
Under review as a conference paper at ICLR 2021

GRAPHLOG: A BENCHMARK FOR MEASURING LOG-
ICAL GENERALIZATION IN GRAPH NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Relational inductive biases have a key role in building learning agents that can gen-
eralize and reason in a compositional manner. While relational learning algorithms
such as graph neural networks (GNNs) show promise, we do not understand their
effectiveness to adapt to new tasks. In this work, we study the logical generalization
capabilities of GNNs by designing a benchmark suite grounded in first-order logic.
Our benchmark suite, GraphLog, requires that learning algorithms perform rule
induction in different synthetic logics, represented as knowledge graphs. GraphLog
consists of relation prediction tasks on 57 distinct procedurally generated logical
worlds. We use GraphLog to evaluate GNNs in three different setups: single-task
supervised learning, multi-task (with pre-training), and continual learning. Unlike
previous benchmarks, GraphLog enables us to precisely control the logical rela-
tionship between the different worlds by controlling the underlying first-order logic
rules. We find that models’ ability to generalize and adapt strongly correlates to
the availability of diverse sets of logical rules during multi-task training. We also
find the severe catastrophic forgetting effect in continual learning scenarios, and
GraphLog provides a precise mechanism to control the distribution shift. Overall,
our results highlight new challenges for the design of GNN models, opening up an
exciting area of research in generalization using graph-structured data.

1 INTRODUCTION

Relational reasoning, or the ability to reason about the relationship between objects and entities, is
considered one of the fundamental aspects of intelligence (Krawczyk et al., 2011; Halford et al., 2010),
and is known to play a critical role in cognitive growth of children (Son et al., 2011; Farrington-Flint
et al., 2007; Richland et al., 2010). This ability to infer relations between objects/entities/situations,
and to compose relations into higher-order relations, is one of the reasons why humans quickly learn
how to solve new tasks (Holyoak and Morrison, 2012; Alexander, 2016). The perceived importance
of relational reasoning for generalization has fueled the development of several neural network
architectures that incorporate relational inductive biases (Battaglia et al., 2016; Santoro et al., 2017;
Battaglia et al., 2018). Graph neural networks (GNNs), in particular, have emerged as a dominant
computational paradigm within this growing area (Scarselli et al., 2008; Hamilton et al., 2017a;
Gilmer et al., 2017; Schlichtkrull et al., 2018; Du et al., 2019). However, despite the growing interest
in GNNs and their promise of relational generalization, we currently lack an understanding of how
effectively these models can adapt and generalize across distinct tasks.

In this work, we study the task of logical generalization in the context of relational reasoning using
GNNs. One example of such a reasoning task (from everyday life) can be in the context of a family-
graph where the nodes are family members, and edges represent the relationships (brother, father, etc).
The objective is to learn logical rules, which are compositions of a specific form, such as “the son of
my son is my grandson”. As new compositions of existing relations are discovered during the lifetime
of a learner, (e.g., the son of my daughter is my grandson), it should remember the old compositions,
even as it learns new compositions (just like we humans do). This simplistic example can be extended
to the more complex (and yet practical) scenarios like identifying novel chemical compositions, or
recommender systems, where agents have to learn and retain compositions of existing relations.

1

Under review as a conference paper at ICLR 2021

Dataset IR D CG M S Me Mu CL
CLEVR (Johnson et al., 2017) 3 7 7 Vision 3 7 7 7
CoGenT (Johnson et al., 2017) 3 7 3 Vision 3 7 7 7
CLUTRR (Sinha et al., 2019) 3 7 3 Text 3 7 7 7
SCAN (Lake and Baroni, 2017) 3 7 3 Text 3 3 7 7
SQoOP (Bahdanau et al., 2018)3 7 3 Vision 3 7 7 7
TextWorld (Ĉoté et al., 2018) 7 3 3 Text 3 3 3 3
GraphLog (Proposed) 3 3 3 Graph 3 3 3 3

Table 1: Features of related datasets that: 1) test com-
positional generalization and reasoning, and 2) are pro-
cedurally gnerated. We compare the datasets along the
following axis: Inspectable Rules (IR), Diversity, Com-
positional Generalization (CG), Modality and if the fol-
lowing training setups are supported:Supervised,Meta-
learning,Multitask & Continual learning (CL).

Number of relations 20
Total number ofWorldGraphs 57
Total number of unique rules 76
Training Query graphs perWorldGraph 5000
Validation Query graphs perWorldGraph 1000
Testing Query graphs perWorldGraph 1000
Average number of nodes per Query graph 14.55
Average number of edges per Query graph 17.94
Average number of triangles per Query graph 11.27
Number of rules perWorldGraph 20
Maximum length of resolution path 10
Minimum length of resolution path 2

Table 2: Aggregate statistics of the
worlds in GraphLog. Statistics for each
individual world are in the Appendix.

We study the effect of such generalization by analyzing the ability of GNNs in learning new relation
compositions, leveraging �rst-order logic. In particular, we study how GNNs can induce logical rules
and generalize by combining such rules in novel ways after training. We propose a benchmark suite,
GraphLog, that is grounded in �rst-order logic. Figure 1 shows the setup of the benchmark. Given a
set of logical rules, we create a diverse set of logicalworldswith a different subset of rules. For each
world (sayWk), we sample multiple knowledge graphs (saygk

i). The learning agent should learn to
induce the logical rules for predicting the missing facts in these knowledge graphs.

Using our benchmark, we evaluate the generalization capabilities of GNNs in the supervised setting
by predicting inductively unseen combinations of known rules within a speci�c logicalworld. We
further analyze how various GNN architectures perform in the multi-task and continual learning
scenarios, where they have to learn over a set of logical worlds with different underlying logics. Our
setup allows us to control thedistribution shiftby controlling the similarity between the different
worlds, in terms of the overlap in logical rules between differentworlds.

Figure 1: GraphLog setup: A set of rules
(grounded in propositional logic) is par-
titioned into overlapping subsets. It is
used to de�ne uniqueworlds. Within each
world Wk , several knowledge graphsgk

i
(governed by rule set ofWk) are generated.

Our analysis provides the following insights about log-
ical generalization capabilities of GNNs:

� Two architecture choices for GNNs strongly (and pos-
itively) impact generalization:1) incorporating multi-
relational edge features using attention, and2) mod-
ularising GNN architecture to include a parametric
representation function, to learn representations for
the relations using a knowledge graph structure.

� In the multi-task setting, training a model on a more
diverse set of logicalworldsimproves generalization
and adaptation performance.

� All the evaluated models exhibit catastrophic forget-
ting. This indicates that the models are not learn-
ing transferable representations and compositions and
just over�tting to the current task —highlighting the
challenge of lifelong learning in context of logical
generalization and GNNs.

2 BACKGROUND AND RELATED WORK

GNNs. Several GNN architectures have been proposed to learn representations of the graph inputs
(Scarselli et al., 2008; Duvenaud et al., 2015; Defferrard et al., 2016; Kipf and Welling, 2016; Gilmer
et al., 2017; Hamilton et al., 2017b; Schlichtkrull et al., 2018). Previous works have focused on
evaluating GNNs in terms of their expressive power (Barceló et al., 2019; Morris et al., 2019; Xu
et al., 2018), usefulness of features (Chen et al., 2019), and explaining their predictions (Ying et al.,
2019). Complementing these works, we evaluate GNN models on the task of logical generalization.

2

Under review as a conference paper at ICLR 2021

Knowledge graph completion. Many knowledge graph datasets are available for relation prediction
tasks (also known as knowledge base completion). Prominent examples include Freebase15K (Bordes
et al., 2013), WordNet (Miller, 1995), NELL (Mitchell and Fredkin, 2014), and YAGO (Suchanek
et al., 2007; Hoffart et al., 2011; Mahdisoltani et al., 2013). Since these datasets are derived from
real-world knowledge graphs, they are generally noisy and incomplete, and many facts are not
available in the underlying knowledge bases (West et al., 2014; Paulheim, 2017). Moreover, the
underlying logical rules are often opaque and implicit (Guo et al., 2016), thus reducing the utility of
these datasets for understanding the logical generalization capability of neural networks.

Procedurally generated datasets for reasoning. Several procedurally generated benchmarks have
been proposed to study the relational reasoning and compositional generalization properties of
neural networks (Table 1). These datasets provide a controlled testbed for evaluating compositional
reasoning capabilities of neural networks in isolation. Based on these insightful works, we enumerate
the four key desiderata that, we believe, such a benchmark should provide:

1. Humaninterpretable rules should be used to generate the dataset.
2. The datasets should bediverse, and the compositional rules used to solve different tasks should

be distinct, so that adaptation on a new task is not trivial. The degree of similarity across the tasks
should be con�gurable to evaluate the role of diversity in generalization.

3. The benchmark should test forcompositional generalization, which is the ability to solve unseen
combinations of existing rules, thus generalizing through the composition of known concepts.

4. The benchmark should support creating alarge number of tasksand enable a more �ne-grained
inspection of the generalization capabilities of the model in different setups, e.g., supervised
learning, multi-task learning, and continual learning.

As shown in Table 1, GraphLog is unique in satisfying all of these desiderata. We highlight that
unlike previous works which have been largely focused on the image and text modalities, GraphLog
is one of the unique attempts to test logical generalization on graph-structured data using Graph
Neural Networks. CLUTRR (Sinha et al., 2019) also provides similar underlying graphs in the text
corpus, although GraphLog is different based on the following properties:

� CLUTRR consists of a single rule world which in turn contains only 15 rules. GraphLog
extends the concept to a more general framework where a user can de�ne how many rules
can occur in a single world, as well as de�ne multiple such worlds.

� GraphLog allows building multiple worlds consisting of either the same, overlapping, or
distinct set of rules - which allows practitioners to test multi-task and continual learning
scenarios in minute detail by controlling the distribution shift, which is a key difference with
CLUTRR.

� CLUTRR is built on a static set of relations (22 family relations) while GraphLog can
contain any number of such relations since it's a �exible generator along with a dataset.

Synthetic Graph Generation. Synthetic graph generation is extensively studied using various neural
generative approaches for scale-free random graphs (You et al., 2018; Liao et al., 2019). Unlike these
approaches, GraphLog is built using a procedural graph generator, which allows us to control the
logical validity of the query graphs, which is de�ned in Section 3. Control over logical validity is
easier in synthetically generated datasets, which are used extensively in Inductive Logic Programming
(ILP) / Rule Learning context (Cornelio and Thost, 2019)1. GraphLog on the other hand, is targeted
towards Graph Neural Network evaluation, which also supports for richer distribution shift evaluation
through Multi-task learning and Continual learning scenarios.

3 GRAPHLOG

Background and Terminology. We leverage terminology and de�nitions from both knowledge
graph and logic programming literature. AgraphG = (VG ; EG) is a collection of a set of nodesVG
and a set of edgesEG between the nodes. We assume that the graphs arerelational, meaning that
each edge between two nodes (sayu andv) is assigned alabel, and can be denoted asr i (u; v) 2 EG .
A relation setR is a set of relationsf r 1, r 2, ... rK g.

1http://ilp16.doc.ic.ac.uk/competition

3

Under review as a conference paper at ICLR 2021

In logic programming terms, nodes in the graph correspond toconstants, and edges correspond to
ground atoms. Thus, as a slight abuse and mixture of notations, existence of an edge in the graph, i.e.,
r i (u; v) 2 EG , is equivalent to background assumption that ground atom is true (i.e., thatr i (u; v)).
We de�ne arule setR as set ofdyadic de�nite Datalog clauses(Abiteboul et al., 1995) of form:

r k (U; V) r i (U; Z) ^ r j (Z; V): (1)

Note that Equation 1 is also termed aschain-rulein logic literature. Following standard convention,
we use upper-case to denote variables (e.g., the variables in Equation 1 can be substituted for nodes)
and lower-case for constants (e.g., to denote nodesv 2 VG). The relationsr i ; r j form thebodywhile
the relationr k forms theheadof the rule. Path-based Horn clauses of this form represent a limited
and well-de�ned subset of �rst-order logic. They encompass the types of logical rules learned by
state-of-the-art rule induction systems for knowledge graph completion (Das et al., 2017; Evans and
Grefenstette, 2017; Meilicke et al., 2018; Sadeghian et al., 2019; Teru et al., 2020; Yang et al., 2017;
Zhang et al., 2019) and are thus a useful synthetic test-bed.

We usepu;v
G to denote apathfrom nodeu to v in a graphG (i.e., a sequence unique nodes connected

by edges). In logical terms,pu;v
G corresponds to the conjunction of all the edge predicates in the path.

We construct graphs according to rules of the form in Equation 1 so that a path between two nodes
will always imply aspeci�c relation between these two nodes. In other words, if we letPG denote
the set of all �nite paths in the graphG, then we have that

8pu;v
G 2 P G 9r i 2 R : (pu;v

G ! r i (u; v)) ^ (8r j 2 R n f r i g : (pu;v
G ^ r j (u; v))) : (2)

Thus, by following the path between two nodes, and applying rules of the form of Equation 1
according to the edges of the path, we can alwaysresolvethe relationship between the nodes.

Problem Setup. Given this setup, the task is to predict the relation between a pair of nodes. In
particular, we de�ne a query(g; u; v) as follows: (i) thequery subgraphg � G is a subgraph of the
full graphG; (ii) the query nodesare present in the query subgraph (i.e.,u; v 2 Vg); (iii) the edge
between the query nodes isnotpresent in the query subgraph, but the edgeis present in the underlying
graph (i.e.,r ?(u; v) 2 EG ; r ?(u; v) =2 Eg). The goal is to infer the missing edge between query nodes
r ?(u; v). We assume that the learning agent has access to a set of training queriesg1; :::; gn � G to
optimize a prediction model before being tested on a set of held-out queriesgn +1 ; :::; gn + n 0 � G.

In knowledge graph terms, this is a form of link or relation prediction, as our goal is to infer the
missing edge between two nodes. Unlike most work on knowledge graph completion, we emphasize
aninductiveproblem setup, where the query graphg in each training and testing example is unique,
requiring generalization to unseen graphs (Teru et al., 2020).

Finally, note that we will sometimes refer to the full graphsG asworld graphs, in order to distinguish
them from thequery graphsg � G. We make this distinction because GraphLog involves link
prediction over several differentlogical worlds, denotedW = (GW ; R W), with each de�ned with
by its own underlying world graphGW and rule setR W . Our setup enables controlling the overlap
between the rules in these different logical worlds, allowing for a unique ability to quantify the logical
generalization capabilities of a learning agent.

3.1 DATASET GENERATION

As discussed in Section 2, we want our proposed benchmark to provide four key desiderata: (i)
interpretable rules, (ii) diversity, (iii) compositional generalization and (iv) large number of tasks. We
describe how our dataset generation process ensures all four aspects.

Rule generation. We create a setR of possible relations and use it to create a randomly generated
rule setR, such two key constraints are satis�ed:(i) No two rules inR can have the same body,
ensuring that Equation 2 is satis�ed.(ii) Rules cannot have common relations among theheadand
body, ensuring the absence of cyclic dependencies in rules. Generating the dataset using a consistent
and well-de�ned rule set ensures interpretability in the resulting dataset. The full algorithm for rule
generation is given in Appendix (Algorithm 1).

Graph generation. The graph generation process has two steps: In the �rst step, we sample
overlapping subsets ofR W � R to create individualworlds(as shown in Figure 1). In each world,
we recursively sample and use rules inR W to generate the world graphGW for that world. This

4

Under review as a conference paper at ICLR 2021

sampling procedure creates a diverse set of world graphs by considering only certain subsets ofR.
By controlling the extent of overlap between the subsets ofR (in terms of the number of common
rules), we can precisely control the similarity between the different worlds. The full algorithm for
generating the world graphs and controlling the similarity between theworldsis given in Appendix
(Algorithm 3 and Section A.2).

In the second step, the world graphGW in each world is used to sample a set of query graphs
GS

W = (g1; � � � gN) for that speci�c world (shown as Step (a) in Figure 2). A query graphgi is
sampled fromGW by sampling a pair of nodes(u; v) from GW and then by sampling a pathpu;v

GW
.

The edger i (u; v) between the source and sink node of the path provides the target relation for the
learning model to predict. To increase the complexity of the sampledgi graphs (beyond being simple
paths), we also add nodes togi by sampling neighbors of the nodes onpu;v

GW
, such that no other shorter

path exists betweenu andv. Algorithm 4 (in the Appendix) details our graph sampling approach.
Note that this sampling process leads to rich and complex graph structures, including cycles and
motifs (see Figure 7(a) in Appendix for example of graphs).2

GraphLog Dataset Suite. We use the above data generation process to instantiate a dataset suite
with 57 distinct logicalworldswith 5000query graphs perworld (Figure 1). The dataset is split
into train, validation, and testworlds. The query graphs within eachworld are also split into train,
validation, and test sets (Table 2). Though we instantiate 57worlds, the GraphLog generator can
instantiate an arbitrary number ofworldsand has been included in the supplementary material.

3.2 SETUPS SUPPORTED INGRAPHLOG

Supervised learning. A model is trained (and evaluated) on the train (and test split) of aworld. The
number of rules grows exponentially with the number of relationsK , making it impossible to train
on all possible combinations of the relations. We expect that aperfectlysystematic model inductively
generalizes to unseen combinations of relations by training only on a subset of combinations.

Multi-task learning . GraphLog provides multiple logicalworlds, with their training and evalua-
tion splits. A model is trained on (and evaluated on) the train (and test) splits of severalworlds
(W1; � � � ; WM). GraphLog enables us to control the complexity of each world and similarity between
the worlds to evaluate how model performance varies across similar vs. dissimilarworlds. GraphLog
is designed to study the effect of pre-training on adaptation. In this setup, the model is pre-trained
on the train split of multipleworlds(W1; � � � ; WM) and �ne-tuned on the train split of the unseen
heldoutworlds(WM +1 ; � � � ; WN). The model is evaluated on thetestsplit of the heldoutworlds.
GraphLog enables mimicking in-distribution and out-of-distribution train (and test) scenarios and
quantify the effect of multi-task pre-training for adaptation performance.

Continual learning. The model is trained on a sequence ofworlds. Before training on a newworld,
it is evaluated on all theworldsthat it has trained on so far. Given the challenges involved in continual
learning (Thrun and Pratt, 2012; Parisi et al., 2019; De Lange et al., 2019; Sodhani et al., 2019),
we do not expect the models to perform well on the previous tasks. Nonetheless, given that we are
evaluating the models for relational reasoning and our datasets sharerelations, we expect the models
to retain some knowledge of previous tasks. We use the performance on the previous tasks to infer if
the models learn to solve the relational reasoning tasks or just�t to the current dataset distribution.

Controlling similarity . An unique feature of GraphLog is it allows practitioners to control the
distribution shift when evaluating multi-task and continual learning baselines. In GraphLog the
diversity of worlds can be controlled via similarity. Concretely, the similarity between two worldsW i

andW j is de�ned asSim(W i ; W j) = jR i \ R j j, whereWi andWj are the graph worlds andR i

andR j are the set of rules associated with them. Thus GraphLog enables various training scenarios
- training on highly similar worlds or training on a mix of similar and dissimilar worlds. This �ne
grained control allows GraphLog to mimic both in-distribution and out-of-distribution scenarios
- during training and testing. It also enables us to precisely categorize the effect of multi-task
pre-training when the model needs to adapt to novel worlds.

2Due to the current formulation (Equation 2), GraphLog is restricted to have at most a single edge between a
pair of nodes. This formulation is chosen to make the task simpler in order to analyze the effects of generalization
in detail. In future work, we will be exploring the effect of multiple edges using this benchmark, which is a
characteristic of many real-world knowledge graphs.

5

Under review as a conference paper at ICLR 2021

4 MODELS

In this section, we describe the message passing graph neural networks that we evaluate on GraphLog
benchmark. These models take as input the query(gi ; u; v) and a learnable relation embedding
r i 2 Rd (Step (d) and (e) in Figure 2), and output the relation as a k-way softmax (Step (f) in Figure
2). We use both attention-based and non-attention based models.

Relational Graph Convolutional Network (RGCN). For a relational graph, theRGCNmodel
(Schlichtkrull et al., 2018) is a natural choice for a baseline architecture. In this approach, we iter-

ate a series of message passing operations:h (t)
u = ReLU

� P
r i 2 R

P
v2N r i (u) r i � 1 T � 3 h (t � 1)

v

�
,

whereh (t)
u 2 Rd denotes representation of a nodeu at thet th layer of the model,T 2 Rdr � d� d is a

learnable tensor,r 2 Rd is relation representation, andN r i (u) denotes the neighbors ofu (related
by r i). � j ; j = 1 ; 2; 3 denotes multiplication across the modes of the tensor.RGCNmodel learns a
relation-speci�c propagation matrix, speci�ed by the interaction between relation embeddingr i and
shared tensorT .

Edge-based Graph Attention Network (Edge-GAT). Many recent works have highlighted the
importance of the attention mechanism, especially in the context of relational reasoning (Vaswani
et al., 2017; Santoro et al., 2018; Schlag et al., 2019). Motivated by this observation, we investigate
an extended version of the GAT (Veli�cković et al., 2017), in order to handle the edge types. We
complement GAT by incorporating gating via an LSTM (Hochreiter and Schmidhuber, 1997) and
where the attention is conditioned on both the incoming message (from the other nodes) and the re-

lation embedding (of the other nodes):m N (u) =
P

r i 2 R

P
v2N r i (u) �

�
h (t � 1)

u ; h (t � 1)
v ; r

�
; h (t)

u =

LSTM(m N (u) ; h (t � 1)
u). Following the originalGATmodel, the attention function� uses concate-

nated input vectors. We refer to this model as the Edge GAT (E-GAT) model.

Query and node representations. We predict the relation for query(gi ; u; v) by concatenating
h (K)

u ; h (K)
v (�nal-layer query node embeddings) and applying a feedforward network (Step (f) in

Figure 2). In absence of node features, we randomly initialize all the node embeddings in the GNNs.

Figure 2: Overview of training process:(a):
Sample multiple graphs fromGW . (b): Con-
vert the relational graph into extended graph
ĜW . Note that edges of different color (denot-
ing different types of relations) are replaced
by a node of same type in̂GW . (c): Learn rep-
resentations of the relations (r) usingf r (ex-
tended graph as the input). In case ofParam
models, the relation representations are pa-
rameterized via an embedding layer and the
extended graph is not created.(d, e): The
composition function takes as input the query
gi ; u; v and the relational representationr . (f):
The composition function predicts the relation
between the nodesu andv.

Representation functionsGNN models described
above expect to learnd-dimensional relation repre-
sentations. We can further re-structure them notation-
wise into two modules:a) Representation module
which is represented as a functionf r : GW � R !
Rd, that maps logical relations within a particular
world W to d-dimensional vector representations,
and b) Composition module, which is a function
f c : GW � VGW � VGW � Rd�j R j ! R, that learns
to compose the relation representations learned byf r
and answer queries over a knowledge graph. In this
formulation, the relation embedding matrixr i 2 Rd

used in RGCN and Edge-GAT can be thought of the
output of adirect parameterizationmodule (Param),
which is devoid of any input and simply returns the
embeddings from a lookup table. Thus these two
baselines can be rede�ned asParam-RGCN and
Param-E-GAT models, whereRGCNandE-GAT
are the composition modules. A major limitation of
this approach is that the relation representations are
optimized speci�cally for each logical world, and
there is no inductive bias towards learning represen-
tations that can generalize.

Learning representations from the graph struc-
ture. To de�ne a more powerful representation func-
tion, we consider learning relation representations
as a function of the graphGW underlying a logical
world W. We consider an “extended” form ofGW ,

6

Under review as a conference paper at ICLR 2021

S D
f r f c Accuracy Accuracy
GAT E-GAT 0.534� 0:11 0.534� 0:09
GAT RGCN 0.474� 0:11 0.502� 0:09
GCN E-GAT 0.522� 0:1 0.533� 0:09
GCN RGCN 0.448� 0:09 0.476� 0:09
Param E-GAT 0.507� 0:09 0.5 � 0:09
Param RGCN 0.416� 0:07 0.449� 0:07

Table 3: Multitask evaluation performance when
trained on different data distributions (catego-
rized based on their similarity of rules: Similar
(S) containing similar worlds and a mix of simi-
lar and dissimilar worlds (D))

Figure 3: We categorize the datasets in terms of
their relativedif�culty (see Appendix). We ob-
serve that the models usingE-GAT as the com-
position function consistently work well.

denotedĜW , which introduces new nodes (called
edge-nodes) corresponding to each edge in the orig-
inal world graphGW . For an edger (u; v) 2 EG , the corresponding edge-node(u � r � v) is
connected to only those nodes that were incident to it in the original graph (i.e. nodesu andv; see
Figure 2, Step (b)). This new grapĥGW only has one type of edge and comprises of nodes from both
the original graph and from the set of edge-nodes. We learn the relation representations by training a
GNN model onĜW and by averaging the edge-node embeddings corresponding to each relation type
r i 2 R. (Step (c) in Figure 2). For the GNN model, we consider the Graph Convolutional Network
(GCN) (Kipf and Welling, 2016) and the Graph Attention Network (GAT) architectures. The intuition
behind creating the extended-graph is that the representation GNN function can learn the relation
embeddings based on the structure of the complete relational graphGW . Both the representation
module and the composition modules are trained end-to-end to predict the relations. Thus, we end up
with four more models to evaluate GraphLog , namelyGCN-RGCN, GCN-E-GAT, GAT-RGCNand
GAT-E-GAT.

5 EXPERIMENTS

We aim to quantify the performance of the different GNN models on the task of logical relation
reasoning, in three setups:(i) Single Task Learning,(ii) Multi-Task Training and(iii) Continual
Learning. Our experiments use the GraphLog benchmark with distinct 57worlds(Section 3) and 6
different GNN models (Section 4). In the main paper, we highlight the key results and provide the
full results in the Appendix. The code is included with the supplemental material.

5.1 SINGLE TASK SUPERVISEDLEARNING

We evaluate the models on all the 57worlds, one model-world pair at a time (342 combinations). With
GraphLog , it is dif�cult for one model to outperform others on all the 57 datasets just by exploiting
dataset-speci�c bias, thereby making the conclusions more robust. We categorize theworldsin three
categories ofdif�culty—easy, moderateanddif�cult —based on the relative test performance of the
models on eachworld and present the results in Figure 3. (A complimentary formulation of dif�culty
is explained in Appendix A.4). We observe that the models usingE-GAT composition function
always outperform the models usingRGCN. This con�rms our hypothesis about leveraging attention
to improve the performance on relational reasoning tasks. Interestingly, the relative ordering among
theworlds, in terms of the test accuracy of the different models, is consistent irrespective of the
model we use, highlighting the intrinsic ordering of dif�culty of the differentworldsin GraphLog.

5.2 MULTI -TASK TRAINING

Standard multi-task training . First, we evaluate how changing similarity among trainingworlds
affects test performance in the multi-task setup. We train a model on eightworlds and test on

7

Under review as a conference paper at ICLR 2021

Figure 4: We run multitask experiments over an
increasing number of worlds to stress the capac-
ity of the models. We report the average of test
set performance across the worlds that the model
has trained on so far. All the models reach their
optimal performance at 20 worlds, beyond which
their performance starts to degrade.

Figure 5: We evaluate the effect of changing
the similarity between the training and the eval-
uation datasets. The colors of the bars depicts
how similar the two distributions are while the
y-axisshows the mean accuracy of the model
on the test split of the evaluationworld. We re-
port both the zero-shot adaptation performance
and performance after convergence.

three distinctworlds. In Table 3, we observe that mix of similar and dissimilarworlds improves
generalization capabilities of all the models. Similar to the trends observed in the single task setup,
the GAT-EGATmodel consistently performs either as good as or better than other models. The
models usingEGATfor the composition function perform better than the ones using theRGCNmodel.
Figure 4 shows how the models' performance changes when we perform multi-task training on an
increasingly large set ofworlds. Interestingly, we see that model performance improves as the number
of worldsis increased from 10 to 20 but then begins to decline, indicating model capacity saturation
in the presence of too many diverseworlds.

Multi-task pre-training . In this setup, we pre-train the model on multipleworldsand adapt on a
heldoutworld. We study how the models' adaption capabilities vary as the similarity between the
training and the evaluation distributions changes. Figure 5 considers the case of zero-shot adaptation
and adaptation till convergence. As we move along thex-axis, the zero-shot performance (shown
with solid colors) decreases in all the setups. This is expected as the similarity between the training
and the evaluation distributions also decreases. An interesting trend is that the model's performance,
after adaptation, increases as the similarity between the two distributions decreases. This suggests
that training over a diverse set of distributions improves adaptation capability.

5.3 CONTINUAL LEARNING SETUP

We evaluate knowledgeretentioncapability by training GNNs on a sequence ofworlds(arranged by
relative similarity). After convergence on anyworld, we report average of model's performance on
all previousworlds. Figure 6(a) shows the rapid degradation in model's performance on the previous
worlds as it trains on newworlds, highlighting the limitation of current models for continual learning.

The role of the representation function. We also investigate the model's performance in a continual
learning setup where the model learns only aworld-speci�c representation function or aworld-
speci�c composition function, and where the other module is shared across the worlds. In Figure 6(b),
we observe that sharing the representation function reduces the effect of catastrophic forgetting, but
sharing the composition function does not have the same effect. This suggests that the representation
function learns representations that are useful across theworlds.

6 DISCUSSION& CONCLUSION

In this work, we propose GraphLog, a benchmark suite for evaluating the logical generalization
capabilities of GNNs. GraphLog is grounded in �rst-order logic and provides access to a large number
of diverse tasks that require compositional generalization to solve, including single task supervised
learning, multi-task learning, and continual learning. Our results highlight the importance of attention

8

	Introduction
	Background and Related Work
	GraphLog
	Dataset Generation
	Setups supported in GraphLog

	Models
	Experiments
	Single Task Supervised Learning
	Multi-Task Training
	Continual Learning Setup

	Discussion & Conclusion
	GraphLog
	Extended Terminology
	Dataset Generation
	Computing Similarity
	Computing difficulty

	Supervised learning on GraphLog
	Multitask Learning
	Multitask Learning on different data splits by difficulty
	Multitask Pre-training by task similarity
	Multitask Pre-training by task difficulty

	Continual Learning
	Hyperparameters and Experimental Setup
	Dataset Hyperparams
	Model Hyperparams

