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Abstract

Tables are recognized for their high informa-001
tion density and widespread usage, serving as002
essential sources of information. Seeking infor-003
mation from tables (TIS) is a crucial capability004
for Large Language Models (LLMs), serving as005
the foundation of knowledge-based Q&A sys-006
tems. However, this field presently suffers from007
an absence of thorough and reliable evaluation.008
This paper introduces a more reliable bench-009
mark for Table Information Seeking (TabIS).010
To avoid the unreliable evaluation caused by011
text similarity-based metrics, TabIS adopts a012
single-choice question format (with two op-013
tions per question) instead of a text generation014
format. We establish an effective pipeline for015
generating options, ensuring their difficulty and016
quality. Experiments conducted on 12 LLMs017
reveal that while the performance of GPT-4-018
turbo is marginally satisfactory, both other pro-019
prietary and open-source models perform in-020
adequately. Further analysis shows that LLMs021
exhibit a poor understanding of table structures,022
and struggle to balance between TIS perfor-023
mance and robustness against pseudo-relevant024
tables (common in retrieval-augmented sys-025
tems). These findings uncover the limitations026
and potential challenges of LLMs in seeking027
information from tables. We release our data028
and code to facilitate further research in this029
field.030

1 Introduction031

Tables are widespread and rich sources of infor-032

mation across the web and in various documents.033

Statistics show that the number of tables on inter-034

net web pages has reached several hundred mil-035

lion (Lehmberg et al., 2016); in the corporate envi-036

ronment, the number of tables in Excel-like spread-037

sheet files has exceeded 115 million (Wang et al.,038

2020). Precisely seeking relevant information from039

tables is crucial for a wide array of real-world appli-040

cations, including financial analysis, scientific re-041

search, etc. Recently, the remarkable advancements042

Displacement Year Type Power Torque at rpm

4.2 quattro (4172 cc) 1999 V8 360 PS (265 kW; 355 hp); 430 N⋅m (317 lbf⋅ft)

6.0 (5998 cc) 2001 W12 420 PS (309 kW; 414 hp); 550 N⋅m (406 lbf⋅ft)

Page title: Audi A8 Section title: Engines

Golden Reference:

In the Audi A8, the V8 variant has a 4.2 quattro engine with 

a displacement of 4172 cc, power of 360 PS (265 kW; 355 

hp), and torque of 430 N⋅m (317 lbf⋅ft).

Audi's 4.2 quattro (4172 cc) is developed in 1999, with 309 

kw (414 hp) and 430 newton metres (317 lb⋅ft).

GPT-3.5 (1-shot)

BLEU     34.1

ROUGE 47.4

Finetuned model

BLEU     66.1

ROUGE 74.2 ✘

✓

Audi's 4.2 quattro (4172 cc) has 265 kilowatts (355 hp) and 

430 newton metres (317 lb⋅ft).

Two Levels of Table Information Seeking

Perceptual Information Seeking

What are the content of cells within the same row of “4.2 quattro (4172 cc)”?

Information seeking that requires comprehension of table structures.

Semantic Information Seeking

Information seeking that requires comprehension of table semantics of 

specific cells.

What information can we get for “4.2 quattro (4172 cc)” and “V8”?

Information seeking that requires comprehension of both table structures 

and table semantics.

What information can we get from the second row?

Basic (similar to table-to-text generation)

Hybrid

Figure 1: A table-to-text generation example (simpli-
fied) to show the unreliable evaluation issue: higher
values on surface-level metrics like BLEU and ROUGE
do not guarantee better results. Target cells are high-
lighted.

of Large Language Models (LLMs) (Brown et al., 043

2020; Chowdhery et al., 2022; OpenAI, 2023a; Tou- 044

vron et al., 2023; Google, 2023) have transformed 045

the approach of information retrieval, moving from 046

fetching specific passages to directly providing an- 047

swers. However, the effectiveness of LLMs in 048

seeking information from tables remains underex- 049

plored. 050

Some efforts have been made to evaluate the 051

capabilities of LLMs in Table Information Seek- 052

ing (TIS), but there are unreliable evaluation is- 053

sues with the used evaluation metrics. Previous 054

studies (Zhao et al., 2023b) mainly use table-to- 055

text generation (TTG) as a test bench to assess the 056

TIS abilities of LLMs. TTG aims at transform- 057

ing complex tabular data into comprehensible de- 058

scriptions tailored to users’ information seeking 059

needs. The Evaluation relies heavily on surface- 060

level metrics such as BLEU (Papineni et al., 2002) 061

and ROUGE (Lin, 2004), or on metrics based on 062

model predictions such as NLI-Acc (Chen et al., 063

2020a). Given that LLM responses can greatly dif- 064

fer in style from the reference answers, using these 065

metrics can lead to inconsistent and unreliable eval- 066
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uations. An example of this issue is illustrated067

in Figure 1 where a fine-tuned model’s incorrect068

description receives higher BLEU/ROUGE scores069

than the correct output from GPT-3.5. This discrep-070

ancy may occur because GPT-3.5, without being071

fine-tuned on this specific dataset, might not mimic072

the style of the reference response.073

To provide a more reliable evaluation, this paper074

introduces a new benchmark for Table Information075

Seeking (TabIS). We design our benchmark using076

a single-choice question format, motivated by pop-077

ular benchmarks like MMLU (Hendrycks et al.,078

2020) and BBH (Suzgun et al., 2022), which utilize079

this format to offer a reliable and widely accepted080

evaluation of LLMs. We convert TTG datasets like081

ToTTo (Parikh et al., 2020) and Hitab (Cheng et al.,082

2022) into this format so that the results can be083

simply and reliably evaluated. A challenge during084

curating this benchmark is to generate high-quality085

options for single-choice questions. Initially, the086

original data’s answer could serve as the correct087

option. So we need to generate a deceptive wrong088

option. If the generated option is too simple, e.g.089

with obvious logical errors or unrelated to the ta-090

ble content, the benchmark will be too easy and091

fail to test LLMs’ capabilities. To address this, we092

devised three prompting-based methods: Modify-093

Input, Modify-Output, and Exam-Judge (detailed094

in Section 2.1) for generating wrong options. These095

methods together produced a variety of deceptive096

options. The manually verified accuracy rate of our097

generated data exceeds 92%. We also noted that098

the Exam-Judge method we proposed generated099

more challenging questions, which may be used100

for future dataset construction.101

Leveraging the high-quality options, TabIS en-102

compasses three scenarios with increasing diffi-103

culty for table information seeking: (1) basic TIS104

derived from TTG (B-TIS), (2) TIS that empha-105

sizes structural understanding (SU-TIS), and (3)106

TIS from multiple tables (M-TIS), i.e. when con-107

fronted additional pseudo-relevant tables. These108

scenarios reflect common challenges in real-world109

applications, such as retrieval-augmented systems.110

While previous studies (Zhao et al., 2023b) that111

test on the basic TIS setting with unreliable metrics112

demonstrate the superiority of LLMs, TabIS reveals113

the limitations and potential challenges of LLMs114

in table information seeking as follows.115

• L1: Most LLMs perform poorly on our reli-116

able benchmark with complex TIS settings117

and tables with rich hierarchies. Experiments 118

on 12 representative LLMs show that only GPT- 119

4 attained an 85.7% accuracy on average (ran- 120

dom guess would be 50% accuracy). The top- 121

performing 70B open-source model achieved 122

74.4%, with the rest falling in the 50-60% range. 123

• L2: LLMs exhibit a poor understanding of 124

table structures, with accuracy fluctuating 125

across different cell positions. Surprisingly, 126

we find that LLMs perform almost at random 127

levels in basic lookup tasks, such as repeating 128

content in a specific row. This highlights the 129

substantial challenges in real-world SU-TIS sce- 130

narios, where models struggle to pinpoint the 131

target table area using only positional cues. 132

• L3: LLMs struggle to balance between TIS 133

performance and robustness against pseudo- 134

relevant tables, especially for open-source 135

models. This indicates a great challenge for 136

LLMs in retrieval-augmented generation sce- 137

narios. 138

Finally, we fine-tune Llama2-13b-chat on our 139

weakly-supervised training dataset and find that 140

while fine-tuning can significantly improve TIS per- 141

formance, boosting from 55.5 to 73.2, it still lags 142

behind GPT-4-turbo, which has not been specifi- 143

cally fine-tuned. This indicates that the proposed 144

benchmark is non-trivial, calling for further investi- 145

gations and improvement in this field. 146

2 TabIS Benchmark 147

We curated a benchmark TabIS to investigate the 148

table information seeking capabilities of LLMs. 149

We use table-to-text generation (TTG) datasets 150

as the original data source in our benchmark. The 151

task of TTG is that, given a table and a set of se- 152

lected cells (T,C), produce a one-sentence descrip- 153

tion of the cells, and the annotated description is 154

called “reference” R. We transform TTG into a 155

single-choice question with two options for objec- 156

tive and accurate evaluation. The format of a sam- 157

ple in TabIS is (T,Q,R,O) where Q is a question, 158

R,O are correct and wrong options. In TabIS, T 159

and R are the same as the annotation in the TTG 160

task, O is a wrong description of the table that we 161

generate, and Q is a question about the table that 162

can be answered by R. So, the task of TabIS is that, 163

given T and Q, choose an option from {R,O} as 164

the answer. 165
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TabIS contains three subsets: basic table infor-166

mation seeking (B-TIS), TIS requiring structure167

understanding (SU-TIS), and TIS with multiple168

tables (M-TIS). In the following, we will first intro-169

duce how to generate options, and then introduce170

these subsets respectively.171

2.1 Option Generation Method172

The option generation has three steps:173

1. First, for each TTG sample, we generate one174

challenging candidate option, expecting that the175

option is unfaithful to the table but is similar to176

the golden reference.177

2. Second, we perform adversarial filtering (Zeng178

et al., 2023) to divide all instances into easy179

and hard categories. Specifically, we use three180

different LLMs on two different presentation181

orders of the options (R,O and O,R) to obtain182

six predicted labels. The instances in which the183

majority of labels are wrong are hard instances184

and others are simple instances.185

3. Third, for hard instances, we conduct manual186

checking and modification on generated options187

to ensure correctness.188

In step 1, three strategies to generate options are189

proposed:190

Modify-Input (MI). We directly prompt GPT-191

4 to first modify the highlighted cells C slightly,192

resulting in a modified set C ′, and subsequently193

perform the TTG task using C ′ to produce an un-194

faithful statement O referring to R. The generated195

O usually has a similar syntactic structure as R but196

substitutes some entities.197

Modify-Output (MO). We directly prompt GPT-198

4 to refer to the golden reference R and make up199

a new statement that contains highlighted cells C,200

but is not faithful to the table fact.201

Exam-Judge (EJ). Given the table T and a set202

of cells C, we first instruct a weak LLM agent to203

describe the cells in natural language, yielding mul-204

tiple candidate responses {O′
1, O

′
2, . . . }. Subse-205

quently, a more advanced LLM agent1 is employed206

to identify responses that are unfaithful to the table.207

Among these unfaithful candidates, the one that is208

most literally similar to the golden reference R is209

selected as the wrong option. The underlying idea210

is to automatically obtain incorrect responses from211

relatively weak agents, thereby producing strong212

false options that are diverse and deceptive. In213

1We use gpt-3.5-turbo-16k and gpt-4 as the weak and
strong LLM agent, respectively.

the experiments, we find this method is good at 214

generating difficult instances. 215

In step 3, for hard instances, we instruct anno- 216

tators to check if the generated option is faithful 217

to the table. If it is faithful, then it needs to be 218

revised to an unfaithful description while ensuring 219

the altered options are convincingly deceptive. 220

Finally, each instance can be categorized into 221

four classes, MI, MO, EJ, and HA (Human- 222

Annotation, i.e. modified in step 3) according to 223

how its O is generated. We put more details of the 224

option generation pipeline in Appendix A. 225

2.2 B-TIS Subset 226

B-TIS mimics situations where the LLM agent is 227

tasked with offering clear statements to users who 228

inquire about specific real-world entities, such as 229

celebrities and sports events, based on a table. This 230

method could markedly diminish the necessity for 231

users to sift through massive table data. We show 232

an example in Figure 2. 233

We apply the aforementioned option genera- 234

tion pipeline to generate the B-TIS dataset us- 235

ing two public TTG datasets: (1) ToTTo (Parikh 236

et al., 2020) is an open-domain English table-to- 237

text dataset with over 120,000 examples. The tables 238

in ToTTo are all semi-structured HTML tables from 239

Wikipedia pages and the reference sentences are 240

mainly descriptive statements over the table fact. 241

(2) HiTab (Cheng et al., 2022) is a cross-domain 242

hierarchical table dataset with over 10,000 samples, 243

constructed from a wealth of statistical reports. It 244

contains hierarchical tables and accompanied de- 245

scriptive sentences collected from StatCan and NSF. 246

Compared to ToTTo, HiTab poses a greater chal- 247

lenge to table information seeking since the tables 248

are with hierarchies and the sentences may involve 249

numerical reasoning (e.g. comparison and simple 250

computation). 251

2.3 SU-TIS Subset 252

In LLM-based chat systems like ChatGPT (Ope- 253

nAI, 2023b), a straightforward way for users to 254

direct the LLM agent to a specific area of a table 255

is by indicating positions (e.g., "row 3"). This re- 256

quires LLMs to understand table structures. We 257

mimic this scenario by introducing the TIS dataset 258

that emphasizes structural understanding (SU-TIS). 259

For each instance (T,Q,R,O) in B-TIS, we mod- 260

ify question Q by replacing the selected cells with 261

the minimum set of rows or columns covering them, 262

as illustrated in Figure 2. 263

3



Original Table

Original Table

Question 1: Based on the table, what information can you 
get about 2015, Last Cab to Darwin, and Best Actress in a 
Leading Role?

Year Association Category Nominated work Result

1996 Green Room Awards Best Actress in a One Woman Show Ningali Won

2015 AACTA Awards Best Actress in a Leading Role Last Cab to Darwin Nominated

2016 Film Critics Circle of Australia Awards Best Actress – Supporting Role Last Cab to Darwin Nominated

Page title: Ningali Lawford     Section title: Awards and nominations

A. Ningali Lawford is known for her role in the film Last Cab to 
Darwin (2015), for which she was nominated for the AACTA 
Award for Best Actress in a Leading Role.

B. Ningali Lawford won the AACTA Award for Best Actress in 
a Leading Role for her role in Last Cab to Darwin in 2015.

Answer: A

Question 2: Based on the table, what information can you get
about Row 3?

Options:

Pseudo-Relevant (PR) Table

Year Association Category Nominated work

2015 WSAS Awards Best Actor Last Cab to Darwin

2016 Green Room Awards Best Actor One Earth

2017 AACTA Awards Best Actor Day by Day

Original Table

B-TIS: Original Table Question 1 Options Answer

SU-TIS: 

M-TIS: PR Table Question 1 

Question 2 Options Answer

Options Answer

Figure 2: Simplified Examples of B-TIS subset, SU-TIS subset, and M-TIS subset. For each B-TIS sample, we
generate one SU-TIS sample and one M-TIS sample with some modifications.

2.4 M-TIS Subset264

In real-world scenarios, LLM agents may be pre-265

sented with additional context that, while super-266

ficially related to the golden table (the table that267

contains the answer), could be misleading and detri-268

mentally affect their information seeking capabili-269

ties (Liu et al., 2023). This situation frequently270

arises in retrieval-augmented LLM systems ori-271

ented to documents, where in response to a query,272

the systems may retrieve several tables that are273

relevant to the query but not golden.274

To mimic this scenario, we investigate the effects275

of adding one pseudo-relevant table, which appears276

relevant to the main table but does not provide use-277

ful information to answer the question. We show278

an example in Figure 2. For each instance in B-TIS,279

we add another table T ′ to the tuple (T,Q,R,O),280

resulting in ({T, T ′}, Q,R,O). T ′ is generated281

by prompting gpt-4-turbo-1106 to create one table282

mirroring the structure and headers of the golden283

table, yet contains varied data entries. Refer to284

Appendix B for more details.285

2.5 Dataset Statistics and Quality Assessment286

Table 1 illustrates the data statistics of the datasets287

used in our experiments. We show the statistics288

of option generation strategies results for the B-289

TIS dataset in Table 2. We engage 10 sophisti-290

cated annotators to meticulously review and re-291

vise the hard instances (step 3 in Section 2.1).292

Dataset # Train # Test

B-TIS
ToTTo 20,244 1,283
HiTab 6,943 1,254

SU-TIS
ToTTo 20,054 1,267
HiTab 6,864 1,215

M-TIS
ToTTo 0 1,217
HiTab 0 1,139

Total 54,105 7,375

Table 1: Data statistics of TabIS.

ToTTo Ratio Acc. HiTab Ratio Acc.
MI 433 33.7% 93.5% 345 27.5% 90.5%
MO 495 38.6% 95.8% 366 29.2% 97.2%
EJ 267 20.8% 91.7% 438 34.9% 89.2%
HA 88 6.9% 100.0% 105 8.4% 100.0%

Table 2: Statistics of option generation strategies used
in B-TIS datasets.

Out of 410 reviewed samples, the options for 193 293

samples are manually adjusted. We employ two 294

experts to assess the data quality on 50 samples 295

each from ToTTo-TTG and HiTab-TTG. The ac- 296

curacy of ToTTo-TTG and HiTab-TTG is 94.1% 297

and 92.5%, respectively, demonstrating the high 298

quality of the proposed TabIS. SU-TIS and M-TIS 299

are generated based on B-TIS, so the statistics and 300

quality are the same as B-TIS. 301
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3 Experiments on TabIS302

Based on the curated TabIS benchmark, we evalu-303

ate the table information seeking capabilities of 12304

representative LLMs.305

3.1 Experimental Settings306

Problem settings. We evaluate LLMs in a table-307

based QA setting, where a linearized markdown308

table is presented in the context, and LLMs are309

required to answer a question given the context. All310

the questions are constructed into the single-choice311

form with two options, as detailed in Section 2. We312

use a one-shot example2 to familiarize the model313

with the task description and answering format,314

similar to previous work (Wang et al., 2023).315

We evaluate both proprietary and open-source316

LLMs. To enhance reproducibility, we set the tem-317

perature as 0 for proprietary models, and utilize the318

maximum probability of the first token as A or B319

to determine the outputs of open-source models.320

Proprietary models. We adopt three represen-321

tative models: GPT-3.5 (OpenAI, 2023b), GPT-322

4 (OpenAI, 2023a) and Gemini-pro (Google,323

2023). GPTs3 is a series of popular and capa-324

ble LLM systems developed by OpenAI. Recent325

studies (Akhtar et al., 2023; Sui et al., 2024; Zhao326

et al., 2023b) have shown the great potential of327

these models on table-related tasks. Gemini-pro4 is328

Google’s most capable LLM which operates seam-329

lessly across various modalities.330

Open-source models. Using proprietary LLM331

APIs as agents presents many challenges such as332

high costs and privacy concerns (Zeng et al., 2023).333

Therefore, we evaluate several popular open-source334

models: (1) Llama2-chat (Touvron et al., 2023)335

ranging from 7b to 70b parameters; (2) Mistral-336

7b-instruct-v0.2 (Jiang et al., 2023) and Mixtral-337

8x7b-instruct (Jiang et al., 2024), an instruction-338

tuned sparse mixture of experts language model; (3)339

TableLlama-7b (Zhang et al., 2023), instruction-340

tuned from Llama2-7b, the first large generalist341

models for tables; and (4) Tulu2-70b-DPO (Ivison342

et al., 2023), finetuned from Llama2-70b, the first343

70b model aligned with DPO (Rafailov et al., 2023).344

These models represent the highest-quality LLMs345

2We find that more examples would often surpass the 4,096
token limit commonly used by open-source models.

3For GPTs, we investigate GPT-3.5-turbo-1106 and GPT-
4-turbo-1106 for more consistent evaluation. We also report
results on GPT-3.5-turbo-instruct and GPT-3.5-turbo=16k,
since we find their performance varies greatly.

4Gemini-pro is currently accessible via the Gemini API.

of different architectures and alignment strategies 346

available to the community. 347

3.2 Main Results on TabIS 348

We show the results of various models on the test 349

set of TabIS in Table 3. 350

Overall Performance. As shown in the “Avg.” 351

column in Table 3, both proprietary models and 352

open-source models perform poorly in TabIS. Pro- 353

prietary models are generally superior to open- 354

source models, with the highest average accuracy 355

recorded at 85.9 by GPT-4-turbo, compared to 74.1 356

by Tulu2-70b-DPO. Gemini-pro outperforms GPT- 357

3.5s but falls short of GPT-4-turbo. Regarding 358

open-source models, a trend is observed where 359

larger models within the same series generally out- 360

perform their smaller counterparts. For instance, 361

Llama2-chat models with 7b, 13b, and 70b pa- 362

rameters achieve average accuracies of 50.7, 56.7, 363

and 61.9, respectively. However, this trend does 364

not hold across different model series, where a 365

larger model size does not guarantee superior per- 366

formance. For example, the 7b version of Mistral- 367

instruct even surpasses the 70b Llama2-chat model 368

by 1.3 points. This observation raises an important 369

question about the impact of pre-training and align- 370

ment strategies on the TIS capabilities of LLMs 371

which may be an interesting research topic. 372

Performance on TabIS Subsets. The middle 373

columns in Table 3 show that all models gener- 374

ally perform better in B-TIS compared to SU-TIS 375

and M-TIS, indicating SU-TIS and M-TIS are more 376

challenging. SU-TIS, which only provides the lo- 377

cation of highlighted cells as hints, are inherently 378

more difficult than B-TIS. However, models can 379

refer to the cells contained in options to look back 380

at the table to verify each option, therefore the per- 381

formance drop is not dramatic. M-TIS introduces 382

an extra table that is only seemingly relevant, po- 383

tentially confusing the judgement of LLMs. In 384

comparisons between datasets, all models show 385

better performance on ToTTo than on HiTab, with 386

improvements ranging from 5.8 to 19.0 points. 387

This discrepancy is likely due to ToTTo predom- 388

inantly featuring standard tables without merged 389

cells, whereas HiTab includes tables with complex 390

hierarchies, which pose greater challenges for table 391

comprehension. 392

Comparing option generation strategies. As 393

illustrated in Figure 3, models exhibit the low- 394

est performance with options generated via Exam- 395

5
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Model B-TIS SU-TIS M-TIS Avg.
ToTTo HiTab ToTTo HiTab ToTTo HiTab

proprietary model
Gemini-pro 85.6 66.6 81.3 65.1 79.4 64.8 73.8
GPT-3.5-turbo-instruct 75.1 68.3 70.8 65.3 74.5 66.8 70.1
GPT-3.5-turbo-1106 72.1 57.5 66.8 50.4 66.7 53.0 61.1
GPT-3.5-turbo-16k 76.7 61.2 73.3 59.2 73.4 59.2 67.2
GPT-4-turbo-1106 91.2 82.4 90.0 81.7 89.7 80.4 85.9

open-source model
Llama2-7b-chat 53.6 47.8 53.1 48.8 52.3 48.6 50.7
TableLlama-7b 54.3 47.7 54.1 47.8 54.1 47.9 51.0
Mistral-7b-instruct-v0.2 73.2 56.9 69.9 53.5 68.8 57.1 63.2
Llama2-13b-chat 63.3 53.4 57.9 50.5 60.5 54.4 56.7
Mixtral-8*7b-instruct 80.6 65.6 80.8 62.7 76.2 57.9 70.6
Llama2-70b-chat 70.0 56.9 67.8 54.3 67.4 54.7 61.9
Tulu2-70b-DPO 85.7 68.2 81.9 61.9 82.9 64.0 74.1

Table 3: Main results on TabIS. Random-guess achieves a 50% accuracy. Details in Appendix D.
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Figure 3: Model performance in different option gen-
eration strategies. Averaged over 12 LLMs. Refer to
Appendix D for more details.

Judge, with average scores of only 59.2 and 50.6396

for ToTTo and HiTab, respectively. This indicates397

that Exam-Judge is capable of producing options398

that are even more challenging for LLMs than those399

annotated by humans. Modify-Input and Modify-400

Output also present significant hurdles for LLMs,401

with scores ranging from 65.7 to 78.3 points on402

average. For options generated by humans, while403

they are tough enough, they also lead to high ex-404

penses. Our option generation pipeline leverages405

the advanced instruction-following capabilities of406

potent LLMs, effectively balancing cost-efficiency407

with scalability.408

4 Potential Challenges409

In this section, we conduct an in-depth analysis410

to investigate the LLMs’ limitations and potential411

challenges behind the two complex sub-tasks: SU-412

TIS and M-TIS. 413

4.1 Table Structure Understanding 414

We further investigate the table structure under- 415

standing (TSU) capabilities of LLMs, shedding 416

light on future research on the SU-TIS sub-task. 417

TSU refers to the ability to perceive the two- 418

dimensional layout inherent in tables, such as the 419

positioning of cells, rows, and columns, to access 420

desired content based on the location within the 421

table space. TSU is highly important to our SU- 422

TIS, which involves locating a specific region of 423

the table. While this may seem intuitive to humans, 424

it can be quite challenging for LLMs, especially be- 425

cause tables are fed to these models in a serialized 426

format, such as markdown or HTML. To investi- 427

gate the TSU capabilities of LLMs, we design six 428

basic lookup tasks, such as "What is the content of 429

cells in row 3/column 3?" and "What is the content 430

of cells within the same row as the cell ’Harry Pot- 431

ter’?" We employ predefined templates to generate 432

test samples from semi-structured HTML tables, 433

transforming them into a single-choice format with 434

two options. Each sample includes one in-context 435

example, similar to TabIS. Refer to Appendix C for 436

more details. 437

Once humans understand the table structure and 438

the task description, their TSU performance ideally 439

remains excellent and consistent regardless of tar- 440

get locations. However, we find that LLMs work in 441

a totally different manner. Specifically, we report 442

the average accuracy on six tasks and the variation 443

score towards target positions in Figure 4. The vari- 444

ation score for a TSU task is defined as the standard 445

6



50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5
Average Accuracy (higher is better)

5

6

7

8

9

10

11

12

Ro
bu

st
ne

ss
 (l

ow
er

 is
 b

et
te

r, 
in

ve
rte

d)

GPT-3.5-instruct

Llama2-13b

Llama2-70b

Mistral-7b

GPT-4-turbo

Gemini-pro

Mixtral-7b*8

GPT-3.5-16k

GPT-3.5-1106
Llama2-7b

TableLlama

Tulu2-70b

Figure 4: Averaged accuracy and TSU variation score
for 12 models, tested and averaged on 6 TSU tasks.
Model names are simplified for illustration.

deviation in accuracy across different target loca-446

tions. Notably, most LLMs achieve near-random447

performance (50) on TSU tasks. The strongest448

LLM, GPT-4-turbo, exhibits the lowest stability.449

No LLMs stand out in both performance and sta-450

bility. This highlights a common challenge of table451

structure understanding: LLMs exhibit poor per-452

formance on TSU tasks and the accuracy varies453

greatly across different positions. In real-world454

scenarios of SU-TIS, there are no options for a455

user query. LLMs can only locate the target region456

based on the positional information (e.g. row 3).457

The TIS performance would be largely affected by458

models’ TSU capabilities. We will also release the459

six TSU datasets to facilitate future research.460

4.2 Robustness against Pseudo-Relevant461

Tables462

Based on M-TIS, we further investigate the TIS ro-463

bustness of various models against pseudo-relevant464

tables. Specifically, to quantify a model’s robust-465

ness, we measure the deviation between the accu-466

racy without and with the pseudo-relevant table,467

averaged on ToTTo and HiTab. The results are468

shown in Figure 5. Notably, GPT-3.5-instruct and469

GPT-4-turbo emerge as both effective and robust.470

However, the two strongest open-source models,471

Tulu-70b and Mixtral-7b*8, exhibit the lowest ro-472

bustness levels. Besides, within the same model473

series, larger models achieve better accuracy scores474

but worse robustness scores. This phenomenon475

can be observed in Llama2 series (7b, 13b, 70b)476

and Mistral series (Mistral-7b, Mixtral-8*7b). M-477

TIS indicates great challenges of LLMs in bal-478

ancing between TIS performance and robust-479

ness against pseudo-relevant tables, especially480
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Figure 5: TIS Robustness against pseudo-relevant tables
and averaged accuracy for 12 models, tested and aver-
aged on ToTTo and HiTab. Model names are simplified
for illustration.

for open-source models. This finding calls for 481

future research on open-source models to improve 482

TIS robustness against pseudo-relevant tables. 483

5 Improving Table Information Seeking 484

In this section, we explore how supervised fine- 485

tuning enhances table information seeking using 486

weakly-supervised datasets. 487

We first utilize our proposed data genera- 488

tion pipeline5 (Section 2) to construct weakly- 489

supervised B-TIS and SU-TIS training datasets 490

without manual checking. The statistics of the 491

training dataset are shown in Table 2. We fully 492

finetune Llama2-13b-chat on this training set for 493

2 epochs to obtain TISLlama. We evaluate TIS- 494

Llama on TabIS6. Refer to Appendix E for more 495

training details. 496

Table 4 demonstrates that TISLlama outperforms 497

both the base model Llama2-13b-chat and the lead- 498

ing open-source model Tulu2-70b-DPO, with mar- 499

gins of 17.7 and 5.4 points, respectively. These re- 500

sults demonstrate the effectiveness of TIS-oriented 501

supervised finetuning. However, its performance 502

does not yet match that of GPT-4-turbo, which has 503

not undergone specialized fine-tuning. This dis- 504

crepancy highlights the significant challenge TabIS 505

presents to large language models, underscoring 506

the need for further research in this area. 507

5Considering high cost of accessing GPT-4-turbo API, we
use GPT-3.5-turbo-16k instead.

6Note that training on the weakly-supervised datasets
may introduce the spurious correlation between the model-
generated options and the wrong options. Thus we only evalu-
ate on human-annotated samples for fair comparision.

7



Model B-TIS SU-TIS M-TIS Avg.

Llama2-13b-chat 56.8 53.3 56.5 55.5
Llama2-70b-chat 58.2 58.1 58.5 58.3
Tulu2-70b-DPO ♣ 69.7 69.1 64.7 67.8
GPT-4-turbo-1106 ♠ 81.2 77.4 79.1 79.2

TISLlama (ours) 73.3 73.7 72.7 73.2

Table 4: Evaluation of TISLlama on TabIS-HA, aver-
aged on ToTTo and HiTab. ♣ and ♠ denote the best
open-source and proprietary model in our evaluation.

6 Related Work508

6.1 Table-to-Text generation509

Table-to-Text generation (TTG) aims at generating510

natural language statements that faithfully describe511

the information contained in the provided table re-512

gion. Given its broad applications like biographical513

data analysis (Lebret et al., 2016) and sports game514

summary generation (Wiseman et al., 2017), TTG515

has been studied extensively in recent years (Wang516

et al., 2022; Zhao et al., 2023a) with the introduc-517

tion of several valuable datasets (Parikh et al., 2020;518

Cheng et al., 2022; Chen et al., 2020a). Previ-519

ous studies mainly focus on finetuning pre-trained520

language models on a task-specific dataset (Wang521

et al., 2022), which are often specialized and522

lack generalizability. Large Language Models523

(LLMs) have recently demonstrated remarkable524

performance on TTG tasks (Yang et al., 2023; Zhao525

et al., 2023b). However, these evaluations mainly526

rely on surface-level metrics, such as BLEU (Pap-527

ineni et al., 2002) and ROUGE (Lin, 2004), which528

may result in unreliable evaluation when the syn-529

tactic style of LLMs’ response diverges from the530

golden reference (Dhingra et al., 2019). In this531

paper, we propose to employ the TTG tasks as a532

test bench for evaluating table information seeking533

of LLMs. To ensure a reliable assessment, we con-534

struct single-choice questions based on two high-535

quality TTG datasets, ToTTo (Parikh et al., 2020)536

and HiTab (Cheng et al., 2022).537

6.2 Evaluating Table Information Seeking538

capabilities of LLMs539

Prior research has not fully explored the table infor-540

mation seeking (TIS) abilities of Large Language541

Models (LLMs). Sui et al. (2024) introduces a542

benchmark aimed at assessing the structural un-543

derstanding of LLMs by comparing different input544

methodologies. This benchmark includes a com-545

ponent designed to evaluate the table structure un- 546

derstanding (TSU), which aligns closely with our 547

TSU dataset, yet it does not specifically address TIS 548

tasks. Zhao et al. (2023b) investigates the potential 549

of applying LLMs in real-world table information 550

seeking scenarios, showcasing their effectiveness in 551

producing faithful statements. Nevertheless, their 552

analysis lacks depth and is significantly influenced 553

by unreliable evaluation metrics. 554

To the best of our knowledge, we are the first 555

to release a large-scale, comprehensive, reliable 556

benchmark for evaluating TIS capabilities. 557

7 Conclusion 558

This paper introduces TabIS, a new benchmark de- 559

signed to evaluate the table information seeking 560

(TIS) abilities of large language models (LLMs). 561

TabIS is comprised of three typical TIS scenarios 562

and employs a single-question format to ensure re- 563

liable evaluation. Extensive experiments on 12 rep- 564

resentative LLMs have shown that TabIS presents a 565

significant challenge for current LLMs, with GPT- 566

4-turbo showing only marginal satisfaction. Further 567

analysis points out two main issues: firstly, LLMs 568

perform almost randomly on basic tasks involv- 569

ing comprehension of table structures; secondly, 570

they face difficulties in improving performance and 571

maintaining robustness against pseudo-relevant ta- 572

bles, which could lead to sub-optimal results in real- 573

world TIS tasks. These observations underscore 574

the current limitations and potential challenages 575

in table information seeking, calling for further 576

exploration and advancement in this area. 577

8 Limitations 578

In this paper, the benchmark adopts the form of 579

single-choice questions, which ensures the reliabil- 580

ity of the evaluation but may deviate from practical 581

applications. We mainly discuss some limitations 582

and potential challenges of LLMs when handling 583

table information seeking tasks, but do not explore 584

how to address these issues or the reasons behind 585

their observations. These will be important future 586

research directions. The templates used for gener- 587

ating TIS questions are relatively simplistic; richer 588

and more diverse questions would enhance the qual- 589

ity of the benchmark. 590
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A Option Generation Details 820

We show the prompt of Exam-Judge, Modify-Input, 821

and Modify-Output in Figure 6, Figure 7, and Fig- 822

ure 8, respectively. 823

B M-TIS Details 824

We show the prompt for generating pseudo-relevant 825

tables in Figure 9. 826

C Exploring Table Structure 827

Understanding 828

In this section, we first introduce the construction 829

of TSU dataset, then we show our additional exper- 830

iments on TSU. 831

C.1 Dataset Construction 832

Understanding the structure of a table is a funda- 833

mental ability to navigate among data arranged in 834

a tabular format, interpret the relations among data 835

points, and understand the table. It requires to per- 836

ceive the two-dimensional spatial layout inherent 837

in tables, such as the positioning of cells, rows, and 838

columns, to access desired content based on the 839

location within the table space. 840

To examine the table structure understanding ca- 841

pability of LLMs, we propose six probing tasks: 842

positional cell lookup (PCL), relative cell lookup 843

(RCL), positional row lookup (PRL), relative row 844

lookup (RRL), positional column lookup (PLL), 845

relative column lookup (RLL). These tasks require 846

LLMs to acquire certain surface-level table compo- 847

nents (cell, row and column) based on relative or 848

absolute position information. 849

We generate samples for each task by applying 850

predefined templates on high-quality tables. All 851

question templates are shown in Table 5. We collect 852

tables from four public datasets: WikiSQL (Zhong 853

et al., 2017), WikiTableQuestions (Pasupat and 854

Liang, 2015), HybridQA (Chen et al., 2020b) and 855

FeTaQA (Nan et al., 2021). These tables are 856

all semi-structured HTML tables collected from 857

Wikipedia, spaning a wide array of topics such as 858

sports and geography. After deduplicating these ta- 859

bles, we obtain a total of 49,561 high-quality tables. 860

For the test set, we randomly sample 1% tables and 861

generate one sample per table for each task. 862

For each sample, the options are generated by 863

randomly sampling cells, rows and columns in 864

proximity to the golden answer, employing a gaus- 865

sian distribution N (p, 1), where p denotes the po- 866

sition of the golden answer. 867
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Gemini-pro Average

Figure 10: RCL performance with respect to target cell
positions. We show a concrete example of Gemini-pro
(left) and the averaged results of 12 models (right).

C.2 Experiments868

We show the TSU performance of various models869

on Table 6.870

TSU Performance. Unexpectedly, despite TSU871

being straightforward for humans, all LLMs872

demonstrate subpar performance. The best per-873

formance of proprietary models and open-source874

models only achieve 66.1 (GPT-4) and 57.6 points875

(Tulu2-70b), respectively, while most models876

achieve near-random performance (50). Models877

do not consistently excel across all types of TSU878

tasks. Notably, the GPT series (GPT-4 and GPT-879

3.5) tend to perform better in column-oriented tasks880

(COL) relative to other tasks, whereas the Llama2881

series (Llama2-7b, 13b, 70b) shows greater profi-882

ciency in cell-oriented tasks (CELL). This variation883

in performance could be attributed to the fact that884

models within the same series likely undergo simi-885

lar pre-training and alignment processes, resulting886

in comparable inductive biases.887

Case Study on Variations across different posi-888

tions. We show some results of RCL in Figure889

10. Gemini-pro exhibits large variance in differ-890

ent positions,with a disparity exceeding 30 points891

between its highest and lowest accuracy. On av-892

erage, the data indicates that LLMs perform more893

effectively at the beginning (row 1, column 1) and894

ending (row 7, column 7) of tables. This pattern is895

likely influenced by the serialization of tables into896

one-dimension strings, rendering the middle part897

of the table more challenging to locate accurately.898

Effect of Cell Content on TSU. Logically, ex-899

ecuting TSU tasks should not depend on the spe-900

cific content of table cells, as this does not require901

an understanding of the table’s semantics. Thus,902

the performance across tables with varying content903

should be consistent. To test this, we altered the904

cell contents in our TSU test set’s real tables to905

random numbers (ranging from 1 to 8 digits) and906

random letters (also 1 to 8 characters in length),907

creating two new synthetic test sets named "letter" 908

and "number." 909

However, we observe significant variation in 910

performance across different table contents. As 911

shown in Figure 11, the performance disparity be- 912

tween the test sets ranges from approximately 2.9 913

to 19.4 points. Intriguingly, GPT-4 shows markedly 914

improved performance on the "number" set. This 915

may be attributed to the activation of GPT-4’s nu- 916

merical processing capabilities, which are particu- 917

larly relevant for TSU tasks (e.g. counting rows). 918

This observation warrants further investigation in 919

future studies. 920

Mistral-7b Mixtral-8*7b Gemini-pro GPT-4-turbo
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Figure 11: Accuracy on tables of different content, aver-
aged on 6 TSU tasks.

D TabIS Main Results 921

We show the main results of B-TIS, SU-TIS, and 922

M-TIS in Table 7, Table 8, and Table 9, respec- 923

tively. We also report the accuracy on each option 924

generation strategies. 925

E Training Details 926

We fully fine-tune the model Llama2-13b-chat7 927

with Huggingface transformers library. We use a 928

learning rate of 2e-5. We train the model on 8 929

A800 and use a linear scheduler with a 5% warm- 930

up period for 2 epochs. To efficiently train the 931

model, we employ DeepSpeed training with ZeRO- 932

3 stage. For both training and inference, we set the 933

input length as 4096. 934

7https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
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Task Question Template (Q)

Positional Cell Lookup Q: What is the content of the cell located at row {row} and column
{col}?

Positional Row Lookup Q: What are the contents of the cells in row {row}?

Positional Column Lookup Q: What are the contents of the cells in column {col}?

Relative Cell Lookup

Q1: The anchor cell is {anchor} in row {row} and column {col}.
What is the content of the first cell below the anchor cell within the
same column?

Q2: The anchor cell is {anchor} in row {row} and column {col}.
What is the content of the first cell above the anchor cell within the
same column?

Q3: The anchor cell is {anchor} in row {row} and column {col}.
What is the content of the first cell left to the anchor cell within the
same row?

Q4: The anchor cell is {anchor} in row {row} and column {col}.
What is the content of the first cell right to the anchor cell within the
same row?

Relative Row Lookup

Q1: The anchor cell is {anchor} in row {row} and column {col}.
What are the contents of the cells within the same row as the anchor
cell?

Q2: The anchor cell is {anchor} in row row and column col. What
are the contents of the first row above the anchor cell?

Q3: The anchor cell is {anchor} in row {row} and column {col}.
What are the contents of the first row below the anchor cell?

Relative Column Lookup

Q1: The anchor cell is {anchor} in row {row} and column {col}.
What are the contents of the cells within the same column as the
anchor cell?

Q2: The anchor cell is {anchor} in row {row} and column {col}.
What are the contents of the first column left to the anchor cell?

Q3: The anchor cell is {anchor} in row {row} and column {col}.
What are the contents of the first column right to the anchor cell?

Table 5: Descriptions of TSU Tasks (T) and Corresponding Question Templates (Q). Placeholders {row}, {col}, and
{anchor} represent the row number, column number, and the content of the anchor cell, respectively.
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Model PCL PRL PLL RCL RRL RLL Avg.
proprietary model
Gemini-pro 50.7 59.9 46.2 51.3 70.3 72.9 58.5
GPT-3.5-turbo-16k 55.1 53.1 61.5 54.9 55.7 54.7 55.8
GPT-3.5-turbo-instruct 47.5 46.1 56.9 40.0 63.7 56.8 51.8
GPT-3.5-turbo-1106 50.4 50.8 53.6 49.8 53.2 49.9 51.3
GPT-4-turbo-1106 50.2 38.3 82.4 72.7 74.7 78.3 66.1
open-source model
Llama2-7b-chat 53.3 47.8 50.0 55.7 47.8 50.1 50.8
TableLlama-7b 49.2 53.7 53.6 55.1 54.4 54.3 53.4
Mistral-7b-instruct-v0.2 49.0 45.9 52.9 58.0 56.7 52.6 52.5
Llama2-13b-chat 51.6 51.8 51.9 57.8 53.2 52.2 53.1
Mixtral-8*7b-instruct 47.1 48.0 55.9 52.7 57.1 52.2 52.1
Llama2-70b-chat 51.6 48.2 47.5 56.5 51.3 47.8 50.5
Tulu2-70b-DPO 50.6 48.6 54.8 67.1 70.0 54.5 57.6

Table 6: Main results (accuracy) of various models across TSU tasks.

Model ToTTo HiTab
EJ MI MO HA Avg. EJ MI MO HA Avg.

proprietary model
gemini-pro 70.2 93.3 87.9 76.9 85.6 53.1 67.6 79.1 67.4 66.6
GPT-3.5-turbo-instruct 60.7 81.8 80.6 55.7 75.1 62.3 71.9 78.4 45.7 68.3
GPT-3.5-turbo-1106 56.9 77.8 76.6 64.8 72.1 42.5 64.6 71.3 48.6 57.5
GPT-3.5-turbo-16k 58.4 84.5 82.8 59.1 76.7 48.4 67.5 75.4 43.8 61.2
GPT-4-turbo-1106 79.8 93.5 96.4 85.2 91.2 73.5 85.2 91.8 77.1 82.4

open-source model
Llama2-7b-chat 54.3 52.4 53.1 60.2 53.6 44.3 54.8 47.8 39.1 47.8
TableLlama-7b 53.2 54.7 53.9 58.0 54.3 43.8 53.3 48.9 41.0 47.7
Mistral-7b-instruct-v0.2 52.8 77.4 81.0 70.5 73.2 40.9 63.5 72.4 47.6 56.9
Llama2-13b-chat 52.4 66.7 66.7 60.2 63.3 45.0 52.2 64.8 53.3 53.4
Mixtral-8*7b-instruct 55.8 88.7 88.1 73.9 80.6 51.6 75.1 77.1 52.4 65.6
Llama2-70b-chat 52.1 70.9 79.6 65.9 70.0 46.8 60.0 68.0 50.5 56.9
Tulu2-70b-DPO 64.4 91.7 93.1 78.4 85.7 55.5 72.5 81.4 61.0 68.2

Table 7: B-TIS Main results on ToTTo and HiTab. We also report accuracy across different option
generation strategies: EJ (Exam-Judge), MI (Modify-Input), MO (Modify-Output), HA (Human-
Annotation).
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Exam Prompt

## Instruction

Given a table-related task (Task), an example of the task (Example) and one input (Input), your task is to

follow the task instruction and provide a response (Output) to the input. Act like a weak assistant that

may generate responses that are not faithful to the table fact. Don't generate incomplete responses or

too long responses. Don't explain how you come up with your response.

### Task

{task_instruct}

### Example

{demo}

### New Input

{input}

### Answers

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Judge Prompt

## Instruction

Given a table and a list of statements, your task is to identify which of these statements are unfaithful to

the table and its meta information. Please note that the meta information may offer additional context

about the table, such as background information about the person, album, or competetion the table

pertains to. Your response should in json format: {{"reasoning": your judgement of each statement,

"unfaithful statements": the list of the serial number of unfaithful statements}}. Make sure your response

can be parsed by json.loads.

### Table

Meta Information of the table: {meta_info}

{md_table}

### Statements

{statements}

## Response

Figure 6: Prompt of Exam-Judge.
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Modify-Input Prompt

## Instruction

You are a helpful assistant in generating one statement that is unfaithful to the table fact. Given a

statement generation task, and one input-output pair of the task, you need to (1) slightly modify the

input; (2) perform the task on the modified input to get the unfaithful statement. Basically, it is hard for a

person to find that your generated statement is actually not faithful. Your response should in json format:

{{"reasoning": Your modification of input, "unfaithful statement": the unfaithful statement}}. Make sure

your response can be parsed by json.loads.

### Task

{task_instruct}

### Input

{input}

### Standard Answer

{output}

## Response

Figure 7: Prompt of Modify-Input.

Modify-Output Prompt

## Instruction

You are a helpful assistant in generating one unfaithful statement. You can refer to the given faithful

statement and make up a new statement that contains several highlighted cells, but is not faithful to the

table fact. Basically, it is hard for a person to find that your generated statement is not faithful. Your

response should in json format: {{"reasoning": your reasoning process, "unfaithful statement": the

unfaithful statement}}. Make sure your response can be parsed by json.loads.

### Table

Meta Information of the table: {meta_info}

{md_table}

### Highlighted Cells

{highlighted_cells}

### Faithful Statement

{output}

## Response

Figure 8: Prompt of Modify-Output.
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Prompt for Generating Pseudo-Relevant Tables

## Instruction

Create a concise table, mirroring the structure of a provided example, but with unique data entries. Ensure

specific cell contents are replicated in the new table.

## Example Table

{table}

## Specific Cell Content

{subset_of_highlighted_cells}

## New Table

Note that Limit the table to 5-15 rows, presenting it without additional commentary.

Figure 9: Prompt for generating pseudo-relevant tables.

Model ToTTo HiTab
EJ MI MO HA Avg. EJ MI MO HA Avg.

proprietary model
gemini-pro 72.2 81.8 87.6 64.7 81.3 52.6 71.4 75.7 54.0 65.1
GPT-3.5-turbo-instruct 55.9 75.7 78.5 48.9 70.8 57.4 69.9 75.4 48.5 65.3
GPT-3.5-turbo-1106 49.8 72.5 72.5 58.0 66.8 34.9 60.2 62.0 42.7 50.4
GPT-3.5-turbo-16k 56.7 81.3 78.5 55.7 73.3 43.3 69.6 62.0 42.7 59.2
GPT-4 77.6 91.7 96.5 83.0 90.0 71.0 85.2 94.1 71.8 81.7

open-source model
Llama2-chat-7b 52.1 52.1 53.3 60.2 53.1 45.9 55.4 48.4 40.8 48.8
TableLlama-7b 53.2 52.8 54.8 59.1 54.1 44.5 51.8 49.6 42.7 47.8
Mistral-7b-instruct-v0.2 48.3 74.3 78.3 65.9 69.9 34.4 63.0 71.1 41.8 53.5
Llama2-chat-13b 51.3 59.7 61.0 52.3 57.9 42.9 49.1 60.1 54.4 50.5
Mixtral-8*7b-instruct 56.3 88.0 88.2 78.4 80.8 49.0 71.1 73.9 54.4 62.7
Llama2-chat-70b 51.0 68.8 75.4 71.6 67.8 44.7 60.5 62.9 44.7 54.3
Tulu2-70b-DPO 63.1 85.9 88.6 81.8 81.9 47.8 65.4 77.3 56.3 61.9

Table 8: SU-TIS Main results on ToTTo and HiTab. We also report accuracy across different option
generation strategies: EJ (Exam-Judge), MI (Modify-Input), MO (Modify-Output), HA (Human-
Annotation).
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Model ToTTo HiTab
EJ MI MO HA Avg. EJ MI MO HA Avg.

proprietary model
gemini-pro 63.2 84.6 86.2 62.8 79.4 49.8 67.4 78.3 65.5 64.8
GPT-3.5-turbo-instruct 61.9 81.1 79.7 53.5 74.5 59.3 68.5 79.2 48.4 66.8
GPT-3.5-turbo-1106 55.0 71.0 72.0 53.5 66.7 39.7 59.2 66.1 41.9 53.0
GPT-3.5-turbo-16k 56.5 81.6 79.3 53.5 73.4 45.0 67.2 73.8 39.8 59.2
GPT-4 74.2 93.1 96.2 86.1 89.7 71.0 83.1 91.4 72.0 80.4

open-source model
Llama2-chat-7b 51.2 51.1 52.8 58.1 52.3 45.5 53.8 48.8 43.0 48.6
TableLlama-7b 51.9 53.9 54.9 57.0 54.1 45.0 52.2 49.1 40.9 47.9
Mistral-7b-instruct-v0.2 46.9 74.2 76.7 66.3 68.8 41.9 63.7 71.4 47.3 57.1
Llama2-chat-13b 52.3 63.5 63.0 57.0 60.5 44.2 53.2 67.0 55.9 54.4
Mixtral-8*7b-instruct 50.4 84.4 84.6 69.8 76.2 46.5 59.9 72.3 47.3 57.9
Llama2-chat-70b 47.7 69.7 76.3 67.4 67.4 43.9 59.9 64.0 49.5 54.7
Tulu2-70b-DPO 60.4 90.3 90.2 76.7 82.9 52.0 68.8 76.8 52.7 64.0

Table 9: M-TIS Main results on ToTTo and HiTab. We also report accuracy across different option
generation strategies: EJ (Exam-Judge), MI (Modify-Input), MO (Modify-Output), HA (Human-
Annotation).

18


