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Abstract

Query-focused summarization (QFS) has been
well-studied in the context of text-based data,
However, QFS over semi-structured data such
as tables remains under-explored. Existing
studies primarily focus on single-table context,
thus limiting the capability to handle complex
multi-table scenarios. In this paper, we intro-
duce a novel query-focused multi-table sum-
marization task (QFMTS), where generation
models should produce comprehensive query-
focused summaries from multi-table contexts.
This requires the models to perform arithmetic
and multi-table operations such as join and in-
tersect. To facilitate this task, we automatically
collect the QFMTS dataset by leveraging large
language models (LLMs) as data annotators.
The dataset consists of 6,404 query-summary
pairs, each accompanied by multiple tables.
Our quality evaluation, including automatic and
human evaluation, illustrates the high quality
of the dataset. To demonstrate the efficacy of
the dataset, we experiment with state-of-the-
art models, including open-source generation
models and closed LLMs, on QFMTS. Experi-
ment results and qualitative analysis reveal the
significant challenges of the proposed task.

1 Introduction

Query-focused summarization (QFS) aims to gener-
ate summaries from given contexts to answer a user
question (Xu and Lapata, 2020, 2021; Vig et al.,
2022; Zhang et al., 2023). This enables personal-
ized response generation tailored to users’ specific
information needs. In spite of being extensively
explored with text-based data, query-focused sum-
marization over semi-structured data such as ta-
bles remains under-explored. The only existing
research (Zhao et al., 2023a) introduces query-
focused table summarization over a single input
table. However, it does not handle multiple-table
questions, thus limiting its capability in multi-table
scenarios. Since these scenarios pose additional
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Figure 1: A example of query-focused multi-table sum-
marization. One should combine the information of the
teachers from the two tables to answer the query.

There are 5 teachers in total. Anne Walker teaches 2 courses,
and Gustaaf Deloor, Kearsley Brown, Lucy Wong, and Vicente
Carretero teach 1 course.

challenges such as multi-table operations join, in-
tersect, union, etc.

To address these limitations, we propose query-
focused multi-table summarization, a new task for
summarizing information across multiple tables.
For example, as shown in Figure 1, the user ques-
tion “What are the names of the teachers who teach
courses and how many courses do they teach?” in-
volves identifying names of teachers to be associ-
ated with the column Name in the table Teacher,
and number of courses they teach to be associated
with the column Course ID in the table Course
Arrange. Next, an association between the two
table columns needs to be established using the
common column Teacher ID, which is present in
both tables to compute the final answer. In addi-
tion, models need to summarize all the answers by
aggregating the number of teachers and providing
the names and corresponding courses. This task
not only involves the challenges of the multi-table
question answering (QA) (Pal et al., 2023), such as
measuring the faithfulness and correctness of the
generated text, but also requires the generated text



to be coherent and fluent.

To facilitate this new task, we release a new
dataset, QFMTS (Query Focused Multi-Table
Summarization), comprising of 6,404 query-
summary pairs, each accompanied by multiple in-
put tables. We design automatic data generation
using large language models (LLMs) and conduct
automatic and manual quality verification. Specif-
ically, we adopt LLMs as data annotators using
proper instructions and few-show demonstrations.
Our quality evaluation, including automatic and
human evaluation, demonstrates the high quality of
the dataset with respect to completeness, faithful-
ness, and fluency. To investigate the efficacy of our
dataset, we experiment with state-of-the-art models,
including open-source models and closed LLMs.
In particular, to instruct LLMs to perform the task,
we first decompose the task into two sub-tasks, in-
cluding multi-table QA and summarization. Then,
we design two promoting strategies, namely single-
stage and multi-stage prompting to address sub-
tasks differently. Our experimental results show
that open models fine-tuned on our dataset outper-
form closed LL.Ms, such as GPT-3.5 (Ouyang et al.,
2022). Extensive qualitative analysis demonstrates
that multi-table scenarios are much more challeng-
ing compared to single-table scenarios, indicating
that there is large room for improvement.

To the best of our knowledge, we are the first to
address the task of query-focused multi-table sum-
marization, our main contributions are summarized
as follows:

(1) We introduce the task of query-focused sum-
marization over multiple tables, which requires
models to generate summaries tailored to users’
information needs. Our task generalizes to
complex multi-table scenarios with operations,
such as join, intersect, etc.

(2) We release a multi-table summarization dataset,
QFMTS, comprising of 6,404 question-
summary pairs, each accompanied by multi-
ple tables. We design an automatic data gen-
eration and evaluation process that facilitates
large-scale data development. '

(3) We benchmark our task with state-of-the-art
models, including closed-source and open-
source LL.Ms, to demonstrate the efficacy of
our dataset. Our extensive analysis demon-

'We only release the validation set during the review:
https://anonymfile.com/VByB/gfmts-valid.
jsonl. The whole data and code will be released upon
publication.

strates that handling multi-table scenarios is
much more challenging compared to single-
table scenarios. This suggests the need for
further research efforts.

2 Related Work

Table-to-Text Generation Table-to-text gener-
ation involves generating an informative descrip-
tion or summary for a given table. Existing stud-
ies (Chen et al., 2020a; Suadaa et al., 2021; Liu
et al., 2022a; Zhao et al., 2023b) primarily focus on
summarizing the entire table. However, adapting
these methods to multi-table scenarios that require
combinations of tables is not straightforward. Ad-
ditionally, users often possess specific information-
seeking needs for partial information from tables.
This motivates the need for query-focused table
summarization. Query-focused single-table sum-
marization was introduced by QTSUMM (Zhao
et al., 2023a). While our work generalizes to a
more realistic multi-table setting, introducing the
challenges of multi-table reasoning.

Table Question Answering Table QA requires
answering questions from table(s) (Pasupat and
Liang, 2015; Yin et al., 2020; Liu et al., 2022¢; Nan
et al., 2022; Zhang et al., 2020a; Pal et al., 2022).
Our work is inspired by Mult i TabQA (Pal et al.,
2023), which introduces generating tabular answers
from multiple tables. We adapt the task to query-
focused summarization that aligns with practical
applications, such as conversational assistants and
search engines (Ma et al., 2023).

3 QFMTS Task

3.1 Task Formulation

We formulate the QFMTS task as query-focused
multi-table summarization, where the goal is to
produce a fluent and informative summary from
a question over multiple tables. Specifically,
given a user question g and a set of input ta-
bles 7 = {t1,...,t}, an effective query-focused
multi-table summarizer reasons over J_ constrained
by ¢ and generates a paragraph-level summary s.
The summary s should be factually correct and
fluent.

3.2 Research Questions

In the context of the query-focused multi-table sum-
marization task (QFMTS), we aim to answer the
following research questions:


https://anonymfile.com/VByB/qfmts-valid.jsonl
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RQ1 How can we automatically generate the
QFMTS dataset using large language mod-
els?

RQ2 How can we evaluate the quality of the
QFMTS dataset?

RQ3 How do neural models, including open
and closed source models, perform in the
QFMTS task?

RQ4 To what extent do multi-table contexts bring
challenges to neural models compared to
single-table contexts?

4 QFMTS Dataset

We build our dataset on top of a subset of the multi-
table QA dataset (Pal et al., 2023). The dataset
comprises 6, 715 training and 985 validation sam-
ples, with each sample consisting of an SQL query,
an associated natural language question, one or
more input tables, and an answer table. The natural
language question is a rewrite of the correspond-
ing SQL query, and the answer table is a tabular
answer to the question. The goal of the original
task is to generate the answer table for either the
natural language question or the SQL query based
on the input tables. We repurpose this dataset to a
query-focused multi-table summarization setting.
To achieve this, we reframe the task’s goal to gen-
erate an answer summary given the natural lan-
guage question and input tables. We observe that
more than 10% samples contain exceptionally large
tables (> 10,000 tokens). This results in input
truncation due to the models’ maximum sequence
length constraint, leading to sub-optimal generated
results. To address this issue and ensure compatibil-
ity with different models, we exclude samples with
a total number of input tokens (question and tables)
exceeding 2,000. This results in 5,721 training
and 683 validation samples, which we utilize to
construct our dataset.

4.1 Summary Generation

Previous work in query-focused summarization
over single tables, such as QTSUMM (Zhao et al.,
2023a), relies on human annotation to ensure the
correctness of the summaries in table reasoning.
However, manual annotation is time-consuming
and costly. To address these limitations, we ex-
plore RQ1 by designing an automatic annotation
process to synthetically generate summaries for our
dataset. Recent studies (Ding et al., 2023; Laskar
et al., 2023b; He et al., 2023) have demonstrated

that LLMs with proper instructions and demonstra-
tions achieve competitive performance compared
to crowdsourced workers. Thus, we employ LLMs
as data annotators for summary generation. Specif-
ically, we design a straightforward task of table-
to-text transformation. However, instead of using
input tables, we utilize the ground-truth answer
tables for answer table-to-text transformation. This
simplified task does not involve complex multi-
table reasoning but ensures that the generated sum-
maries are grounded in answer tables, thus ensur-
ing the correctness and faithfulness of summaries.
Finally, we instruct ChatGPT to perform this trans-
formation via the public OpenAI API.? The overall
annotation cost of API usage is approximately 30
dollars.

Input Formulation The input provided to Chat-
GPT is the ground-truth answer table. How-
ever, ChatGPT only accepts text-formatted inputs.
Hence, we should first serialize the answer table
within the prompt. There are several options, in-
cluding markdown-style (Zhao et al., 2023a) and
linearized flattening (Liu et al., 2022c; Pal et al.,
2023). After manual inspection, we found that lin-
earized flattening performs the best. For linearized
flattening, a table is flattened to a sequence with
sentinel words. For instance, a table named ¢ with
m rows and n columns is flattened as follows:

Prompt 4.1: Table formatting

<table_name>t col: hi|...|horowl: c11 |...|
Cln TOW it Ci1 | oo | Cin oo TOWME Cop1 | oo | Tin

where h; is j-th column header, and c¢; ; is the i-th
row and j-th column cell.

Furthermore, we found that relying solely on
the answer table is often insufficient to generate a
self-contained summary, as it lacks the essential
contextual information. However, we observe that
Such missing contextual information can be ex-
tracted from the user question. For instance, the

answer table

semester_name | semester_id
summer 2010 2

lacks contextual information to demonstrate that
semester Summer 2010 has the most registered
students in response to the question “What is the
semester in which most students registered? Show
both the name and the id.”. Thus, we use the ques-
tion as additional input to ensure the complete-
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ness of the summary. Accordingly, an example
summary is “The semester with the most student
registrations is the summer 2010 semester, with a
semester ID of 2.”

Instruction Design Our instruction follows the
standard few-shot prompting technique (Brown
et al., 2020). Specifically, we first write a compre-
hensive annotation guideline, including a descrip-
tion of the expected summary’s discourse structure
and length requirement. We observe that a more
precise guideline leads to better generation quality.
To provide further clarity to ChatGPT, we manually
write summaries for a small number of examples
as few-shot demonstrations (we use 5-shot in our
experiments). The structure of the prompt for sum-
mary generation is shown in Prompt 4.2, and the
complete prompt can be found in Appendix A.

Prompt 4.2: Summary generation

Instruction: A comprehensive guideline including input
formats, expected summary’s discourse structure, and
length requirement.

Demonstrations:
Few-shot human-written demonstrations.

The input question and answer table.
" v

4.2 Quality Verification

We address RQ2 by developing both automatic and
manual quality evaluations to assess the quality of
the generated summaries. We define three primary
desiderata for quality verification as follows:
 Faithfulness: All statements in the summary
should be factually consistent with the ground-
truth answer table.
¢ Completeness: The summary should include all
the information needs of the user, i.e., all facts in
the ground-truth answer tables are present in the
summary. Partial information from the answer
table is deemed incomplete.
* Fluency: The summary is clear, articulate, and
easy to understand by humans.
In our experiments, we employ standard sequence
similarity metrics to measure completeness. Since
there are no ideal metrics for faithfulness and flu-
ency, we conduct a human evaluation to measure
them. The results of the quality evaluation are
shown in Table 1.

Automatic Evaluation We automatically evalu-
ate the completeness of the generated summaries
using the answer tables. However, as discussed

in section 4.1, the answer table alone provides in-
sufficient contextual information for completeness
evaluation. Thus, we further evaluate the summary
with respect to the question in addition to the an-
swer to measure completeness.

Specifically, we adopt the lexical similarity score
ROUGE (Lin, 2004), a widely used metric in table-
to-text generation (Lin et al., 2023). As our primary
focus lies in assessing the presence of informa-
tion from the question and answer table within the
summary, we report recall versions of ROUGE-1
and ROUGE-L, termed, ROUGE-1-R and ROUGE-
L-R, respectively. We define ROUGE-1g-R and
ROUGE-Lq-R as the estimate of the lexical com-
pleteness of the summary regarding the question as
the reference text, and ROUGE-171-R and ROUGE-
Lt-R as the lexical completeness regarding the an-
swer table. As shown in Table 1, ROUGE-11-R
and ROUGE-Lt-R surpass 90, indicating that the
generated summaries cover most facts, such as nu-
merals and named entities from the answer tables.
We also observe that ROUGE-1g-R and ROUGE-
Lq-R exhibit lower scores than table-based scores,
yet exceeding 75. This indicates that the summaries
retain the majority of keywords in the questions.
The lower question-based scores may be because of
stop-words and rewrite of the question to a declara-
tive statement, where stop-words may be replaced
or removed.

Human Evaluation To evaluate the faithfulness
and fluency of the summaries, we randomly sam-
pled 100 examples from the training and validation
set, respectively. Three annotators who are well-
versed in SQL and fluent in English were engaged
to assess the faithfulness and fluency of the sum-
maries with respect to the corresponding questions,
input tables, and answer tables. We instructed the
annotators to assign a binary label for faithfulness,
commonly used in table-to-text generation (Chen
et al., 2020b). They were to rate a summary as 1 if
it is faithful to the associated answer table without
containing hallucinations; otherwise, it is assigned
0. The annotators were also provided the ques-
tion and input tables for interpretability. Follow-
ing Zhao et al. (2023a), we estimate fluency with
a 5-point Likert scale from 1 to 5, where a higher
value indicates better fluency. The final human
judgment for each example was computed by aver-
aging the scores assigned by the three annotators.
As shown in Table 1, the total of generated sum-
maries are faithful with a high score of 0.99 and flu-



Automatic Evaluation (%)

Human Evaluation!

Split
b ROUGE-1g-R  ROUGE-Lg-R  ROUGE-17-R ROUGE-Lt-R  Faithfulness Fluency
Train 86.86 74.52 93.24 91.45 0.99 4.73
Valid 86.22 74.37 93.62 91.75 1.00 4.81
Total 86.79 75.50 93.28 91.48 0.99 4.77

Table 1: Evaluation results of the quality of QFMTS. We report recall scores for both ROUGE-based scores and
BERTScore. frepresents that we randomly sample 100 examples from the training and validation set, respectively.

ent with a score of 4.77, indicating more than 99%
summaries are faithful to the associated answer ta-
bles. To measure the inter-annotator agreement, we
adopt Fleiss Kappa (Fleiss, 1971). We obtained
Kappa scores of 0.97 and 0.80 for faithfulness and
fluency, respectively, indicating substantial agree-
ment and almost perfect agreement, respectively.

Data Post-processing Based on the results of
the quality evaluation, we manually revise samples
with lower ROUGE scores. In particular, when
their ROUGE-Lq-R scores are below the threshold
0.7 or ROUGE-Lt-R scores are below the thresh-
old 0.9. we revised them to ensure that they include
sufficient information in the questions and answer
tables.

4.3 Dataset Analysis

We analyze the generated dataset on the number
of input tables and make comparisons with ex-
isting related datasets. Existing work on query-
focused table summarization, QTSUMM (Zhao
et al., 2023a), is contemporary with ours but fo-
cuses on the simpler single-table setting.> As QT-
SUMM is only the query-focused table summariza-
tion dataset, we compare our dataset, QFMTS,
with QTSUMM in Table 2. On average, our dataset
contains 1.5 input tables per question whereas QT-
SuMM is focused on only 1 input table. Our
summaries are shorter, averaging 54.8 words com-
pared to 67.7 of QTSUMM, since our summaries
only contain essential contextual information and
the answers. Additionally, our QFMTS con-
tains both single numeric operations such as sum,
average, and multiple-table operations such as
join, intersect, which are not present in QT-
SUMM.

We further analyze the presence of multiple input
tables in Table 3. Our training data contains both
single and multiple input tables, with 58.8% of
questions over a single table, 31.5% of samples

3At the time of writing, this dataset has not been released
yet.

Dataset Statistics Reasoning
#0 #Table #Words Multi-
perQ in Summ Table
QTSuMM 5,625 1.0 67.7 v X
QFMTS 6,422 1.5 54.8 v v

Table 2: Comparison of QFMTS with existing query-
focused table summarization dataset. QFMTS is the
only dataset that allows for both numeric and multi-
table reasoning. Q, Summ, and Num indicate question,
summary, and numeric, respectively.

Split # Input tables

1 2 3+
Train 3,383 (58.8%) 1,810 (31.5%) 557 (9.7%)
Valid 392 (56.9%) 256 (37.2%) 41 (6.0%)
Total 4,387 (58.6%) 2,066 (32.1%) 598 (9.3%)

Table 3: Data statistics by the number of input tables.
We have 5, 721 training and 683 validation examples in
total.

over 2 tables, and 9.7% over more than 3 tables.
The validation set displays a similar pattern with
56.6% samples over single tables, 37.2% samples
over 2 tables, and 6% of samples over 3 tables.

S Methodology

We employ a variety of state-of-the-art models to
demonstrate the efficacy of the QFMTS dataset, in-
cluding open-source encoder-decoder models and
closed-source LLMs. The open-source models are
fine-tuned on our dataset while the LLMs are in-
structed with few-shot prompting (Brown et al.,
2020).

5.1 Few-shot Prompting

We directly instruct LLMs, such as GPT-
3.5 (Ouyang et al., 2022), to produce the expected
summaries with few-shot demonstrations and with-
out updating their parameters. To ensure the effec-
tiveness of few-shot prompting, we decompose our
task into two sub-tasks. The first sub-task involves
answering a question from tables, where LLMs are



instructed to perform reasoning over multiple tables
to obtain a list-like answer. The second sub-task
requires writing a summary of the answer obtained
in the first sub-task. We explore two prompting
strategies to tackle both sub-tasks: one-stage and
multi-stage prompting. One-stage prompting re-
quires the LLM to perform the two sub-tasks in
a single prompt while multi-stage prompting re-
quires the LLM to perform sequential sub-tasks
with independent prompts for each sub-task.

One-stage Prompting In one-stage prompting,
we instruct the LLMs to complete two sub-tasks
step by step within a single prompt. The prompt
comprises two parts. First, we prompt the LLM
to answer the question from the tables. Note that
the answer is a list-like answer rather than a ta-
ble. We follow the chain-of-thoughts (CoT) style
prompts (Wei et al., 2022; Kojima et al., 2022) by
adding “Let’s think step by step” to enhance the
reasoning abilities of the LLM. Second, we instruct
the LLM to write a summary based on the ques-
tion and previously generated answers. We ensure
that the task description is similar to the instruc-
tion used in the annotation process, described in
subsection 4.1, so the generated summarises share
the same structure as reference summaries. The
outline of the prompt is shown in Prompt 5.1, and
the complete prompt is shown in Appendix A.

Prompt 5.1: One-stage prompting

Instruction: A introduction of input formats and
objectives to complete two tasks below step by step.

Task 1: Answering Question from Tables
A task description with CoT for obtaining a list-like
answer.

Task 2: Write Summary for Answers
A task description for generating a summary.

Demonstrations:
Few-shot human-written demonstrations.

The input question and tables.

Multi-stage Prompting In multi-stage prompt-
ing, the LLM completes two independent sub-tasks
in a sequential manner. In the first stage, we instruct
the LLLM to only answer the given question, with-
out instruction to generate a summary or specific
constraints on the answer format. This results in
the LLM generating a list-like response. In the sec-
ond stage, the questions and the generated answers
from the first stage are used to prompt the LLM

to generate a summary. The outline of prompts
is shown in Prompt 5.2 and 5.3. The complete
prompts are shown in Appendix A.

Prompt 5.2: Stage 1: Multi-table QA

Instruction: A introduction of input formats and
objectives.

Task: Answering Question from Tables
A task description for obtaining a list-like answer.

Demonstrations:
Few-shot human-written demonstrations.

The input question and tables.

€

\

Prompt 5.3: Stage 2: Summarization

Instruction: A introduction of objectives.

Task: Write Summary for Answers
A task description for generating a summary.

Demonstrations:
Few-shot human-written demonstrations.

The input question and generated answers.

€

\

Discussion The one-stage method is straightfor-
ward yet more challenging since the LLM is re-
quired to perform both table reasoning and sum-
mary generation in an end-to-end manner. In con-
trast, the multi-stage method provides more flexibil-
ity by enabling the LLM to focus on one sub-task at
a time. Furthermore, the comparison between the
single and the multi-stage method can be used to
analyze the relative difficulty between multi-table
summarization and multi-table QA.

5.2 Fine-tuning

In addition to prompting the LLM to produce
summaries directly, we also fine-tune open-source
encoder-decoder models on QFMTS. Specifically,
the input to the models is the concatenated se-
quence of the question and all linearized input
tables. The table names are appended to the re-
spective tables to disambiguate among different
input table content. The final input sequence
for a sample with k tables is represented as
question [tabley] ... [tabley] where [table;] is the
linearized representation of input table 7 as shown
in prompt 4.1. The output of the model is the query-
focused summary.



6 Experimental Setup

We utilize state-of-the-art open-source and
closed-source models to benchmark QFMTS.
For open-source models, we use pre-trained
models bart-base (139M parameters),
bart-large (406M parameters) (Lewis et al.,
2020), and state-of-the-art multi-table QA model
MultiTabQA (Pal et al., 2023) to evaluate
the efficacy of our dataset. MultiTabQA
generates answer tables to multi-table questions,
which was trained on a multi-table QA task
using a pre-trained bart-base model. We
name the fine-tuned models BART-Base-TS,
BART-Large-TS, and MultiTabQA-TS, with
TS indicating that they are fine-tuned on our
Table Sumarization dataset. For closed LLMs,
we explore GPT—-3.5 (Ouyang et al., 2022) and
GPT-4 (OpenAl, 2023) as backbones 4 in our ex-
periments. Since the GPT family has demonstrated
significant unsupervised performance in many
downstream NLP tasks (Laskar et al., 2023a).
We design zero- and few-shot settings to instruct
GPT-3.5 to produce summaries. However, due
to budget constraints, we only include a few-shot
setting for GPT—-4. Details of the prompts can be
found in Appendix A.

We fine-tune the open-source models on the
QFMTS training set using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) for 64 epochs
with a learning rate of le4, batch size of 256,
and the maximum sequence length of 1024. We
randomly split 10% of the training set as a develop-
ment set and choose the best-performing model
based on the loss of development. All experi-
ments are conducted on a single A6000 GPU. For
GPT-3.5 and GPT-4, we set the temperature and
top-p to 0.1 and 0.95, respectively. We set max
tokens of outputs to 700 and 400 for one-stage and
multi-stage methods, respectively. We included
both 0-shot and 3-shot settings.

Evaluation Metrics We evaluate the predicted
summary with respect to the reference summary by
estimating the similarity between them in different
aspects, such as fluency and correctness. Follow-
ing Zhao et al. (2023a), We adopt two lexical-based
metrics, SacreBLEU (Papineni et al., 2002) and
ROUGE-L (Lin and Hovy, 2003), and a semantic
similarity metric, BERTScore (Zhang et al., 2020b).
We report the F1 version for ROUGE-L (longest

‘gpt-3.5-turbo-0613 and gpt-4-0613

Model SB RL BSc
One-stage prompting

GPT-3.5 (0-shot) 32.99 58.72 59.07
GPT-3.5 (3-shot) 3794 62.23 64.94
Multi-stage prompting

GPT-3.5 (0-shot) 38.94 63.05 65.59
GPT-3.5 (3-shot) 42.55 66.53 68.30
GPT-4 (3-shot) 45.13 69.02 T72.11
Fine-tuned on QFMTS

BART-Base-TS 44.03 66.70 67.03
BART-Large-TS 47.33 68.98 70.10
MultiTabQA-TS 50.67 72.38 72.59

Table 4: Performance comparison of baseline mod-
els on the QFMTS validation set. They are either
prompted with few-shot demonstrations or fine-tuned
on the QFMTS training set. SB, RL, and BSc denote
SacreBLEU, ROUGE-L, and BERTScore, respectively.

common subsequences) and BERTScore. We use
deberta-xlarge-mnli (He et al., 2021) as
the backbone for BERTScore.

7 Results and Analysis

We explore RQ3 by comparing the model
performance on our dataset. We show the
results in Table 4. We find that the fine-tuned
models achieve better results compared to all
instruction-tuned GPT-3.5 variants. How-
ever, GPT—4 exhibits competitive performance
as BART-Large-TS. Among all models,
MultiTabQA-TS achieves the highest perfor-
mance. Note that MultiTabQA-TS has been
fine-tuned on our dataset using the bart-base
structure. Even though the BART-Large-TS is
larger, MultiTabQA-TS exhibits better multi-
table reasoning and summarization performance.

We also observe that multi-stage prompted
GPT-3.5 outperforms one-stage one by a large
margin. Note that multi-stage prompting breaks
down the task into two independent sub-tasks:
(1) multi-table QA, and (ii) summarization. The re-
sults indicate that end-to-end query-focused multi-
table summarization is much more challenging than
multi-table QA. As the LLM focuses on only the
multi-table reasoning sub-task in the first stage, it
generates a correct answer more frequently. The
follow-up sub-task of summarization is simpler and
leads to better summaries compared to one-stage
prompting.

To answer RQ4, we show the performance com-
parison between samples with single-table inputs



#Input Tables
Model | (Single-table) 2+ (Multi-table)
RI BSc RIL  BSc
GPT-3.5 6857 7082 63.63 64.95
GPT-4 69.48 73.05 6830 70.85
MUltiTab o464 7495 6930 6947
QA-TS

Table 5: Results of GPT-3.5 and GPT-4 with 3-shot
multi-stage prompting, and MultiTabQA-TS regard-
ing the number of input tables. R-L and BSc denote,
ROUGE-L and BERTScore, respectively.

and multi-table inputs in Table 5. We observe that
multiple input tables lead to a drop in all scores
for all models. The drop is most significant for the
smaller sized MultiTabQA-TS, and least for the
largest sized GPT—4. Although reasoning across
multiple tables is more challenging than single ta-
bles, model capacity diminishes this gap. However,
instruction-tuned LLMs do not necessitate better
table reasoning than the best-performing models
fine-tuned on our dataset.

Qualitative Analysis To provide deeper insights
into the efficacy and challenges of our task, we
conduct a manual analysis of the summaries gener-
ated by MultiTabQA-TS on the QFMTS val-
idation set, including success and failure cases.
We observe that MultiTabQA-TS successfully
performs arithmetic and multi-table operations in
some cases. A success case illustrates this. For
the question “Which employee received the most
awards in evaluations? Give me the employee
name.” over 2 input tables:

Employee Evaluation
ID Name Age Year
1 George 73 1D _awarded Bonus
Chuter 1 2011 3000
2 Lee 29 2 2015 3200
Mears 1 2016 2900

With the reference summary “The employee who
received the most awards in evaluations is George
Chuter.”, MultiTabQA-TS reasons over the 2
tables, perform the complex table operations, such
as count and join. Particularly, the model finds
two records of awards of George Chuter in the table
Evaluation and aggregates the total number of
awards. After joining the two tables, the model
accurately identifies George Chuter as the person
with the most awards, generating “The employee
who received the most awards in evaluations is

George Chuter.”.

A failure case of MultiTabQA-TS also illus-
trates the challenges of multiple-table scenarios.
For the question “What are the names of all Eu-
ropean countries with at least 3 manufacturers?”
over 3 input tables:

Continents Countries
Cont . Country Country Cont-
Id Continent Id Name inent
1 America 2 Germany 2
2 Europe 3 France 2
3 Asia 1 USA 1
4 Africa 8 Korea 3
5 Australia
Car Makers
Id Maker Full Name | Country
2 | Volkswagen | Volkswagen 2
3 bmw BMW 2
7 citroen Citroen 3
14 opel Opel 2
15 peugeaut Peugeaut 3
16 renault Renault 3
22 kia Kia Motors 8

With the reference summary “There are 2 European
countries with at least 3 manufacturers. The names
of these countries are France and Germany.”, the
model mistakenly generates "There are 2 European
countries with at least 3 manufacturers. The names
of these countries are France and Korea.". Even
though this generated summary exhibits a high de-
gree of fluency, it is only partially faithful and com-
plete due to the incorrect inclusion of Korea, a
country not located in Europe.

8 Conclusion

We present QFMTS, query-focused multi-table
summarization that enables models to perform com-
plex arithmetic and multi-table reasoning. We
create the QFMTS dataset, comprising of 6,404
query-summary pairs, each accompanied by multi-
ple input tables. We utilize LLMs for dataset gen-
eration by designing a simple task of transforming
answer tables to summaries, which leads to high-
quality summaries. We benchmark our dataset with
both open-source models and closed-source LLM:s.
Experimental results show that smaller open-source
models fine-tuned on QFMTS outperform LLMs
by a large margin. We also highlight the greater
complexity of multi-table scenarios compared to
single-table scenarios. This suggests that there is
large room for improvement in complex multi-table
reasoning, and more research efforts are needed.



9 Limitations

The summaries on our QFMTS were automati-
cally generated by GPT-3.5, despite being scalable
and cost-effective, which may limit the diversity
of the summaries regarding vocabulary or sentence
structure compared to expert annotators. For few-
shot prompting baselines, we used fixed few-shot
demonstrations, which are easy to implement yet
sub-optimal. Advanced demonstration selection
methods, such as retrieval-augmented methods (Liu
et al., 2022b; Rubin et al., 2022), have the potential
to enhance generation capabilities. Furthermore,
these baselines do not explore re-verifying the cor-
rectness of the answers before summary generation.
Such a verification mechanism may boost the faith-
fulness of the summaries and can be explored in
the future.

10 Ethical Considerations

The source questions and tables in QFMTS are
derived from a multi-table QA dataset (Pal et al.,
2023), which is openly access under the MIT li-
cense. It facilitates its usage for research purposes.
The baseline models used in this paper include
closed LLLMs accessible via the commercial Ope-
nAI API 3 and publicly available open-source mod-
els. In particular, we leverage Copilot primarily to
assist with data processing code. We use ChatGPT
to mainly correct grammatical errors and ensure
the paper does not contain any of the generated text
directly from ChatGPT.
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A Prompts

Complete prompts used in the paper are shown
below.
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Appendix A.1: Complete prompt for summary generation

Instruction: You will be provided with a question and its tabular answer. Your task is to write a concise, fluent, and accurate
summary for the given table. The table consists of m rows and n columns, following this format:

col: <column header 1> | <column header 2> | ... | <column header n> row 1: <value 1,1> | <value 1,2> | ... | <value 1,n> row
2: <value 2,1> | <value 2,2> | ... | <value 2,n> ... row m: <value m,1> | <value m,2> | ... | <value m,n>.

The summary should comprise two sections: 1) The initial segment first mentions the total number of data if there are 2 or
more rows in the table. Then, it should rephrase the question as a declarative statement while retaining all relevant keywords.
2) The subsequent segment must include all the information, including numerical data and entities, from the table. Describe
the table row by row without explaining the column headers. The summary should be a conventional text paragraph without
any list, containing a minimum of 5 words while not exceeding 300 words in length.

You can refer to the demonstrations below. Each demonstration consists of a question, its tabular answer, and a human-written
summary.

Demonstrations:

Question: What is the total number of singers?
Table: col: count(*) row 1 : 6

Summary: The total number of singers is 6.

Question: What is the abbreviation of the airline that has the fewest flights and what country is it in?
Table: col : Abbreviation | Country row 1 : AirTran | USA
Summary: The abbreviation of the airline that has the fewest flights is AirTran, and its country of location is the USA.

Question: List the maximum weight and type for each type of pet.

Table: col: max(weight) | PetType row 1 : 12.0 | catrow 2 : 13.4 | dog

Summary: There are 2 types of pets, which are the cat and the dog. The maximum weight of the cat is 12.0 and the maximum
weight of the dog is 13.4.

Question: What are the different first names and ages of the students who do have pets?

Table: col : Fname | Age row 1 : Linda | 18 row 2 : Tracy | 19

Summary: There are 2 different students who do have pets. The first names and ages of the students are Linda with 18 years
old and Tracy with 19 years old.

Now follow the instructions and the demonstrated style above to write a concise, fluent, and accurate summary
for the question and its tabular answer provided below:

Question: input question here
Table: answer table here
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Appendix A.2: Complete single-stage prompt

Instruction: You will be given a question along with one or more tables to complete two tasks step by step. Each table
contains a name and content with multiple rows and columns, formatted as follows:

col: <column header 1> | <column header 2> | ... | <column header n> row 1: <value 1,1> | <value 1,2> | ... | <value 1,n> row
2: <value 2,1> | <value 2,2> | ... | <value 2,n> ... row m: <value m,1> | <value m,2> | ... | <value m,n>.

Task 1: Answering the Question from the Tables.

Your first task is to answer the question using only the information from the tables, such as numerical data and entities. This
may involve performing arithmetic calculations and combining data from multiple tables if necessary. Please begin your
response with "Answers:" and enumerate all discovered answers one by one, separating them with commas ",". Let’s think
step by step.

Task 2: Writing a Summary for the Answers.

Your second task is to write a concise, fluent, and accurate summary based on the answers generated in the first task. This
summary should begin with the word "Summary:" and follow the guidelines as follows: 1) Introduction: Begin by using
a numeral to indicate the total number of answers if there are two or more; Then, rephrase the question as a declarative
statement while retaining all relevant keywords. 2) Body: Present all discovered answers one by one. The summary should
be a standard paragraph format without using lists, containing a minimum of 5 words but not exceeding 300 words in length.
You can refer to the demonstrations below. Each demonstration consists of a question, tables, and human-written answers,
and a summary.

Demonstrations:

Question: Show the name for regions not affected.

Table 1: Name: region; Content: col : Region_id | Region_code | Region_name row 1 : 1 | AF | Afghanistan row 2 : 2| AL |
Albaniarow 3 : 3|1 DZ | Algeriarow 4 : 4 | DS | American Samoa row 5 : 5| AD | Andorrarow 6 : 6 | AO | Angolarow 7 : 7 |
Al | Anguilla row 8 : 8 | AQ | Antarcticarow 9 : 9| AG | Antigua and Barbuda row 10 : 101 CY | Cyprus row 11 : 111 CZ |
Czech Republic row 12 : 12 | DK | Denmark row 13 : 13 | DJ | Djibouti

Table 2: Name: Affected Region; Content: col : Region_id | Storm_ID | Number_city_affectedrow 1 : 111110row?2: 2111
15row3:313130row4:114122rowS5:1215137row6:215112

Answers: American Samoa, Andorra, Angola, Anguilla, Antarctica, Antigua and Barbuda, Cyprus, Czech Republic, and
Djibouti are the names for regions not affected.

Summary: There are 9 regions that are not affected. These regions include American Samoa, Andorra, Angola, Anguilla,
Antarctica, Antigua and Barbuda, Cyprus, Czech Republic, and Djibouti.

Now follow the instructions and the demonstrated style above to complete the two tasks step by step for the
question and tables provided below:

Question: input question here
Tables: input tables here
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Appendix A.3: Complete prompt for stage 1

Instruction: You will be given a question along with one or more tables to complete the task below. Each table contains a
name and content with multiple rows and columns, formatted as follows:

col: <column header 1> | <column header 2> | ... | <column header n> row 1: <value 1,1> | <value 1,2> | ... | <value 1,n> row
2: <value 2,1> | <value 2,2> | ... | <value 2,n> ... row m: <value m,1> | <value m,2> | ... | <value m,n>.

Task: Answering the Question from the Tables.

Your task is to answer the question using only the information from the tables, such as numerical data and entities. This may
involve performing arithmetic calculations and combining data from multiple tables if necessary. Please begin your response
with *Answers:” and enumerate all discovered answers one by one, separating them with commas ’,’. Let’s think step by step.

Demonstrations:

Question: Show the name for regions not affected.

Table 1: Name: region; Content: col : Region_id | Region_code | Region_name row 1 : 1 | AF | Afghanistan row 2 : 2| AL |
Albaniarow 3 : 31 DZ | Algeria row 4 : 4 | DS | American Samoa row 5 : 5| AD | Andorrarow 6 : 6 | AO | Angolarow 7 : 7 |
Al Anguilla row 8 : 8 1 AQ | Antarcticarow 9 : 9 | AG | Antigua and Barbuda row 10: 10 | CY | Cyprusrow 11 : 11 | CZ |
Czech Republic row 12 : 12 | DK | Denmark row 13 : 13 | DJ | Djibouti

Table 2: Name: Affected Region; Content: col : Region_id | Storm_ID | Number_city_affectedrow 1: 111110row2: 2111
15row3:313130row4:114122rowS5:1215137row6:215112

Answers: American Samoa, Andorra, Angola, Anguilla, Antarctica, Antigua and Barbuda, Cyprus, Czech Republic, and
Djibouti are the names for regions not affected.

Now follow the instructions and the demonstrated style above to complete the task step by step for the question
and tables provided below:

Question: input question here
Tables: input tables here

- J

Appendix A.4: Complete prompt for stage 2

Instruction: You will be given a question along with its one or more answers to complete the task below.

Task: Writing a Summary for the Answers.

Your task is to write a concise, fluent, and accurate summary based on the answers generated in the first task. This summary
should begin with the word "Summary:" and follow the guidelines as follows: 1) Introduction: Begin by using a numeral to
indicate the total number of answers if there are two or more; Then, rephrase the question as a declarative statement while
retaining all relevant keywords. 2) Body: Present all discovered answers one by one. The summary should be a standard
paragraph format without using lists, containing a minimum of 5 words but not exceeding 300 words in length.

You can refer to the demonstrations below. Each demonstration consists of a question, tables, and human-written answers,
and a summary.

Demonstrations:

Question: Show the name for regions not affected.

Answers: American Samoa, Andorra, Angola, Anguilla, Antarctica, Antigua and Barbuda, Cyprus, Czech Republic, and
Djibouti are the names for regions not affected.

Summary: There are 9 regions that are not affected. These regions include American Samoa, Andorra, Angola, Anguilla,
Antarctica, Antigua and Barbuda, Cyprus, Czech Republic, and Djibouti.

Now follow the instructions and the demonstrated style above to complete the task step by step for the question
and answers provided below:

Question: input question here
Answers: generated answers here
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