3.5. This discrep-
ancy may occur because GPT-3.5, without being
fine-tuned on this specific dataset, might not mimic
the style of the reference response.

To provide a more reliable evaluation, this paper
introduces a new benchmark for Table Information
Seeking (TablS). We design our benchmark using
a single-choice question format, motivated by pop-
ular benchmarks like MMLU (Hendrycks et al.,
2020) and BBH (Suzgun et al., 2022), which utilize
this format to offer a reliable and widely accepted
evaluation of LLMs. We convert TTG datasets like
ToTTo (Parikh et al., 2020) and Hitab (Cheng et al.,
2022) into this format so that the results can be
simply and reliably evaluated. A challenge during
curating this benchmark is to generate high-quality
options for single-choice questions. Initially, the
original data’s answer could serve as the correct
option. So we need to generate a deceptive wrong
option. If the generated option is too simple, e.g.
with obvious logical errors or unrelated to the ta-
ble content, the benchmark will be too easy and
fail to test LLMs’ capabilities. To address this, we
devised three prompting-based methods: Modify-
Input, Modify-Output, and Exam-Judge (detailed
in Section 2.1) for generating wrong options. These
methods together produced a variety of deceptive
options. The manually verified accuracy rate of our
generated data exceeds 92%. We also noted that
the Exam-Judge method we proposed generated
more challenging questions, which may be used
for future dataset construction.

Leveraging the high-quality options, TabIS en-
compasses three scenarios with increasing diffi-
culty for table information seeking: (1) basic TIS
derived from TTG (B-TIS), (2) TIS that empha-
sizes structural understanding (SU-TIS), and (3)
TIS from multiple tables (M-TIS), i.e. when con-
fronted additional pseudo-relevant tables. These
scenarios reflect common challenges in real-world
applications, such as retrieval-augmented systems.

While previous studies (Zhao et al., 2023b) that
test on the basic TIS setting with unreliable metrics
demonstrate the superiority of LLMs, TablS reveals
the limitations and potential challenges of LLMs
in table information seeking as follows.

* L1: Most LLMs perform poorly on our reli-
able benchmark with complex TIS settings

and tables with rich hierarchies. Experiments
on 12 representative LLMs show that only GPT-
4 attained an 85.7% accuracy on average (ran-
dom guess would be 50% accuracy). The top-
performing 70B open-source model achieved
74.4%, with the rest falling in the 50-60% range.

* L.2: LLMs exhibit a poor understanding of
table structures, with accuracy fluctuating
across different cell positions. Surprisingly,
we find that LLMs perform almost at random
levels in basic lookup tasks, such as repeating
content in a specific row. This highlights the
substantial challenges in real-world SU-TIS sce-
narios, where models struggle to pinpoint the
target table area using only positional cues.

* L3: LLMs struggle to balance between TIS
performance and robustness against pseudo-
relevant tables, especially for open-source
models. This indicates a great challenge for
LLMs in retrieval-augmented generation sce-
narios.

Finally, we fine-tune Llama2-13b-chat on our
weakly-supervised training dataset and find that
while fine-tuning can significantly improve TIS per-
formance, boosting from 55.5 to 73.2, it still lags
behind GPT-4-turbo, which has not been specifi-
cally fine-tuned. This indicates that the proposed
benchmark is non-trivial, calling for further investi-
gations and improvement in this field.

2 TabIS Benchmark

We curated a benchmark 7ablS to investigate the
table information seeking capabilities of LLMs.

We use table-to-text generation (TTG) datasets
as the original data source in our benchmark. The
task of TTG is that, given a table and a set of se-
lected cells (T, C'), produce a one-sentence descrip-
tion of the cells, and the annotated description is
called “reference” R. We transform TTG into a
single-choice question with two options for objec-
tive and accurate evaluation. The format of a sam-
ple in TabIS is (T, Q, R, O) where () is a question,
R, O are correct and wrong options. In TabIS, T’
and R are the same as the annotation in the TTG
task, O is a wrong description of the table that we
generate, and () is a question about the table that
can be answered by R. So, the task of TablS is that,
given T" and @, choose an option from {R, O} as
the answer.



TabIS contains three subsets: basic table infor-
mation seeking (B-TIS), TIS requiring structure
understanding (SU-TIS), and TIS with multiple
tables (M-TIS). In the following, we will first intro-
duce how to generate options, and then introduce
these subsets respectively.

2.1 Option Generation Method

The option generation has three steps:

1. First, for each TTG sample, we generate one
challenging candidate option, expecting that the
option is unfaithful to the table but is similar to
the golden reference.

2. Second, we perform adversarial filtering (Zeng
et al., 2023) to divide all instances into easy
and hard categories. Specifically, we use three
different LLMs on two different presentation
orders of the options (R, O and O, R) to obtain
six predicted labels. The instances in which the
majority of labels are wrong are hard instances
and others are simple instances.

3. Third, for hard instances, we conduct manual
checking and modification on generated options
to ensure correctness.

In step 1, three strategies to generate options are
proposed:

Modify-Input (MI). We directly prompt GPT-

4 to first modify the highlighted cells C slightly,

resulting in a modified set C’, and subsequently

perform the TTG task using C’ to produce an un-
faithful statement O referring to R. The generated

O usually has a similar syntactic structure as R but

substitutes some entities.

Modify-Output (MO). We directly prompt GPT-

4 to refer to the golden reference R and make up

a new statement that contains highlighted cells C,

but is not faithful to the table fact.

Exam-Judge (EJ). Given the table 7" and a set

of cells C, we first instruct a weak LLM agent to

describe the cells in natural language, yielding mul-
tiple candidate responses {O}, 0, ...}. Subse-
quently, a more advanced LLM agent! is employed
to identify responses that are unfaithful to the table.
Among these unfaithful candidates, the one that is
most literally similar to the golden reference R is
selected as the wrong option. The underlying idea
is to automatically obtain incorrect responses from
relatively weak agents, thereby producing strong
false options that are diverse and deceptive. In

'We use gpt-3.5-turbo-16k and gpt-4 as the weak and
strong LLM agent, respectively.

the experiments, we find this method is good at
generating difficult instances.

In step 3, for hard instances, we instruct anno-
tators to check if the generated option is faithful
to the table. If it is faithful, then it needs to be
revised to an unfaithful description while ensuring
the altered options are convincingly deceptive.

Finally, each instance can be categorized into
four classes, MI, MO, EJ, and HA (Human-
Annotation, i.e. modified in step 3) according to
how its O is generated. We put more details of the
option generation pipeline in Appendix A.

2.2 B-TIS Subset

B-TIS mimics situations where the LLM agent is
tasked with offering clear statements to users who
inquire about specific real-world entities, such as
celebrities and sports events, based on a table. This
method could markedly diminish the necessity for
users to sift through massive table data. We show
an example in Figure 2.

We apply the aforementioned option genera-
tion pipeline to generate the B-TIS dataset us-
ing two public TTG datasets: (1) ToTTo (Parikh
et al., 2020) is an open-domain English table-to-
text dataset with over 120,000 examples. The tables
in ToTTo are all semi-structured HTML tables from
Wikipedia pages and the reference sentences are
mainly descriptive statements over the table fact.
(2) HiTab (Cheng et al., 2022) is a cross-domain
hierarchical table dataset with over 10,000 samples,
constructed from a wealth of statistical reports. It
contains hierarchical tables and accompanied de-
scriptive sentences collected from StatCan and NSF.
Compared to ToTTo, HiTab poses a greater chal-
lenge to table information seeking since the tables
are with hierarchies and the sentences may involve
numerical reasoning (e.g. comparison and simple
computation).

2.3 SU-TIS Subset

In LLM-based chat systems like ChatGPT (Ope-
nAl, 2023b), a straightforward way for users to
direct the LLLM agent to a specific area of a table
is by indicating positions (e.g., "row 3"). This re-
quires LLMs to understand table structures. We
mimic this scenario by introducing the TIS dataset
that emphasizes structural understanding (SU-TIS).
For each instance (T, @, R, O) in B-TIS, we mod-
ify question ) by replacing the selected cells with
the minimum set of rows or columns covering them,
as illustrated in Figure 2.



Original Table

Page title: NingaliLawford Section title: Awards and nominations

Year Association Category Nominated work Result
1996 [Green Room Awards Best Actress in a One Woman Show | Ningali Won

2015 AACTA Awards Best Actress in a Leading Role Last Cab to Darwin Nominated
2016 | Film Critics Circle of Australia Awards | Best Actress —Supporting Role Last Cab to Darwin Nominated

Question 1: Based on the table, what information can you
get about 2015, Last Cab to Darwin, and Best Actress in a

Pseudo-Relevant (PR) Table

Leading Role?

Question 2: Based on the table, what information can you get

about Row 3?

Options:

A. Ningali Lawford is known for her role in the film Last Cab to
Darwin (2015), for which she was nominated for the AACTA
Award for Best Actress in a Leading Role.

B. Ningali Lawford won the AACTA Award for Best Actress in
a Leading Role for her role in Last Cab to Darwin in 2015.

Answer: A

Year Association Category Nominated work
2015 WSAS Awards Best Actor Last Cab to Darwin
2016 Green Room Awards Best Actor One Earth
2017 AACTA Awards Best Actor Day by Day
_____________________________________ |
B-TIS: Original Table Questionl Options Answer |
1
SU-TIS: Original Table Question2 Options Answer :
1
M-TIS: Original Table PR Table Question1l Options Answer:
1

Figure 2: Simplified Examples of B-TIS subset, SU-TIS subset, and M-TIS subset. For each B-TIS sample, we
generate one SU-TIS sample and one M-TIS sample with some modifications.

2.4 M-TIS Subset

In real-world scenarios, LLM agents may be pre-
sented with additional context that, while super-
ficially related to the golden table (the table that
contains the answer), could be misleading and detri-
mentally affect their information seeking capabili-
ties (Liu et al., 2023). This situation frequently
arises in retrieval-augmented LLM systems ori-
ented to documents, where in response to a query,
the systems may retrieve several tables that are
relevant to the query but not golden.

To mimic this scenario, we investigate the effects
of adding one pseudo-relevant table, which appears
relevant to the main table but does not provide use-
ful information to answer the question. We show
an example in Figure 2. For each instance in B-TIS,
we add another table 7" to the tuple (7', Q, R, O),
resulting in ({7,7'},Q, R,0). T’ is generated
by prompting gpt-4-turbo-1106 to create one table
mirroring the structure and headers of the golden
table, yet contains varied data entries. Refer to
Appendix B for more details.

2.5 Dataset Statistics and Quality Assessment

Table 1 illustrates the data statistics of the datasets
used in our experiments. We show the statistics
of option generation strategies results for the B-
TIS dataset in Table 2. We engage 10 sophisti-
cated annotators to meticulously review and re-
vise the hard instances (step 3 in Section 2.1).

Dataset # Train  # Test
B-TIS ToTTo 20,244 1,283
HiTab 6,943 1,254
SU-TIS ToTTo 20,054 1,267
HiTab 6,864 1,215
M-TIS ToTTo 0 1,217
HiTab 0 1,139
Total 54,105 7,375

Table 1: Data statistics of TabIS.

ToTTo Ratio Acc. | HiTab Ratio Acc.
MI 433 337% 93.5% 345  27.5% 90.5%
MO | 495 38.6% 95.8% 366  292% 97.2%
EJ 267  20.8% 91.7% 438  349% 89.2%
HA 38 6.9% 100.0% | 105 8.4% 100.0%

Table 2: Statistics of option generation strategies used
in B-TIS datasets.

Out of 410 reviewed samples, the options for 193
samples are manually adjusted. We employ two
experts to assess the data quality on 50 samples
each from ToTTo-TTG and HiTab-TTG. The ac-
curacy of ToTTo-TTG and HiTab-TTG is 94.1%
and 92.5%, respectively, demonstrating the high
quality of the proposed TabIS. SU-TIS and M-TIS
are generated based on B-TIS, so the statistics and
quality are the same as B-TIS.



3 Experiments on TabIS

Based on the curated TablS benchmark, we evalu-
ate the table information seeking capabilities of 12
representative LLMs.

3.1 Experimental Settings

Problem settings. We evaluate LLMs in a table-
based QA setting, where a linearized markdown
table is presented in the context, and LLMs are
required to answer a question given the context. All
the questions are constructed into the single-choice
form with two options, as detailed in Section 2. We
use a one-shot example? to familiarize the model
with the task description and answering format,
similar to previous work (Wang et al., 2023).

We evaluate both proprietary and open-source
LLMs. To enhance reproducibility, we set the tem-
perature as O for proprietary models, and utilize the
maximum probability of the first token as A or B
to determine the outputs of open-source models.
Proprietary models. We adopt three represen-
tative models: GPT-3.5 (OpenAl, 2023b), GPT-
4 (OpenAl, 2023a) and Gemini-pro (Google,
2023). GPTs? is a series of popular and capa-
ble LLM systems developed by OpenAl. Recent
studies (Akhtar et al., 2023; Sui et al., 2024; Zhao
et al., 2023b) have shown the great potential of
these models on table-related tasks. Gemini-pro* is
Google’s most capable LLM which operates seam-
lessly across various modalities.

Open-source models. Using proprietary LLM
APIs as agents presents many challenges such as
high costs and privacy concerns (Zeng et al., 2023).
Therefore, we evaluate several popular open-source
models: (1) Llama2-chat (Touvron et al., 2023)
ranging from 7b to 70b parameters; (2) Mistral-
7b-instruct-v0.2 (Jiang et al., 2023) and Mixtral-
8x7b-instruct (Jiang et al., 2024), an instruction-
tuned sparse mixture of experts language model; (3)
TableLlama-7b (Zhang et al., 2023), instruction-
tuned from Llama2-7b, the first large generalist
models for tables; and (4) Tulu2-70b-DPO (Ivison
et al., 2023), finetuned from Llama2-70b, the first
70b model aligned with DPO (Rafailov et al., 2023).
These models represent the highest-quality LLMs

2We find that more examples would often surpass the 4,096
token limit commonly used by open-source models.

3For GPTs, we investigate GPT-3.5-turbo-1106 and GPT-
4-turbo-1106 for more consistent evaluation. We also report
results on GPT-3.5-turbo-instruct and GPT-3.5-turbo=16k,
since we find their performance varies greatly.

*Gemini-pro is currently accessible via the Gemini APL

of different architectures and alignment strategies
available to the community.

3.2 Main Results on TabIS

We show the results of various models on the test
set of TablS in Table 3.

Overall Performance. As shown in the “Avg.”
column in Table 3, both proprietary models and
open-source models perform poorly in TabIS. Pro-
prietary models are generally superior to open-
source models, with the highest average accuracy
recorded at 85.9 by GPT-4-turbo, compared to 74.1
by Tulu2-70b-DPO. Gemini-pro outperforms GPT-
3.5s but falls short of GPT-4-turbo. Regarding
open-source models, a trend is observed where
larger models within the same series generally out-
perform their smaller counterparts. For instance,
Llama2-chat models with 7b, 13b, and 70b pa-
rameters achieve average accuracies of 50.7, 56.7,
and 61.9, respectively. However, this trend does
not hold across different model series, where a
larger model size does not guarantee superior per-
formance. For example, the 7b version of Mistral-
instruct even surpasses the 70b Llama2-chat model
by 1.3 points. This observation raises an important
question about the impact of pre-training and align-
ment strategies on the TIS capabilities of LLMs
which may be an interesting research topic.
Performance on TabIS Subsets. The middle
columns in Table 3 show that all models gener-
ally perform better in B-TIS compared to SU-TIS
and M-TIS, indicating SU-TIS and M-TIS are more
challenging. SU-TIS, which only provides the lo-
cation of highlighted cells as hints, are inherently
more difficult than B-TIS. However, models can
refer to the cells contained in options to look back
at the table to verify each option, therefore the per-
formance drop is not dramatic. M-TIS introduces
an extra table that is only seemingly relevant, po-
tentially confusing the judgement of LLMs. In
comparisons between datasets, all models show
better performance on ToTTo than on HiTab, with
improvements ranging from 5.8 to 19.0 points.
This discrepancy is likely due to ToTTo predom-
inantly featuring standard tables without merged
cells, whereas HiTab includes tables with complex
hierarchies, which pose greater challenges for table
comprehension.

Comparing option generation strategies. As
illustrated in Figure 3, models exhibit the low-
est performance with options generated via Exam-
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B-TIS SU-TIS M-TIS
Model . . . Avg.
ToTTo HiTab ToTTo HiTab ToTTo HiTab

proprietary model

Gemini-pro 85.6 66.6 81.3 65.1 79.4 64.8 73.8
GPT-3.5-turbo-instruct 75.1 68.3 70.8 65.3 74.5 66.8 70.1
GPT-3.5-turbo-1106 72.1 57.5 66.8 50.4 66.7 53.0 61.1
GPT-3.5-turbo-16k 76.7 61.2 73.3 59.2 73.4 59.2 67.2
GPT-4-turbo-1106 91.2 82.4 90.0 81.7 89.7 80.4 85.9
open-source model

Llama2-7b-chat 53.6 47.8 53.1 48.8 52.3 48.6 50.7
TableLlama-7b 54.3 47.7 54.1 47.8 54.1 479 51.0
Mistral-7b-instruct-v0.2 73.2 56.9 69.9 53.5 68.8 57.1 63.2
Llama2-13b-chat 63.3 53.4 57.9 50.5 60.5 54.4 56.7
Mixtral-8*7b-instruct 80.6 65.6 80.8 62.7 76.2 57.9 70.6
Llama2-70b-chat 70.0 56.9 67.8 54.3 67.4 54.7 61.9
Tulu2-70b-DPO 85.7 68.2 81.9 61.9 82.9 64.0 74.1

Table 3: Main results on TabIS. Random-guess achieves a 50% accuracy. Details in Appendix D.
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Figure 3: Model performance in different option gen-
eration strategies. Averaged over 12 LLMs. Refer to
Appendix D for more details.

Judge, with average scores of only 59.2 and 50.6
for ToTTo and HiTab, respectively. This indicates
that Exam-Judge is capable of producing options
that are even more challenging for LLMs than those
annotated by humans. Modify-Input and Modify-
Output also present significant hurdles for LLMs,
with scores ranging from 65.7 to 78.3 points on
average. For options generated by humans, while
they are tough enough, they also lead to high ex-
penses. Our option generation pipeline leverages
the advanced instruction-following capabilities of
potent LLMs, effectively balancing cost-efficiency
with scalability.

4 Potential Challenges

In this section, we conduct an in-depth analysis
to investigate the LLMs’ limitations and potential
challenges behind the two complex sub-tasks: SU-

TIS and M-TIS.

4.1 Table Structure Understanding

We further investigate the table structure under-
standing (TSU) capabilities of LLMs, shedding
light on future research on the SU-TIS sub-task.

TSU refers to the ability to perceive the two-
dimensional layout inherent in tables, such as the
positioning of cells, rows, and columns, to access
desired content based on the location within the
table space. TSU is highly important to our SU-
TIS, which involves locating a specific region of
the table. While this may seem intuitive to humans,
it can be quite challenging for LLMs, especially be-
cause tables are fed to these models in a serialized
format, such as markdown or HTML. To investi-
gate the TSU capabilities of LLMs, we design six
basic lookup tasks, such as "What is the content of
cells in row 3/column 3?" and "What is the content
of cells within the same row as the cell "Harry Pot-
ter’?" We employ predefined templates to generate
test samples from semi-structured HTML tables,
transforming them into a single-choice format with
two options. Each sample includes one in-context
example, similar to TabIS. Refer to Appendix C for
more details.

Once humans understand the table structure and
the task description, their TSU performance ideally
remains excellent and consistent regardless of tar-
get locations. However, we find that LLMs work in
a totally different manner. Specifically, we report
the average accuracy on six tasks and the variation
score towards target positions in Figure 4. The vari-
ation score for a TSU task is defined as the standard
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Figure 4: Averaged accuracy and TSU variation score
for 12 models, tested and averaged on 6 TSU tasks.
Model names are simplified for illustration.

deviation in accuracy across different target loca-
tions. Notably, most LLMs achieve near-random
performance (50) on TSU tasks. The strongest
LLM, GPT-4-turbo, exhibits the lowest stability.
No LLMs stand out in both performance and sta-
bility. This highlights a common challenge of table
structure understanding: LL.Ms exhibit poor per-
formance on TSU tasks and the accuracy varies
greatly across different positions. In real-world
scenarios of SU-TIS, there are no options for a
user query. LLMs can only locate the target region
based on the positional information (e.g. row 3).
The TIS performance would be largely affected by
models’ TSU capabilities. We will also release the
six TSU datasets to facilitate future research.

4.2 Robustness against Pseudo-Relevant
Tables

Based on M-TIS, we further investigate the TIS ro-
bustness of various models against pseudo-relevant
tables. Specifically, to quantify a model’s robust-
ness, we measure the deviation between the accu-
racy without and with the pseudo-relevant table,
averaged on ToTTo and HiTab. The results are
shown in Figure 5. Notably, GPT-3.5-instruct and
GPT-4-turbo emerge as both effective and robust.
However, the two strongest open-source models,
Tulu-70b and Mixtral-7b*8, exhibit the lowest ro-
bustness levels. Besides, within the same model
series, larger models achieve better accuracy scores
but worse robustness scores. This phenomenon
can be observed in Llama2 series (7b, 13b, 70b)
and Mistral series (Mistral-7b, Mixtral-8*7b). M-
TIS indicates great challenges of LLMs in bal-
ancing between TIS performance and robust-
ness against pseudo-relevant tables, especially
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Figure 5: TIS Robustness against pseudo-relevant tables
and averaged accuracy for 12 models, tested and aver-
aged on ToTTo and HiTab. Model names are simplified
for illustration.

for open-source models. This finding calls for
future research on open-source models to improve
TIS robustness against pseudo-relevant tables.

5 Improving Table Information Seeking

In this section, we explore how supervised fine-
tuning enhances table information seeking using
weakly-supervised datasets.

We first utilize our proposed data genera-
tion pipeline> (Section 2) to construct weakly-
supervised B-TIS and SU-TIS training datasets
without manual checking. The statistics of the
training dataset are shown in Table 2. We fully
finetune Llama2-13b-chat on this training set for
2 epochs to obtain TISLlama. We evaluate TIS-
Llama on TabIS%. Refer to Appendix E for more
training details.

Table 4 demonstrates that TISLlama outperforms
both the base model Llama2-13b-chat and the lead-
ing open-source model Tulu2-70b-DPO, with mar-
gins of 17.7 and 5.4 points, respectively. These re-
sults demonstrate the effectiveness of TIS-oriented
supervised finetuning. However, its performance
does not yet match that of GPT-4-turbo, which has
not undergone specialized fine-tuning. This dis-
crepancy highlights the significant challenge TabIS
presents to large language models, underscoring
the need for further research in this area.

3Considering high cost of accessing GPT-4-turbo API, we
use GPT-3.5-turbo-16k instead.

®Note that training on the weakly-supervised datasets
may introduce the spurious correlation between the model-
generated options and the wrong options. Thus we only evalu-
ate on human-annotated samples for fair comparision.



Model B-TIS SU-TIS M-TIS Avg.

Llama2-13b-chat 56.8 53.3 56.5 555
Llama2-70b-chat 58.2 58.1 58.5 583
Tulu2-70b-DPO & 69.7 69.1 647 67.8
GPT-4-turbo-1106 &  81.2 77.4 79.1  79.2

TISLlama (ours) 73.3 73.7 727 732

Table 4: Evaluation of TISLlama on TabIS-HA, aver-
aged on ToTTo and HiTab. & and # denote the best
open-source and proprietary model in our evaluation.

6 Related Work

6.1 Table-to-Text generation

Table-to-Text generation (TTG) aims at generating
natural language statements that faithfully describe
the information contained in the provided table re-
gion. Given its broad applications like biographical
data analysis (Lebret et al., 2016) and sports game
summary generation (Wiseman et al., 2017), TTG
has been studied extensively in recent years (Wang
et al., 2022; Zhao et al., 2023a) with the introduc-
tion of several valuable datasets (Parikh et al., 2020;
Cheng et al., 2022; Chen et al., 2020a). Previ-
ous studies mainly focus on finetuning pre-trained
language models on a task-specific dataset (Wang
et al., 2022), which are often specialized and
lack generalizability. Large Language Models
(LLMs) have recently demonstrated remarkable
performance on TTG tasks (Yang et al., 2023; Zhao
et al., 2023b). However, these evaluations mainly
rely on surface-level metrics, such as BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), which
may result in unreliable evaluation when the syn-
tactic style of LLMSs’ response diverges from the
golden reference (Dhingra et al., 2019). In this
paper, we propose to employ the TTG tasks as a
test bench for evaluating table information seeking
of LLMs. To ensure a reliable assessment, we con-
struct single-choice questions based on two high-
quality TTG datasets, ToTTo (Parikh et al., 2020)
and HiTab (Cheng et al., 2022).

6.2 Evaluating Table Information Seeking
capabilities of LLMs

Prior research has not fully explored the table infor-
mation seeking (TIS) abilities of Large Language
Models (LLMs). Sui et al. (2024) introduces a
benchmark aimed at assessing the structural un-
derstanding of LLLMs by comparing different input
methodologies. This benchmark includes a com-

ponent designed to evaluate the table structure un-
derstanding (TSU), which aligns closely with our
TSU dataset, yet it does not specifically address TIS
tasks. Zhao et al. (2023b) investigates the potential
of applying LLMs in real-world table information
seeking scenarios, showcasing their effectiveness in
producing faithful statements. Nevertheless, their
analysis lacks depth and is significantly influenced
by unreliable evaluation metrics.

To the best of our knowledge, we are the first
to release a large-scale, comprehensive, reliable
benchmark for evaluating TIS capabilities.

7 Conclusion

This paper introduces TablS, a new benchmark de-
signed to evaluate the table information seeking
(TIS) abilities of large language models (LLMs).
TablS is comprised of three typical TIS scenarios
and employs a single-question format to ensure re-
liable evaluation. Extensive experiments on 12 rep-
resentative LLMs have shown that TabIS presents a
significant challenge for current LLMs, with GPT-
4-turbo showing only marginal satisfaction. Further
analysis points out two main issues: firstly, LLMs
perform almost randomly on basic tasks involv-
ing comprehension of table structures; secondly,
they face difficulties in improving performance and
maintaining robustness against pseudo-relevant ta-
bles, which could lead to sub-optimal results in real-
world TIS tasks. These observations underscore
the current limitations and potential challenages
in table information seeking, calling for further
exploration and advancement in this area.

8 Limitations

In this paper, the benchmark adopts the form of
single-choice questions, which ensures the reliabil-
ity of the evaluation but may deviate from practical
applications. We mainly discuss some limitations
and potential challenges of LLMs when handling
table information seeking tasks, but do not explore
how to address these issues or the reasons behind
their observations. These will be important future
research directions. The templates used for gener-
ating TIS questions are relatively simplistic; richer
and more diverse questions would enhance the qual-
ity of the benchmark.
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A Option Generation Details

We show the prompt of Exam-Judge, Modify-Input,
and Modify-Output in Figure 6, Figure 7, and Fig-
ure 8, respectively.

B M-TIS Details

We show the prompt for generating pseudo-relevant
tables in Figure 9.

C Exploring Table Structure
Understanding

In this section, we first introduce the construction
of TSU dataset, then we show our additional exper-
iments on TSU.

C.1 Dataset Construction

Understanding the structure of a table is a funda-
mental ability to navigate among data arranged in
a tabular format, interpret the relations among data
points, and understand the table. It requires to per-
ceive the two-dimensional spatial layout inherent
in tables, such as the positioning of cells, rows, and
columns, to access desired content based on the
location within the table space.

To examine the table structure understanding ca-
pability of LLMs, we propose six probing tasks:
positional cell lookup (PCL), relative cell lookup
(RCL), positional row lookup (PRL), relative row
lookup (RRL), positional column lookup (PLL),
relative column lookup (RLL). These tasks require
LLMs to acquire certain surface-level table compo-
nents (cell, row and column) based on relative or
absolute position information.

We generate samples for each task by applying
predefined templates on high-quality tables. All
question templates are shown in Table 5. We collect
tables from four public datasets: WikiSQL (Zhong
et al., 2017), WikiTableQuestions (Pasupat and
Liang, 2015), HybridQA (Chen et al., 2020b) and
FeTaQA (Nan et al.,, 2021). These tables are
all semi-structured HTML tables collected from
Wikipedia, spaning a wide array of topics such as
sports and geography. After deduplicating these ta-
bles, we obtain a total of 49,561 high-quality tables.
For the test set, we randomly sample 1% tables and
generate one sample per table for each task.

For each sample, the options are generated by
randomly sampling cells, rows and columns in
proximity to the golden answer, employing a gaus-
sian distribution A/ (p, 1), where p denotes the po-
sition of the golden answer.
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C.2 Experiments

We show the TSU performance of various models
on Table 6.

TSU Performance. Unexpectedly, despite TSU
being straightforward for humans, all LLMs
demonstrate subpar performance. The best per-
formance of proprietary models and open-source
models only achieve 66.1 (GPT-4) and 57.6 points
(Tulu2-70b), respectively, while most models
achieve near-random performance (50). Models
do not consistently excel across all types of TSU
tasks. Notably, the GPT series (GPT-4 and GPT-
3.5) tend to perform better in column-oriented tasks
(COL) relative to other tasks, whereas the Llama?2
series (Llama2-7b, 13b, 70b) shows greater profi-
ciency in cell-oriented tasks (CELL). This variation
in performance could be attributed to the fact that
models within the same series likely undergo simi-
lar pre-training and alignment processes, resulting
in comparable inductive biases.

Case Study on Variations across different posi-
tions. We show some results of RCL in Figure
10. Gemini-pro exhibits large variance in differ-
ent positions,with a disparity exceeding 30 points
between its highest and lowest accuracy. On av-
erage, the data indicates that LLMs perform more
effectively at the beginning (row 1, column 1) and
ending (row 7, column 7) of tables. This pattern is
likely influenced by the serialization of tables into
one-dimension strings, rendering the middle part
of the table more challenging to locate accurately.
Effect of Cell Content on TSU. Logically, ex-
ecuting TSU tasks should not depend on the spe-
cific content of table cells, as this does not require
an understanding of the table’s semantics. Thus,
the performance across tables with varying content
should be consistent. To test this, we altered the
cell contents in our TSU test set’s real tables to
random numbers (ranging from 1 to 8 digits) and
random letters (also 1 to 8 characters in length),
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creating two new synthetic test sets named "letter"
and "number."

However, we observe significant variation in
performance across different table contents. As
shown in Figure 11, the performance disparity be-
tween the test sets ranges from approximately 2.9
to 19.4 points. Intriguingly, GPT-4 shows markedly
improved performance on the "number" set. This
may be attributed to the activation of GPT-4’s nu-
merical processing capabilities, which are particu-
larly relevant for TSU tasks (e.g. counting rows).
This observation warrants further investigation in
future studies.

100

-- Random Guess
real
letter
number

90 1

85.5

80 1

70 A

60 1

Average Accuracy (%)

50 A

40 H

30

Mixtral-8*7b Gemini-pro GPT-4-turbo

Model

Mistral-7b

Figure 11: Accuracy on tables of different content, aver-
aged on 6 TSU tasks.

D TabIS Main Results

We show the main results of B-TIS, SU-TIS, and
M-TIS in Table 7, Table 8, and Table 9, respec-
tively. We also report the accuracy on each option
generation strategies.

E Training Details

We fully fine-tune the model Llama2-13b-chat’
with Huggingface transformers library. We use a
learning rate of 2e-5. We train the model on 8
A800 and use a linear scheduler with a 5% warm-
up period for 2 epochs. To efficiently train the
model, we employ DeepSpeed training with ZeRO-
3 stage. For both training and inference, we set the
input length as 4096.

"https://huggingface.co/meta-llama/Llama-2-13b-chat-hf



Task Question Template (Q)

Positional Cell Lookup Q: What is the content of the cell located at row {row} and column
{col}?

Positional Row Lookup Q: What are the contents of the cells in row {row}?

Positional Column Lookup | Q: What are the contents of the cells in column {col}?

Q1: The anchor cell is {anchor} in row {row} and column {col}.
What is the content of the first cell below the anchor cell within the

o
Relative Cell Lookup same column’

Q2: The anchor cell is {anchor} in row {row} and column {col}.
‘What is the content of the first cell above the anchor cell within the
same column?

Q3: The anchor cell is {anchor} in row {row} and column {col}.
What is the content of the first cell left to the anchor cell within the
same row?

Q4: The anchor cell is {anchor} in row {row} and column {col}.
What is the content of the first cell right to the anchor cell within the
same row?

Q1: The anchor cell is {anchor} in row {row} and column {col}.
What are the contents of the cells within the same row as the anchor

Relative Row Lookup cell?

Q2: The anchor cell is {anchor} in row row and column col. What
are the contents of the first row above the anchor cell?

Q3: The anchor cell is {anchor} in row {row} and column {col}.
‘What are the contents of the first row below the anchor cell?

Q1: The anchor cell is {anchor} in row {row} and column {col}.
What are the contents of the cells within the same column as the

Relative Column Lookup anchor cell?

Q2: The anchor cell is {anchor} in row {row} and column {col}.
‘What are the contents of the first column left to the anchor cell?

Q3: The anchor cell is {anchor} in row {row} and column {col}.
What are the contents of the first column right to the anchor cell?

Table 5: Descriptions of TSU Tasks (T) and Corresponding Question Templates (Q). Placeholders {row}, {col}, and
{anchor} represent the row number, column number, and the content of the anchor cell, respectively.
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Model PCL PRL PLL RCL RRL RLL | Avg.
proprietary model

Gemini-pro 50.7 599 462 513 703 729 | 585
GPT-3.5-turbo-16k 551 531 615 549 557 547 | 55.8
GPT-3.5-turbo-instruct 475 46.1 569 400 6377 56.8 | 51.8
GPT-3.5-turbo-1106 504 50.8 53.6 498 532 499 | 513
GPT-4-turbo-1106 50.2 383 824 7277 747 783 | 66.1
open-source model

Llama2-7b-chat 533 478 500 557 47.8 50.1 | 50.8
TableLlama-7b 492 5377 536 551 544 543 | 534
Mistral-7b-instruct-v0.2 | 49.0 459 529 580 56.7 52.6 | 52.5
Llama2-13b-chat 51.6 51.8 519 578 532 522 | 53.1
Mixtral-8*7b-instruct 47.1 48.0 559 5277 571 522 | 521
Llama2-70b-chat 51.6 482 475 565 513 478 | 505
Tulu2-70b-DPO 50.6 48.6 548 671 70.0 545 | 57.6

Table 6: Main results (accuracy) of various models across TSU tasks.

Model ToTTo HiTab

EJ MI MO HA Avg | EJ MI MO HA Avg
proprietary model
gemini-pro 70.2 933 879 769 856 |53.1 676 79.1 674 66.6
GPT-3.5-turbo-instruct | 60.7 81.8 80.6 55.7 75.1 | 623 719 784 457 683
GPT-3.5-turbo-1106 569 778 76.6 64.8 721 |425 646 713 486 575
GPT-3.5-turbo-16k 584 845 828 59.1 7677 | 484 675 754 438 61.2
GPT-4-turbo-1106 798 935 964 852 912 | 735 852 918 771 824
open-source model
Llama2-7b-chat 543 524 5311 602 536|443 548 478 39.1 478
TableLlama-7b 532 547 539 58.0 543|438 533 489 41.0 477
Mistral-7b-instruct-v0.2 | 52.8 77.4 81.0 70.5 732 | 409 635 724 476 569
Llama2-13b-chat 524 66.7 667 602 633|450 522 648 533 534
Mixtral-8*7b-instruct 55.8 88.7 881 739 806|516 751 771 524 65.6
Llama2-70b-chat 521 709 79.6 659 700 | 46.8 60.0 68.0 505 569
Tulu2-70b-DPO 644 91.7 931 784 857 |555 725 814 61.0 68.2

Table 7: B-TIS Main results on ToTTo and HiTab. We also report accuracy across different option
generation strategies: EJ (Exam-Judge), MI (Modify-Input), MO (Modify-Output), HA (Human-

Annotation).
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Exam Prompt
## Instruction

Given a table-related task (Task), an example of the task (Example) and one input (Input), your task is to
follow the task instruction and provide a response (Output) to the input. Act like a weak assistant that
may generate responses that are not faithful to the table fact. Don't generate incomplete responses or
too long responses. Don't explain how you come up with your response.

### Task

{task_instruct}

### Example

{demo}

### New Input

{input}

### Answers

Judge Prompt
## Instruction

Given a table and a list of statements, your task is to identify which of these statements are unfaithful to
the table and its meta information. Please note that the meta information may offer additional context
about the table, such as background information about the person, album, or competetion the table
pertains to. Your response should in json format: {{"reasoning": your judgement of each statement,
"unfaithful statements": the list of the serial number of unfaithful statements}}. Make sure your response
can be parsed by json.loads.

### Table

Meta Information of the table: {meta_info}

{md_table}

### Statements

{statements}

## Response

Figure 6: Prompt of Exam-Judge.
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Modify-Input Prompt

## Instruction

You are a helpful assistant in generating one statement that is unfaithful to the table fact. Given a
statement generation task, and one input-output pair of the task, you need to (1) slightly modify the
input; (2) perform the task on the modified input to get the unfaithful statement. Basically, it is hard for a
person to find that your generated statement is actually not faithful. Your response should in json format:
{{"reasoning": Your modification of input, "unfaithful statement": the unfaithful statement}}. Make sure
your response can be parsed by json.loads.

#i## Task

{task_instruct}

### Input

{input}

### Standard Answer

{output}

## Response

Figure 7: Prompt of Modify-Input.

Modify-Output Prompt

## Instruction

You are a helpful assistant in generating one unfaithful statement. You can refer to the given faithful
statement and make up a new statement that contains several highlighted cells, but is not faithful to the
table fact. Basically, it is hard for a person to find that your generated statement is not faithful. Your
response should in json format: {{"reasoning": your reasoning process, "unfaithful statement": the
unfaithful statement}}. Make sure your response can be parsed by json.loads.

### Table

Meta Information of the table: {meta_info}

{md_table}

### Highlighted Cells

{highlighted_cells}

### Faithful Statement

{output}

## Response

Figure 8: Prompt of Modify-Output.
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Promptfor Generating Pseudo-Relevant Tables
## Instruction

Create a concise table, mirroring the structure of a provided example, but with unique data entries. Ensure
specific cell contents are replicated in the new table.

## Example Table

{table}

## Specific Cell Content
{subset_of highlighted cells}
## New Table

Note that Limit the table to 5-15 rows, presenting it without additional commentary.

Figure 9: Prompt for generating pseudo-relevant tables.

Model ToTTo HiTab

EJ] MI MO HA Avg | EJ] MI MO HA Avg
proprietary model
gemini-pro 722 818 87.6 647 813|526 714 757 540 65.1

GPT-3.5-turbo-instruct | 55.9 757 785 489 708 | 574 699 754 485 653
GPT-3.5-turbo-1106 498 725 725 58.0 668 | 349 602 620 4277 504

GPT-3.5-turbo-16k 56.7 813 785 557 733|433 696 620 427 592
GPT-4 77.6 917 96.5 83.0 90.0 | 71.0 852 941 71.8 81.7
open-source model

Llama2-chat-7b 52.1 521 533 602 53.1 |459 554 484 408 488
TableLlama-7b 532 528 548 59.1 54.1 | 445 518 49.6 427 478
Mistral-7b-instruct-v0.2 | 48.3 743 783 659 699 | 344 63.0 71.1 418 535
Llama2-chat-13b 51.3 59.7 61.0 523 579|429 49.1 60.1 544 505
Mixtral-8*7b-instruct 563 88.0 882 784 808 |49.0 711 739 544 627
Llama2-chat-70b 51.0 68.8 754 716 678|447 60.5 629 447 543
Tulu2-70b-DPO 63.1 859 88.6 81.8 819 | 478 654 773 563 619

Table 8: SU-TIS Main results on ToTTo and HiTab. We also report accuracy across different option
generation strategies: EJ (Exam-Judge), MI (Modify-Input), MO (Modify-Output), HA (Human-
Annotation).
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Model ToTTo HiTab

EJ] MI MO HA Avg | EJ MI MO HA Avg
proprietary model
gemini-pro 632 84.6 86.2 628 794 | 498 674 783 655 648
GPT-3.5-turbo-instruct | 61.9 81.1 79.7 535 745|593 685 792 484 66.8
GPT-3.5-turbo-1106 550 71.0 72.0 535 667|397 592 66.1 419 53.0
GPT-3.5-turbo-16k 565 81.6 793 535 734|450 672 738 398 59.2
GPT-4 742 931 96.2 86.1 89.7 | 71.0 83.1 914 720 804
open-source model
Llama2-chat-7b 512 51.1 528 58.1 523|455 538 488 43.0 48.6
TableLlama-7b 519 539 549 57.0 54.1 |450 522 49.1 409 479
Mistral-7b-instruct-v0.2 | 46.9 742 767 663 68.8 | 419 637 714 473 57.1
Llama2-chat-13b 523 635 63.0 570 605|442 532 670 559 544
Mixtral-8*7b-instruct 504 844 846 698 762|465 599 723 473 579
Llama2-chat-70b 477 697 763 674 674 | 439 599 640 495 547
Tulu2-70b-DPO 604 903 90.2 76.7 829 | 52.0 68.8 768 527 64.0

Table 9: M-TIS Main results on ToTTo and HiTab. We also report accuracy across different option
generation strategies: EJ (Exam-Judge), MI (Modify-Input), MO (Modify-Output), HA (Human-

Annotation).
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