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ABSTRACT

Synthetic data can improve generalization when real data is scarce, but excessive
reliance may introduce distributional mismatches that degrade performance. In this
paper, we present a learning-theoretic framework to quantify the trade-off between
synthetic and real data. Our approach leverages algorithmic stability to derive
generalization error bounds, characterizing the optimal synthetic-to-real data ratio
that minimizes expected test error as a function of the Wasserstein distance between
the real and synthetic distributions. We motivate our framework in the setting of
kernel ridge regression with mixed data, offering a detailed analysis that may be of
independent interest. Our theory predicts the existence of an optimal ratio, leading
to a U-shaped behavior of test error with respect to the proportion of synthetic
data. Empirically, we validate this prediction on CIFAR-10 and a clinical brain
MRI dataset. Our theory extends to the important scenario of domain adaptation,
showing that carefully blending synthetic target data with limited source data can
mitigate domain shift and enhance generalization. We conclude with practical
guidance for applying our results to both in-domain and out-of-domain scenarios.

1 INTRODUCTION

The success of modern Machine Learning (ML) and Artificial Intelligence (AI) heavily depends on the
availability of large-scale training datasets (Sun et al., 2017; Radford et al., 2021). However, in many
critical domains such as healthcare, data collection is often prohibitively expensive, time-consuming,
or constrained by privacy concerns (Esteva et al., 2019; Kaissis et al., 2021). Similar challenges
arise in scientific domains where obtaining labeled data requires high-fidelity physical simulations or
specialized experimental setups. For instance, generating data in molecular dynamics (Hollingsworth
& Dror, 2018; Hansson et al., 2002) often demands significant computational resources, or structural
biology techniques like cryo-electron microscopy (Murata & Wolf, 2018; Milne et al., 2013) involve
costly and complex instrumentation. In these scenarios, ML models are trained on small datasets
and as a result frequently suffer from poor generalization, limiting their practical applicability (Recht
et al., 2019; Maleki et al., 2022; Schmidt et al., 2018; Brigato & Iocchi, 2021).

To address this challenge, several strategies have been proposed, including data augmentation (Shorten
& Khoshgoftaar, 2019; Cubuk et al., 2020) and the use of synthetic data (Frid-Adar et al., 2018; Karras
et al., 2020; Lu et al., 2023). Although these methods can improve model accuracy, their success
depends critically on how well the synthetic data approximates the real data distribution (Bowles
et al., 2018). With the emergence of powerful generative models such as diffusion models (Ho et al.,
2020; Song et al., 2021; Lipman et al., 2022; De Bortoli et al., 2021), there is renewed interest in
using synthetic data to supplement limited real data (Trabucco et al., 2023; Voetman et al., 2023; Ale-
mohammad et al., 2024b). Empirical evidence suggests that, when properly generated, synthetic data
can substantially boost the downstream model performance in low-data regimes (Azizi et al., 2023).

However, the integration of synthetic data introduces a critical trade-off as synthetic data may deviate
from the true data distribution. If the synthetic dataset grows disproportionately large, the training
algorithm may overlook the real data, introducing bias (Alemohammad et al., 2024a; Briesch et al.,
2023; Betzalel et al., 2022; Dohmatob et al., 2025; Bertrand et al., 2024). See Appendix I for an
extensive literature review on this topic. This issue motivates a central question:

"What is the optimal balance between real and synthetic data to minimize generalization error?"

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we address this question from a learning-theoretic perspective, establishing that an
optimal ratio of synthetic to real data exists for maximizing generalization performance. We first
motivate our analysis through a simple yet insightful case study in kernel ridge regression (Singh &
Vijaykumar, 2023), which may be of independent interest. We then extend our theoretical framework
to more general settings, deriving generalization bounds via stability analysis (Bousquet & Elisseeff,
2002; Shalev-Shwartz & Ben-David, 2014; Hardt et al., 2016). Our theoretical insights are empirically
validated on two distinct datasets: CIFAR-10 (a standard benchmark) (Krizhevsky et al., 2009) and a
real-world brain imaging dataset for Multiple Sclerosis (MS) (Carass et al., 2017).

Furthermore, we extend our framework to domain adaptation settings (Ben-David et al., 2010; Ganin
et al., 2016; Wilson & Cook, 2020), where synthetic data from a target domain is used to enhance
limited real data from a source domain. This broadens the scope of our approach, highlighting its
relevance for data-scarce scenarios in diverse ML applications like healthcare (Zhuang et al., 2021).

Contributions and paper structure Our main contributions are as follows:

• We provide a learning-theoretic analysis demonstrating the existence of an optimal ratio between
synthetic and real data that minimizes generalization error. Our approach is grounded in stability-
based generalization bounds and is first illustrated through a tractable kernel ridge regression
model. See Sections 2 and 3.

• We empirically validate our theoretical predictions using both benchmark (CIFAR-10, Ap-
pendix H.2) and real-world (brain MRI for Multiple Sclerosis, Section 4) datasets, confirming
that an appropriate balance of synthetic data improves performance in low-data regimes.

• We extend our framework to domain adaptation, showing how synthetic data from a target
domain can be effectively combined with limited real data from a source domain, thereby
broadening the applicability of our results (Section 5). We also provide practical guidance for
applying our theory to both in-domain and out-of-domain generalization tasks (Section 6).

2 MOTIVATION: SYNTHETIC DATA IN KERNEL RIDGE REGRESSION

We study the effect of incorporating synthetic data into kernel regression (Singh & Vijaykumar,
2023; Allerbo, 2023; Wang & Jing, 2022; Smale & Zhou, 2005) as a simple yet illustrative setting
to gain insight into the key factors influencing the generalization bound. Our goal is to identify
theoretical and empirical conditions under which synthetic data improves or degrades generalization,
highlighting the trade-offs involved in leveraging such data to enhance learning performance.

We consider kernel regression, where a function is learned by minimizing a regularized empirical risk
over a Reproducing Kernel Hilbert Space (RKHS) denoted by HK . Given training data {(xn, yn)}Nn=1
with xn ∈ X ∼ px and yn ∈ R, the objective is to find a function f ∈ HK that best fits the data
while controlling complexity through a regularization term. We assume that yn = f⋆(xn) + εn,
where εn are Independent and Identically Distributed (i.i.d.) samples from a zero-mean Gaussian
distribution with variance σ2. Unlike the standard setup, we regularize towards a synthetic data
generator g ∈ HK , effectively corresponding to the case of having an infinite number of synthetic
samples. See Appendix D for an analysis of this asymptotic behavior, along with a discussion of the
finite-sample alternative. The resulting Empirical Risk Minimization (ERM) problem is:

fN = argmin
f∈Hk

1

N

N∑
n=1

(yn − f(xn))
2
+ λ∥f − g∥2Hk

, (1)

where λ > 0 is the regularization strength. By Representer Theorem (Kimeldorf & Wahba, 1971;
Schölkopf et al., 2001), the learned function takes the form fN (x) =

∑N
n=1 αnK(x, xn), where K is

a positive definite kernel function, and αn are coefficients obtained from a regularized least squares
problem. Let H̃ = span{K(·, x1), . . . ,K(·, xN )}, and decompose HK = H̃ ⊕ H̃⊥,where H̃⊥ is
the orthogonal complement in HK . By Representer Theorem, the synthetic data generator g ∈ HK

can be written as g(x) =
∑N

n=1 βnK(x, xn) + g⊥(x), where g⊥ ∈ H̃⊥. Setting g = 0 recovers the
standard kernel ridge regression. We establish the following lemma (proof in Appendix E.1), which
characterizes the solution to Equation 1.
Lemma 2.1. Let KN ∈ RN×N be the empirical kernel matrix with entries (KN )ij = K(xi, xj).
Define the integral operator TK : L2(px) → L2(px) by (TKf)(x) =

∫
K(x, x′)f(x′) dpx(x

′) =

2
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Ex′ [K(x, x′)f(x′)]. Let λN = Nλ. Then the solution to Equation 1 has the closed-form representa-
tion:

α = (KN + λNI)
−1

(KNα⋆ + λNβ + ε) ,

where α⋆, β, and ε are the coefficients of f⋆, g, and the noise vector in the training basis.

We now recall the Mercer decomposition (Mercer, 1909) of the kernel. The operator TK defined
in Lemma 2.1 is compact, self-adjoint, and positive semi-definite, and thus admits a spectral de-
composition. That is, there exist eigenfunctions {ϕj}∞j=1 forming an orthonormal basis of L2(px)
and corresponding non-negative eigenvalues µ1 ≥ µ2 ≥ · · · → 0 such that TKϕj = µjϕj . The
eigenfunctions ϕj can be interpreted as the natural coordinates of the function space with respect to
the kernel, and the eigenvalues µj encode their relative importance. In this basis, we can write

f⋆ =

∞∑
j=1

θjϕj , g =

∞∑
j=1

ωjϕj , where θj = ⟨f⋆, ϕj⟩ , and ωj = ⟨g, ϕj⟩ . (2)

Assumption 2.1 (Polynomial eigendecay and smoothness). We assume the kernel K exhibits 2r-
polynomial eigendecay for some r ≥ 1

2 . Given the expansions in Equation 2, we assume:

(a) θ2j ≍ µs
j ≍ j−2rs for some s > 0, (b) ω2

j ≍ µs′

j ≍ j−2rs′ for some s′ > 0.

Assumption 2.1 quantifies how well f⋆ and g align with the eigenfunctions of TK . It ensures that∑
j θ

2
j/µ

s
j < ∞ and

∑
j ω

2
j /µ

s′

j < ∞, i.e. f⋆ and g decay sufficiently fast in the eigenbasis; larger
rate corresponds to greater smoothness. Such assumptions are standard in kernel regression analysis;
see, e.g., Cheng et al. (2024); Bartlett et al. (2019); Cui et al. (2021); Barzilai & Shamir (2024).

Definition 2.1 (Bias-Variance Decomposition). Define the test error RN (λ; g) to be the population
mean squared error between the regressor and the true label averaged over noise:

RN (λ; g) = Ex,ε

[
(f⋆(x)− fN (x))2

]
.

We decompose the test error into a bias B and variance V , with RN (λ; g) = B2 + V , such that:

B2 = Ex [f⋆(x)− Eε [fN (x)]]
2
, V = Ex,ε

[
(fN (x)− Eε [fN (x)])2

]
.

We now present a bias–variance decomposition of Equation 1, along with a corollary characterizing
the optimal number of synthetic samples. Proofs are in Appendices E.2 and E.3.

Theorem 2.2 (Generalization Error Bound). Under Assumption 2.1, for the kernel regression problem
defined in Equation 1 and any fixed regularization parameter λ ≥ 0, the test error admits the bound:

RN (λ; g) = O
(D(f⋆, g)

Nλ2
+ λ2− 1

4rD(f⋆, g) +
σ2

N
λ− 1

2r

)
,

where D(f⋆, g)
2 =

∑∞
j=1

1
µ2
j
(θj − ωj)

2 denotes the discrepancy between the target function f⋆ and
the synthetic generator g.

Corollary 2.2.1 (Optimal Regularization and Synthetic Sample Size). Under the assumptions of
Theorem 2.2, the optimal regularization parameter that minimizes the test error is given by

λ⋆ ≍
(

σ2

ND(f⋆, g)

) 4r
8r+1

.

Setting λ = M
N , the optimal number of synthetic samples satisfies:

M⋆ ≍
(

σ2

D(f⋆, g)

) 4r
8r+1

N
4r+1
8r+1 .

We empirically validate our theory in Figure 1, observing a U-curve as predicted by Theorem 2.2,
with error minimized near the theoretical λ∗. See Appendix H.1 for details.
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Figure 1: (a) Comparison of the true function f⋆ (blue), the synthetic generator g (green), and the learned
estimator fN (orange), obtained via Lemma 2.1, with parameters r = 2.0, s = 0.8, and s′ = 1.5. (b) Prediction
error |fN − f⋆|L2 as a function of the regularization strength λ. The U-shaped curve attains its minimum at λ⋆

(orange dashed line), which closely matches the theoretical optimum (star marker).

3 GENERALIZATION ERROR WITH SYNTHETIC DATA AS A REGULARIZER

We begin by introducing the notation and formal setting used throughout the remainder of the paper.
We consider learning on a separable complete metric space (X , dX ). We define the sample space
SN = XN and the random training dataset of N i.i.d. samples from px over X is denoted by
S = {x1, . . . , xN} ∈ SN , with joint law pS. Consider some measurable hypothesis space H and
a loss function ℓ : H × X → R that quantifies the performance of a hypothesis, and we assume
ℓ(h, ·) ∈ L1(px) for each h ∈ H. We define the empirical and population risks as,

LS(h) =
1

N

N∑
i=1

ℓ(h, xi), LX (h) = r(h) = Epx [ℓ(h, x)].

For r ∈ [1,∞), the Wasserstein r-distance between two probability measures p and q on X with
finite r-moments is defined as Wr (p , q) = infγ∈Γ(p,q)(E(x,y)∼γ [d(x, y)

r])1/r, where Γ(p, q) is the
set of all couplings of p and q. See Appendix C for more detailed notation.

3.1 POPULATION ERROR BOUNDS

Following the motivation in Section 2, we consider training on a mixture of real and synthetic data,
where the synthetic data acts as a form of regularization. We focus on the following mixed loss,
which slightly differs from that in the previous section in its regularization formulation:

Rλ(h,S) = (1− λ)LS(h) + λEx∼p′
x
[ℓ(h,x)] ,

where p′x denotes the distribution of synthetic data, which may differ from the real distribution
px. We are interested in upper-bounding the generalization error of the algorithm that minimizes
the mixed-loss. Our approach leverages a strategy from the learning theory literature known as
algorithmic stability.

Definition 3.1 (Uniform Stability). Let A : S 7→ H denote an algorithm. Algorithm A is ε-uniformly
stable if for all S,S′ ∈ XN such that S,S′ differ in at most one example, the corresponding outputs
A(S) and A(S′) satisfy supx∈X |ℓ(A(S);x)− ℓ(A(S′);x)| ≤ ε.

This notion of algorithmic stability captures sensitivity of an algorithm on individual changes in the
dataset. Under this property, it has been shown that generalization gap bounds in both expectation
and high probability can be obtained (Bousquet & Elisseeff, 2000; 2002).

In our analysis we consider the general case where H consists of set of functions between X and
some metric space Y . We make the assumption that it is a compact subset L∞(px).

Assumption 3.1. The hypothesis class H is a set of measurable functions of the form X → Y and
there exists D > 0 such that for any h, h′ ∈ H, ∥h− h′∥L∞(px) ≤ D.

4
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Standard generalization bounds (e.g., Russo & Zou (2020); Lopez & Jog (2018); Clerico et al. (2022))
rely on regularity conditions on the loss function ℓ. We now recall the regularity conditions adopted
in this work. We recall that a differentiable function ϕ : Y → R is m-strongly convex for some
constant m > 0 if it satisfies ϕ(x) ≥ ϕ(y) + ⟨∇ϕ(y), y − x⟩+ m

2 ∥x− y∥2 and is M -smooth if it
satisfies ϕ(x) ≤ ϕ(y) + ⟨∇ϕ(y), y − x⟩+ M

2 ∥x− y∥2.

Assumption 3.2. The loss function takes the form ℓ(h, x) = c(h(x), x) for a function
c : Y × X → R+, where for every x ∈ X , the function c(·, x) is differentiable, m-strongly convex,
M1-smooth and satisfies infy∈Y c(y, x) = 0. Furthermore, for any y ∈ Y , c(y, ·) is M2-smooth.

This is satisfied by many common learning objectives, including regression with mean squared error
and classification with cross-entropy loss. Furthermore, the use of smoothness and strong-convexity
is standard within algorithmic stability and generalization (e.g., Bousquet & Elisseeff (2002; 2000);
Charles & Papailiopoulos (2018); Bousquet et al. (2019); Yang et al. (2023); Shalev-Shwartz et al.
(2010); Feldman & Vondrák (2019); Attia & Koren (2022); Farghly & Rebeschini (2021)).

We now state a result showing that the mixed-loss algorithm is uniformly stable and provides a bound
on the generalization gap.

Theorem 3.1 (Mixed-data Generalization Bound). Let H be a class of L-Lipschitz functions. Suppose
Assumptions 3.1, and 3.2 hold and let hS ∈ argminh∈H Rλ(h,S). Then, there exists a universal
constant C > 0 and a sample size threshold N0 > 0 such that for all N ≥ N0, the algorithm
A(S) = hS is uniformly stable with stability constant

ε ≲
1

λ
Rλ(hS) + Cξ

(
M1

m2L2λ
Rλ(hS) +

√
M1M2(1− λ)D2

mL2λN

) 1
d⋆+1

,

where d⋆ denotes the upper packing dimension of the measure p′x (see Appendix F.2 for details),
ξ = M1L

2 + M2, η = M1/m
2, and τ =

√
M1M2/m. Let r⋆ = minh∈H r(h) be the true

population risk minimizer. For any λ ∈ (0, 1), the generalization gap satisfies

E[r(hS)]− r⋆ ≲ λξW2 (px , p′x)
2
+ C(1− λ)ξ

(
η

L2λ
r⋆ +

ηξ

L2
W2 (px , p′x)

2
+

τ(1− λ)D2

L2λN

) 1
d⋆+1

.

The proof of Theorem 3.1, along with another result of stability for the mixed loss is discussed in
Appendix F. The packing dimension d⋆ can be intuitively understood as the intrinsic dimension of
the real data manifold. Notably, the generalization bound exhibits a U-shaped dependence on λ,
similar to Theorem 2.2: for a fixed distributional discrepancy W2 (px , p′x), there exists an optimal
mixing parameter λ. This reflects a trade-off between algorithmic stability (which improves with
more synthetic data) and distributional mismatch. In particular, when W2 (px , p′x) = 0, the optimal
λ is 1, suggesting that it is beneficial to generate as much synthetic data as possible. We refer to the
ratio λ

1−λ as the synthetic-to-real ratio, which approximates M
N in the finite-sample setting.

4 EXPERIMENTS: REAL-WORLD MEDICAL IMAGES

Multiple sclerosis (MS) is a chronic neurological disease affecting millions worldwide (Tullman,
2013). T2-hyperintense lesions in MRI reflect neuroinflammatory damage and serve as key biomark-
ers for diagnosis, monitoring, and prognosis (McGinley et al., 2021). Accurate segmentation of MS
lesions in MRI remains a challenging problem. ML methods must contend with substantial variability
in image characteristics, lesion appearance, and domain shift, arising from differences in scanners,
acquisition protocols, and imaging parameters between training and test sets (Zeng et al., 2020).
Furthermore, publicly available datasets for lesion segmentation remain limited in size and diversity,
as acquiring labeled, heterogeneous MRI data is both costly and time-consuming.

Therefore, our work is motivated by the need to improve lesion segmentation performance under
limited and heterogeneous training data and distributional shift. Specifically, we consider the setting
where a synthetic data generator is available to address data scarcity and mitigate domain shift
between the source (training) and target (test) domains, while potentially introducing additional
distributional discrepancies. Following our theoretical result in Section 3, we study the in-domain
setup in this section and refer to Section 5 for out-of-domain scenario.
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Figure 2: (a) Validation loss decreases consistently as more real data is added (blue line), while increasing
synthetic data (orange dashed line) produces a U-shaped curve, indicating an optimal mixing ratio λ, as predicted
by Theorem 3.1. (b) Effect of distributional distance: varying the diffusion model timestep T ∈ 0, 50, 150, 300
controls the noise level of synthetic samples. The U-shaped trend persists across all T but becomes sharper with
increased discrepancy between real and synthetic distributions, further supporting Theorem 3.1.

We conduct our experiments on the NO.MS dataset (Dahlke et al., 2021), one of the largest and
most comprehensive clinical trial datasets for MS. It comprises over 200,000 MRI scans from more
than 11,000 patients. Ground-truth lesion annotations are generated using an automated tool and
subsequently refined by expert radiologists. The data originates from two Contract Research Organi-
zations (CROs), NeuroRx and MIAC, introducing inherent domain variability. For the downstream
segmentation task, we use a training set of 100 NeuroRx scans (∼4,500 slices) and a fixed validation
set of 20 NeuroRx scans (∼1,000 slices). In addition, we train a conditional diffusion model on
NeuroRx data as our synthetic data generator. To empirically validate the theoretical insights from
Theorem 3.1, we design two experiments:

1. Effect of synthetic data: We augment the training set by varying the synthetic-to-real ratio
from 0.25 to 8, and compare performance against a control case in which the real dataset is
scaled up accordingly.

2. Distributional distance: While we do not have direct access to the distance between the true
and synthetic distributions, we study the effect of this discrepancy by varying the sampling
timestep of the diffusion model (T = 50, 150, 300) out of 600 total denoising steps. We expect
that samples from noisier timesteps exhibit greater distributional distance from the real data.

More details on the segmentation model architecture and hyperparameters are provided in Ap-
pendix H.3. Figure 2 shows that an appropriately chosen synthetic-to-real data ratio improves
performance on the downstream segmentation task. Figure 2a compares validation loss when increas-
ing the amount of synthetic data versus scaling up real data. As expected, adding more real data
consistently improves performance. In contrast, synthetic data exhibits a U-shaped effect: moderate
amounts enhance generalization, while excessive amounts degrade it, indicating the existence of an
optimal interpolation parameter λ.

Figure 2b further examines how this behavior depends on the distributional distance between real
and synthetic data. By varying the diffusion timestep T which controls the noise level in generated
samples, we observe that the U-shape persists but becomes sharper as the synthetic data diverges
further from the real distribution. These findings support our results that the generalization gap is
influenced by both the mixing ratio and the distributional discrepancy between data sources. The
relationship between the optimal synthetic-to-real ratio and distributional distance is further illustrated
in Figure 8 in Appendix H.3.

5 SYNTHETIC DATA FOR DOMAIN ADAPTATION

In this section, we study the learning problem under domain shift (Zhang et al., 2019; Stacke et al.,
2019; Redko et al., 2020; Shui et al., 2022): the real training data consist of samples from a source
domain X with distribution px, while the goal is to evaluate the learned model on a distinct target
domain X ⋆ with distribution p⋆x, from which no real data are available. To address this distribution

6
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mismatch, we assume access to synthetic data generated on the target domain X ⋆, though drawn
from a potentially imperfect distribution p′x ̸= p⋆x. As in previous sections, this synthetic data is used
to regularize the ERM objective, aiming to improve generalization to the target domain in the absence
of real samples from p⋆x.

We first analyze this setting within the kernel framework (Section 2). Specifically, we consider a
dataset of N real training pairs yn = f̃(xn) + εn, and a synthetic data generator g as defined earlier.
The test error is measured with respect to a ground truth function f⋆. The main difference from
Section 2 is that the training function f̃ differs from f⋆, capturing the domain shift. Although the
empirical estimator remains unchanged (Equation 1), the generalization behavior is affected by the
discrepancy between the training and target domains. Our result shows that stronger regularization
can improve performance when the synthetic data more accurately approximates the target domain
than the source data, providing a principled guideline for tuning λ under domain shift. The bound is
formalized below; see Appendix G.1 for the proof.
Theorem 5.1 (Generalization under Domain Shift). Under Assumption 2.1, for the kernel regression
problem defined in Equation 1 and any fixed regularization parameter λ ≥ 0, the test error under
domain shift satisfies the bound:

RN (λ; g) = O
(
µmaxλ

r+1D(f⋆, f̃) + λmax{2− 1
4r ,r+1}D(f⋆, g) +

σ2

N
λ− 1

2r

)
,

where µmax = maxj µj , and D(·, ·) denotes the distributional discrepancy, as in Theorem 2.2.

We now extend this result to the setup in Section 3, where test error is measured with respect to p⋆x.
The resulting generalization gap is stated below; see Appendix G.2 for the proof.
Theorem 5.2 (Mixed-data Generalization under Domain Shift). Let H be a class of L-Lipschitz
functions. Suppose Assumptions 3.1, and 3.2 hold and let hS ∈ argminh∈H Rλ(h,S). Then, for any
λ ∈ (0, 1), the generalization gap under the domain shift satisfies

E[r(hS)]− r⋆ ≲ λξW2 (p
⋆
x , p′x)

2
+ (1− λ)ξW2 (p

⋆
x , px)

2

+ C(1− λ)ξ

(
M1

m2L2λ
r⋆ +

M1ξ

m2L2
W2 (p

⋆
x , px)

2
+

√
M1M2(1− λ)D2

mL2λN

) 1
d⋆+1

where r⋆ = minh∈H r⋆(h) is the true population risk minimizer of the target domain.

As expected, compared to Theorems 2.2 and 3.1, these bounds include an additional term that
captures the mismatch between the source and target distributions. Consequently, the optimal choice
of λ depends on the relative magnitudes of D(f⋆, f̃) and D(f⋆, g) or similarly W2 (p

⋆
x , px) and

W2 (p
⋆
x , p′x). Intuitively, when the synthetic data generator more closely approximates the target

domain, it is beneficial to choose a larger regularization parameter λ. In the special case where
f⋆ = f̃ or W2 (p

⋆
x , px) = 0, the bound reduces to the previous results, albeit with potentially larger

constants for the kernel regression case, arising from the more general proof strategy.

Experimental setup We follow the experimental setup for medical brain MRI scans described in
Section 4 to study the effect of domain shift. Since we have two data sources (MIAC and NeuroRx),
we can naturally adapt the setup to introduce domain shift: we treat MIAC as the source domain and
NeuroRx as the target domain. The synthetic data generator, a conditional diffusion model, is trained
on NeuroRx, thus approximating the target distribution. As before, we vary the synthetic-to-real data
ratio in the range 0.25 to 8, and compare the resulting performance. Results are shown in Figure 3a.
We include two baselines in this experiment: (1) access to real data from the target domain for
training the downstream segmentation task on NeuroRx (blue line), and (2) no access to either target
or synthetic data, with only increased source domain data available (orange line). To examine the
impact of distributional discrepancy between synthetic and target data, we adopt the same approach
as in Section 4, sampling from the diffusion model at two timesteps, T = 0 and T = 300. We
expect T = 0 (green dashed line) to closely match the target distribution, while T = 300 (red dashed
line) reflects a greater distributional distance. As observed, synthetic data can significantly improve
performance when the distributional distance between the synthetic and target is small. However,
when the synthetic generator induces a large distributional shift, using additional source data alone
can be more effective, but if the source domain itself is far from the target, neither synthetic nor source
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data is likely to help. This observation aligns with our theoretical understanding of the trade-offs
in generalization error, where the benefit of additional data depends critically on the distributional
closeness to the target domain.
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(a) The effect of synthetic data in domain shift.
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Figure 3: (a) Effect of synthetic data from distributions close to (green dashed) or far from (red dashed) the
target, compared to target (blue) and source (orange) baselines. Results show the trade-off between distributional
shift and regularization predicted by Theorem 5.2. (b) FID as a proxy for distributional shift: T = 0 (green)
aligns with the target, while noisy (red) and source (orange) data show higher FID and reduced utility.
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(a) Contour plot illustrating the behavior described in Theorem 2.2.
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Figure 4: Effect of the synthetic-to-real data ratio and distributional distance(s) on the error rate: (a) in-domain
scenario across various signal-to-noise ratios for the real dataset; (b) out-of-domain scenario. In both cases, one
should ideally choose λ such that it lies within the blue regions, which correspond to lower error rates.
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To apply our theoretical results in practice, practitioners must estimate key quantities that influence
the generalization bound, such as distributional distances, noise levels, and the complexity of the
hypothesis class. This section provides practical guidance on how to approximate these quantities
and offers heuristic strategies based on empirical observations.

Exact distributional distances between real and synthetic data, or between source and target domains,
are typically unavailable. Therefore, practical applications require accessible proxies. In our exper-
iments (Sections 4 and 5), we initially used diffusion timesteps as a proxy. Here, we explore a more
broadly applicable alternative: the widely adopted Fréchet Inception Distance (FID) metric. Although
FID does not measure true distributional distance, it offers a practical approximation: computing the
Wasserstein distance between multivariate Gaussians fitted to the Inception embeddings of real and
generated images. When the synthetic distribution closely aligns with the target domain, FID serves
as a useful tool for comparing generators or estimating alignment. As shown in Figure 3b, adding syn-
thetic data from T = 0 (green) reduces the FID score in a manner similar to adding real target-domain
data (blue), reflecting performance trends seen in Figure 3a. In contrast, source-domain data or noisy
diffusion samples either leave FID unchanged or worsen it. Depending on the application, other
approximations such as cross-validation loss or Kullback-Leibler Divergence (KLD) may also be used.

To guide empirical decisions, we visualize our theoretical bounds in terms of two user-controllable
factors: data heterogeneity and the distance between real and synthetic distributions. Heterogeneity is
captured by the ratio σ2/N , reflecting data variance and sample size, and plays a key role in practical
experiments. Practitioners can have control over heterogeneity through N . Figure 4 illustrates how
the bound changes under different scenarios, offering heuristic strategies for choosing the optimal
mix of real and synthetic data. In particular, lower bounds (shown in cooler colors) indicate better
generalization, while higher bounds (in red) highlight settings that risk overfitting, and should be
avoided. See Appendix H.4 for additional results.

In-domain. When data heterogeneity is small to moderate and the generator produces high-quality
synthetic data (i.e., D(f∗, g) is small to moderate), augmenting the dataset with up to twice the
amount of real data is an effective strategy (Figure 4a). While adding more synthetic data can slightly
reduce the bound, the marginal gains diminish, and additional data primarily increases computational
cost without notable improvements in downstream performance. Even when heterogeneity is high,
e.g., small N and high σ2, as often encountered in biomedical datasets such as brain MRI, a 1:2
real-to-synthetic ratio remains a reasonable choice. In such cases, the generalization bound is
naturally higher, yet augmenting with synthetic data still provides substantial benefit. However,
further increases in the synthetic ratio are only effective if the generator is exceptionally accurate.
Otherwise, collecting more real data to reduce heterogeneity is a better strategy.

Out-of-domain. In domain shift scenarios (Figure 4b), the same 1:2 ratio remains an effective and
robust choice, provided the synthetic data generator is of good quality. Unlike the in-domain case,
increasing the synthetic ratio beyond this point can harm performance, especially when the domain
shift is large. For severe shifts (e.g., D(f⋆, f̃) ≈ 8.75), even a 1:2 ratio works reasonably well, but
larger ratios degrade performance. For moderate shifts (e.g., D(f⋆, g) ≈ 5), a 1:2 ratio continues to
be a reliable default. Overall, we recommend ratios in the range of 1:1 to 1:2. While a good generator
allows modest augmentation even under domain shift, excessive use of synthetic data, especially
when not well aligned with the target distribution, can lead to degraded performance. Careful tuning
of the augmentation ratio is thus crucial in the out-of-domain case.

Finally, our theory assumes Lipschitz continuity, which can be estimated via gradient norms or con-
trolled by clipping. It scales the bound by a constant but does not affect the order of the optimal ratio.

7 CONCLUSION

The integration of synthetic data into machine learning is critical in domains where real data is limited,
expensive, or sensitive, such as healthcare. Optimizing this integration is essential for improving
generalization without distorting the true data distribution.

We present a principled learning-theoretic framework that characterizes the trade-off between real and
synthetic data. Under standard regularity assumptions, we prove the existence of a non-trivial optimal
synthetic-to-real ratio that minimizes generalization error, first in kernel ridge regression, then more
broadly using algorithmic stability. Empirical results on both benchmark and real-world datasets
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validate our predictions, revealing a non-monotonic relationship between performance and synthetic
data proportion. Our results extend to domain adaptation scenarios involving distribution shift,
demonstrating its broader applicability and underscoring the importance of data balancing strategies
in real-world, data-constrained machine learning pipelines. We provide a heuristic guideline based
on our theoretical and empirical results for practitioners.
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A BROADER IMPACT

This work shows how synthetic data can be effectively integrated with real data to improve the
performance and generalization of downstream tasks in both in-domain and out-of-domain settings.

There are several potential benefits of our work:

1. Our framework enables practitioners to use an effective synthetic-to-real data ratio that yields
improved performance at a reduced computational cost, therefore reducing carbon footprint.

2. Although our experiments focus on lesion segmentation, the underlying theory and insights
are broadly applicable. Practitioners in various domains can leverage our framework to address
challenges related to low-data regimes and domain shifts by exploiting powerful generative
models to synthesize data, issues that are common across many applied fields.

3. We identify key factors necessary for evaluating the impact of synthetic data. This is particularly
relevant in the current landscape, where a wide range of generative and foundation models
are available to generate synthetic data. Our findings can help the community make more
informed decisions about incorporating the generated samples from these models, particularly
their quantity and quality.

4. Our results highlight the importance of distributional shift in achieving better performance,
which in turn underscores the potential value of incorporating human feedback into the synthetic
data generation process.

5. In scenarios involving biased datasets—closely related to our distribution shift setup—our
framework offers a principled way to generate an adequate number of synthetic samples to
improve model performance. This is particularly useful not only in data-scarce domains such
as healthcare but also in datasets lacking diversity.

We also acknowledge potential risks and undesirable consequences associated with our approach.
In efforts to maximize downstream task performance, practitioners may be incentivized to collect
additional data or train more powerful generative models. This introduces several challenges:

1. Collecting extensive data about a subject raises concerns about responsible data acquisition.
2. Training larger generative models requires increased computational resources, which may have

a greater environmental impact.

B LIMITATIONS

While our work provides theoretical insights and practical guidelines for combining synthetic and
real data, several limitations remain:

1. Our analysis involves certain approximations to key parameters that affect the generalization
bound and the optimal synthetic-to-real data ratio. The sensitivity of the results to our approach,
and studying other ways of approximating them needs further investigation.

2. Although our theory aligns with empirical trends observed in lesion segmentation, we have not
validated the proposed bounds across a broader range of applications. Extending the empirical
evaluation to diverse domains would help assess the generality of our framework.

3. We focus on providing theoretical and practical insights and do not present a concrete algorithm
that integrates a specific real dataset with a synthetic data generator. Developing such an
algorithm would facilitate adoption in real-world settings.

4. Our experiments are restricted to the image modality. Investigating how the framework extends
to other data types, such as text, audio, or multimodal settings, remains an open and promising
direction for future work.

C OTHER NOTATION

We denote scalar or vector-valued Random Variable (RV) by x, and collections of RVs by X, with
corresponding probability densities px and pX. Realizations of these variables are denoted by x
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and X , respectively, with x taking values in a measurable space X . The conditional distribution
of a random variable y given x = x is denoted by py|x=x. The expectation of a measurable
function f : X → R is written as E[f(x)] = Ex∼px [f(x)]. For integers a ≤ c ≤ b, we denote
by Xa:b = {xa,xa+1, . . . ,xb} a finite collection of RVs, and by X

( ̸=c)
a:b = Xa:b \ {xc} the subset

excluding xc. The density pXa:b
denotes the joint density of the variables in Xa:b.

We use [K] to denote the index set {1, . . . ,K}, and reserve Latin letters for samples and Greek letters
for parameters or distributions.
Definition C.1 (Lipschitz Continuity). A function f : Z → Rq, for (Z, dZ) a metric space, is
ξ-Lipschitz if for all z, z′ ∈ Z , ∥f(z)− f(z′)∥ ≤ ξ dZ(z, z

′).

Let Rλ(h) = ES[Rλ(h,S)] denote the expected mixed loss, and rλ(h) the hybrid population risk:

rλ(hS) = (1− λ)r(h) + λEx∼p′
x
[ℓ(h,x)] . (3)

Definition C.2 (Generalization Gap). The generalization error of a hypothesis h is defined as the
absolute difference between its population and empirical risks:

gS(h) = |LX (h)− LS(h)| .
The generalization gap of a learning algorithm is the expected generalization error:

G = Eph,S [gS(h)] = Eph,S [|LX (h)− LS(h)|] .

We can now define the generalization gap in the mixed-data setting as:

G = Eph,S [gS(h)] = Eph,S [|r(h)−Rλ(h,S)|] .

D ASYMPTOTIC EFFECT OF SYNTHETIC DATA IN KERNEL RIDGE REGRESSION

Suppose we have M synthetic samples {(x̃m, ỹm)}Mm=1, where x̃m ∼ p(x) i.i.d., and ỹm = g(x̃m).
We assume these synthetic samples are noiseless, reflecting access to the exact synthetic data generator.
Then the ERM objective

fN = argmin
f∈Hk

1

N

N∑
n=1

(yn − f(xn))
2 + λ

1

M

M∑
m=1

(
f(x̃m)− g(x̃m)

)2
satisfies, by the (strong) law of large numbers,

lim
M→∞

1

M

M∑
m=1

(
f(x̃m)− g(x̃m)

)2
= Ex̃∼p

[
(f(x̃)− g(x̃))2

]
=
〈
f − g, TK(f − g)

〉
Hk

,

where the kernel integral operator TK : Hk → Hk is defined by

(TK h)(·) =
∫

K(·, x)h(x) p(x) dx.

Note that while the synthetic covariates x̃m are drawn i.i.d. from the same marginal distribution as
the real data, the synthetic labels ỹm follow a potentially different mapping g, as determined by the
data generator.

Equivalence of L2(p) and RKHS norms By Mercer’s theorem (Mercer, 1909), the operator TK

admits the spectral decomposition

K(x, y) =

∞∑
i=1

µi ϕi(x)ϕi(y),

where {ϕi} form an orthonormal basis in L2(p) and µi > 0 are the eigenvalues. Any function
h ∈ Hk can be written as h =

∑
i ai

√
µi ϕi, yielding

∥h∥2L2(p) =

∞∑
i=1

µi a
2
i , ∥h∥2Hk

=

∞∑
i=1

a2i .
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If the nonzero eigenvalues satisfy 0 < µmin ≤ µi ≤ µmax < ∞, then

µmin∥h∥2Hk
≤ ∥h∥2L2(p) ≤ µmax∥h∥2Hk

,

so the norms are equivalent up to constants:

∥h∥2L2(p) ≍ ∥h∥2Hk
.

Under this spectral assumption, the L2(p) term Ex̃∼p[(f(x̃)− g(x̃))2] appearing in the infinite-M
limit is thus proportional to ∥f − g∥2Hk

.

Note that we use this equivalence to motivate our setup, we study the effect of limited synthetic data
in Section 3 more precisely.

E TECHNICAL PROOFS OF MODIFIED KERNEL REGRESSION

E.1 PROOF OF LEMMA 2.1

Lemma 2.1. Let KN ∈ RN×N be the empirical kernel matrix with entries (KN )ij = K(xi, xj).
Define the integral operator TK : L2(px) → L2(px) by (TKf)(x) =

∫
K(x, x′)f(x′) dpx(x

′) =
Ex′ [K(x, x′)f(x′)]. Let λN = Nλ. Then the solution to Equation 1 has the closed-form representa-
tion:

α = (KN + λNI)
−1

(KNα⋆ + λNβ + ε) ,

where α⋆, β, and ε are the coefficients of f⋆, g, and the noise vector in the training basis.

Proof. Let us first rewrite the ERM using the Representer theorem as following:

α = argmin
α̂

1

N
∥y −KN α̂∥2 + λ∥α̂− β∥2Hk

+ λ∥g⊥∥2Hk
.

Finite-sample solution. Taking the derivation with respect to α, we have

KN [(KN + λNI)α− y − λNβ] = 0 (4)

Solving the optimization, similarly to the standard regularized kernel regression, we achieve:

α = (KN + λNI)
−1

(y + λNβ) ,

where we conclude the proof by noting that y = KNα⋆ + ε. This also results in the fact that
fN (x) = Kx (KN + λNI)

−1
(y + λNβ), where Kx = (K(x, x1), . . . ,K(x, xN )).

We now study the behavior of this closed-form solution in the population limit, which becomes useful
later.

Population limit and expectation. We use Equation 4, so we have:

KN [(KN + λNI)(α− β)− y +KNβ] = 0

α− β = (KN + λNI)
−1

(y −KNβ)

fN (x)− g(x) = Kx (KN + λNI)
−1

(y −KNβ) .

Now, consider the population limit where the sample size N → ∞. The empirical kernel matrix KN

converges to the integral operator TK , which is a classic approach in kernel ridge regression (Singh
& Vijaykumar, 2023). Therefore, TK ≈ 1

N

∑N
n=1 K(·, xn)⊗K(·, xn), which means KN ≈ NTK .

So, we have

fN − g = (TK + λI)
−1

(
TKf⋆ − TKg +

1

N
ε

)
Eε [fN − g] = (TK + λI)

−1
TK(f⋆ − g) .

Noting that Eε[g] = g, we get the following result in the population limit:

Eε [fN ] = g + (TK + λI)
−1

TK(f⋆ − g) . (5)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.2 PROOF OF THEOREM 2.2

Theorem 2.2. Under Assumption 2.1, for the kernel regression problem defined in Equation 1 and
any fixed regularization parameter λ ≥ 0, the test error admits the bound:

RN (λ; g) = O
(D(f⋆, g)

Nλ2
+ λ2− 1

4rD(f⋆, g) +
σ2

Nλ2

)
,

where D(f⋆, g)
2 =

∑∞
j=1

1
µ2
j
(θj − ωj)

2 denotes the discrepancy between the target function f⋆ and
the synthetic generator g.

Proof. To bound the test error, we use the bias-variance decomposition in Definition 2.1. We start
with the variance term. We follow the approach of Misiakiewicz & Saeed (2024). So, we have:

V = Ex,ε

[
(fN (x)− Eε [fN (x)])2

]
(6)

= Ex,ε

[(
1

N
Kx (TK + λI)

−1
ε

)]
(7)

=
σ2

N2
tr
(
NT 2

K (TK + λI)
−2
)

(8)

=
σ2

N

∞∑
j=1

µ2
j

(µj + λ)2
. (9)

Note that the above discussion assumes the population limit. An analogous behaviour holds in the
finite-sample setting. Define κ = supx∈X

√
K(x,x). Then

V = Ex,ε

[
(fN (x)− Eε[fN (x)])2

]
(10)

= Ex,ε

[(
1
NKx(KN + λI)−1ε

)2]
(11)

≤ κ2σ2

Nλ2
, (12)

where the inequality follows from ∥(KN + λI)−1∥ ≤ 1
λ and the bound ∥Kx∥2 ≤ Nκ2. Now, let us

bound the bias term. We have:

B2 = Ex [(f⋆ − Eε [fN ])(x)]2

≤ ES

[
∥Eε [fN ]− fλ∥2HK

]
+ ∥f⋆ − fλ∥2px

,

where the last line is resulted from Jensen’s inequality and triangle inequality. Moreover, note that
∥f⋆ − fλ∥2px

≤ κ2∥f⋆ − fλ∥2H. We define fλ as the population limit of fN :

fλ = g + (TK + λI)−1TK(f⋆ − g) . (13)

To bound the bias term, we also define an additional auxiliary function fN,λ:

fN,λ = g + (KN + λI)−1TK(f⋆ − g) .

This function helps us compute the first term of bias.

Population and sampling bias ES

[
∥Eε [fN ]− fλ∥2HK

]
. We rewrite this term as follows:

ES

[
∥Eε [fN ]− fλ∥2HK

]
≤ ES

[
∥Eε [fN ]− fN,λ∥2HK

]
+ ES

[
∥fN,λ − fλ∥2HK

]
≤ ES

[
∥(KN + λI)−1(KN − TK)(f⋆ − g)∥2HK

]
+ ES

[
∥fN,λ − fλ∥2HK

]
≤ 1

λ2
ES

[
∥(KN − TK)(f⋆ − g)∥2HK

]
+ ES

[
∥fN,λ − fλ∥2HK

]
≤ κ2∥f⋆ − g∥2px

Nλ2
+ ES

[
∥fN,λ − fλ∥2HK

]
,
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where we used the fact that ∥(KN + λI)−1∥ ≤ 1
λ , and the last inequality is proved in Smale

& Zhou (2005)[Theorem 3]. We continue the bound by first noticing that Equation 13 gives us
(TK + λI)(fλ − g) = TK(f⋆ − g):

ES

[
∥Eε [fN ]− fλ∥2HK

]
≤ κ2∥f⋆ − g∥2px

Nλ2
+ ES

[
∥fN,λ − fλ∥2HK

]
≤ κ2∥f⋆ − g∥2px

Nλ2
+ ES

[
∥(KN + λI)−1(TK + λI)(fλ − g)− (fλ − g)∥2HK

]
≤ κ2∥f⋆ − g∥2px

Nλ2
+ ES

[
∥(KN + λI)−1(TK −KN )(fλ − g)∥2HK

]
≤ κ2∥f⋆ − g∥2px

Nλ2
+

1

λ2
ES

[
∥(TK −KN )(fλ − g)∥2HK

]
≤ κ2∥f⋆ − g∥2px

Nλ2
+

κ2∥fλ − g∥2px

Nλ2
,

where we have used Smale & Zhou (2005)[Theorem 3] once more. Moreover, we note that Equa-
tion 13 is also the solution to the following Kernel optimization:

fλ = g + argmin
f∈HK

{
∥f − (f⋆ − g)∥2px

+ λ∥f∥2HK

}
.

Therefore, setting f to zero, we have ∥fλ − (f⋆ − g)∥2px
+ λ∥fλ∥2HK

≤ ∥f⋆ − g∥2px
, from which

we can conclude that ∥fλ − g∥2px
≤ 2∥f⋆ − g∥2px

. Putting all these results together and the fact that
∥f⋆ − g∥2px

≤ supx K(x, x)∥f⋆ − g∥2HK
, we have:

ES

[
∥Eε [fN ]− fλ∥2HK

]
≤ 3κ4∥f⋆ − g∥2H

Nλ2
. (14)

Population bias ∥f⋆ − fλ∥2H. To bound this term, we substitute the Mercer decomposition of f⋆ and
g, and the fact that the eigenvalues of (TK + λI)−1 are 1/(λ+ µj) as following:

fλ = g + (TK + λI)
−1

TK(f⋆ − g)

=

∞∑
j

(
µj

µj + λ
θj +

λ

µj + λ
ωj

)
ϕj .

Therefore, we have

∥f⋆ − fλ∥2H = ∥
∞∑
j=1

λ

µj + λ
(θj − ωj)ϕj∥2 ,

We can bound this bias term as follows by noting that {ϕj}j consist the orthonormal basis:

∥f⋆ − fλ∥2H =

∞∑
j=1

λ2

(µj + λ)2
(θj − ωj)

2 . (15)

Now, combining the results of Equations 14 and 15 gives us an upper-bound for B2, and combining
them with Equation 12 gets a bound for the test error. We have:

RN (λ; g) =
3κ4∥f⋆ − g∥2H

Nλ2
+

∞∑
j=1

λ2

(µj + λ)2
(θj − ωj)

2 +
κ2σ2

Nλ2

≤ 3κ4∥f⋆ − g∥2H
Nλ2

+ λ2

√√√√√
 ∞∑

j=1

µ2
j

(µj + λ)2

 ∞∑
j=1

1

µ2
j

(θj − ωj)2

+
κ2σ2

Nλ2
,
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where the inequality is due to the Cauchy-Schwarz inequality. Since
∑∞

j=1
1
µ2
j
(θj−ωj)

2 = D(f⋆, g)
2,

we can now write:

RN (λ; g) = O

3κ4∥f⋆ − g∥2H
Nλ2

+ λ2

√√√√√D(f⋆, g)2

 ∞∑
j=1

µ2
j

(µj + λ)2

+
κ2σ2

Nλ2


= O

3κ4∥f⋆ − g∥2H
Nλ2

+ λ2D(f⋆, g)

√∫ ∞

0

(
x−2r

x−2r + λ

)2

dx+
κ2σ2

Nλ2


= O

(
3κ4∥f⋆ − g∥2H

Nλ2
+ λ2− 1

4rD(f⋆, g)Cr +
κ2σ2

Nλ2

)
,

where

Cr =

(∫ ∞

0

(
x−2r

x−2r + λ

)2

dx

)1/2

=

(
1

2r

∫ ∞

0

v1−1/2r

(v + 1)2
dv

)1/2

=

√
B(1/2r, 2− 1/2r)

2r
,

with B(z1, z2) denoting the beta function. We conclude by noting that D(f⋆, g) ≥ ∥f⋆ − g∥2H.

E.3 PROOF OF COROLLARY 2.2.1

Corollary 2.2.1. Under the assumptions of Theorem 2.2, the optimal regularization parameter that
minimizes the test error is given by

λ⋆ ≍
(

σ2

ND(f⋆, g)

) 4r
8r+1

.

Setting λ = M
N , the optimal number of synthetic samples satisfies:

M⋆ ≍
(

σ2

D(f⋆, g)

) 4r
8r+1

N
4r+1
8r+1 .

Proof. The result follows by minimizing the bound in Theorem 2.2:

RN (λ; g) = O
(
λ2− 1

4rD(f⋆, g) +
σ2

N
λ− 1

2r

)
.

We differentiate the right-hand side with respect to λ and set the derivative to zero:

∂RN

∂λ
=

(
2− 1

4r

)
λ1− 1

4rD(f⋆, g)−
1

2r
· σ

2

N
λ− 1

2r−1 = 0.

Solving for λ gives

λ⋆ =

(
σ2

ND(f⋆, g)
· 1(

2− 1
4r

)
2r

) 4r
8r+1

≍
(

σ2

ND(f⋆, g)

) 4r
8r+1

.

Substituting λ⋆ = M⋆

N yields

M⋆ = Nλ⋆ ≍
(

σ2

D(f⋆, g)

) 4r
8r+1

N
4r+1
8r+1 ,

completing the proof.
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F GENERALIZATION BOUND WITH MIXED REAL AND SYNTHETIC DATA

F.1 LEMMATA

Definition F.1. The upper packing dimension of a measure ν is the quantity d∗ defined by:

d∗ := ess sup(Φ∗), Φ∗(x) := lim sup
δ→0

log pδ(x)

log δ
.

Definition F.2 (D-Regularity Clerico et al. (2022)). Let D be a measurable map P × P → [0,+∞].
Fix µ ∈ P and ξ ≥ 0. We say that a function f : Z → R is RD(ξ)-regular with respect to µ if
f ∈ L1(µ) and for every ν ∈ P such that Supp(ν) ⊆ Supp(µ) and f ∈ L1(ν),

|Eµ[f(Z)]− Eν [f(Z)]| ≤ ξD(µ, ν).

Lemma F.1 (2-Wasserstein Continuity Polyanskiy & Wu (2015); Raginsky et al. (2017); Clerico et al.
(2022)). Consider a measurable map f : Z → Rq (with q ≥ 1). Define the divergence measures

D2 : (µ, ν) 7→ W2 (µ , ν) .

If f is ξ-Lipschitz on Z , then f has regularity RD2(ξ) with respect to any µ ∈ P such that f ∈ L1(µ).

Lemma F.2. Consider a mapping A : SN → H and define the random variable x̃ ∼ px such that
x̃ ⊥⊥ S. Suppose there exists ε ≥ 0 such that for any i ∈ {1, ..., N}, it holds that

E[ℓ(hi, xi)− ℓ(h, xi)] ≤ ε, (16)

where h = A(S), hi = A(Si) and Si = {x1, ..., xi−1, x̃, xi+1, ..., xN}. Then it holds that

E[LS(A(S))− LX (A(S))] ≤ ε.

Proof. Follows from Lemma 7 of Bousquet & Elisseeff (2002).

F.2 STABILITY OF THE MIXED RISK MINIMIZER

Denote by A, the algorithm that minimizes the mixed empirical risk:

A(S) := argminh∈H Rλ(h,S) = hS.

Lemma F.3. Suppose that the function f : Y → R is M -smooth, then for any y ∈ Y ,

f(y)− f∗ ≥ 1

2M
∥∇f(y)∥2,

where f∗ := infy∈Y f(y).

Proof. Let ⟨·, ·⟩ denote the inner product associated with the space Y . From smoothness, it follows
that f is differentiable. Setting z = y − 1

M∇f(y), it further follows from smoothness that,

f(z)− f(y) ≤ ⟨∇f(y), z − y⟩+ M

2
∥z − y∥2

≤ − 1

M
⟨∇f(y),∇f(y)⟩+ 1

2M
∥∇f(y)∥2

≤ − 1

2M
∥∇f(y)∥2.

Rearranging and using the fact that f(z) ≥ f∗ leads to the bound in the statement.

Lemma F.4. Suppose Assumption 3.2 holds, then for any i ∈ {1, ..., N} it holds that,

E
[ ∫

∥h(x)−hi(x)∥2p′x(dx)
]
≤ 8M1

m2λ
E[Rλ(h,S)]+

4
√
2M1D(1− λ)

mNλ

(
E[LS(h)]

1/2+E[LX (h)]1/2
)
,

where h = A(S), hi = A(Si), Si is as defined in Lemma F.2.
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Proof. Define the measures,

q̂(dx) :=
1− λ

N

∑
xj∈S

δxj (dx) + λp′x(dx), q̃(dx) :=
1− λ

N

∑
xj∈Si

δxj (dx) + λp′x(dx).

Using the strong convexity of c we obtain,

⟨hi(x)− h(x),∇1c(h
i(x), x)⟩ ≥ c(hi(x), x)− c(h(x), x) +

m

2
∥hi(x)− h(x)∥2.

which when integrated with respect to q̂, leads to∫
⟨hi(x)− h(x),∇1c(h

i(x), x)⟩ q̂(dx) = Rλ(h
i,S)−Rλ(h,S) +

m

2

∫
∥hi(x)− h(x)∥2q̂(dx).

The right-hand side is lower bounded further using Rλ(h
i,S) ≥ Rλ(h,S) and the left-hand side is

upper bounded using,∫
⟨hi(x)− h(x),∇1c(h

i(x), x)⟩ q̂(dx)

=

∫
⟨hi(x)− h(x),∇1c(h

i(x), x)⟩ q̃(dx)

+
1− λ

N

(
⟨hi(xi)− h(xi),∇1c(h

i(xi), xi)⟩ − ⟨hi(x̃)− h(x̃),∇1c(h
i(x̃), x̃)⟩

)
≤
(∫

∥hi(x)− h(x)∥2 q̃(dx)
)1/2(∫

∥∇1c(h
i(x), x)∥2 q̃(dx)

)1/2

+
D(1− λ)

N

(
∥∇1c(h

i(xi), xi)∥+ ∥∇1c(h
i(x̃), x̃)∥

)
≤
√
2M1

(∫
∥hi(x)− h(x)∥2 q̃(dx)

)1/2

Rλ(h
i,Si)1/2 +

√
2M1D(1− λ)

N

(
c(hi(xi), xi)

1/2 + c(hi(x̃), x̃)1/2
)
.

The first inequality above follows from the Cauchy-Schwarz inequality whereas the seconds from
Lemma F.3.

This results in the bound,∫
∥hi(x)− h(x)∥2q̂(dx) ≤ 2

√
2M1

m

(∫
∥hi(x)− h(x)∥2 q̃(dx)

)1/2

Rλ(h,S)
1/2

+
2
√
2M1D(1− λ)

mN

(
c(hi(xi), xi)1/2 + c(hi(x̃), x̃)1/2

)
.

Taking the expectation, we use the fact that (h, hi,Si) shares the same law as (hi, h,S) and thus
can be exchanged, as well as the symmetry of the algorithm A under permutations in the dataset, to
obtain,

E
[ ∫

∥hi(x)− h(x)∥2q̂(dx)
]
≤ 2

√
2M1

m

(
E
[ ∫

∥hi(x)− h(x)∥2 q̂(dx)
])1/2

E[Rλ(h
i,S)]1/2

+
2
√
2M1D(1− λ)

mN

(
E[LS(h)]

1/2 + E[LX (h)]1/2
)

≤ 2
√
2M1

m

(
E
[ ∫

∥hi(x)− h(x)∥2 q̂(dx)
])1/2

E[Rλ(h
i,S)]1/2

+
2
√
2M1D(1− λ)

mN

(
2E[LS(h)]

1/2 + ε1/2
)
,

where in the final inequality, we used Lemma F.2. By solving the quadratic, we deduce that this
implies,

E
[ ∫

∥hi(x)− h(x)∥2q̂(dx, dy)
]1/2

≤
√
2M1

m
E[Rλ(h,S)]

1/2

+

√
2M1

m2
E[Rλ(h,S)] +

2
√
2M1D(1− λ)

mN

(
2E[LS(h)]1/2 + ε1/2

)
.
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This leads to the bound,

E
[ ∫

∥hi(x)− h(x)∥2p′x(dx)
]
≤ 1

λ
E
[ ∫

∥hi(x)− h(x)∥2q̂(dx, dy)
]

≤ 8M1

m2λ
E[Rλ(h,S)] +

4
√
2M1D(1− λ)

mNλ

(
2E[LS(h)]

1/2 + ε1/2
)
.

Lemma F.5. Suppose that H consists of L-Lipschitz functions, then for any c > 1 and δ > 0
sufficiently small, the assumption in Equation 16 is satisfied with

ε ≤ 1

2
E[LS(A(S))] + 4

√
2Mδ−cd∗

sup
i

E
[ ∫

∥h(x)− hi(x)∥2px(dx)

]
+ 8ML2δ2.

Proof. Define ε = E[c(hi(xi), xi)− c(h(xi), xi)], then because of the smoothness of c, we obtain

ε ≤ E[⟨hi(xi)− h(xi),∇1c(h(xi), xi)⟩] +M1E[∥hi(xi)− h(xi)∥2]
≤
√

2M1E[∥hi(xi)− h(xi)∥2]1/2E[c(h(xi), xi)]1/2 +M1E[∥hi(xi)− h(xi)∥2]
≤
√

2M1E[∥hi(xi)− h(xi)∥2]1/2E[LS(h)]
1/2 +M1E[∥hi(xi)− h(xi)∥2]

≤ 1

2
E[LS(h)] + 2M1E[∥hi(xi)− h(xi)∥2]

Define the measure,
px̃,δ

x (dx) := 1Bδ(x̃)(x) p
′
x(Bδ(x̃))−1 p′x(dx).

Then we can relate function evaluations to the integral over p′x as follows:

∥h(x̃)− hi(x̃)∥ ≤
(∫

∥h(x)− hi(x)∥2 px̃,δ
x (dx)

)1/2

+

(∫
∥h(x)− h(x̃)∥2 px̃,δ

x (dx)

)1/2

+

(∫
∥hi(x)− hi(x̃)∥2 px̃,δ

x (dx)

)1/2

≤ p′x(Bδ(x̃))
−1/2

(∫
∥h(x)− hi(x)∥2 p′x(dx)

)1/2

+ 2Lδ.

Taking the expectation gives,

E[∥h(x̃)− hi(x̃)∥2] ≤ 2Ex̃∼p′
x

[
p′x(Bδ(x̃))

−2
]1/2

E
[ ∫

∥h(x)− hi(x)∥2 p′x(dx)
]1/2

+ 8L2δ2.

For any c > 1, we have that for sufficiently small δ,

log p′x(Bδ(x))

log δ
≤ cd∗.

From Fatou’s Lemma we have

lim sup
δ→0+

E
[
p′x(Bδ(x̃))

−2δ2d
∗c
]
≤ E

[
lim sup
δ→0+

(
p′x(Bδ(x̃))

−2δ2d
∗c
)]

= E
[
lim sup
δ→0+

exp
(
− 2 log p′x(Bδ(x̃)) + 2d∗c log δ

)]
= E

[
lim sup
δ→0+

exp

(
2 log(1/δ)

(
log p′x(Bδ(x̃))

log δ
− cd∗

)]
≤ 1.

Therefore, for δ sufficiently small, we have the non-asymptotic bound

E
[
p′x(Bδ(x̃))

−2
]
≤ 2δ−2d∗c.
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F.3 PROOF OF THEOREM 3.1

Theorem 3.1. Let H be a class of L-Lipschitz functions. Suppose Assumptions 3.1, and 3.2 hold
and let hS ∈ argminh∈H Rλ(h,S). Then, there exists a universal constant C > 0 and a sample
size threshold N0 > 0 such that for all N ≥ N0, the algorithm A(S) = hS is uniformly stable with
stability constant

ε ≲
1

λ
Rλ(hS) + Cξ

(
M1

m2L2λ
Rλ(hS) +

√
M1M2(1− λ)D2

mL2λN

) 1
d⋆+1

,

where d⋆ denotes the upper packing dimension of the measure p′x (see Appendix F.2 for details),
ξ = M1L

2 + M2, η = M1/m
2, and τ =

√
M1M2/m. Let r⋆ = minh∈H r(h) be the true

population risk minimizer. For any λ ∈ (0, 1), the generalization gap satisfies

E[r(hS)]− r⋆ ≲ λξW2 (px , p′x)
2
+ C(1− λ)ξ

(
η

L2λ
r⋆ +

ηξ

L2
W2 (px , p′x)

2
+

τ(1− λ)D2

L2λN

) 1
d⋆+1

.

Proof. We note that the first part of the theorem is satisfied by Lemma F.5, where we showed the
stability of algorithm A for any δ > 0. Optimizing with respect to δ, provides us with

ε ≲
1

λ
Rλ(hS) + Cξ

(
M1

m2L2λ
Rλ(hS) +

√
M1M2(1− λ)D2

mL2λN

) 1
d⋆+1

.

Now, we use the following decomposition to upper bound the generalization error:

r(h) = [r(h)− rλ(h)] + [rλ(h)−Rλ(h)] +Rλ(h).

We now bound each of the three terms. We begin with the first and third terms, and then analyze the
second term, which we refer to as the stability term.

Bounding r(h)− rλ(h): We compute

r(h)− rλ(h) = Epx [ℓ(h,x)]− (1− λ)Epx [ℓ(h,x)]− λEp′
x
[ℓ(h,x)]

= λ
(
Epx [ℓ(h,x)]− Ep′

x
[ℓ(h,x)]

)
≤ λξW2(px, p

′
x),

where the inequality follows from Lemma F.1.

Bounding Rλ(h): Let hS = argminh∈H Rλ(h,S) be the empirical minimizer. Then, for any
h⋆ ∈ H, by optimality of hS, we have

Rλ(hS,S) ≤ Rλ(h⋆,S),

ES[Rλ(hS,S)] ≤ ES[Rλ(h⋆,S)],

Rλ(hS) ≤ rλ(h⋆).

From the definition of rλ(h⋆) (see Equation 3), we can write:

Rλ(hS) ≤ (1− λ)Epx [ℓ(h⋆,x)] + λEp′
x
[ℓ(h⋆,x)]

= r(h⋆) + λ
(
Ep′

x
[ℓ(h⋆,x)]− Epx [ℓ(h⋆,x)]

)
.

If ℓ(h,x) is ξ-Lipschitz, then by Lemma F.1,

Ep′
x
[ℓ(h⋆,x)]− Epx [ℓ(h⋆,x)] ≤ ξW2 (px , p′x) ,

and thus,

Rλ(hS) ≤ r(h⋆) + ξλW2 (px , p′x) .

Finally, we can choose h⋆ = argminh∈H r(h) to tighten the bound. It is now sufficient to study the
stability term.
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Bounding rλ(h) −Rλ(h): We start by substituting the definition of each term and simplifying
them. We have:

rλ(h)−Rλ(h) = (1− λ) (Epx [ℓ(h,x)]− ES [Rλ(h,S)])

= (1− λ) (ES,x′ [ℓ(hS,x
′)]− ES,i [Rλ(hS,xi)])

= (1− λ) (ES,x′ [ℓ(hS′ ,xi)]− ES,i [Rλ(hS,xi)]) ,

where the first equality is due to the fact that λEp′
x
[ℓ(h,x)] is common in both terms. The second

equality is by the definition of each term, and the fact that x′ ⊥⊥ S. Note that i ∼ Unif([N ]). The
final line results from defining S′ = S∪{x′} \ {xi}, which is a neighboring set to S. Now, assuming
that we have ε-uniformly stable algorithm A, then we can write

rλ(h)−Rλ(h) = (1− λ)ES,x′,i [ℓ(hS′ ,xi)− ℓ(hS,xi)]

≤ (1− λ)ε .

These combine to give the bound,

E[r(h)− r(h⋆)] ≤ 2λCW2(px, p
′
x) + (1− λ)ε.

We conclude by using the first part of the proof for the stability of the algorithm A.

G THEORETICAL RESULTS AND DISCUSSIONS OF DOMAIN SHIFT

G.1 PROOF OF THEOREM 5.1

Theorem 5.1. Under Assumption 2.1, for the kernel regression problem defined in Equation 1 and
any fixed regularization parameter λ ≥ 0, the test error under domain shift satisfies the bound:

RN (λ; g) = O
(
µmaxλ

r+1D(f⋆, f̃) + λmax{2− 1
4r ,r+1}D(f⋆, g) +

σ2

N
λ− 1

2r

)
,

where µmax = maxj µj , and D(·, ·) denotes the distributional discrepancy, as in Theorem 2.2.

Proof. The proof follows the proof of Theorem 2.2 in Appendix E.2, using the bias-variance decom-
position. We note that the variance term remains the same as it only depends on the noise of the data,
while the bias term will have the dependency on all three terms of f⋆, f̃ and g. Let us start by the
formal definition of bias term:

B = ∥f⋆ − fN∥Hk

= ∥
∞∑
j=1

(
λ

µj + λ
(θ⋆j − θj) +

λ

µj + λ
(θ⋆j − ωj)

)
ϕj∥ ,

where θ⋆, θ, and ω refer to the Mercer coefficient of f⋆, f̃ , and g, respectively. Therefore, we have:

B2 =
∑
j

[
µ2
j

(µj + λ)2
(θ⋆j − θj)

2 +
λ2

(µj + λ)2
(θ⋆j , ωj) +

λµj

(µj + λ)2
(θ⋆j − θ)(θ⋆j − ωj)

]
(17)

≤
∑
j

µ2
j

(µj + λ)2
(θ⋆j − θj)

2 + λ2− 1
4rD(f⋆, g)Cr +

∑
j

λµj

(µj + λ)2
(θ⋆j − θ)(θ⋆j − ωj) (18)

≤
∑
j

µ2
j

(µj + λ)2
(θ⋆j − θj)

2 + λ2− 1
4rD(f⋆, g)Cr +

∑
j

λµj

2(µj + λ)2
(
(θ⋆j − θ)2 + (θ⋆j − ωj)

2
)
,

(19)

where the first inequality is taken from the proof of Theorem 2.2, and the second inequality results
from the arithmetic-geometric inequality. Now, we start by bounding the first term. By Cauchy-
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Schwarz inequality, we have:

∑
j

µ2
j

(µj + λ)2
(θ⋆j − θj)

2 ≤

√√√√√
∑

j

µ4
j

(µj + λ)2

∑
j

1

µ2
j

(θ⋆j − θj)2


≤ D(f⋆, f̃)

√√√√∑
j

µ4
j

(µj + λ)2
.

Since µj has polynomial decay, there exists j⋆ such that µj⋆ ≍ λ, more precisely j⋆ ≍ λ2r. When
j ≪ j⋆, µj ≫ λ and vice versa. Therefore, we have:∑

j

µ2
j

(µj + λ)2
(θ⋆j − θj)

2 = O

D(f⋆, f̃)

√∑
j≪j⋆

µ2
j +

∑
j≫j⋆

λ−2µ4
j


= O

(
D(f⋆, f̃)

√
µ2

maxλ
2r + λ−2

∫ ∞

λ

x−8r dx

)
= O

(
µmaxλ

rD(f⋆, f̃)
)
.

Now, we move to bound the third term in Equation 19. We have:∑
j

λµj

2(µj + λ)2
(
(θ⋆j − θ)2 + (θ⋆j − ωj)

2
)
=
∑
j

λµ3
j

2(µj + λ)2
(θ⋆j − θ)2 + (θ⋆j − ωj)

2

µ2
j

≤ λ

2

√√√√∑
j

µ3
j

(µj + λ)2

√∑
j

1

µ2
j

(θ⋆j − θj)2 +

√∑
j

1

µ2
j

(θ⋆j − ωj)2


≤ λ

2

√√√√∑
j

µ3
j

(µj + λ)2

(
D(f⋆, g) +D(f⋆, f̃)

)

= O

λ

2

√√√√∑
j≪j⋆

µj +
∑
j≫j⋆

µ3
j

λ

(
D(f⋆, g) +D(f⋆, f̃)

)
= O

(
µ
1/2
max

2
λr+1

(
D(f⋆, g) +D(f⋆, f̃)

))
,

where the first inequality is by Cauchy-Schwarz, and the rest are by the definitions and expansion of
the terms. Combining all the terms completes the proof.

G.2 PROOF OF THEOREM 5.2

Theorem 5.2. Let H be a class of L-Lipschitz functions. Suppose Assumptions 3.1, and 3.2 hold and
let hS ∈ argminh∈H Rλ(h,S). Then, for any λ ∈ (0, 1), the generalization gap under the domain
shift satisfies

E[r(hS)]− r⋆ ≲ λξW2 (p
⋆
x , p′x)

2
+ (1− λ)ξW2 (p

⋆
x , px)

2

+ C(1− λ)ξ

(
M1

m2L2λ
r⋆ +

M1ξ

m2L2
W2 (p

⋆
x , px)

2
+

√
M1M2(1− λ)D2

mL2λN

) 1
d⋆+1

where r⋆ = minh∈H r⋆(h) is the true population risk minimizer of the target domain.

Proof. For any h ∈ H, we show r⋆(h), and r⋆λ(h) as
r⋆(h) = Ep⋆

x
[ℓ(h,x)] , r⋆λ(h) = (1− λ)r⋆(h) + Ep′

x
[ℓ(h,x)] . (20)

We now have the following decomposition for the generalization error:
r⋆(h) = (r⋆(h)− r⋆λ(h)) + (r⋆λ(h)− rλ(h)) + (rλ(h)−Rλ(h)) +Rλ(h) .

Similar to Appendix F.3, we bound each of the terms separately. We have:
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Bounding r⋆(h)− r⋆λ(h): Let us expand the term by the definition of each component:

r⋆(h)− r⋆λ(h) = Ep⋆
x
[ℓ(h,x)]−

(
(1− λ)r⋆(h) + Ep′

x
[ℓ(h,x)]

)
= λ

(
Ep⋆

x
[ℓ(h,x)]− Ep′

x
[ℓ(h,x)]

)
≤ λξW2 (p

⋆
x , p′x) ,

where the last inequality is by Lemma F.1.

Bounding r⋆λ(h)− rλ(h): We again use the definitions:

r⋆λ(h)− rλ(h) =
(
(1− λ)r⋆(h) + Ep′

x
[ℓ(h,x)]

)
−
(
(1− λ)r(h) + Ep′

x
[ℓ(h,x)]

)
(21)

= (1− λ)(r⋆λ(h)− r(h)) (22)

= (1− λ)
(
Ep⋆

x
[ℓ(h,x)]− Epx [ℓ(h,x)]

)
(23)

≤ (1− λ)ξW2 (p
⋆
x , px) , (24)

where we have once again used Lemma F.1.

Bounding rλ(h) − Rλ(h): Similar to Appendix F.3, we refer to this term as the stability term.
Note that all the conditions for Lemma F.2 hold here, therefore, this term is the same as Appendix F.3
since the stability is uniform. Thus, rλ(h)−Rλ(h) ≤ (1− λ)ε for:

ε ≤ 2Cξ

(
1

λ
Rλ(hS) +

(1− λ)D2

λN

) 1
d⋆+1

. (25)

We now only need to bound Rλ(hS), for both Equations 20 and 25.

Bounding Rλ(hS): Since hS = argminh∈H Rλ(h,S) is the empirical minimizer, for any h′ ∈ H,
by optimality of hS, we have

Rλ(hS,S) ≤ Rλ(h
′,S),

ES[Rλ(hS,S)] ≤ ES[Rλ(h
′,S)],

Rλ(hS) ≤ rλ(h
′) .

Now, let h′ = argminh∈H rλ(h). Then, for any h⋆ ∈ H, we have

Rλ(hS,S) ≤ rλ(h
′) ≤ rλ(h⋆)

≤ r⋆λ(h⋆) + (1− λ)ξW2 (p
⋆
x , px)

≤ r⋆(h⋆) + λ
(
Ep⋆

x
[ℓ(h⋆,x)]− Ep′

x
[ℓ(h⋆,x)]

)
+ (1− λ)ξW2 (p

⋆
x , px)

≤ r⋆(h⋆) + λξW2 (p
⋆
x , p′x) + (1− λ)ξW2 (p

⋆
x , px) ,

where the first inequality is by Equation 24, and the second inequality is from the definition and
the last one is by Lemma F.1. Now, let h⋆ = argminh∈H r⋆(h). Combining all bounds together
completes the proof.

H EXPERIMENTAL SETUP

H.1 OPTIMAL REGULARIZATION IN KERNEL RIDGE REGRESSION

We study a nonparametric regression problem wherein the ground truth function f⋆ and an auxiliary
function g are both defined as truncated series expansions in an orthonormal sine basis, with polyno-
mially decaying coefficients to encode varying degrees of smoothness. The target function is given
by f⋆(x) =

∑Tf

j=1(j + 1)−rs sin(π(j + 1)x), while g is constructed analogously using a decay rate
s′ over the first Tg terms. Training data consists of N = 15 i.i.d. samples {xi}ni=1 drawn uniformly
from [0, 3], with noisy observations yi = f⋆(xi) + εi, where εi ∼ N (0, 0.1), alongside noiseless
evaluations of g(xi). We employ our modified kernel ridge regression (Lemma 2.1) method using a
Mercer kernel with eigenvalue decay µj ≍ j−2r, incorporating g as a regularization term to enhances
the standard kernel estimator. The predictive performance is evaluated on a dense test grid (test set of
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500 points) by computing the empirical L2-distance between the learned function fN and the true
function f⋆. This procedure is repeated across a logarithmically spaced range of regularization param-
eters λ ∈ [10−10, 1010]. In addition, we compute the theoretically optimal regularization parameter
by minimizing an upper bound derived from the distance D(f⋆, g), which depends explicitly on the
eigendecay and coefficient mismatch between f⋆ and g, based on Theorem 2.2:

λ∗ = argmin
λ>0

(
C2

r

σ2

N
λ−1/(2r) + Crλ

2−1/(4r)D(f⋆, g)

)
.

Our implementation uses SciPy for numerical integration and optimization, with special care given
to numerical stability through pseudo-inverses and adaptive regularization. To capture the effect of
the difference between f⋆ and g, we run the experiment with various values as depicted in Table 1.
Figures 1, 5 and 6 illustrate the impact of distributional alignment between the true function f⋆ and the
synthetic generator g on the behaviour of the estimated function fN and the choice of regularization
strength λ. In Figure 5, the synthetic generator perfectly matches the true distribution (s = s′,
and Tf = Tg), resulting in no discrepancy between f⋆, g, and fN . Consequently, the prediction
error ∥fN − f⋆∥L2

is minimized for the largest possible regularization strength, and our algorithm
successfully selects this value. In contrast, Figure 6 considers a case with distribution mismatch
(large difference between s, s′, and Tf , Tg), leading to larger discrepancies between the functions.
This results in a characteristic U-shaped prediction error curve, as shown in Figure 6b. While
the theoretically chosen regularization strength (star marker) slightly overestimates the empirical
optimum (dashed orange line), the difference remains negligible, demonstrating the robustness of our
theoretical bound under mismatch. The experimental details are shown in Table 1.

Table 1: Effective parameters for the modified kernel regression.

r s s′ Tf Tg D(f⋆, g) Figure

2.0 0.8 0.8 100 100 0.0000 Figure 5
2.0 0.8 1.5 100 10 737.65 Figure 1
2.0 0.8 2.5 100 10 15509.16 Figure 6
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Figure 5: (a) Comparison of the true function f⋆ (blue), the synthetic generator g (green), and the estimated
function fN (orange), obtained via Lemma 2.1, with parameters r = 2.0, s = 0.8, and s′ = 0.8. Since g = f⋆
in this setting, the RKHS distance is zero and all curves coincide. (b) Prediction error ∥fN − f⋆∥L2 as a function
of the regularization strength λ. As expected, there is no U-shaped behaviour since the generator fully matches
the true distribution. The theoretical optimum selects a large λ (star marker), while the empirical optimum
(dashed orange line) selects a smaller value due to numerical precision limits.
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Figure 6: (a) Comparison of the true function f⋆ (blue), the synthetic generator g (green), and the estimated
function fN (orange), obtained via Lemma 2.1, with parameters r = 2.0, s = 0.8, and s′ = 2.5. The distance
between the functions is larger compared to Figure 1. (b) Prediction error ∥fN − f⋆∥L2 as a function of the
regularization strength λ. A clear U-shaped curve is observed, and while the theoretically optimal λ (star marker)
slightly overestimates the empirical optimum (dashed orange line), the difference is negligible.

H.2 NATURAL IMAGES ON CIFAR-10

We investigate the effect of synthetic data on classification performance using a conditional diffusion
model. Specifically, we train a diffusion model on CIFAR-10 to generate class-conditional synthetic
images, which are then used to augment the real training set. We compare two classifiers: one trained
solely on real data, and another trained on a mixture of real and synthetic samples. Performance is
evaluated across varying synthetic-to-real data ratios, and validation accuracy is reported for each
configuration. The real dataset used to train the diffusion model is disjoint from the one used for
training and validating the classifier, allowing us to isolate the effect of synthetic data augmentation.
Detailed experimental settings are provided in Appendix H.2.1.

In Figure 7, we observe that classification accuracy improves with increasing amounts of mixed
training data when the distributional distance between the synthetic generator and real data is small
(orange line in Appendix H.2). In contrast, for generators with moderate to high distributional distance
(i.e., lower quality - see green and red lines), we observe diminishing returns or even performance
degradation. This follows our insights from Section 3. Similar trends are observed at the class level,
although the results are noisier due to the reduced amount of data per class—approximately one-tenth
of the total. These results indicate that the trained diffusion model captures different classes with
varying fidelity, which in turn affects per-class generalization.

This highlights an important practical consideration: when class-wise generalization is a priority, it is
crucial to ensure that the synthetic data generator performs well not only in aggregate but also across
different classes or groups.

H.2.1 EXPERIMENTAL DETAILS FOR CIFAR-10

Dataset and preprocessing We conduct experiments on CIFAR-10 Krizhevsky et al. (2009), a
dataset of 60,000 colour images (32×32 pixels) across 10 object categories, with 50,000 training
and 10,000 test samples. For each run, we stratify the training set to construct three disjoint subsets:
a labelled training set Dtrain containing N examples, a validation set Dval of 5,000 examples, and
a separate set Ddiff of 50,000 examples used for training the diffusion model. Stratified sampling
ensures class balance across all subsets. All images are linearly rescaled to the [−1, 1] range. During
classifier training, we apply random horizontal flips as the only form of data augmentation. No
augmentations are used during diffusion model training or validation.

Conditional diffusion model Our synthetic data generator is a class-conditional diffusion model
trained on Ddiff. The architecture is a UNet2D with six downsampling and upsampling blocks, using
channel sizes [128, 128, 256, 256, 512, 512]. Self-attention layers are included at the 16×16 spatial
resolution. Class conditioning is achieved via a learnable embedding table of dimension 512. We train
the model using a linear noise schedule over T = 1000 diffusion steps. Optimization is performed
with AdamW using a learning rate of 10−4 and (β1, β2) = (0.9, 0.999). We apply cosine learning
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Figure 7: (a) Average accuracy vs. training data size. Increasing the amount of real data (blue line) consistently
increases the accuracy of the classification, while for the mixed-data it depends on the quality of the generated
samples. (b) Accuracy of each class vs. training data size. We observe a similar pattern, however noisier.

rate decay with 500 warmup steps, use mixed-precision training (FP16), and set the batch size to 64.
Each model is trained for 100 epochs.

Classification task For the downstream task, we use a compact convolutional neural network. It
consists of two convolutional layers with 3×3 kernels and output channels 32 and 64, respectively,
each followed by ReLU activation and max pooling. The output is flattened and passed through
a fully connected layer with 512 units, followed by ReLU, a dropout layer with rate 0.25, and a
final fully connected layer with 10 outputs. We train this classifier using the Adam optimizer with a
learning rate of 10−3, a batch size of 64, and up to 20 epochs with early stopping based on validation
performance. Cross-entropy loss is used for optimization.
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Experimental protocol For each configuration (N,M), where M denotes the number of synthetic
samples to generate, we first train the conditional diffusion model on Ddiff. We then sample M
class-conditional synthetic images to form Dsynth. Two classifiers are trained: freal on Dtrain alone, and
faug on the augmented dataset Dtrain ∪Dsynth. Both classifiers are evaluated on the same validation set
Dval using the classification accuracy metric:

Acc =
1

|Dval|
∑

(x,y)∈Dval

I (f(x) = y) .

Hyperparameter configurations We explore several synthetic-to-real data ratios M/N ∈
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 5.0}, with each configuration repeated across multiple random
seeds. A summary of the hyperparameters is provided in Table 2. All experiments are implemented
with the HuggingFace Diffusers library and executed on NVIDIA A100 GPUs with 40GB memory.

Table 2: Hyperparameter configurations for CIFAR-10 experiments

Parameter Values

Real data size (N ) 500
Synthetic-to-real ratio (M/N ) 0.5, 1.0, 3, 9
Diffusion steps (T ) 1000
Total noise variances 0.0, 0.5, 1.0

H.2.2 ADDITIONAL RESULTS

H.3 REAL-WORLD MEDICAL IMAGING

In this section, we provide additional details for the experimental setup of Section 4.

Diffusion model training Our conditional diffusion model synthesises MRI slices conditioned on
anatomical tissue masks. The architecture begins with a 1× 1 convolutional layer for initial feature
projection, followed by a sinusoidal positional embedding to encode timestep information. The
model includes four down-sampling stages, each consisting of two ResNet blocks, a linear attention
layer with residual connection, and a 3 × 3 convolutional down-sampling layer. This is followed
by a bottleneck module comprising two additional ResNet blocks and another linear attention layer.
The up-sampling path mirrors the down-sampling structure, replacing down-sampling layers with
convolutional up-sampling layers of the same kernel size. Finally, a 1× 1 convolutional layer projects
the features to the desired output channels.

The model follows a hierarchical channel structure, starting with 64 channels, doubling at each
down-sampling stage (64 → 128 → 256 → 512 at the bottleneck), then halving symmetrically during
up-sampling back to 64. Conditioning is achieved by concatenating a four-channel binary mask (GM,
WM, CSF, lesion) with the timestep embedding and spatial inputs at the input layer. The model
is trained on slices from the NeuroRx dataset using mean squared error loss over 600 denoising
timesteps. All modalities (T1, T2, PD) are trained independently.

Segmentation Model and Task A vanilla U-Net is used for lesion segmentation. The network
comprises three downsampling and upsampling layers with skip connections, ReLU activations, and
max pooling. Feature channels double in the downsampling path (64 → 128 → 256) and halve in the
upsampling path symmetrically. For all experiments, the models train for up to 800 epochs or until
plateau, validated on a fixed NeuroRx set.

Hyperparameter Configuration We perform a targeted grid search for hyperparameters consider-
ing our hardware constraints. The search space and the final configuration is shown in Table 3. All
experiments are executed on NVIDIA A100 GPUs with 40GB memory, with no gradient clipping or
additional augmentations.
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Table 3: Hyperparameter configurations for medical imaging experiments

Parameter Values / Search Space

Batch size 16, 32, 64, 128 (selected: 128)
Learning rate {1e-4, 5e-4, 1e-3} (selected: 1e-4)
Epochs Up to 800 or until loss plateau
Optimizer Adam
LR Scheduler Exponential decay (γ = 0.99)
Weight Init Kaiming Uniform
Loss Function Focal + Tversky loss (equal weight)
Focal Loss Params δ = 0.25, λ = 2
Tversky Loss Params α = 0.7, β = 0.3
Gradient Clipping None

H.3.1 ADDITIONAL RESULTS

From Theorem 3.1, we expect that as the quality of synthetic samples deteriorates, i.e., as the
distributional distance between the synthetic data generator and the real data increases, the optimal
synthetic-to-real ratio should decrease, placing greater emphasis on the real data. Consequently, we
anticipate an increase in the validation loss. Figure 8 empirically supports this expectation. In our
setting, this distributional distance is modulated by the sampling timestep of the diffusion model:
higher timesteps correspond to noisier, and thus less realistic, synthetic samples.
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Figure 8: Optimal synthetic-to-real ratio (blue line) and the optimal validation loss (orange dashed line) as the
distributional distance or equivalently the diffusion sampling timestep grows.

For reproducibility, we repeat each experiment using three different random seeds to account for
variability introduced by stochastic elements in the training and sampling processes. The reported
results in Figure 9 represent the mean performance across these runs, with corresponding confidence
intervals to capture the variability. This approach ensures that our conclusions are not driven by a
particular random initialization and provides a more robust estimate of model behavior.
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(a) Validation loss vs. synthetic-to-real data ratio.
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(b) Optimal choice of ratio and final validation loss.
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Figure 9: (a) Validation loss vs. synthetic-to-real data ratio across different sampling timesteps, representing
varying distributional distances. We observe a sharper U-turn effect as the distributional distance increases. (b)
The optimal synthetic-to-real data ratio decreases as synthetic samples become noisier or deviate further from
the true distribution. (c) Incorporating synthetic data improves out-of-domain generalization when the synthetic
data distribution is closer to the target than the source. All experiments are repeated with three different seeds.
The results align with those shown in the main text for single experimental runs.

H.4 PRACTICAL INSIGHTS

In this section, we investigate the effects of signal-to-noise ratio, i.e., heterogeneity, and the regularity
of the problem. As shown in Figure 10, varying the noise level across different values of r exhibits a
pattern consistent with our observations in Section 6. We again find that a 1:2 ratio of real to synthetic
data performs well across these scenarios. While changes in the regularity of the objectives (i.e., r)
influence the scale of the test error, the overall behavior remains consistent.

Similarly, under domain shift (see Figure 11), the effect of the signal-to-noise ratio aligns with
the in-domain behavior reported in Section 6. Specifically, higher heterogeneity necessitates more
careful selection of the real-to-synthetic ratio, as higher ratios can degrade performance when the
distributional distance from the target domain is large.
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Figure 10: Effect of signal-to-noise ratio on the choice of optimal synthetic-to-real data ratio, across two different
values of r ∈ {0.5, 5}.
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Figure 11: Effect of signal-to-noise ratio on the generalization error. All the plots are with r = 1, µmax = 1.

I EXPANDED RELATED WORK

Synthetic Data The rapid advancement of generative models has significantly improved data
generation quality, making it increasingly difficult to distinguish between synthetic and real data.
Many previous works (Zhang et al., 2015; Cortés et al., 2024; Shrivastava et al., 2017; Lee et al., 2024;
Seib et al., 2020; Zhezherau & Yanockin, 2024) have demonstrated the effectiveness of synthetic data
in enhancing the performance of deep learning methods and stabilizing training, both in supervised
and unsupervised settings, through augmentation and various applications. Alemohammad et al.
(2024a); Shumailov et al. (2024); Briesch et al. (2023) analyzed the effects of training generative
models on synthetic data across multiple iterations, creating a self-consuming loop, and found that
without sufficient fresh real data, model quality or diversity deteriorates over time, leading to model
collapse. To further investigate this, Dohmatob et al. (2024) studied model collapse theoretically in
the regression case. Similarly, Bertrand et al. (2024); Gerstgrasser et al. (2024) looked at iteratively
training generative models on mixed datasets, concluding that stability is maintained if the initial
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model is accurate and the real data proportion is sufficiently high. Ferbach et al. (2024) expanded on
this by investigating the impact of user-curated synthetic data on iterative retraining, framing it as an
implicit preference optimization process and exploring its theoretical effects on model stability and
quality. In contrast, our paper does not examine iterative learning but instead focuses on a single-step
approach, framing synthetic data as a regularizer. Possibly closest to our work is Jain et al. (2024),
where the authors use a weighted empirical risk minimization approach to integrate surrogate data,
reducing test error even when unrelated to the original data. However, their work differs from ours in
two main aspects: (1) they focus on the scaling law of the test error, while we aim to determine the
optimal synthetic-to-real data ratio or regularizer weight; (2) they do not account for the distance
between synthetic and real data distributions, while our work specifically provides a bound based on
this difference.

Domain Adaptation and Transfer Learning Recent research has explored the intersection of
domain adaptation and synthetic data, showing how synthetic data can bridge the gap between source
and target domains, thereby enhancing model transferability and generalization across tasks (Mullick
et al., 2023; Peng et al., 2018; Imbusch et al., 2022; Shakeri et al., 2020). A major challenge in
transfer learning is the distribution gap, and several studies address this by using synthetic data to
fine-tune models, improving generalizability (Mishra et al., 2022; Kim et al., 2020; Sariyildiz et al.,
2023). Gerace et al. (2022) propose synthetic data as a framework for modeling correlations between
datasets, showing improvements in generalization when transferring learned features from source to
target tasks. On a more theoretical level, several works connect domain adaptation to distributionally
robust learning, demonstrating that adding unlabeled or labeled data improves generalization; these
setups can be easily extended to include synthetic data (Saberi et al., 2024a;b; Wu et al., 2022; Hou
et al., 2023).

Generalization Bounds The first generalization bounds were based on characterizations of the
hypothesis space’s complexity, such as the VC dimension or Rademacher complexity (Bousquet
et al., 2003; Vapnik, 2000; Shalev-Shwartz & Ben-David, 2014). However, due to their algorithm-
independent nature, these bounds must hold even for the worst algorithm within a given hypothesis
space, making them often inadequate for modern over-parameterized neural networks, where the
complexity measure typically scales exponentially with the architecture’s depth (Anthony & Bartlett,
2002; Zhang et al., 2017; Belkin et al., 2018). To address this issue, recent approaches focus on
providing algorithm-dependent generalization bounds. The underlying intuition is that a hypothesis
less dependent on the input dataset is less prone to overfitting and, therefore, generalizes better.
Among the results building on this idea are bounds based on uniform stability (Bousquet & Elisseeff,
2002; Attia & Koren, 2022), differential privacy (Dwork & Roth, 2014), PAC-Bayesian bounds
(Guedj, 2019; McAllester, 1999), information-theoretic bounds (Russo & Zou, 2020; Gálvez et al.,
2020; Haghifam et al., 2020), and chained bounds (Clerico et al., 2022; Asadi et al., 2018). Our work
mainly uses the previously established ideas of generalization bounds for mixed of real and synthetic
data when the synthetic data acts as regularizer. More related to our work and on the importance of
regularization, Li & Zhang (2021) analyzes the generalization properties of fine-tuning in transfer
learning and proposes a PAC-Bayes generalization bound, combining regularization and self-labeling.
Mou et al. (2018) provides generalization guarantees for dropout training by bounding the error
using offset Rademacher complexities, capturing data-dependent regularization and the effect of
perturbation variance.
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