
Under review as a conference paper at ICLR 2022

REVISITING THE LOTTERY TICKET HYPOTHESIS:
A RAMANUJAN GRAPH PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks for machine learning applications often yield to weight pruning
resulting in a sparse subnetwork that is adequate for a given task. Retraining these
‘lottery ticket’ subnetworks from their initialization minimizes the computational
burden while preserving the test set accuracy of the original network. The exist-
ing literature only confirms that pruning is needed and it can be achieved up to
a certain sparsity. We analyze the pruned network in the context of the proper-
ties of Ramanujan expander graphs. We consider the feed-forward network (both
multi-layer perceptron and convolutional network) as a series of bipartite graphs
which establish the connection from input to output. Now, as the fraction of re-
maining weights reduce with increasingly aggressive pruning, distinct regimes are
observed: initially, no significant decrease in accuracy is demonstrated, and then
the accuracy starts dropping rapidly. We empirically show that in the first regime,
the pruned lottery ticket sub-network remains a Ramanujan graph. Subsequently,
with the loss of Ramanujan graph property, accuracy begins to reduce sharply.
This characterizes an absence of resilient connectivity in the pruned sub-network.
We also propose a modified iterative pruning algorithm which removes edges in
only the layers that are Ramanujan graphs thus preserving global connectivity
even for heavily pruned networks. We perform experiments on MNIST and CI-
FAR10 datasets using different established feed-forward architectures to support
the criteria for obtaining the winning ticket using the proposed algorithm.

1 INTRODUCTION AND RELATED WORK

Neural Network (NN) and its recent advancements have made a significant contribution to solve var-
ious machine learning applications. The power of an over-parameterized NN lies in its capability
to learn simple patterns and memorize the noise in the data (Neyshabur et al., 2018). However, the
training of such networks requires enormous computational resources, and often the deployment
onto low-resource environments such as mobile devices, or embedded systems becomes difficult.
Recent trend in research to reduce training time of deep neural networks has shifted towards pre-
training following the introduction of a remarkable contribution, named the Lottery Ticket Hypothe-
sis (LTH), which hypothesize the existence of a highly sparse subnetwork and weight initialization to
reduce the training resources as well (Frankle & Carbin, 2019). It uses a simple iterative, magnitude-
based pruning algorithm, and empirically shows that even after removing approximately 90% of the
weights, the subnetwork can preserve the original generalization error. In the subsequent studies, the
focus goes on finding this lottery ticket for more competitive tasks by pruning with weight rewind-
ing(Frankle et al., 2019a), fine tuning the learning rates (Renda et al., 2020), more efficient training
(You et al., 2019; Brix et al., 2020; Girish et al., 2021).

Neural network pruning involves sparsification of the network (LeCun et al., 1990; Blalock et al.,
2020). It identifies the weight parameters, removal of which incurs minimal effect on the general-
ization error. There exists different categories of pruning based on (i) how the pruning is performed,
for instance based on the weight magnitude (Han et al., 2015; Zhu & Gupta, 2017), gradient in the
backpropagation, hessian of the weight (Hassibi et al., 1993; Dong et al., 2017; Lee et al., 2018), etc;
(ii) whether the pruning is global or local; (iii) how often pruning should be applied like one-shot
Lee et al. (2018); Wang et al. (2020), iterative Tanaka et al. (2020). One of the primary goals in
the literature has been to reduce the computational footprint at the time of prediction, i.e., during
post-training. In recent LTH studies, the victim weights are determined by their value at the ini-

1

Under review as a conference paper at ICLR 2022

tialization, gradient of the error, and network topology Lee et al. (2019); Tanaka et al. (2020). To
understand weight initialization, Malach et al. (2020) show that pruning makes a stronger hypoth-
esis with bounded weight distribution. The sparsity of the network is reduced from polynomial to
a logarithmic factor of the number of training variables (Orseau et al., 2020). Mocanu et al. (2018)
suggest to consider the topology of the network from a network science point of view. The pruning
algorithm starts from a random Erdős Rényi graph and returns a scale-free network of a high sparsity
factor based on the number of neurons in each layer. The method is further evolved for convolution
layers considering both the magnitude and gradient of the weights(Evci et al., 2020a).

Various analysis for explaining the LTH have been attempted in the past. Researchers Evci et al.
(2020b) explain empirically why the LTH works through gradient flow at different stages of the
training. Despite previous attempts to explain why the Lottery Ticket Hypothesis works, the under-
lying phenomenon associated with the hypothesis still remains ill-understood. All of these studies
related to LTH identify that a sparse sub-network can be trained instead of a complete network and
the network needs to be connected from input to output layers. However, none of them try to explain
the LTH and the properties of the pruned network through the lens of spectral graph theory. The
network connectivity can be described from the graph expansion point of view, where any subset of
vertices of size less than or equal to half of the number of vertices in a graph, is adjacent to at least
a fraction of the number of vertices in that set; for details, see (Lubotzky, 2010). Graphs satisfying
this property are known as expander graphs. The Ramanujan Graph is a special graph in a bounded
degree expander family, where the eigenbound is maximal (Nilli, 1991). This leads to a maximum
possible sparsity of a network while preserving the connectivity.

In this paper, we initiate a study to observe the characteristics of a pruned sub-network from the
spectral properties of its adjacency matrix, which, has not been reported previously. We represent
a feed-forward neural network as a series of connected bipartite graphs. Both weighted and un-
weighted bi-adjacency matrices are considered. The Ramanujan graph properties of each of the
bipartite layers are studied. We use the results of Hoory (2005) on the bound of spectral gap for the
weight matrix of a pruned network. It is empirically observed that existence of winning tickets in a
pruned network is dependent on the Ramanujan graph properties of the bipartite layers. As network
sparsity increases with more aggressive pruning, we obtain regions where test set accuracy do not
decrease much and the bipartite layers satisfy Ramanujan graph property. Subsequently we obtain
regions where the Ramanujan graph properties are lost for all the layers and test accuracy decreases
sharply. Also, we observe that the impact of noise in the data, on test set accuracy is more adverse
when some of the layers lose their Ramanujan graph properties. Experimental results are presented
for the Lenet architecture on the MNIST dataset and the Conv4 architecture on the CIFAR10 dataset.
Results for other popular feed-forward network are presented in the Appendix.

We suggest that preservation of Ramanujan graph properties may benefit existing network pruning
algorithms. We propose a modified pruning algorithm that uses the spectral bounds. The algorithm
identifies network layers that may still be pruned further, while avoiding pruning in layers that have
already lost their Ramanujan graph property. Neural network weight score functions suggested by
various pruning algorithms are used to represent the bipartite layers as weighted graphs. Spectral
bounds for these graphs are used to verify the Ramanujan property. For a number of popular pruning
algorithms, we experimentally demonstrate significant improvement in accuracy for sparse networks
by using these connectivity criteria.
Contributions: The contributions of the paper are the followings:
1. We propose a methodology for analyzing winning lottery tickets with respect to their spectral
properties.
2. We empirically observe that winning lottery tickets often satisfy layerwise bipartite Ramanu-
jan graph property representing a sparse but resiliently connected global network. The property is
checked using spectral bounds that generalize to irregular networks. We also notice better noise ro-
bustness when all the layers of the pruned sparse networks preserve the Ramanujan graph property.
3. Based on the above property we propose a modified iterative network pruning algorithm that
attempts to preserve Ramanujan graph property for all the layers even at low network densities. It
identifies layers that are still amenable to pruning while avoiding further pruning in layers that have
lost their Ramanujan graph property. We report significant performance improvement for a number
of popular pruning algorithms modified using this criteria.

2

Under review as a conference paper at ICLR 2022

2 THE LOTTERY TICKET HYPOTHESIS AND NETWORK PRUNING

The lottery ticket hypothesis states that a randomly initialized, dense neural network contains a
subnetwork which when trained independently using the same initialization achieves a test accuracy
close to the original network after training for less or at most the same number of iterations Frankle
& Carbin (2019). These subnetworks, denoted as ‘winning tickets’, can be uncovered by network
pruning algorithms. Weight pruning is one such simple strategy. Let the original dense network be
represented as the function N (x; θ), where x is the input and θ are the weights. The weights have
an initialization of θ0. Weight pruning generates a mask m ∈ {0, 1}|θ| such that the pruned network
can be represented by N (x;m⊙ θ) with initialization m⊙ θ0.

Pruning algorithms that are used to obtain the winning tickets can be either one-shot or iterative.
In one-shot pruning the original network is trained to convergence, then p% of weights are pruned
and the surviving weights are re-initialized to their values in θ0 followed retraining/fine tuning the
subnetwork. Here, the network training and pruning are not simultaneously performed and pruning
occurs only after convergence is reached. Iterative pruning repeats one-shot pruning over several
iteration. This often leads to higher pruning percentage while retaining test set accuracy. However,
iterative pruning is more time consuming than one-shot pruning. After pruning the surviving weights
may alternately be initialized to their values in θi, i denoting a small iteration number, rather than
their initial values in θ0. This process, as illustrated in Figure 1 (Frankle et al., 2019b), is denoted as
rewinding and is effective for large networks. We adopt this in our study.

Various scoring functions are used to prioritize the
weights for pruning. They may be based on weight
magnitudes, gradient, information flow (Blalock et al.,
2020; Hoefler et al., 2021) or saliency Tanaka et al.
(2020). Magnitude pruning provides a simple method
for obtaining the pruning mask by retaining the top p%
weights wi ∈ θ that have the highest values of |wi|.
The role of the weights in local computation in the net-
work layers is not considered. A higher pruning effi-
ciency may be achieved by algorithms that account for
connectivity structures in the individual layers. In the
next section we describe graph parameters of the net-
work that determine such connectivity.

m
0

Training Training

Training
Training

Pruning

Pruning
m

1

m
0

0

iq

q

q
0

Figure 1: Iterative Network Pruning with
Rewinding Frankle et al. (2019b)

3 EXPANDERS AND RAMANUJAN GRAPHS

Expanders are highly connected, and yet sparse graphs. In this work, we shall be considering finite,
connected, undirected, but not necessarily regular graphs. Recall that the degree of a vertex v in a
graph is the number of half edges emanating from v.

Definition 1 ((n, d, ε)-expander) Let ε > 0. An (n, d, ε)-expander is a graph G = (V,E) on
|V | = n vertices, having maximal degree d, such that for every set ∅ ≠ U ⊆ V satisfying |U | ≤ n

2 ,
|δ(U)| ≥ ε|U | holds.

Here, δ(U) denotes the vertex boundary of U . The quantity |δ(U)|
|U | measures the rate of expansion

and the infimum |δ(U)|
|U | as U varies among the non-empty subsets of V with |U | ≤ |V |

2 is called the
(vertex) Cheeger constant h(G) of the graph G. The higher the value of h(G), the more expansion
property it exhibits and vice versa. Expansion and the Cheeger constant quantifies the connectivity
properties of a graph as a high value of h(G) signifies that the graph is strongly connected. This
ensures that information can flow freely without much bottlenecks.

Definition 2 (Expander family) A sequence of finite, connected graphs {Gi = (Vi, Ei)}i=1,2,··· on
Vi vertices and Ei edges is called an expander family if there exists an uniform ϵ > 0 such that each
graph in the sequence is an (|Vi|, di, ϵ) expander for some di’s.

The study of expansion properties of graphs is closely related to the study of the spectrum (dis-
tribution of eigenvalues) of the adjacency operator defined on them. Given a finite r-regular

3

Under review as a conference paper at ICLR 2022

graph of size |V | = n, the eigenvalues ti of the adjacency matrix are all real and they satisfy,
−r ≤ tn ≤ . . . ≤ t2 ≤ t1 = r. The graph is connected iff t2 < t1 and is bipartite iff ti’s are sym-
metric about 0 (in particular tn = −r). The quantity t1 − t2 is known as the spectral gap and it is
related to the Cheeger constant via the discrete Cheeger-Buser inequality, discovered independently
by Dodziuk (1984) and by Alon & Milman (1985). In our context, we consider a stronger notion of
the spectral gap (but it is equivalent for bipartite graphs). Let t := max{|ti| : 1 < i ≤ n, |ti| < t1}.
In here, the quantity t1 − t will denote the spectral gap.

The more connected a graph is, the larger is the spectral gap and ideally, a graph with strong expan-
sion properties has a very large spectral gap. However, for a bounded degree expander family, this
spectral gap cannot be arbitrarily large. This brings us to the notion of Ramanujan graphs.

Definition 3 (Ramanujan graph) Let G be a r-regular graph on n vertices, with adjacency eigen-
values {ti}i=1,2,...n, satisfying −r ≤ tn ≤ . . . ≤ t2 ≤ t1 = r. Let t(G) := max{|ti| : 1 < i ≤
n, |ti| < t1}. Then G is a Ramanujan graph if t(G) ≤ 2

√
r − 1 = 2

√
t1 − 1.

The fact that in a bounded degree expander family, the eigenvalue bound in Ramanujan graphs is
maximal can be deduced from the following result due to Alon, see Nilli (1991), t(G) ≥ 2

√
r − 1−

2
√
r−1−1

⌊m/2⌋ where m denotes the diameter of the graph. As m → +∞ and r is bounded, we obtain
the result (this also follows from the Alon-Boppana theorem).

For our applications, we shall encounter not necessarily regular graphs, thus we need a notion of
irregular version of Ramanujan graphs. The two ways we shall exploit Definition 3 for irregular
graphs will be to:

1. Use the average degree davg in place of the regularity.

2. For weighted graphs, use t1, the largest eigenvalue of the adjacency matrix.

Note that a motivation for considering the above bounds comes from the following generalisation
of the definition of Ramanujan graphs to irregular graphs. For a finite, connected graph G (not
necessarily regular) consider its universal cover G̃, for details see (Hoory et al., 2006, sec. 6). A
Ramanujan graph is a graph satisfying t(G) ≤ ρ(G̃) where ρ(G̃) denotes the spectral radius of G̃.
See also Marcus–Spielman–Srivastava (Marcus et al., 2015, sec. 2.3). A result of Hoory, see Hoory
(2005) implies that 2

√
davg − 1 ≤ ρ(G̃). Thus, it makes sense to consider t(G) ≤ 2

√
davg − 1 ≤

ρ(G̃). The above consideration also result in extremal families, Hoory (2005). Further, for irregular
bipartite graphs, with minimal degree at least two and an average degree davgL on the left and davgR
on the right, we can further consider the sharper estimate t(G) ≤

√
davgL − 1 +

√
davgR − 1 ≤

ρ(G̃) see Hoory (2005).

Upto now, we had only discussed about unweighted graphs. A weighted graph is a graph with a
weight function w : E → R≥0 attached on the edges. It can be looked upon as a generalisation
of unweighted graphs, in the sense that in the unweighted case, the function w takes values in
the set {0, 1}. In the case of weighted networks, we shall use the absolute values of the weight
functions according to the architecture for the corresponding dataset. This also means that in the
case of weighted graphs, we need to modify the definition of the edge set of the graph to incorporate
multiple (as well as fractional) edges. The theory of characterisation of weighted Ramanujan graphs
is not well developed. However, characterisation of weighted expanders (with positive weights)
exist, due to the Cheeger inequality for such graphs, see (Chung, 1996, sec. 5) and we use the
largest eigenvalue of the adjacency matrix in place of the regularity. In the case of regular graphs,
it coincides with the notion of Ramanujan graphs and even in the general case, by the Cheeger
inequality, it ensures a large expansion which in turn implies that there is no bottleneck to the free
flow of information. This forms the theoretical basis of our work.

4 RAMANUJAN GRAPH CHARACTERIZATION OF NEURAL NETWORKS

We can represent any neural network using graphs (possibly weighted, depending on the context)
and in this article, we will be dealing with a sequence of finite, bipartite graphs. This is because if N
denotes a neural network having l layers N1,N2, . . . ,Nl respectively, then each Ni (i = 1, 2, . . . , l)

4

Under review as a conference paper at ICLR 2022

is a complete bipartite graph to start with. A pruned subnetwork results in edge sparsification of the
underlying graphs. For that purpose, we need to approximate complete, bipartite graphs by sparse,
proper subgraphs. The motivation to study pruning based on expander characteristics stems from the
fact that complete graphs can be approximated using expanders, see Spielman (2018). The notion of
Ramanujan graphs allow us to quantify the pruning limit, and we empirically justify our technique.

In Figure 2, we present examples of three small
feed-forward networks with a single hidden layer
and four neurons in each layer. The networks con-
sists of two bipartite graphs corresponding to the
input-hidden and hidden-output layers. The spar-
sity of all the three networks, as measured by the
number of edges present, are the same. How-
ever, in the first network none of the layer-wise
bipartite graphs satisfy the expander property and
thus information flow from a significant number
of input nodes to output nodes are disrupted. For
the second network, the input-hidden layer bipar-
tite graph is an expander, while the hidden-output
layer bipartite graph is not an expander.

h1 h2 h3 h4

o1 o2 o3 o4

i1 i2 i3 i4

h1 h2 h3 h4

o1 o2 o3 o4

i1 i2 i3 i4

h1 h2 h3 h4

o1 o2 o3 o4

i1 i2 i3 i4

(a) (b) (c)

Figure 2: Examples of small feed-forward net-
works having same sparsity but different connec-
tivity properties; (a) disconnected network, (b)
partially connected (c) strongly connected. When
all of them are scaled to larger networks, (c) has
large spectral gap compared to (a) and (b) signify-
ing a high rate of expansion.

Here few of the flow paths from input to the output nodes are disconnected. Both the bipartite
graphs for the third network are expanders, thus all the inputs nodes are connected to all the
output nodes. We denote the first network as a disconnected one, the second network as partially
connected, and the third one as fully connected. The example illustrates that layer-wise sparse
bipartite expander graphs ensures global information flow across layers. While connected but
non-expander sparse bipartite layers do not necessarily lead to global connectivity across layers.
It is known in literature that sparse but resiliently connected neural networks not only have good
generalization performance but also achieve noise robustness (Liu et al., 2018).

4.1 BIPARTITE GRAPH STRUCTURE

In this work, we focus on the fully-connected layers, and convolution layers of the feed-forward
neural network only. Since, pruning is a part of network compression, we only consider the trainable
layers here. We consider both unweighted and weighted representations of the bipartite graphs.
We ignore signs of the weight values and consider only the magnitudes for the weighted graph
representation. Even though sign of the weights are important for determining the neural network
functionality, we argue that for studying their connectivity properties only the magnitudes need to
be considered.

Fully Connected Layers (FC): For a fully connected layer Ni, with ni−1 number of inputs and
ni number of outputs the weighted bi-adjacency matrix of the corresponding graph is Wi ∈
R[ni−1×ni], and the corresponding pruning mask is Mi ∈ {0, 1}[n

i−1×ni].

Convolution Layers (Conv): Here, we consider the kernel size, the number of input and output
channels to unfold the layer into a complete bipartite graph. For a convolution layer Ni with
the kernel of size k, ni−1 input, and ni output channels, the weighted bi-adjacency matrix of
the corresponding graph will be Wi ∈ R[(ni−1.k.k)×ni], and the corresponding pruning mask is
Mi ∈ {0, 1}[(n

i−1.k.k)×ni]. An example is shown in Figure 3.

a

b

c5 6
7 8

1 2
3 4

2 3 4 5 6 7

a b c

inputs at layer - i
outputs at layer - i bi-parttite graph

81

Figure 3: An example of bipartite graph computation for a particular convolution layer with kernel
size 2× 2, 2 input channels, and 3 output channels

5

Under review as a conference paper at ICLR 2022

Now, the bounds are analyzed for both unweighted (Mi) and weighted (Wi) bipartite graphs at each
layer Ni. Table 1 describes different bounding constraint depending on the type of the considered
graph and bound type. We consider the bound differences (∆S and ∆R) for the eigenvalue and aver-
age degree respectively. A transition of the ∆ values from positive to negative denotes a violation of
the bounds, and thus loss of Ramanujan graph property of the bipartite graph for the corresponding
pair of layers in the feed-forward neural network.

Table 1: Different bound criteria on the second largest eigenvalue t2 of the bi-adjacency matrices

BI-ADJACENCY EIGENVALUE (eb) AVERAGE DEGREE (db)
Unweighted (Mi) UE: t2(Mi) ≤ 2

√
t1(Mi)− 1 UD: t2(Mi) ≤

√
davgL(Mi)− 1 +

√
davgR(Mi)− 1

Weighted (Wi) WE: t2(Wi) ≤ 2
√
t1(Wi)− 1

difference on bound ∆S = (2
√
t1 − 1− t2)/t2 ∆R = (

√
davgL − 1 +

√
davgR − 1− t2)/t2

4.2 RAMANUJAN GRAPH PROPERTY PRESERVING PRUNING ALGORITHM

In this section, we describe a modification of the iterative pruning algorithm that preserves the
Ramanujan graph property of a pruned neural network. In iterative pruning algorithms, pruning is
employed once the training is complete (i.e. after it converged to an optimum or it reached certain
epochs). The pruned network is trained again with its initial weight values to perform the next
pruning iteration. The magnitude of a score function θ is used to identify the victim weights. The
weights are made to zero if their score function values lie in the bottom p percentile. In the Iterative
Magnitude Pruning (IMP) Frankle & Carbin (2019), magnitude of the weight is used as the score
function. More sophisticated score functions are used in SynFlow (Tanaka et al., 2020), SNIP (Lee
et al., 2018).

Algorithm 1: LAYER-WISE CONNECTIVITY BASED PRUNING

Input: Trained Network N, Score function θ, Pruning percentile p,
pruning level K

Output: Pruned Network N⋆

1 N⋆ ← N
2 for i← 1 to l do
3 k ← 1
4 while k ≤ K do
5 Ntemp

i ← PRUNEBYPERCENTILE(p/2k,Ni, θi) // Prune
using the score function

6 CALCULATE davgL AND davgR OF Ntemp
i

7 if min(davgL, davgR) < 2) then
8 N⋆

i ← Ni // To avoid layer collapse
9 BREAK

10 end
11 CALCULATE ∆S ,∆R FOR Ntemp

i
12 if max(∆S ,∆R) > 0 then
13 N⋆

i ← Ntemp
i // Satisfy Ramanujan Property on

the unweighted graph
14 BREAK
15 else
16 CALCULATE ∆θ

S FOR Ntemp
i USING θi

17 if ∆θ
S ≥ 0 and tθ1 ≥ 1 then

18 N⋆
i ← Ntemp

i // Satisfy Expansion Property
Ni using θi as weights

19 BREAK
20 end
21 end
22 k ← k + 1
23 end
24 end
25 nure return N⋆

We propose a modification to the
above method. If a weight is
identified as a victim based on
the above score function based
scheme; we check the Ramanu-
jan property of the layer Ni to
which this weight belongs. First,
we verify the connectivity prop-
erty of the layer using the bounds
on the unweighted graph as de-
fined in Table 1(∆S ,∆R > 0).
If the unweighted graph bounds
are not satisfied, we consider a
weighted graph with score func-
tion values as the edge weights.
The bounds using the eigenval-
ues of this weighted graph is used
to verify the spectral expansion
property (∆S > 0) for a par-
ticular layer. If the pruned net-
work Ntemp

i follows the Ramanu-
jan graph property given by the
bounds, then the algorithm simply
proceeds to the next level of prun-
ing operation.

If the bound is not satisfied for a particular layer i, the weights are simply reset to the values be-
fore pruning and the pruning percentile p is halved and search for a better approximation of Ni is
resumed. The target pruning level k ∈ [K] is a controlling parameter to limit the search iteration.

6

Under review as a conference paper at ICLR 2022

The proposed algorithm attempts to preserve Ramanujan property for as many layers as possible
by using the spectral bound criteria to determine the layers which are still amenable to pruning. It
avoids further pruning of the layers that have lost their connectivity property. We experimentally
show that the approach is effective when used with IMP, SNIP, SynFlow pruning algorithms with
their designated score functions.

The method is described in Algorithm 1. It takes the trained network N, score function θ, pruning
percentile p, pruning level K as inputs and returns the pruned network N⋆ as output. This algorithm
is called at each pruning iteration, and continued till the stopping criterion is met, i.e., N⋆

i = Ni,∀i.
As discussed in Section 3, we mainly study two types of bounds on the second largest eigenvalue of
the bipartite graph t2 = t(G), i.e., (i) eb- based on the largest eigenvalue(t1) and (ii) db- based on
the average degree (davgL and davgR). Here, G for a bipartite neural network layer Ni is either the
unweighted graph or a weighted graph with score functions as the weights. In order to avoid ‘layer
collapse’ we stop pruning for a layer if the bipartite graph has a node with degree less than two in
either of the parts.

The top-2 largest magnitude eigenvalues at layer i are computed from the symmetric matrix NT
i Ni

with implicitly restarted Arnoldi methods (Lehoucq et al., 1998) and, the average degree is com-
puted from the connected component of the bipartite-graph. Hence, the computational complexity
is mainly driven by the pruning level K, the number of input and output neurons at each layer, and
the number of layers. The additional space will be required to store the bipartite graph of a layer.
For the convolutional layers the size of the adjacency matrix is effectively same as the size of the
convolution kernel which is usually small. Also, the usually the number of fully connected layers
are not very high.

5 EXPERIMENTAL RESULTS

We have used the MNIST and CIFAR10 datasets in our study. As an evaluation measure we use the
classification accuracy for both clean and noisy test sets. Noisy test sets were generated by adding
zero mean σ variance Gaussian noise to the image pixels. We report results for the Lenet, and
Conv4 network architectures following the methodology adopted in Frankle & Carbin (2019). We
also perform the studies on other networks which are presented in the Appendix. Hyperparameter
values used in our experiments are reported in Table 3 in the Appendix.

5.1 EXPERIMENTAL SETUP

We study the variation of classification accuracy with the network density as measured by the re-
maining weights percentile 100 − p, where p is the pruning percentile. For different layers the
percentile can be different, as denoted by pfc for fully connected (FC) layers, pconv for convolution
layers, and pout for the output layers. We study the two cases for the bound specific to unweighted
(Mi) and weighted graph (Wi). For each of the studies, we plot four parameters; (i) eigenbound
bound difference (∆S), (ii) average degree bound difference (∆R),(iii) network density for each
layer, and (iv) test accuracy on both clean and noisy data. The degree and eigenbound differences
are defined in Table 1.

Relationship between Ramanujan graph properties and LTH The primary goal of our study is
to identify the LTH regimes, determined by the spectral properties of the bipartite-network layers.
The existence of LTH regime is illustrated for two representative established networks. The results
for Lenet on MNIST dataset is shown in Figure 4; and for Conv4 on CIFAR10 is shown in Figure 5.
In each of the plots, we show the variation of classification accuracy on clean and noisy test sets
(having various noise levels (σ)), with the remaining weights percentile. The spectral properties
are characterized by eigenbound difference ∆S for both the weighted and unweighted graph repre-
sentations, and the degree bound difference ∆R for only the unweighted graph representation. A
transition of ∆S and ∆R from positive to negative values denotes the loss of Ramanujan graph prop-
erty of the corresponding layer bipartite graph. Accordingly, the plot is divided into three regimes -
(i) fully Ramanujan, where all the layers maintain the Ramanujan property i.e., ∆ > 0,∀Ni, (ii) par-
tially Ramanujan, where some of the layers maintain the property, and (iii) non-Ramanujan, where
none of the layers retain the property. For the Conv4 network which has more number of layers we

7

Under review as a conference paper at ICLR 2022

show results for the unweighted graph representation only. Similar results for other networks and
different pruning settings are discussed in the Appendix.

(a) unweighted graph representation (b) weighted graph representation

Figure 4: Results for MNIST dataset on Lenet architecture; (a) considering unweighted bi-adjacency
matrices, (b) considering weighted bi-agjacency matrices. Variation of accuracy with network den-
sity is plotted for the clean and noisy test sets with increasing noise variances σ. Error bars for
the accuracy values computed over 5 runs are shown. For the layers L1, L2, and L3 the values of
∆S are plotted for both unweighted and weighted representations, and ∆R for only the unweighted
representation. As mentioned in Table 1, ∆S and ∆R denote the difference in bounds of the eigen-
values and average degrees. Transition of the ∆ values from positive to negative denote the loss of
Ramanujan graph property. The plot is divided into three regimes- fully Ramanujan (gray shade),
where the Ramanujan graph property holds for all the layers, partially Ramanujan (pink shade),
where the property holds for some of the layers, and non-Ramanujan (no shade) where none of the
layers retain the property.

(a) Convolutional layers (b) Fully-connected layers

Figure 5: Results for CIFAR10 dataset on Conv4 architecture considering unweighted graph. Re-
sults for the convolution layers (L2,3,4) is shown in (a), while for the FC layers (L5,6) is shown in
(b). We exclude the first and last layers in this study, due to the low cardinality of one of the parts in
the bipartite graph for these layers. These layers are usually not pruned by the pruning algorithms.

In all the figures, we observe that the accuracy values start dropping sharply beyond the partially
Ramanujan graph property boundary (pink shade) when all the layers loose their Ramanujan graph
property. Accuracy also starts reducing slowly from the fully Ramanujan boundary (gray shade).
The accuracy on clean data falls sharply when the layers do not satisfy the bounds for the weighted
graphs. The bounds for the unweighted graph allow only the robust winning tickets, having high
accuracy even on noisy data. For very low network densities it is seen that the ∆ values become
positive again. This is a boundary effect owing to the in-applicability of Ramanujan graph bounds
for disconnected graphs.

8

Under review as a conference paper at ICLR 2022

Table 2: Results of different pruning algorithms under the Ramanujan Graph property preservation

Pruning Lenet/MNIST Conv4/CIFAR10
Algorithm α Density Test Accuracy α Density Test Accuracy

Without Pruning 0.0 100.0 97.16 0.0 100.0 85.86
IMP 1.5 3.16 93.88 1.0 10.0 81.91
IMP 2.0 1.0 45.39 2.0 1.0 10

IMP-Bound - 3.6 96.74 - 10.4 81.8
SNIP 1.5 3.16 79 1.0 10.0 80.3
SNIP 2.0 1.0 49.8 2.0 1.0 64.26

SNIP-Bound - 7.64 95.41 - 10.0 79.8
SynFlow 1.5 3.16 95.92 1.0 10.0 82.5
SynFlow 2.0 1.0 49.11 2.0 1.0 69.2

SynFlow-Bound - 1.33 93.82 - 1.15 64.5

Comparison of pruning approaches We show that consideration Ramanujan graph properties
benefits network pruning algorithms. We consider three popular network pruning algorithms - (i)
Iterative Magnitude Pruning (IMP) Frankle & Carbin (2019), (ii) the iterative verion of Single-
shot Network Pruning based on Connection Sensitivity (SNIP) Lee et al. (2018), (iii) Synaptic flow
based pruning SynFlow Tanaka et al. (2020) and show the results of test accuracy achieved with
similar densities with and without the bound condition. To do this experimentation, we choose the
a fix compression ratio α to achieve the desired density of the pruned network as 10−α × 100, and
observe the difference in accuracy due to the network connectivity. The results are presented in
Table 2 for Lenet/MNIST and Conv4/CIFAR10. For each of the algorithm we consider two cases
- (i) the network is pruned to very low densities using existing algorithms, (ii) network pruning is
stopped when there is loss of Ramanujan graph properties (#AlgoName-Bound). The bounds are
considered as two types of bounds - first it tries to maintain the bounds on the unweighted graph.
Next, if the unweighted graph looses the Ramanujan property it tries to preserve the information flow
by considering the spectral bounds for the weighted graphs with score function. We use layer-wise
pruning for all the algorithms.

Here, adding the bound criteria guides the pruning algorithm to stop at a density where the accuracy
is comparable with its original network. These values are marked in bold in Table 2. The high-
est improvement is achieved by SynFlow algorithm for the Lenet architecture on MNIST dataset.
While the usual SynFlow algorithm results in an accuracy of 49.11% at the density of 1.0, the
SynFlow-Bound algorithm has an accuracy of 93.82% for a network density of 1.33. For the Conv4
architecture on CIFAR10, the scope of improvement using the bound criteria is limited since the
existing algorithms preserve the unweighted graph connectivity property for most of the layers. We
have also studied the spectral properties of all the layers the results are presented in the Appendix.

We can also observe the difference of an arbitrary non-expander graph with an expander one of
similar density. As an example, we see the result for Conv4/CIFAR10. With density of 3.16 the IMP
achieves accuracy of 60.61% while SynFlow meets 77.18% accuracy. By analyzing the detail it has
been found that the Ramanujan property is lost in FC layer-1 only for SynFlow where the same is
observed in IMP for both Conv Layer-4 and FC layer-1. Hence, IMP loses more Ramanujan graph
property as a whole in the entire network.

6 CONCLUSION

In this work, we study the validity of the lottery ticket hypothesis (LTH) based on structural con-
nectivity properties of the neural network. Ramanujan graph properties of the bipartite layers are
studied in terms of certain spectral bounds. As test accuracy varies with decreasing network density
as a result of pruning, three distinct regions are demarcated using these bounds. In the first region,
all the bipartite layers are Ramanujan graphs, in the second region some of them are, and in the third
low network density regions none of the layers are Ramanujan graphs. We empirically demonstrate
the validity of the lottery ticket hypothesis robustly in the first region and partially in the second re-
gion. We propose a modification of existing iterative pruning algorithms that preserves Ramanujan
graph property. Further refinement of this approach of pruning can result in more efficient winning
ticket search, which will be the basis of future research.

9

Under review as a conference paper at ICLR 2022

REFERENCES

N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators. J.
Combin. Theory Ser. B, 38(1):73–88, 1985. ISSN 0095-8956. doi: 10.1016/0095-8956(85)
90092-9. URL https://doi.org/10.1016/0095-8956(85)90092-9.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? arXiv preprint arXiv:2003.03033, 2020.

Christopher Brix, Parnia Bahar, and Hermann Ney. Successfully applying the stabilized lottery
ticket hypothesis to the transformer architecture. arXiv preprint arXiv:2005.03454, 2020.

F. R. K. Chung. Laplacians of graphs and Cheeger’s inequalities. In Combinatorics, Paul Erdős is
eighty, Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., pp. 157–172. János Bolyai
Math. Soc., Budapest, 1996.

Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of certain random
walks. Trans. Amer. Math. Soc., 284(2):787–794, 1984. ISSN 0002-9947. doi: 10.2307/1999107.
URL https://doi.org/10.2307/1999107.

Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via layer-
wise optimal brain surgeon. arXiv preprint arXiv:1705.07565, 2017.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020a.

Utku Evci, Yani A Ioannou, Cem Keskin, and Yann Dauphin. Gradient flow in sparse neural net-
works and how lottery tickets win. arXiv preprint arXiv:2010.03533, 2020b.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural net-
works. In International Conference on Learning Representations (ICLR), 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019a.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. The lottery
ticket hypothesis at scale. CoRR, abs/1903.01611, 2019b.

Sharath Girish, Shishira R Maiya, Kamal Gupta, Hao Chen, Larry S Davis, and Abhinav Shrivastava.
The lottery ticket hypothesis for object recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 762–771, 2021.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28:1135–1143,
2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks, 2021.

Shlomo Hoory. A lower bound on the spectral radius of the universal cover of a graph. J. Combin.
Theory Ser. B, 93(1):33–43, 2005. ISSN 0095-8956. doi: 10.1016/j.jctb.2004.06.001. URL
https://doi.org/10.1016/j.jctb.2004.06.001.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their ap-
plications. Bull. Amer. Math. Soc. (N.S.), 43(4):439–561, 2006. ISSN 0273-
0979. doi: 10.1090/S0273-0979-06-01126-8. URL https://doi.org/10.1090/
S0273-0979-06-01126-8.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

10

https://doi.org/10.1016/0095-8956(85)90092-9
https://doi.org/10.2307/1999107
https://doi.org/10.1016/j.jctb.2004.06.001
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8

Under review as a conference paper at ICLR 2022

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal propagation
perspective for pruning neural networks at initialization. arXiv preprint arXiv:1906.06307, 2019.

Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution of large-
scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998.

Mengchen Liu, Shixia Liu, Hang Su, Kelei Cao, and Jun Zhu. Analyzing the noise robustness
of deep neural networks. CoRR, abs/1810.03913, 2018. URL http://arxiv.org/abs/
1810.03913.

Alex Lubotzky. Discrete groups, expanding graphs and invariant measures. Springer Science &
Business Media, 2010.

Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. arXiv preprint arXiv:2002.00585, 2020.

Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families I: Bipartite
Ramanujan graphs of all degrees. Ann. of Math. (2), 182(1):307–325, 2015. ISSN 0003-486X.
doi: 10.4007/annals.2015.182.1.7. URL https://doi.org/10.4007/annals.2015.
182.1.7.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. To-
wards understanding the role of over-parametrization in generalization of neural networks. arXiv
preprint arXiv:1805.12076, 2018.

A. Nilli. On the second eigenvalue of a graph. Discrete Math., 91(2):207–210, 1991. ISSN
0012-365X. doi: 10.1016/0012-365X(91)90112-F. URL https://doi.org/10.1016/
0012-365X(91)90112-F.

Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic pruning is all you need. Ad-
vances in Neural Information Processing Systems, 33, 2020.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

Daniel A. Spielman. Properties of expander graphs. http://www.cs.yale.edu/homes/
spielman/561/lect17-18.pdf, 2018.

Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. arXiv preprint arXiv:2006.05467, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Towards more efficient training
of deep networks. arXiv preprint arXiv:1909.11957, 2019.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

11

http://arxiv.org/abs/1810.03913
http://arxiv.org/abs/1810.03913
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1016/0012-365X(91)90112-F
http://www.cs.yale.edu/homes/spielman/561/lect17-18.pdf
http://www.cs.yale.edu/homes/spielman/561/lect17-18.pdf

Under review as a conference paper at ICLR 2022

A APPENDIX

We present additional results to supplement those given in the paper. The results for corresponding
to the LTH hypothesis is presented. Then detailed results concerning the pruning algorithms are
described.

A.1 MORE RESULTS FOR LENET ARCHITECTURE ON MNIST DATASET

100.0 51.3 26.3 13.5 6.9 3.6 1.8 1.0 0.5
Network Density

0

5

10

15

20

25

30

35

40

45

Ei
ge

n
Fa
ct
or
s
(U
nw

ei
gh

te
d)

MNIST(lenet-Arch) with Layer-wise Pruning (Spc.)
L1-lambda2
L1-ueig-bound
L1-udeg-bound
L2-lambda2
L2-ueig-bound
L2-udeg-bound
L3-lambda2
L3-ueig-bound
L3-udeg-bound

(a)

100.0 51.3 26.3 13.5 6.9 3.6 1.8 1.0 0.5
Network Density

0

2

4

6

8

10

Ei
ge

n
Fa
ct
or
s
(W

ei
gh

te
d)

MNIST(lenet-Arch) with Layer-wise Pruning (Spc.)
L1-lambda2
L1-weig-bound
L1-wdeg-bound
L2-lambda2
L2-weig-bound
L2-wdeg-bound
L3-lambda2
L3-weig-bound
L3-wdeg-bound

(b)

100.0 51.3 26.3 13.5 6.9 3.6 1.8 1.0 0.5
Network Density

75

80

85

90

95

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(c)

Figure 6: The results for Lenet using MNIST dataset with pruning percentile pfc = 0.2 and
pout = 0.1 (layer-wise-pruning); (a) eigen factors for the unweighted graph, (b) eigen factors for
the weighted graph, (c) test accuracy

100.0 51.2 26.2 13.4 6.9 3.5 1.8 0.9 0.5
Network Density

0

5

10

15

20

25

30

35

40

45

Ei
ge

n
Fa
ct
or
s
(U
nw

ei
gh

te
d)

MNIST(lenet-Arch) with Global Pruning (p=0.2)
L1-lambda2
L1-ueig-bound
L1-udeg-bound
L2-lambda2
L2-ueig-bound
L2-udeg-bound
L3-lambda2
L3-ueig-bound
L3-udeg-bound

100.0 51.2 26.2 13.4 6.9 3.5 1.8 0.9 0.5
Network Density

0

2

4

6

8

10

Ei
ge

n
Fa
ct
or
s
(W

ei
gh

te
d)

MNIST(lenet-Arch) with Global Pruning (p=0.2)
L1-lambda2
L1-weig-bound
L1-wdeg-bound
L2-lambda2
L2-weig-bound
L2-wdeg-bound
L3-lambda2
L3-weig-bound
L3-wdeg-bound

100.0 51.2 26.2 13.4 6.9 3.5 1.8 0.9 0.5
Network Density

75

80

85

90

95

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(a) (b) (c)

Figure 7: The eigen factors for global pruning with pruning percentile p = 0.2 on MNIST dataset
using Lenet architecture

100.0 51.2 26.2 13.4 6.9 3.5 1.8 0.9
Network Density

0

5

10

15

20

25

30

35

40

45

Ei
ge

n
Fa
ct
or
s
(U
nw

ei
gh

te
d)

MNIST(lenet-Arch) with Layer-wise Pruning (Eq.)
L1-lambda2
L1-ueig-bound
L1-udeg-bound
L2-lambda2
L2-ueig-bound
L2-udeg-bound
L3-lambda2
L3-ueig-bound
L3-udeg-bound

100.0 51.2 26.2 13.4 6.9 3.5 1.8 0.9
Network Density

0

2

4

6

8

10

Ei
ge

n
Fa
ct
or
s
(W

ei
gh

te
d)

MNIST(lenet-Arch) with Layer-wise Pruning (Eq.)
L1-lambda2
L1-weig-bound
L1-wdeg-bound
L2-lambda2
L2-weig-bound
L2-wdeg-bound
L3-lambda2
L3-weig-bound
L3-wdeg-bound

100.0 51.2 26.2 13.4 6.9 3.5 1.8 0.9
Network Density

75

80

85

90

95

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(a) (b) (c)

Figure 8: The eigen factors for layer-wise pruning with pruning percentile p = 0.2 on MNIST
dataset using Lenet architecture

12

Under review as a conference paper at ICLR 2022

L1-lambda2 L1-eig-bound L1-deg-bound L2-lambda2 L2-eig-bound L2-deg-bound L3-lambda2 L3-eig-bound L3-deg-bound

100.0 64.0 41.0 26.2 22.8 20.1
Network Density

0

10

20

30

40

Ei
ge

n
Fa

ct
or
s
(U
nw

ei
gh

te
d)

(a)

100.0 64.0 41.0 26.2 22.8 20.1
Network Density

0

2

4

6

8

10

Ei
ge

n
Fa
ct
or
s
(W

ei
gh

te
d)

(b)

100.0 64.0 41.0 32.0 28.1 26.2 22.5 20.5
Network Density

0

10

20

30

40

Ei
ge

n
Fa

ct
or
s
(U
nw

ei
gh

te
d)

(c)

100.0 64.0 41.0 32.0 28.1 26.2 22.5 20.5
Network Density

0

2

4

6

8

10

Ei
ge

n
Fa
ct
or
s
(W

ei
gh

te
d)

(d)

100.0 64.0 41.0 26.2 16.8 10.8 6.9 5.0
Network Density

0

10

20

30

40

Ei
ge

n
Fa
ct
or
s
(U
nw

ei
gh

te
d)

(e)

100.0 64.0 41.0 26.2 16.8 10.8 6.9 5.0
Network Density

0

2

4

6

8

10

Ei
ge

n
Fa
ct
or
s
(W

ei
gh

te
d)

(f)

100.0 64.0 41.0 26.2 16.8 10.7 7.1 5.4
Network Density

0

10

20

30

40

Ei
ge

n
Fa
ct
or
s
(U
nw

ei
gh

te
d)

(g)

100.0 64.0 41.0 26.2 16.8 10.7 7.1 5.4
Network Density

0

2

4

6

8

10

Ei
ge

n
Fa
ct
or
s
(W

ei
gh

te
d)

(h)

Figure 9: The eigen-factor results for the proposed pruning algorithm on MNIST dataset using Lenet
architecture and different types of bound criteria, mentioned in Table 1; (a-b) for UE, (c-d) for UD,
(e-f) for WE, (g-h) for WD (with average degree > 1)

100.0 64.0 41.0 26.2 22.8 20.1
Network Density

75

80

85

90

95

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(a)

100.0 64.0 41.0 32.0 28.1 26.2 22.5 20.5
Network Density

75

80

85

90

95

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(b)

100.0 64.0 41.0 26.2 16.8 10.8 6.9 5.0
Network Density

75

80

85

90

95

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(c)

100.0 64.0 41.0 26.2 16.8 10.7 7.1 5.4
Network Density

75

80

85

90

95

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(d)

Figure 10: The test accuracy results of the proposed pruning algorithm on MNIST dataset using
Lenet architecture with different noise levels in the input image using and bound criteria, mentioned
in Table 1; (a) for UE, (b) for UD, (c) for WE, (d) for WD (with average degree > 1)

13

Under review as a conference paper at ICLR 2022

A.2 MORE RESULTS FOR CONV2 ARCHITECTURE ON CIFAR10 DATASET

100.0 51.4 26.5 13.7 7.1 3.7 1.9 1.0 0.5
Network Density

0

6

12

18

24

30
Ei

ge
n

Fa
ct

o
s
(U

nw
ei

gh
te

d) Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

100.0 51.4 26.5 13.7 7.1 3.7 1.9 1.0 0.5
Network Density

0

20

40

60

80

100

120

140

Ei
ge

n
Fa

ct
o

s
(U

nw
ei

gh
te

d) FC-L3-t2
FC-L3-eb(⋅)
FC-L3-db(⋅)

100.0 51.4 26.5 13.7 7.1 3.7 1.9 1.0 0.5
Network Density

0

6

12

18

24

30

Ei
ge

n
Fa

ct
o

s
(U

nw
ei

gh
te

d) FC-L4-t2
FC-L4-eb(⋅)
FC-L4-db(⋅)
FC-L5-t2
FC-L5-eb(⋅)
FC-L5-db(⋅)

(a) (b) (c)

100.0 51.4 26.5 13.7 7.1 3.7 1.9 1.0 0.5
Network Den ity

0

2

4

6

Ei
ge

n
Fa

ct
or

(W

ei
gh

te
d)

Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

100.0 51.4 26.5 13.7 7.1 3.7 1.9 1.0 0.5
Network Den ity

0

3

6

9

12

Ei
ge

n
Fa

ct
or

(W

ei
gh

te
d)

FC-L3-t2
FC-L3-eb(⋅)
FC-L3-db(⋅)
FC-L4-t2
FC-L4-eb(⋅)

FC-L4-db(⋅)
FC-L5-t2
FC-L5-eb(⋅)
FC-L5-db(⋅)

100.0 51.4 26.5 13.7 7.1 3.7 1.9 1.0 0.5
Network Density

20

30

40

50

60

70

80

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(d) (e) (f)

Figure 11: The results for Conv2 architecture using CIFAR10 dataset with pruning percentile
pconv = 0.1, pfc = 0.2, and pout = 0.1 (layer-wise-pruning); (a-c) eigen factors for the unweighted
graph, (d-e) eigen factors for the weighted graph, (f) test accuracy

100 41 16.8 6.9 2.8 1.2 0.5 0.2
Network Den ity

0

6

12

18

24

30

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) Conv-L1-t2

Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

100 41 16.8 6.9 2.8 1.2 0.5 0.2
Network Den ity

0

20

40

60

80

100

120

140

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) FC-L3-t2

FC-L3-eb(⋅)
FC-L3-db(⋅)

100 41 16.8 6.9 2.8 1.2 0.5 0.2
Network Den ity

0

6

12

18

24

30

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) FC-L4-t2

FC-L4-eb(⋅)
FC-L4-db(⋅)
FC-L5-t2
FC-L5-eb(⋅)
FC-L5-db(⋅)

(a) (b) (c)

100 41 16.8 6.9 2.8 1.2 0.5 0.2
Network Densi y

0

2

4

6

Ei
ge

n
Fa

c
or

s
(W

ei
gh

 e
d)

Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

100 41 16.8 6.9 2.8 1.2 0.5 0.2
Network Den ity

0

3

6

9

12

Ei
ge

n
Fa

ct
or

(W

ei
gh

te
d)

FC-L3-t2
FC-L3-eb(⋅)
FC-L3-db(⋅)
FC-L4-t2
FC-L4-eb(⋅)

FC-L4-db(⋅)
FC-L5-t2
FC-L5-eb(⋅)
FC-L5-db(⋅)

100.0 51.2 26.2 13.4 6.9 3.5 1.8 0.9 0.5
Network Density

0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(d) (e) (f)

Figure 12: The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using Conv2 archi-
tecture; (a-e) Global Pruning with p = 0.2

14

Under review as a conference paper at ICLR 2022

A.3 MORE RESULTS FOR CONV4 ARCHITECTURE ON CIFAR10 DATASET

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Densi y

0

8

16

24

32

40

48

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Den ity

0

20

40

60

80

100

120

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) FC-L5-t2

FC-L5-eb(⋅)
FC-L5-db(⋅)

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Densi y

0

6

12

18

24

30

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) FC-L6-t2
FC-L6-eb(⋅)
FC-L6-db(⋅)

FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)

(a) (b) (c)

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Densi y

0

2

4

6

8

10

Ei
ge

n
Fa

c
or

s
(W

ei
gh

 e
d)

Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Den ity

0

4

8

12

16

20

Ei
ge

n
Fa

ct
or

(W

ei
gh

te
d)

FC-L5-t2
FC-L5-eb(⋅)
FC-L5-db(⋅)
FC-L6-t2
FC-L6-eb(⋅)

FC-L6-db(⋅)
FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)

100.071.050.836.526.419.113.810.1 7.3 5.3 3.9 2.8 2.1 1.5
Network Density

0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(d) (e) (f)

Figure 13: The results for Conv4 architecture using CIFAR10 dataset with pruning percentile
pconv = 0.1, pfc = 0.2, and pout = 0.1 (layer-wise-pruning); (a-c) eigen factors for the unweighted
graph, (d-e) eigen factors for the weighted graph, (f) test accuracy

100.0 63.4 40.7 26.3 17.1 11.2 7.3
Network Densi y

0

8

16

24

32

40

48

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

100.0 63.4 40.7 26.3 17.1 11.2 7.3
Network Den ity

0

20

40

60

80

100

120

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) FC-L5-t2

FC-L5-eb(⋅)
FC-L5-db(⋅)

100.0 63.4 40.7 26.3 17.1 11.2 7.3
Network Densi y

0

6

12

18

24

30

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) FC-L6-t2
FC-L6-eb(⋅)
FC-L6-db(⋅)

FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)

(a) (b) (c)

100.0 63.4 40.7 26.3 17.1 11.2 7.3
Network Densi y

0

2

4

6

8

10

Ei
ge

n
Fa

c
or

s
(W

ei
gh

 e
d)

Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

100.0 63.4 40.7 26.3 17.1 11.2 7.3
Network Den ity

0

4

8

12

16

20

Ei
ge

n
Fa

ct
or

(W

ei
gh

te
d)

FC-L5-t2
FC-L5-eb(⋅)
FC-L5-db(⋅)
FC-L6-t2
FC-L6-eb(⋅)

FC-L6-db(⋅)
FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)

100.0 71.0 50.7 36.5 26.3 19.1 13.8 10.0 7.3
Network Density

0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(d) (e) (f)

Figure 14: The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using Conv4 archi-
tecture; (a-e) Layer-wise Pruning with pconv = 0.1, pfc = 0.2, and pout = 0.2

15

Under review as a conference paper at ICLR 2022

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Densi y

0

8

16

24

32

40

48

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Den ity

0

20

40

60

80

100

120

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) FC-L5-t2

FC-L5-eb(⋅)
FC-L5-db(⋅)

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Densi y

0

6

12

18

24

30

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) FC-L6-t2
FC-L6-eb(⋅)
FC-L6-db(⋅)

FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)

(a) (b) (c)

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Densi y

0

2

4

6

8

10

Ei
ge

n
Fa

c
or

s
(W

ei
gh

 e
d)

Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Den ity

0

4

8

12

16

20

Ei
ge

n
Fa

ct
or

(W

ei
gh

te
d)

FC-L5-t2
FC-L5-eb(⋅)
FC-L5-db(⋅)
FC-L6-t2
FC-L6-eb(⋅)

FC-L6-db(⋅)
FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)

100.071.050.836.526.419.113.810.1 7.3 5.3 3.9 2.8 2.1 1.5
Network Density

0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(d) (e) (f)

Figure 15: The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using Conv4 archi-
tecture; (a-e) Layer-wise Pruning with pconv = 0.1, pfc = 0.2, and pout = 0.1

16

Under review as a conference paper at ICLR 2022

A.4 MORE RESULTS FOR CONV6 ARCHITECTURE ON CIFAR10 DATASET

100.0 58.4 35.4 22.0 14.0 9.0 5.8
Network Densi y

0

10

20

30

40

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

100.0 58.4 35.4 22.0 14.0 9.0 5.8
Network Density

0

16

32

48

64

80

Ei
ge

n
Fa

ct
o

s
(U

nw
ei

gh
te

d) Conv-L5-t2
Conv-L5-eb(⋅)
Conv-L5-db(⋅)
Conv-L6-t2
Conv-L6-eb(⋅)

Conv-L6-db(⋅)
FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)

100.0 58.4 35.4 22.0 14.0 9.0 5.8
Network Den ity

0

6

12

18

24

30

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) FC-L8-t2

FC-L8-eb(⋅)
FC-L8-db(⋅)

FC-L9-t2
FC-L9-eb(⋅)
FC-L9-db(⋅)

(a) (b) (c)

100.0 58.4 35.4 22.0 14.0 9.0 5.8
Network Den ity

0

2

4

6

8

10

12

14

Ei
ge

n
Fa

ct
or

(W

ei
gh

te
d)

Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

Conv-L5-t2
Conv-L5-eb(⋅)
Conv-L5-db(⋅)
Conv-L6-t2
Conv-L6-eb(⋅)
Conv-L6-db(⋅)

100.0 58.4 35.4 22.0 14.0 9.0 5.8
Network Density

0

4

8

12

16
Ei

ge
n

Fa
ct

o
s
(W

ei
gh

te
d)

FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)
FC-L8-t2
FC-L8-eb(⋅)

FC-L8-db(⋅)
FC-L9-t2
FC-L9-eb(⋅)
FC-L9-db(⋅)

100.0 66.6 45.3 31.4 22.0 15.6 11.2 8.0 5.8
Network Density

0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(d) (e) (f)

Figure 16: The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using Conv6 archi-
tecture; (a-e) Layer-wise Pruning with pconv = 0.1, pfc = 0.2, and pout = 0.2

100.058.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0
Network Den ity

0

10

20

30

40

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) Conv-L1-t2

Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

100.058.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0
Network Density

0

16

32

48

64

80

Ei
ge

n
Fa

ct
o

s
(U

nw
ei

gh
te

d) Conv-L5-t2
Conv-L5-eb(⋅)
Conv-L5-db(⋅)
Conv-L6-t2
Conv-L6-eb(⋅)

Conv-L6-db(⋅)
FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)

100.058.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0
Network Den ity

0

6

12

18

24

30

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) FC-L8-t2

FC-L8-eb(⋅)
FC-L8-db(⋅)

FC-L9-t2
FC-L9-eb(⋅)
FC-L9-db(⋅)

(a) (b) (c)

100.058.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0
Network Den ity

0

2

4

6

8

10

12

14

Ei
ge

n
Fa

ct
or

(W

ei
gh

te
d)

Conv-L1-t2
Conv-L1-eb(⋅)
Conv-L1-db(⋅)
Conv-L2-t2
Conv-L2-eb(⋅)
Conv-L2-db(⋅)

Conv-L3-t2
Conv-L3-eb(⋅)
Conv-L3-db(⋅)
Conv-L4-t2
Conv-L4-eb(⋅)
Conv-L4-db(⋅)

Conv-L5-t2
Conv-L5-eb(⋅)
Conv-L5-db(⋅)
Conv-L6-t2
Conv-L6-eb(⋅)
Conv-L6-db(⋅)

100.058.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0
Network Density

0

4

8

12

16

Ei
ge

n
Fa

ct
o

s
(W

ei
gh

te
d)

FC-L7-t2
FC-L7-eb(⋅)
FC-L7-db(⋅)
FC-L8-t2
FC-L8-eb(⋅)

FC-L8-db(⋅)
FC-L9-t2
FC-L9-eb(⋅)
FC-L9-db(⋅)

100.066.645.331.422.015.611.28.0 5.8 4.2 3.0 2.2 1.6 1.2
Network Density

0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

(d) (e)

Figure 17: The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using Conv6 archi-
tecture; (a-e) Layer-wise Pruning with pconv = 0.1, pfc = 0.2, and pout = 0.1

17

Under review as a conference paper at ICLR 2022

A.5 RESULTS FOR VGG19

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Densi y

0

10

20

30

40

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) L1-t2
L1-eb(⋅)
L1-db(⋅)
L2-t2
L2-eb(⋅)
L2-db(⋅)

L4-t2
L4-eb(⋅)
L4-db(⋅)
L5-t2
L5-eb(⋅)
L5-db(⋅)

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Den ity

0

10

20

30

40

50

60

70

Ei
ge

n
Fa

ct
or

(U

nw
ei
gh

te
d) L7-t2

L7-eb(⋅)
L7-db(⋅)
L8-t2
L8-eb(⋅)
L8-db(⋅)

L9-t2
L9-eb(⋅)
L9-db(⋅)
L10-t2
L10-eb(⋅)
L10-db(⋅)

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Densi y

0

20

40

60

80

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) L12-t2
L12-eb(⋅)
L12-db(⋅)
L13-t2
L13-eb(⋅)
L13-db(⋅)

L14-t2
L14-eb(⋅)
L14-db(⋅)
L15-t2
L15-eb(⋅)
L15-db(⋅)

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Densi y

0

20

40

60

80

100

Ei
ge

n
Fa

c
or

s
(U

nw
ei

gh
 e

d) L17-t2
L17-eb(⋅)
L17-db(⋅)
L18-t2
L18-eb(⋅)
L18-db(⋅)

L19-t2
L19-eb(⋅)
L19-db(⋅)
L20-t2
L20-eb(⋅)
L20-db(⋅)

(a) (b) (c) (d)

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Densi y

0

3

6

9

12

15

Ei
ge

n
Fa

c
or

s
(W

ei
gh

 e
d)

L1-t2
L1-eb(⋅)
L1-db(⋅)
L2-t2
L2-eb(⋅)
L2-db(⋅)

L4-t2
L4-eb(⋅)
L4-db(⋅)
L5-t2
L5-eb(⋅)
L5-db(⋅)

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Densi y

0

2

4

6

8

10

12

Ei
ge

n
Fa

c
or

s
(W

ei
gh

 e
d)

L7-t2
L7-eb(⋅)
L7-db(⋅)
L8-t2
L8-eb(⋅)
L8-db(⋅)

L9-t2
L9-eb(⋅)
L9-db(⋅)
L10-t2
L10-eb(⋅)
L10-db(⋅)

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Densi y

0

2

4

6

8

10

12

Ei
ge

n
Fa

c
or

s
(W

ei
gh

 e
d)

L12-t2
L12-eb(⋅)
L12-db(⋅)
L13-t2
L13-eb(⋅)
L13-db(⋅)

L14-t2
L14-eb(⋅)
L14-db(⋅)
L15-t2
L15-eb(⋅)
L15-db(⋅)

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Densi y

0

2

4

6

8

10

12

Ei
ge

n
Fa

c
or

s
(W

ei
gh

 e
d)

L17-t2
L17-eb(⋅)
L17-db(⋅)
L18-t2
L18-eb(⋅)
L18-db(⋅)

L19-t2
L19-eb(⋅)
L19-db(⋅)
L20-t2
L20-eb(⋅)
L20-db(⋅)

(e) (f) (g) (h)

Figure 18: The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using VGG19
architecture and Global Pruning with p = 0.2 and lr = 0.01

100.051.2 26.3 13.5 6.9 3.6 1.9 1.0 0.6 0.3 0.2 0.1
Network Density

0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

σ=0.0
σ=0.4
σ=0.6

Figure 19: Results for the test accuracy of VGG19 on different noise level

A.6 HYPER-PARAMETERS DESCRIPTION

Table 3: Hyper-parameter settings for experimenting LTH using iterative magnitude based pruning

Lenet (on MNIST) Conv4 (on CIFAR10)
Optimizer Adam Adam

Training Iterations 20000 25000
Batch size 60 60

Learning Rate 0.0012 0.0003
Pruning epochs 50 50

Model initialization Kaiming Normal Kaiming Normal
64,64, pool

Conv Layers 128, 128, pool
FC layers 300, 100, 10 256, 256, 10

pruning epochs(in comparison) 60 60

18

Under review as a conference paper at ICLR 2022

A.7 DIFFERENT PARAMETERS VALUES WITH RESPECT TO THE RAMANUJAN GRAPH BASED
PRUNING ALGORITHM

Table 4: Representative result of the parameters found in the last pruning epoch of SynFlow-Bound
Algorithm on Lenet/MNIST

L
1

un
w

ei
gh

te
d

(t
1
,t

2
,d

a
v
g
,d

a
v
g
R

,e
b,
d
b,
∆

S
,∆

R
)

(3
1.

84
,1

4.
32

,2
35

.2
0,

3.
07

,1
1.

11
,1

6.
74

,-
0.

22
,0

.1
7)

L
1

w
ei

gh
te

d
(t
1
,t

2
,d

a
v
g
L

,d
a
v
g
R

,e
b,
d
b,
∆

S
)

(1
9.

59
,1

.3
7,

31
.6

3,
12

.1
0,

8.
62

,8
.8

7,
5.

29
)

L
1

Sc
or

e
(t
1
,t

2
,d

a
v
g
L

,d
a
v
g
R

,e
b,
d
b,
∆

S
)

(1
4.

07
,6

.9
6,

99
.4

2,
1.

30
,7

.2
3,

10
.4

7,
0.

04
)

L
1

(l
ay

er
-w

is
e

de
ns

ity
,r

em
ai

ni
ng

/to
ta

lp
ar

am
et

er
s)

(0
.0

1,
23

52
/2

35
20

0)
L

2
un

w
ei

gh
te

d
(t
1
,t

2
,d

a
v
g
,d

a
v
g
R

,e
b,
d
b,
∆

S
,∆

R
)

(1
2.

41
,5

.7
5,

3.
37

,3
0.

00
,6

.7
6,

6.
92

,0
.1

7,
0.

20
)

L
2

w
ei

gh
te

d
(t
1
,t

2
,d

a
v
g
L

,d
a
v
g
R

,e
b,
d
b,
∆

S
)

(1
1.

40
,1

.3
4,

19
.6

6,
6.

55
,6

.4
5,

6.
68

,3
.8

2)
L

2
Sc

or
e

(t
1
,t

2
,d

a
v
g
L

,d
a
v
g
R

,e
b,
d
b,
∆

S
)

(4
3.

27
,2

1.
31

,1
1.

23
,9

9.
93

,1
3.

00
,1

3.
14

,-
0.

39
)

L
2

(l
ay

er
-w

is
e

de
ns

ity
,r

em
ai

ni
ng

/to
ta

lp
ar

am
et

er
s)

(0
.0

1,
30

0.
0

/3
00

00
)

L
3

un
w

ei
gh

te
d

(t
1
,t

2
,d

a
v
g
,d

a
v
g
R

,e
b,
d
b,
∆

S
,∆

R
)

(2
9.

83
,0

.0
0,

89
.0

0,
10

.0
0,

10
.7

4,
12

.3
8,

10
35

69
08

.9
3,

11
94

00
47

.6
7)

L
3

w
ei

gh
te

d
(t
1
,t

2
,d

a
v
g
L

,d
a
v
g
R

,e
b,
d
b,
∆

S
)

(3
.5

4,
1.

01
,1

0.
90

,1
.0

9,
3.

19
,3

.4
5,

2.
16

)
L

3
w

ei
gh

te
d

(t
1
,t

2
,d

a
v
g
L

,d
a
v
g
R

,e
b,
d
b,
∆

S
)

12
.7

4,
7.

83
,9

.7
2,

7.
29

,6
.8

5,
5.

46
,-

0.
12

L
3

(l
ay

er
-w

is
e

de
ns

ity
,r

em
ai

ni
ng

/to
ta

lp
ar

am
et

er
s)

(0
.8

9,
89

0
/1

00
0)

19

	Introduction and Related work
	The Lottery Ticket Hypothesis and Network Pruning
	Expanders and Ramanujan Graphs
	Ramanujan Graph Characterization of Neural Networks
	Bipartite Graph Structure
	Ramanujan Graph Property Preserving Pruning Algorithm

	Experimental Results
	Experimental Setup

	Conclusion
	Appendix
	More results for Lenet architecture on MNIST dataset
	More results for Conv2 architecture on CIFAR10 dataset
	More results for Conv4 architecture on CIFAR10 dataset
	More results for Conv6 architecture on CIFAR10 dataset
	Results for VGG19
	Hyper-parameters Description
	Different parameters values with respect to the Ramanujan graph based pruning Algorithm

