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Abstract001

Large language models (LLMs)-based personal002
assistants may struggle to effectively utilize003
long-term conversational histories. Despite ad-004
vances in long-term memory systems and dense005
retrieval methods, these assistants still fail to006
capture entity relationships and handle multi-007
ple intents effectively. To tackle above limita-008
tions, we propose Associa, a graph-structured009
memory framework that mimics human cog-010
nitive processes. Associa comprises an event-011
centric memory graph and two collaborative012
components: Intuitive Association, which ex-013
tracts evidence-rich subgraphs through Prize-014
Collecting Steiner Tree optimization, and De-015
liberating Recall, which iteratively refines016
queries for comprehensive evidence collection.017
Experiments show that Associa significantly018
outperforms existing methods in retrieval met-019
rics and user preference across dialogue bench-020
marks, advancing the development of more021
human-like AI memory systems.022

1 Introduction023

Empowered by large language models (LLMs), life-024

long personal assistants have demonstrated remark-025

able potential across various domains, including026

daily life (Wu et al., 2025; Wang et al., 2024),027

healthcare (Jo et al., 2024; Zhang et al., 2024b),028

and mental health counseling (Zhong et al., 2024).029

These advancements show a significant opportu-030

nity to enhance quality-of-life and promote individ-031

ual well-being through effective human-AI interac-032

tion (Li et al., 2024; Jo et al., 2024). However, the033

personal assistants face a critical challenge: effec-034

tively maintaining and utilizing lifelong conversa-035

tional histories (Xu et al., 2022).036

To tackle this challenge, researchers propose037

the long-term memory systems as a promising038

solution (Jo et al., 2024). These systems main-039

tain the interaction history between assistants and040

users across multiple chat sessions (Xu et al.,041

What was the total reach of my Facebook ad 
campaign and Instagram influencer collaboration?

Since I attended a seminar on influencer marketing
at the … Can you provide some tips on how to find 
the right influencers?

I've been analyzing my social media performance 
lately and I'm curious about what content is 
currently trending on Instagram. 

I‘m looking to run another Facebook ad 
campaign … my previous ad campaign, which ran 
for five days, reached around 2,000 people.

I recently collaborated with an influencer who 
promoted my product to her 10,000 followers….
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Figure 1: Illustration of Mismatching in Memory Re-
trieval for Long-term User Dialogues, especially the
difference between dense retrieval approaches and the
actual process of gathering evidence from users’ long-
term memory.

2022), offering plug-and-play adaptability (Wu 042

et al., 2025). Notably, studies have demonstrated 043

that such memory-augmented systems can sub- 044

stantially outperform native long-context LLMs 045

by effectively combining short-context reasoning 046

accuracy with extended information retention ca- 047

pabilities (Maharana et al., 2024). Current imple- 048

mentations typically employ pre-trained dense re- 049

trieval approaches, enhanced with various forms of 050

information such as summaries (Lu et al., 2023), 051

facts (Wu et al., 2025), or observations (Maharana 052

et al., 2024). However, these approaches exhibit 053

significant deficiencies in their memory retrieval 054

paradigms that hinder practical effectiveness (Yue 055

et al., 2024; Wang et al., 2024). 056

As shown in Figure 1, there is a mismatch be- 057

tween dense retrieval approaches and the actual pro- 058

cess of gathering evidence from users’ long-term 059

memory (the memory retrieval approach). While 060

dense retrievers are pre-trained to identify texts 061

with the highest semantic similarity (Reimers and 062

Gurevych, 2019), the goal of long-term memory 063

systems is to effectively assist users in “gathering 064

evidences” (Maharana et al., 2024). For instance, 065
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when user poses the query: “What was the total066

reach of my Facebook ad campaign and Instagram067

influencer collaboration?,” a pre-trained linear re-068

trieval system might return historical user utter-069

ances related to “influencer marketing” or “social070

media.” Although dense retrieval search documents071

show significant semantic similarity and may even072

include matching entities, they still do not provide073

the key evidence needed to answer the query. This074

reflects the two gaps between dense retrieval ap-075

proaches and memory retrieval approaches: (1)076

The neglect of the association of entities. This077

instance denotes that the dense retriever ignores the078

binding relationship between “Facebook” and “ad079

campaign,” as well as between “Instagram” and “in-080

fluencer collaboration.” In other words, utterances081

that include both of these entities will be consid-082

ered stronger evidence. (2) The dense retriever083

may mix and blur different evidence-gathering084

intents. In this instance, the query contains two re-085

trieval intents: “the reach of Facebook ad campaign”086

and “the reach of Instagram influencer collabora-087

tion.” This overlap can cause the model to retrieve088

irrelevant information, undermining the accuracy089

of the results.090

Inspired by the associative and deliberative na-091

ture of human long-term memory (Yue et al., 2024),092

we propose Associa, a novel graph-structured long-093

term memory framework, to enhance the ability094

to extract “key evidences” from very long-term095

dialogues, ultimately improving the effectiveness096

of the personal assistant. Specifically, to address097

gap (1), we first design an event-centric personal098

memory graph that incorporates multi-dimensional099

information. Then, we introduce an “Intuitive As-100

sociation” retrieval module. This module employs101

Prize-Collecting Steiner Tree (PCST) optimiza-102

tion (He et al., 2025) with dynamic prize mecha-103

nisms, constructing memory subgraph by maximiz-104

ing the prizes of subgraph nodes and minimizing105

the costs of subgraph edges. Through the subgraph,106

we retrieve utterances from long-term memory that107

are connected to the most “high-quality” nodes108

(such as events or entities). To address gap (2),109

we develop a “Deliberating Recall” module, which110

recursively assesses whether all evidences relevant111

to the user’s intent have been fully collected. By112

instruction-tuning a specialized deliberating model,113

it collects missing clues and augment user’s query114

as feedback. These two modules work collabora-115

tively to ensure comprehensive evidence gathering.116

Our contributions are threefold:117

(1) We propose Associa, the first event-centric 118

graph memory framework that systematically or- 119

ganizes long-term dialogue history by proposing 120

a unified graph schema. The novel PCST-based 121

subgraph retrieval mechanism enables associative 122

memory retrieval in personal assistant systems, ef- 123

fectively addressing the information fragmentation 124

challenge in extended conversations. 125

(2) Our innovative integration of Intuitive As- 126

sociation with Deliberating Recall establishes a 127

human-like reasoning paradigm. The collaboration 128

between two modules ensures the graph-structured 129

memory will be selectively modified to gather more 130

complete evidences. 131

(3) Extensive experiments results are conducted 132

across several long-term personalized datasets, 133

demonstrating that Associa achieves state-of-the- 134

art performance in both recall accuracy and user 135

preference metrics. 136

2 Related Work 137

2.1 Enhancing LLMs with long-term memory 138

retrieval 139

In the context of lifelong personal assistants, user- 140

assistant dialogues can accumulate extensive con- 141

versation histories over time. Given the limited 142

context window of LLMs, processing the entire 143

conversation history becomes impractical for long- 144

term interactions (Jo et al., 2024). Existing research 145

points out that commercial chat assistants and long- 146

context LLMs show a 30% decline in accuracy of 147

the benchmark when retaining information across 148

ongoing interactions (Wu et al., 2025). There is 149

also evidence that LLMs with long texts tend to 150

hallucinate and recall information incorrectly (Ma- 151

harana et al., 2024). A substantial body of evidence 152

suggests that memory retrieval, compared to using 153

base LLMs, can improve performance (Du et al., 154

2024; Kim et al., 2024). Its plug-and-play feature 155

also makes it easy to integrate into other existing 156

chat assistant systems (Wu et al., 2025). Accurate 157

clue collection can significantly improve the per- 158

formance of downstream tasks, such as question 159

answering. However, there is still considerable 160

potential for improvement in current retrieval meth- 161

ods (Kim et al., 2024). 162

2.2 Existing technical solutions of long-term 163

memory retrieval 164

Current research mainly employs dense retrieval 165

methods for memory retrieval. Specifically, these 166
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methods retrieve the top-k relevant content from167

memory to enhance LLMs and design them for task168

adaptability. In addition to users’ dialogue records,169

MemoryBank (Zhong et al., 2024) stores event170

summaries and dynamic personality understand-171

ing to help LLMs better understand users. LONG-172

MEMEVAL (Wu et al., 2025) uses a series of tech-173

niques to improve memory retrieval, including fact174

concatenation, temporal filtering, and reasoning175

optimization (such as converting retrieval results176

into JSON format). Fragrel (Yue et al., 2024) splits177

texts into fragments, considering not only the simi-178

larity between the query and the fragments but also179

the similarity between the question and its context180

fragments.181

However, these studies neglect the semantic rela-182

tionships of user-related information. Our research183

proposes a graph-structured memory construction184

and associative retrieval approach to capture the185

relationships between memory chunks, thereby im-186

proving retrieval accuracy and efficiency.187

3 Preliminary188

3.1 Task definition189

Long-term dialogue. Long-term dialogue L refers190

to the long-term interactions data between the user191

and the assistant (LLMs), often spanning across192

multiple sessions.193

L =
n⋃

i=1

Si, Si = ⟨r(i)1 , r
(i)
2 , ..., r

(i)
ki
⟩ (1)194

where Si represents the i-th session, and ki is the195

number of rounds in the i-th session.196

Each session Si contains an ordered sequence of197

dialogue rounds. For each single round r
(i)
j :198

r
(i)
j = (u

(i)
j , a

(i)
j ), u

(i)
j ∈ U , a(i)j ∈ A (2)199

where U represents the user utterance space, and A200

represents the assistant utterance space.201

Retrieval-augmented long-term memory gen-202

eration. To respond a user’s query qt at times-203

tamp t, the assistant must consider both the current204

session and relevant information from history dia-205

logues. This retrieval-augmented long-term mem-206

ory framework typically includes three core com-207

ponents (Zhang et al., 2024c): memory manage-208

ment, memory retrieval, memory-enhanced re-209

sponse generation. First, the memory manage-210

ment (Zhang et al., 2024c) constructs an external211

memory database M from historical long-term di- 212

alogues corpus L. This process includes memory 213

writing, deletion, and editing, which can be formal- 214

ized as: 215

M = fManage(L) (3) 216

where fManage represents the memory management 217

function that transforms raw dialogue history into 218

a memory database. 219

Subsequently, the memory retrieval module 220

fretrieve identifies and extracts relevant memory en- 221

tries from M according to current qt: 222

mqt = fretrieve(M, qt) (4) 223

where mqt represents the retrieved result to query 224

qt. 225

Finally, the LLM-based personal assistant gen- 226

erates final response rt ny jointly considering the 227

current session context St and above information. 228

rt = fLLM(qt, St,mqt) (5) 229

The advantage of external retrieval-based mem- 230

ory lies in two aspects: (1) higher interpretability. 231

Users can clearly trace how the model retrieves 232

information and makes decisions. This structure 233

makes the source of knowledge and the reasoning 234

process more transparent, enhancing the model’s 235

auditability and credibility. (2) External retrieval 236

memory has higher transferability, which can be 237

independent of specific model implementations. 238

4 The Proposed Framework: Associa 239

We propose Associa, a novel graph-structured long- 240

term memory framework that enhances evidence 241

extraction from extended dialogue histories and im- 242

proves the effectiveness of personal assistants. Our 243

framework introduces innovations in two crucial as- 244

pects: (1) an Event-centric personal memory graph 245

for memory management, and (2) a collaborative 246

memory retrieval mechanism that combines asso- 247

ciative memory retrieval with deliberation recall. 248

4.1 Event-centric personal memory graph 249

To effectively manage the memory of user’s daily 250

events and interests, we design an event-centric per- 251

sonal memory graph that unifies graph schema and 252

memory features. As shown in Figure 2, our ap- 253

proach is characterized by two key innovations: (1) 254

Event-centric memory architecture: The graph 255

organizes memories around event entities, leverag- 256

ing their inherent rich contextual information (in- 257

cluding temporal, spatial, and participant details) 258
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week, I tested a new 
posting schedule ...

Figure 2: Illustration of the Event-centric Personal Memory Graph.

to create sophisticated memory structures. This de-259

sign naturally captures the interconnected nature of260

personal experiences and facilitates complex rela-261

tionship modeling through contextual anchors. (2)262

Hybrid utterance-graph storage: We establish ex-263

plicit edges between graph nodes and their originat-264

ing utterances in memory storage M. This hybrid265

approach benefits both preserving critical raw in-266

formation that might be lost during pure structured267

conversion, while simultaneously enably efficient268

graph-based retrieval operations.269

Specifically, we propose a unified graph schema270

tailored for long-term memory in personal assis-271

tant scenarios. Based on common interaction pat-272

terns in personal assistance, our Associa memory273

graph formally designs two key components: node274

types and egdes relationships. Node types, The275

graph formally defines four core node types: ut-276

terance, user-related event, entity, and event time.277

The entity nodes represent referential objects em-278

bedded in events, encompassing diverse categories279

including [Object, Person/User/Organization, Re-280

source, Place, Event, Goal/Intention, Time, Inter-281

est/Skill, Sentiment]. This comprehensive node282

type design extends beyond mere factual represen-283

tation—it captures users’ emotions, intentions, and284

preferences, thereby enabling personalized and em-285

pathetic assistance.286

Egdes relationships: The graph topology is en-287

riched through six semantically-typed edges that288

capture different aspects of user-assistant interac-289

tions:290

(event, "<|event occur at|>", event time): The291

event time is inferred by the responding utterance292

timestamp. 293

(event, "<|event fact|>", utterance): It connects 294

an event to an utterance that provides factual infor- 295

mation about it, grounding events in user dialogue. 296

(event, "<|event include|>", entity): This edge 297

associates an event with an entity involved in or 298

affected by the event. 299

(utterance, "<|include|>", entity): The event con- 300

tains entities, and the utterance is connected not 301

only to the event but also to the entities within the 302

event. 303

(user/speaker, "<|ask|>", utterance): The user is 304

considered a key node because entities in the event 305

are often related to "user," such as (user, browsing, 306

yoga information), etc. 307

(entity, "<|relation|>", entity): The relationships 308

are varied and can encompass actions, states, such 309

as "occur at," or expressive verbs like "feel." 310

Graph deduplication: To enhance the effi- 311

ciency and scalability of our memory graph, two 312

deduplication strategy are used for events, entities, 313

and relations. Incremental deduplication: based 314

on FAISS, we take the advantage of the ability to 315

dynamically and quickly merge duplicate nodes 316

and edges as new memories are added (merging 317

when the similarity exceeds the threshold). Clus- 318

tering deduplication: we first build a similarity 319

matrix and then applies Agglomerative Clustering 320

for clustering. Its advantage is the ability to han- 321

dle large-scale graphs in batches. The deduplica- 322

tion process helps reduce database storage space, 323

and the merged events and entities contribute to 324

associating more utterances, thereby optimizing 325

graph-based retrieval. 326
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4.2 Collaborative Memory Retrieval327

To effectively retrieve relevant memories for user328

queries, we propose a Collaborative Memory Re-329

trieval framework that synergistically combines as-330

sociative intuition and deliberate recall, mimicking331

human memory retrieval processes. As illustrated332

in Figure 3, our framework operates in two comple-333

mentary phases: Intuitive Association: Initially,334

we employ a subgraph retrieval mechanism that335

identifies potentially relevant information from his-336

torical dialogues memory graph, similar to human337

intuitive recall. Deliberate Recall: Recognizing338

that initial intuitive retrieval may overlook criti-339

cal clues, we introduce a deliberate recall module340

that simulates human assistants’ reflection process.341

This module systematically analyzes potential in-342

formation gaps and augments the original query,343

enabling more comprehensive memory retrieval.344

Through iterative interaction between these two345

phases, our framework progressively refines the346

retrieved information.347

4.2.1 Intuitive Association348

We propose an enhanced approach for associa-349

tive memory retrieval based on Prize-Collecting350

Steiner Tree (PCST) optimization with dynamic351

prize mechanisms, inspired by He et al. (2025).352

This novel method enables efficient extraction of353

relevant information from the user’s historical di-354

alogue memory graph. Our approach consists of355

three key phases:356

Contextual Prize Initialization Given query357

embedding q ∈ Rd and memory graph G = (V,E).358

With node feature xv ∈ Rd and edge feature359

e(u,v) ∈ Rd. The cost of subgraph construction360

is a hyperparameter θcost. We compute initial rele-361

vance scores as prizes via:362

Prizevn =
q · xv

∥q∥∥xv∥ , P rize(u,v)e =
q · e(u,v)

∥q∥∥e(u,v)∥

Top-k selection with decaying weights:363

ˆPrize =

{
k − rank(v) + 1 if v ∈ TopK(Rn)

0 otherwise
(6)364

Add virtual nodes To overcome PCST’s edge365
selection bias, we implement virtual node injection366
for high-prize edges:367

∀euv ∈ E :

{
direct inclusion ˆPrize

(u,v)

e ≤ θcost

insert virtual node w ˆPrize
(u,v)

e > θcost

(7)368

where virtual node w receives prize: 369

ˆPrize
w

n = ˆPrize
(u,v)

e − θcost (8) 370

Once the virtual nodes are added, node w con- 371

structs virtual edges with the two endpoints u and 372

v, and the cost of the edge C(e) is represented as 373

follows: 374

C(e) =

{
0 if e is a virtual edge

θcost − ˆPrize
(u,v)

e otherwise
(9) 375

Subgraph construction The objective of the 376

PCST is to find a connected subgraph in a given 377

graph such that the total prize of the selected nodes 378

and edges minus the total cost is maximized: 379

max
T

(∑
v∈T

R̂n(v) +
∑
e∈T

R̂e(e)−
∑
e∈T

C(e)

)
(10) 380

4.2.2 Deliberating Recall 381

We introduce the Deliberating Recall mechanism 382

for the following reasons: (1) During the retrieval 383

process, certain pieces of information in the query 384

are crucial, but in a single round of retrieval, key 385

details may be blurred or overlooked. A careful 386

recall mechanism is needed to prompt the model 387

to focus on these critical pieces of information. (2) 388

Subgraph extraction allows for the retrieval of a 389

connected subgraph. However, the user’s intent 390

in the query may be multifaceted and dispersed. 391

Therefore, multiple rounds of recalling relevant 392

clues are necessary to reconstruct the full context 393

of the facts and accurately address the user’s query. 394

Instruction Tuning for Deliberating model 395

To enhance the deliberation process, we fine- 396

tune a specialized deliberating model that effec- 397

tively identifies missing contextual cues from initial 398

retrieval results, thereby improving the precision 399

and efficiency of subsequent memory access. 400

Specifically, we leverage CoQA (Reddy et al., 401

2019), a well-established conversational question- 402

answering dataset, to carefully construct training 403

data for our Deliberating model. The data prepa- 404

ration process encompasses the following crucial 405

steps: Graph Construction, Question Restoration, 406

Locating the correct cues in the graph, Construct- 407

ing positive and negative sample inputs and out- 408

puts (detailed description can be seen in Appendix 409

A) 1 . We implement this training pipeline using 410

1The CoQA dataset is exclusively used for training the De-
liberating Recall capability and remains completely indepen-
dent from the datasets used for evaluating the overall system
performance, ensuring unbiased assessment.
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Figure 3: Framework of the Collaborative Memory Retrieval, consisting of two key modules: Intuitive Association
and Deliberate Recall.

the Qwen-2.5-3B-instruct model as our base ar-411

chitecture. This approach significantly enhances412

the model’s capability to identify and complement413

missing evidence.414

Recursive evidence retrieval415

To collect and complement the scattered clues,416

we use a recursive clue retrieval mechanism.417

Specifically, we optimize the focus of the retrieval418

question based on the current round of retrieval419

results and feedback from the deliberating model.420

This allow us to conduct a new round of subgraph421

retrieval, adding the nodes that were missed in the422

previous round. Through this systematic iteration,423

we achieve both comprehensive evidence consoli-424

dation and enhanced factual reconstruction fidelity.425

The algorithm is shown in Appendix B. Finally, we426

use the complete subgraph to calculate the evidence427

importance ranking (see Section 4.2.3).428

4.2.3 Evidence importance ranking429

To better identify key clues and assess node im-430

portance in our subgraph (consisting of utterances,431

user-related events, and entities), we propose us-432

ing personalized PageRank to calculate customized433

weights for each node. Where ri is the impor-434

tance of nodes, N (i) is the neighbors of the node435

i. w(i,j) is the weight from node j to node i. dj is436

the out-degree of node of j. pi is the personalized437

preference of node i.438

ri = α
∑

j∈N (v)

w(i,j)

dj
rj + (1− α)pi (11)439

In Associa, the pi is the ˆprize of nodes and the440

w(i,j) is formulated as follows:441

w(i,j) =
1

1 + log (1 + C(e(i,j)))
(12) 442

443

5 Experiment 444

To gain more insights into Associa, we tend to 445

address the following research questions (RQs) in 446

this section. 447

RQ1: How does Associa perform in retrieval for 448

long-term dialogue understanding? 449

RQ2: How does Associa perform in QA tasks 450

for long-term dialogue understanding? 451

RQ3: What functions do the various modules of 452

Associa serve in its performance? 453

5.1 Experiment setup 454

5.1.1 Datasets 455

To demonstrate the comprehensive capabilities of 456

Associa, we test it on two datasets: Longmemevals 457

and Longmemevalm. 458

Longmemeval Longmemeval (Wu et al., 2025) 459

is a benchmark dataset designed to evaluate the 460

very long-term memory capabilities of LLM-driven 461

chat assistants. It contains 500 designed questions 462

embedded within scalable user-assistant chat histo- 463

ries. 464

Longmemevals with approximately 115k tokens 465

per question (around 200 turns of dialogue) and 466

Longmemevalm with 1.5 million tokens per ques- 467

tion (around 2000 turns of dialogue, 500 sessions). 468

It tests the assistant’s ability to perform five core 469
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long-term memory tasks during sustained interac-470

tions: information extraction, multi-session reason-471

ing, temporal reasoning, knowledge updating, and472

abstention.473

5.1.2 Baselines474

To validate the effectiveness of Associa, we com-475

pared it with several representative models in the476

retrieval task. The models used for comparison are477

as follows: BM25, a widely used text retrieval478

algorithm that evaluates document relevance to479

a query based on term frequency (TF) and in-480

verse document frequency (IDF); BGE-m3 (Chen481

et al., 2024), a retrieval model that achieves state-482

of-the-art performance in long-document retrieval;483

Stella (stella_en_1.5B_v5) (Zhang et al., 2024a),484

which utilizes a multi-stage distillation framework485

to reduce model size and vector dimensionality486

while maintaining high performance on text em-487

bedding benchmarks; Contriever (Izacard et al.,488

2021), which explores the potential of contrastive489

learning for training unsupervised dense retrievers490

and demonstrates strong performance on the BEIR491

benchmark; and Longmemeval (Wu et al., 2025),492

which enhances retrieval performance by combin-493

ing Stella (1.5B) with user fact information and494

using LLMs for temporal filtering.495

In the QA task, we compared MemoRAG (Izac-496

ard et al., 2021), an innovative RAG framework497

built on top of a highly efficient, super-long mem-498

ory model. It utilizes a long-text memory model499

to provide an overview of the database, thereby500

optimizing retrieval results. Longmemeval (Wu501

et al., 2025) uses a retrieval-augmented approach,502

optimizing generation results in the generation503

phase through methods like CoN with JSON for-504

mat. Memorybank (Zhong et al., 2024) integrates505

the Llama-index retriever, performing vectorized506

retrieval of documents and using large models to507

summarize the retrieved information, thereby en-508

hancing the understanding of long-term memory509

for personal assistants.510

5.2 Experiment metrics511

For the retrieval task, this paper uses four metrics512

for evaluation: recall@5, recall@10, ndcg@5, and513

ndcg@10. The recall metric is defined as the re-514

trieval of all memories, meaning that the recall for515

that sample is 1.516

For the QA task, we use GPT-4o-mini for cor-517

rectness evaluation. By inputting the task category,518

question, correct answer, and the model’s generated519

response, GPT-4o-mini will return either correct or 520

incorrect. Based on this, we evaluate the accuracy 521

of the QA task. 522

5.2.1 Implementation details 523

Baseline implementation: In the baseline models 524

for both retrieval generation and generation tasks, 525

the methods from the original code repositories 526

were adapted and implemented. Some retrieval- 527

augmented methods require the use of retriev- 528

ers. The choice of retriever was made based on 529

the initial setup of the baseline models. For ex- 530

ample, Longmemeval uses the Stella (1.5B) re- 531

triever, while MemoRAG uses the BGE-M3 re- 532

triever. Due to the long text in Longmemevalm, the 533

beacon_ratio in MemoRAG is set to 16, while for 534

Longmemevals, it is set to 4. In the QA task, we 535

use GPT-4o (gpt-4o-2024-11-20) as the generative 536

model for testing. 537

In the execution of Associa, following the task 538

setup of Wu et al. (2025), we only use “user-side” 539

information and exclude data that cannot be re- 540

called from the user information in a small number 541

of cases. Associa uses Contriever as the dense 542

retriever. Additionally, the following hyperparam- 543

eter settings were chosen: for deliberating recall, 544

maxiter is set to 2; in the intuitive association 545

module, coste is set to 0.5, and topk (node setting) 546

and tope (edge setting) are set to 15. All exper- 547

iments were conducted on a single Nvidia A800 548

(80GB) GPU. 549

5.3 R1: The performance of memory retrieval 550

In Table 1, the result has shown that (1) Associa 551

with max_iter=2 achieves the highest overall per- 552

formance across all metrics, excelling particularly 553

in recall@5, recall@10, ndcg@5, and ndcg@10. 554

The increased number of iterations in this version 555

improves the model’s ability to retrieve relevant 556

results and rank them more effectively, making 557

it the best performer in the experiment. On the 558

other hand, Associa with max_iter=1 still shows 559

a significant improvement, especially in recall@5 560

and ndcg@5, where it performs near the top of 561

the table. Associa uses Contriever as the dense re- 562

triever. However, its performance far exceeds that 563

of Contriever, further proving the effectiveness of 564

this framework. 565

(2) The Longmemeval model, when combined 566

with user facts and time filtering, demonstrates an 567

improvement over BM25 and Contriever. While 568

it does not reach the same level of performance 569
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Models Longmemeval-s Longmemeval-m
recall@5 ndcg@5 recall@10 ndcg@10 recall@5 ndcg@5 recall@10 ndcg@10

BM25 0.507 0.538 0.591 0.567 0.383 0.424 0.456 0.451
Contriever 0.673 0.690 0.848 0.736 0.488 0.528 0.647 0.579

Stella 0.703 0.734 0.862 0.773 0.533 0.581 0.666 0.618
BGE 0.752 0.756 0.879 0.789 0.558 0.608 0.710 0.653

Longmemeval (w UF) 0.664 0.675 0.846 0.721 0.554 0.574 0.720 0.621
Longmemeval (w UF and TF) 0.701 0.720 0.867 0.759 0.563 0.592 0.722 0.634

Associa max iter=1 0.839 0.854 0.897 0.865 0.600 0.658 0.685 0.679
Associa max iter=2 0.867 0.868 0.925 0.880 0.664 0.702 0.766 0.727

Table 1: Performance for different models on two datasets. UF (User Fact) and TF (Time Filtering) are the specific
features of baseline LongmemEval.

as Associa, BGE, or Stella, it still shows positive570

effects, particularly at recall@10 and ndcg@10.571

This suggests that incorporating user-related factors572

contributes positively to model performance.573

(3) The difficulty of this task is fully reflected574

in longmemevalm, as the scale of the dataset is575

enormous, making it akin to finding a needle in a576

haystack when identifying memory clues. Most577

models perform around 0.5 in the recall@5 metric.578

However, Associa effectively improves the recall579

of relevant evidence through its graph connection580

ability and recursive clue recall. Additionally, due581

to its evidence importance ranking capability, the582

model achieves optimal performance in terms of583

NDCG.584

5.4 R2: The performance of question and585

answering586

The result in Table 2 has shown that for understand-587

ing long-term memory, Associa demonstrates supe-588

rior performance, highlighting the significant im-589

portance of enhanced retrieval in answering ques-590

tions. Longmemeval, due to its integration of tech-591

nologies such as CoN with JSON format, shows592

high effectiveness and performance in generation593

results. MemoryBank and MemoRAG perform594

poorly, possibly because excessively long text can595

reduce the comprehension ability of large language596

models when handling long texts.597

Models Longmemeval-s Longmemeval-m
MemoRAG 0.05 0.06

Longmemeval (w UF) 0.80 0.64
Longmemeval (w UF and TF) 0.80 0.64

MemoryBank 0.26 0.12
Associa (iter=2) 0.81 0.66

Table 2: Performance on QA task.

Models recall@5 ndcg@5 recall@10 ndcg@10
w/o AM 0.673 0.690 0.848 0.736
w/o DM 0.838 0.853 0.897 0.865
w/o SFT 0.841 0.860 0.913 0.873
w/o EIR 0.518 0.505 0.852 0.599
Associa 0.867 0.868 0.925 0.880

Table 3: Ablation test. w/o AM means w/o association
mechanism, w/o DM means w/o deliberating module,
w/o SFT means w/o fine-tuning of deliberating model,
EIR means w/o evidence importance ranking.

5.5 R3: The ablation test for Associa 598

We conducted four ablation studies by removing 599

key components of Associa: the association mecha- 600

nism (AM), deliberating module (DM), specialized 601

fine-tuning (SFT), and evidence importance rank- 602

ing (EIR). As shown in Table 3, all variants showed 603

performance degradation compared to the complete 604

model, with the removal of the association mecha- 605

nism causing the most significant drop. These re- 606

sults demonstrate that each component contributes 607

to Associa’s effectiveness, and their integration is 608

crucial for optimal memory retrieval performance. 609

6 Conclusion 610

This work addresses the critical challenge of long- 611

term conversational memory utilization in LLM- 612

based personal assistants. We propose Associa, a 613

cognitively inspired framework that overcomes the 614

limitations of dense retrieval through two key in- 615

novations: (1) an event-centric graph memory pre- 616

serving entity relationships, and (2) dual retrieval 617

modules combining associative pattern matching 618

with deliberate reasoning. Experimental validation 619

across multiple benchmarks demonstrates Asso- 620

cia’s superior performance. Our findings establish 621

graph-structured memory with human-like retrieval 622

mechanisms as a promising direction for develop- 623

ing AI capable of truly human-AI interaction. 624
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Limitations625

In our retrieval approach, we did not specifically626

model temporal information, which could be seen627

as an area for potential future enhancement. Ad-628

ditionally, our evaluation was limited to English-629

language datasets, and the assessment and learning630

of large models and agents would benefit from val-631

idation across a broader range of languages and632

corpora.633

References634

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu635
Lian, and Zheng Liu. 2024. Bge m3-embedding:636
Multi-lingual, multi-functionality, multi-granularity637
text embeddings through self-knowledge distillation.638
Preprint, arXiv:2402.03216.639

Yiming Du, Hongru Wang, Zhengyi Zhao, Bin Liang,640
Baojun Wang, Wanjun Zhong, Zezhong Wang, and641
Kam-Fai Wong. 2024. PerLTQA: A personal long-642
term memory dataset for memory classification, re-643
trieval, and fusion in question answering. In Pro-644
ceedings of the 10th SIGHAN Workshop on Chinese645
Language Processing (SIGHAN-10), pages 152–164,646
Bangkok, Thailand. Association for Computational647
Linguistics.648

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla,649
Thomas Laurent, Yann LeCun, Xavier Bresson, and650
Bryan Hooi. 2025. G-retriever: Retrieval-augmented651
generation for textual graph understanding and ques-652
tion answering. Advances in Neural Information653
Processing Systems, 37:132876–132907.654

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-655
tian Riedel, Piotr Bojanowski, Armand Joulin, and656
Edouard Grave. 2021. Unsupervised dense informa-657
tion retrieval with contrastive learning. Transactions658
on Machine Learning Research.659

Eunkyung Jo, Yuin Jeong, SoHyun Park, Daniel A Ep-660
stein, and Young-Ho Kim. 2024. Understanding661
the impact of long-term memory on self-disclosure662
with large language model-driven chatbots for public663
health intervention. In Proceedings of the CHI Con-664
ference on Human Factors in Computing Systems,665
pages 1–21.666

Jiho Kim, Woosog Chay, Hyeonji Hwang, Daeun667
Kyung, Hyunseung Chung, Eunbyeol Cho, Yohan668
Jo, and Edward Choi. 2024. Dialsim: A real-time669
simulator for evaluating long-term multi-party dia-670
logue understanding of conversational agents. arXiv671
preprint arXiv:2406.13144.672

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li,673
Yizhen Yuan, Guohong Liu, Jiacheng Liu, Wenxing674
Xu, Xiang Wang, Yi Sun, Rui Kong, Yile Wang,675
Hanfei Geng, Jian Luan, Xuefeng Jin, Zilong Ye,676
Guanjing Xiong, Fan Zhang, Xiang Li, Mengwei Xu,677

Zhijun Li, Peng Li, Yang Liu, Ya-Qin Zhang, and 678
Yunxin Liu. 2024. Personal llm agents: Insights and 679
survey about the capability, efficiency and security. 680
arXiv preprint arXiv:2401.05459. 681

Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yu- 682
lan He, Di Yin, Xing Sun, and Yunsheng Wu. 2023. 683
Memochat: Tuning llms to use memos for consis- 684
tent long-range open-domain conversation. arXiv 685
preprint arXiv:2308.08239. 686

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, 687
Mohit Bansal, Francesco Barbieri, and Yuwei Fang. 688
2024. Evaluating very long-term conversational 689
memory of LLM agents. In Proceedings of the 690
62nd Annual Meeting of the Association for Com- 691
putational Linguistics (Volume 1: Long Papers), ACL 692
2024, Bangkok, Thailand, August 11-16, 2024, pages 693
13851–13870. Association for Computational Lin- 694
guistics. 695

Siva Reddy, Danqi Chen, and Christopher D Manning. 696
2019. Coqa: A conversational question answering 697
challenge. Transactions of the Association for Com- 698
putational Linguistics, 7:249–266. 699

Nils Reimers and Iryna Gurevych. 2019. Sentence- 700
BERT: Sentence embeddings using Siamese BERT- 701
networks. In Proceedings of the 2019 Conference on 702
Empirical Methods in Natural Language Processing 703
and the 9th International Joint Conference on Natu- 704
ral Language Processing (EMNLP-IJCNLP), pages 705
3982–3992, Hong Kong, China. Association for Com- 706
putational Linguistics. 707

Zheng Wang, Zhongyang Li, Zeren Jiang, Dandan Tu, 708
and Wei Shi. 2024. Crafting personalized agents 709
through retrieval-augmented generation on editable 710
memory graphs. In Proceedings of the 2024 Con- 711
ference on Empirical Methods in Natural Language 712
Processing, pages 4891–4906. 713

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, 714
Kai-Wei Chang, and Dong Yu. 2025. Longmemeval: 715
Benchmarking chat assistants on long-term interac- 716
tive memory. In International Conference on Learn- 717
ing Representations (ICLR). 718

Jing Xu, Arthur Szlam, and Jason Weston. 2022. Be- 719
yond goldfish memory: Long-term open-domain con- 720
versation. In Proceedings of the 60th Annual Meet- 721
ing of the Association for Computational Linguistics 722
(Volume 1: Long Papers), pages 5180–5197, Dublin, 723
Ireland. Association for Computational Linguistics. 724

Xihang Yue, Linchao Zhu, and Yi Yang. 2024. FragRel: 725
Exploiting fragment-level relations in the external 726
memory of large language models. In Findings of 727
the Association for Computational Linguistics: ACL 728
2024, pages 16348–16361, Bangkok, Thailand. As- 729
sociation for Computational Linguistics. 730

Dun Zhang, Jiacheng Li, Ziyang Zeng, and Fu- 731
long Wang. 2024a. Jasper and stella: distilla- 732
tion of sota embedding models. arXiv preprint 733
arXiv:2412.19048. 734

9

https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://aclanthology.org/2024.sighan-1.18/
https://aclanthology.org/2024.sighan-1.18/
https://aclanthology.org/2024.sighan-1.18/
https://aclanthology.org/2024.sighan-1.18/
https://aclanthology.org/2024.sighan-1.18/
https://doi.org/10.18653/V1/2024.ACL-LONG.747
https://doi.org/10.18653/V1/2024.ACL-LONG.747
https://doi.org/10.18653/V1/2024.ACL-LONG.747
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/10.18653/v1/2024.findings-acl.968
https://doi.org/10.18653/v1/2024.findings-acl.968
https://doi.org/10.18653/v1/2024.findings-acl.968
https://doi.org/10.18653/v1/2024.findings-acl.968
https://doi.org/10.18653/v1/2024.findings-acl.968


Kai Zhang, Yangyang Kang, Fubang Zhao, and Xi-735
aozhong Liu. 2024b. Llm-based medical assistant736
personalization with short-and long-term memory co-737
ordination. In Proceedings of the 2024 Conference738
of the North American Chapter of the Association for739
Computational Linguistics: Human Language Tech-740
nologies (Volume 1: Long Papers), pages 2386–2398.741

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen,742
Quanyu Dai, Jieming Zhu, Zhenhua Dong, and Ji-743
Rong Wen. 2024c. A survey on the memory mech-744
anism of large language model based agents. arXiv745
preprint arXiv:2404.13501.746

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and747
Yanlin Wang. 2024. Memorybank: Enhancing large748
language models with long-term memory. In Pro-749
ceedings of the AAAI Conference on Artificial Intelli-750
gence, volume 38, pages 19724–19731.751

A Deliberating Recall Instruction Tuning752

Dataset Procession753

CoQA (Reddy et al., 2019) containing 127,000754

question-answer pairs from 8,000 dialogues. The755

dataset was processed as follows: (1) Graph con-756

struction: We extracted information from the757

8,000 reading materials according to Section 4.1.758

For each dialogue, we created a graph that contains759

original text chunks, events, and entity-type nodes760

within events. (2) Question restoration: Since the761

dataset contains a lot of pronouns in the questions,762

we used a large model (qwen-plus) to restore the763

questions. For example, "Where is the location of764

this museum?" is restored, considering the reading765

material, to "Where is the location of The Vatican766

Apostolic Library?" (3) Locating the correct cues767

in the graph: CoQA provides cues based on the768

reading material. Using semantic similarity cal-769

culation methods, we locate the 2-3 graph nodes770

with the highest semantic similarity to the correct771

cues as T . (4) Constructing positive and nega-772

tive sample inputs: We constructed two types of773

sample inputs. Positive samples include the correct774

cue as Posinput(q, Ṽ ), and negative samples ex-775

clude the correct cue as Neginput(q, ˜V \T ) (where776

V represents the sampled graph nodes, and ˜V \T777

represents the result of sampling the nodes from778

the graph after removing the correct cue T ). (5)779

Constructing positive and negative sample out-780

puts: For positive samples, we required the model781

to output an empty dictionary "{}". For negative782

samples, the model was asked to output the miss-783

ing entities and indicate irrelevant content in the784

existing cues. We used qwen-plus to generate the785

samples. (6) Model training: We fine-tuned the 786

qwen2.5-3B-instruct model for training. 787

B Deliberating Process Algorithm 788
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