
Scalable and Efficient Non-adaptive Deterministic

Group Testing

Dariusz R. Kowalski

School of Computer and Cyber Sciences
Augusta University, USA
dkowalski@augusta.edu

Dominik Pajak

Department of Pure Mathematics
Wroclaw University of Science and Technology,

Infermedica, Poland
dominik.pajak@pwr.edu.pl

Abstract

Group Testing (GT) is about learning a (hidden) subset K, of size k, of some
large domain N , of size n� k, using a sequence of queries. A result of a query
provides some information about the intersection of the query with the unknown set
K. The goal is to design efficient (polynomial time) and scalable (polylogarithmic
number of queries per element in K) algorithms for constructing queries that allow
to decode every hidden set K based on the results of the queries. A vast majority
of the previous work focused on randomized algorithms minimizing the number
of queries; however, in case of large domains N , randomization may result in a
significant deviation from the expected precision of learning the set K. Others
assumed unlimited computational power (existential results) or adaptiveness of
queries (next query could be constructed taking into account the results of the
previous queries) – the former approach is less practical due to non-efficiency, and
the latter has several drawbacks including non-parallelization. To avoid all the
abovementioned drawbacks, for Quantitative Group Testing (QGT) where query
result is the size of its intersection with the hidden set, we present the first efficient
and scalable non-adaptive deterministic algorithms for constructing queries and
decoding a hidden set K from the results of the queries – these solutions do not
use any randomization, adaptiveness or unlimited computational power.

1 Introduction

In the Group Testing (GT) field, the goal is to identify all elements of an unknown set K by asking
queries. Originally GT was applied to identifying infected individuals in large populations using
pooled tests [26] which regained interest during COVID-19 pandemic [2, 52, 56]. Recently GT found
applications in various areas of Machine Learning including approximating the nearest neighbor [28],
simplifying multi-label classifiers [58] and accelerating forward pass of a deep neural network [51].

All we initially know about set K is that |K|  k, for some known parameter k  n, and that it is a
subset of some much larger set N with |N | = n. The answer to a query Q depends on the intersection
between K and Q and equals to Result(K \Q), where Result is some result function (also called
feedback function in this paper).

The sequence of queries is a correct solution to Group Testing if and only if for any two different sets
K1,K2 (satisfying some cardinality restriction), the sequence of answers for K1 and K2 is different.
Note that although this allows to uniquely identify the hidden set K based on the results of the queries,
in some cases decoding of set K could be a hard computational problem. The objective is: for a given
deterministic feedback function Result(·), to find a fixed sequence of queries that will identify any set
K, and the length of this sequence, called the query complexity, is as short as possible. In particular,
we are interested in solutions that have query complexity logarithmic in n and polynomial in k.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



↵ Constructive algorithms Lower bound

1 O(k2 log n) [54] ⌦
⇣
k
2 logn
log k

⌘
[12]

k
O(k2 log n) [54]

⌦
⇣
k
logn
log k

⌘
(folklore)

eO(k) Thm 1 (for ↵ = k)

⇤ eO
⇣
min

n�
k
↵

�2
,
n
↵

o
+ k

⌘
(Thm 1) ⌦

⇣
min

n�
k
↵

�2
,
n
↵

o
+ k

logn
log k

⌘
(Thm 2)

Table 1: Asymptotic bounds on query complexity of solutions to non-adaptive deterministic QGT
with F↵ feedback. By constructive upper bound we mean query construction and decoding of hidden
set in time poly(n). Symbol ⇤ stands for any valid value of the parameter ↵ 2 {1, . . . , k}, notations
eO and e⌦ disregard polylogarithmic factors.

The most popular classical variant, present in the literature, considers function Result(·) that answers
whether the intersection between K and Q is empty or not, c.f., [27]; it is also known under the name
of beeping. Another popular result function returns the intersection size; this variant has also been
studied under the name of coin weighting [4, 24] and Quantitative Group Testing (QGT) [32, 29].

In this paper we study the problem of Group Testing under a more general capped quantitative result,
where the result (feedback) is the size of the intersection up to some parameter ↵ 2 {1, . . . , k},
and ↵ for larger intersections. It subsumes and generalizes the two previously described classical
result functions: the smallest case of ↵ = 1 corresponds to the classical empty/non-empty feedback
(beeping), while the case ↵ = k captures the (full) quantitative feedback (classical QGT). Motivation
for our research is twofold: first, to better understand the intermediate settings between the two
classical GT models; second, to find efficient solutions for the capped settings that could be applied
to other problems (see the Appendix).

Our focus is on non-adaptive deterministic solutions, in which queries are fixed (i.e., the same
sequence applies to all hidden sets) and allow to discover (decode) any hidden set based on ↵-
capped results. The primary goal is to minimize the number of queries, called query complexity,
and the second objective is to compute the queries and decode the hidden set in polynomial time.
All existing polynomial construction/decoding algorithms for beeping or quantitative feedbacks
use ⇥(min{n, k2 log n}) queries, c.f., [54]. General constructions developed in this work employ
the concept of dispersion, c.f., [57], and combine it appropriately with other techniques. When
instantiated for a specific feedback parameter ↵ 2 {1, . . . , k}, (e.g., ↵ =

p
k), they shrink the

gap between the upper and lower bounds on the number of efficiently constructed queries nearly
exponentially: from linear to polylogarithmic gap per hidden element. Together with our lower bound,
they explain why sometimes a much smaller feedback is sufficient for decoding sets with similar
efficiency. We show that parameter ↵ has also different interpretations – it inversely relates to the
number of occurrences of an element in the queries and to fault-tolerance (c.f., Section 6).

1.1 Our Results (see also Table 1)

We generalize the classical beeping and QGT models of Group Testing by considering an ↵-capped re-
sults, also called an ↵-capped feedback function, for an ↵ 2 {1, . . . , k}: for a hidden set K and query
Q it returns F↵(Q \K) = min{|Q \K|,↵}. We study the query complexity of non-adaptive deter-
ministic QGT in this general model. We focus on scalable (polylogarithmic number of queries per
element) and efficient (polynomial-time) constructing/decoding algorithms, and we show that it could
be achieved if and only if the information cap ↵ = e⌦(

p
k). In particular, it holds for classical QGT.

Main result – Polynomial-time construction/decoding algorithms using almost optimal number

of queries (Algorithms 1 and 2 in Section 4). Here almost-optimality means that the length of the
constructed query sequence is only polylogarithmically longer than the shortest possible sequence.
The previous best polynomial-time solution used ⇥(min{n, k2 log n}) queries for all ↵ � 1 [54],
and we shrink it by factor ⇥(min{↵2

, k} polylog�1
n). To achieve this goal, we define and build new

types of selectors, called (Strong) Selectors under Interference (SSuI and SuI, for short) based on the
concept of (superimposed) dispersion. Although dispersion has been used before in GT, c.f., [10, 44],
as well as the classical superimposed codes, our technical novelty is twofold: first, we identified
additional properties of selectors (e.g., avoiding interfering set with capped intersections), that could

2



not be formally deducted from the definitions of previous types of selectors, but allow to improve the
solutions to QGT; second, we applied careful mathematical analysis to choose specific parameters of
dispersers and superimposed codes and to prove that the new selectors’ properties hold.

We also generalize the concept of Round-Robin query systems, where each query is a singleton, to
↵-Round-Robin query systems, containing sets of size at most ↵. Such sequences are shorter than
the simple Round-Robin, i.e., have length O((n/↵) polylog n), and, unlike a simple Round-Robin
singletons’ structure, are challenging to construct in a way to allow correct decoding based on
↵-capped feedback.
Theorem 1. There is an explicit polynomial-time algorithm constructing non-adaptive queries
Q1, . . . , Qm, for m = O

⇣
min

n�
k
↵

�2
,
n
↵

o
polylog n+ k polylog n

⌘
, that solve Group Testing un-

der feedback F↵ with polynomial-time decoding. Moreover, every element occurs in O( k↵ polylog n)

queries, and the decoding time is O(m+ k2

↵ polylog n+ k polylog n).

One of the consequences is that having the result function capped at ↵ =
p
k, we obtain similar

number of queries as with the actual result (i.e., returning the size of the whole intersection, up to k),
which together with our next lower bound establishes an interesting inherited property of GT. The
value ↵ =

p
k seems to be a sweet spot balancing two different phenomena – superimposed coding

and dispersion. Enriching the beeping model (i.e., ↵ increases starting from 1) allows to improve the
superquadratic query complexity of classical superimposed coding (used for the beeping feedback),
and the improvement is roughly quadratic in terms of ↵, due to the nature of superimposed codes. On
the other hand, limiting the full quantitative model (i.e., ↵ decreases starting from k) increases the
number of queries, starting from slightly superlinear, roughly linearly in ↵, as the nature of dispersion
is linear. Both these phenomena equalize query complexities at ↵ =

p
k. This is illustrated in our

construction – in the beginning, the progress in learning relies on dispersion-based SuI’s for small ↵,
then with the growth of ↵ the length of used SuIs becomes similar to the length of the code-based
SSuI; it happens for ↵ =

p
k. The SSuI allows to discover all the remaining elements and finishes

the learning process. The last fact explains why further increase of ↵ is not needed.

Lower bound (Section 5). The almost-optimality of our algorithms from Theorem 1 is justified by
proving an absolute lower bound on the length of sequences allowing to decode a hidden set based on
feedback F↵ to the queries. Here by “absolute” we mean that it holds for all query systems that allow
for decoding of the hidden sets based on feedback F↵, not restricted to polynomially constructed
queries with polynomial decoding algorithm. Even more, some components of the lower bound
are general: they hold for any ↵-capped feedback function, which will be formally defined later in
Section 3. The lower bound has three components: (k/↵)2, n/↵, and k

log n
k

log↵ . For different ranges of
k, different components determine the value of the lower bound. Note that these components match
the corresponding components in our constructive upper bound (Main result in Theorem 1), up to a
polylogarithmic factor.
Theorem 2. Any non-adaptive algorithm solving Group Testing needs:

• ⌦
⇣
min

n�
k
↵

�2
,
n
↵

o
+ k

log n
k

log↵

⌘
queries under feedback F↵.

• ⌦
⇣
min

n�
k
↵

�2
,
n
↵

o⌘
queries under any feedback capped at ↵.

Document structure. We discuss related work on various variants of GT in Section 2. In Section 3
we formally define the QGT problem and the generalized ↵-capped-results model. In Section 4 we
present our polynomial-time query construction and decoding algorithms. Section 5 proves the lower
bound. Discussion of extensions, applications and future directions is given in Section 6. Additional
Appendix contains more details: Appendix A discusses other related work; Appendix B shows details
of extensions and applications; Our new selector tools are constructed and analyzed in Appendix C.

2 Previous and Related Work (see also Tables 1 and 2)

Group Testing with general feedback functions have been studied in [47], where two parameters of
feedback functions (cap and expressiveness) are shown to influence the necessary number of queries.

In the standard feedback model, considered in most of the Group Testing literature [27], the feedback
tells whether the intersection between query Q and set K is empty or not (sometimes it is also

3



↵ Upper bound First work with asymptotic bound Difference from this paper

k

O

⇣
k
logn
log k

⌘
[37] existential (super-exponential construction time)

O

⇣
k
logn
log k

⌘
[4] adaptive

O

⇣
k
logn
log k

⌘
[55] randomized (only with some probability)

Table 2: Other related work on adaptive, randomized or existential solutions to QGT for ↵ = k.

called a beeping model). It it is a special case F1 of our feedback function. In this feedback model,
Group Testing is known to be solvable using O(k2 log(n/k)) queries [21] and an explicit polynomial-
time construction of length O(k2 log n) exists [54]. Best known lower bound (for k <

p
n) is

⌦(k2 log n/ log k) [12]. This model is also similar to Angluin’s notion of concept learning with
disjointness queries [1]. The main differences are that in our model the learner is non-adaptive and
that in the disjointness queries the feedback might include an element from the intersection.

The setting considered in this paper is also a generalization of an existing problem of coin weighting.
In this problem, we have a set of n coins of two distinct weights w0 (true coin) and w1 (counterfeit
coin), out of which up to k are counterfeit ones. We are allowed to weigh any subset of coins
on a spring scale, hence we can deduce the number of counterfeit coins in each weighting. The
task is to identify all the counterfeit coins. Such a feedback is a special case Fk of our feedback
function. The problem is solvable with O(k log(n/k)/ log k) [37] non-adaptive (i.e., fixed in advance)
queries and matching a standard information-theoretic lower bound of ⌦(k log(n/k)/ log k), as
well as its stronger version proved for randomized strategies [24]. [4] considers the problem of
explicit polynomial-time construction of O(k log(n/k)/ log k) queries that allows for polynomial
time identification of the counterfeit coins. However, the algorithm presented in [4] is adaptive,
which means that the subsequent queries can depend on the feedback from the previous ones. The
only existing, constructive, non-adaptive solution would be using the explicit construction of the
superimposed codes [46] but the resulting query complexity would be O(k2 polylog n). Thus, the
solution in our paper is the first explicit polynomial time algorithm constructing non-adaptive queries
allowing for fast decoding of set K, with O(k polylog n) fixed queries.

An important line of work on non-adaptive randomized solutions to Quantitative Group Testing,
started by [55] and being continued until recently [32, 14, 29, 3], resulted in a number of algorithms
nearing the lower bound of 2k ln(n/k)

ln k from [25]. However, these results always assume some
restriction on k (typically k ⇠ n

✓ for some 0 < ✓ < 1), and similarly as above, they may result in
significant deviation from the actual set if n is large. They also require a large number of truly random
bits (in practice, algorithms have access only to small truly random seeds, while randomized solutions
typically have large number of ⌦(n log n log k) random bits to construct the queries) and typically do
not offer any provable guarantees in case when an adaptive adversary could create/change the hidden
set or introduce errors online during the learning process.

The bounds obtained in this paper match (up to polylogarithmic factors) the best existing results for
the extreme cases of ↵ = 1 and ↵ = k. The paper also bounds how the query complexity depends
on the value of ↵ between these extremes. Interestingly we show, that the shortest-possible query
complexity of k polylog n is already possible for ↵ =

p
k and increasing ↵ from

p
k to k does not

result in further decrease of the query complexity.

Other interesting feedback function is a Threshold Group Testing [20, 23], where the feedback
model includes a set of thresholds and the feedback function returns whether or not the size of the
intersection is larger or smaller than each threshold. In [22] the authors show that it is possible to
define an interval of

p
k log k thresholds resulting in an algorithm with O(k log(n/k)/ log k) queries.

Note that both those feedbacks are “inefficient” in view of our setting of ↵-capped feedbacks, because
their feedback functions are not capped at any ↵ < k, but they achieve similar query complexity as
our capped Fp

k feedback.

Superimposed codes and dispersers were already used in Group Testing. However, they either led to
a super-quadratic (in k) number of queries, c.f., [46, 9], or decoded only a fraction of elements of the
hidden set, see [44, 41]. Recall that in solutions where query complexity depends on the number of
identified elements, decoding of all the elements requires over k2 queries, as proved in [21, 10]. [45]

4



presents the first Group Testing solution with poly(k, log n) decoding time, but super-quadratic query
complexity. It is worth noting that our generalized solution achieves almost-linear number of queries
(for certain values of ↵) and our decoding algorithm identifies all the elements in time polynomial
in k and logarithmic in n. Our use of the known tools is different then in previous approaches: we
define new properties (SuI, SSuI), which we prove to be satisfied by some combinations of those
tools, and lead to efficient solutions in both query complexity and construction/decoding time.

3 The Model and the Problem

We assume that the universe of all elements N , with |N | = n, is enumerated with integers 1, 2, . . . , n.
Throughout the paper, we will associate an element with its identifier. Let K, with |K|  k, denote a
hidden subset of N chosen arbitrarily by an adversary. Let Q = hQ1, . . . , Qmi be a non-adaptive
algorithm, represented by a sequence of m queries fixed prior to an execution.

A general feedback function F is a function from subsets of N into an arbitrary domain. A function is
applied to K\Q. A meaningful feedback function can range from simple empty/non-empty feedback
up to returning all elements of the intersection. Consider a feedback function F↵, that returns the size
of an intersection if it is at most ↵ and ↵ for larger intersections, i.e., F↵(Q\K) = min{|Q\K|,↵}.
Parameter ↵ in feedback F↵ is called a feedback cap. A general class of feedback functions (used in
our lower bound) with feedback cap ↵ includes all deterministic functions that take subsets of N as
input and for sets with more than ↵ elements output some arbitrary fixed value.

We say that Q solves Quantitative Group Testing (QGT), if the feedback vector allows for unique
identification of set K. The feedback vector is defined as hF↵(Q1 \K),F↵(Q2 \K), . . . ,F↵(Qt \
K)i. Thus, in order to solve QGT, the feedback vectors for any two sets K1 and K2 have to be
different. We say that Q solves QGT with polynomial-time reconstruction if there exists a polynomial-
time algorithm that, given the feedback vector outputs all the identifiers of the elements from K.
Finally we say that Q is constructible in polynomial time if there exists a polynomial-time algorithm,
that given parameters n, k,↵ outputs an appropriate sequence of queries.

We assume that both coupled algorithms, construction and decoding, know n, k,F↵. W.l.o.g., in order
to avoid rounding in the presentation, we assume that n and other crucial parameters are powers of 2.

4 Polynomial-time Constructions and Decoding

4.1 Combinatorial Tools

In this section we introduce two new combinatorial tools (Selectors-under-Interference and Strong-
Selectors-under-Interference) for our QGT solutions, and recall Dispersers and Balanced IDs.

For given sets K1,K2 ✓ N and an element v 2 K1, we say that S ✓ N selects v from K1 under
↵-interference from K2 if S \K1 = {v} and |S \K2| < ↵. Intuitively, v is a unique representative
of K1 in S and the number of representatives of K2 in S is smaller than ↵.
Definition 1 (Selector under Interference (SuI)). An (n, `, ✏,,↵)-Selector-under-Interference,
(n, `, ✏,,↵)-SuI for short, is a sequence of queries S = (S1, . . . , Sx) satisfying: for every set
K1 ✓ N of at most ` elements and set K2 ✓ N of at most  elements, there are at most ✏` elements
v 2 K1 that are not selected from K1 under ↵-interference from K2 by any query Si 2 S, i.e., set
{v 2 K1 : 8ix Si \K1 6= {v} or |Si \K2| � ↵} has less than ✏` elements.

Disperser. Consider a bipartite graph G = (V,W,E), where |V | = n, which is an (`⇤ = ✏`, d, ✏)-
disperser with entropy loss �, i.e., it has left-degree d, |W | = `d/�, and satisfies the following
dispersion condition: for each L ✓ V such that |L| � `

⇤, the set NG(L) of neighbors of L in
graph G is of size at least (1 � ✏)|W |. Note that it is enough for us to take as ✏ in the dispersion
property the same value as in the constructed (n, `, ✏,,↵)-SuI S.1 An explicit construction (i.e.,
in time polynomial in n) of dispersers was given by [57], for any n � `, and some � = O(log3 n),
where d = O(polylog n).2 In the following the notation d and � will always denote the parameters
of the disperser. Note that any improved construction of dispersers will immediately reduce the
complexities of our algorithms. In Appendix C.1 we will describe two disperser-based polynomial-
time constructions of SuI and prove:

1If someone considers ✏ � 1/3, we could use construction for ✏ = 1/3 to get solution with better guarantees.
2Optimal dispersers have � = O(1) and d = O(log n), but their polynomial-time construction is an

open problem.

5



Theorem 3. There is an explicit polynomial-time construction of an (n, `, ✏,,↵)-SuI, for any `,
any ↵  k such that `↵/(3�) > , for any constant ✏ 2 (0, 1/3), of size O(min

�
n, `d� log2 n

 
).

Moreover, every element occurs in O(d� log n) queries.

Theorem 4. There is an explicit polynomial-time construction of an (n, `, ✏,,↵)-SuI, for any `,
any ↵  k such that `  3�/↵ for any constant ✏ 2 (0, 1/3), of size O

�
min

�
n,

d�
↵ log2 n

 

+nd�
↵ log n

�
. Moreover, every element occurs in O(d� log n) queries.

Definition 2 (Strong Selector under Interference (SSuI)). An (n, `,,↵)-Strong-Selector-under-
Interference, (n, `,,↵)-SSuI for short, is a sequence of queries T = (T1, . . . , Tx) satisfying:
for every set K1 ✓ N of at most ` elements and set K2 ✓ N of at most  elements, every
element v 2 K1 is selected from K1 under ↵-interference from K2 by some query Ti 2 T , i.e., set
{v 2 K1 : 8ix Ti \K1 6= {v} or |Ti \K2| � ↵} is empty.

An (n, `,,↵)-Strong-Selector-under-Interference could be also viewed as (n, `, 0,,↵)-Selector-
under-Interference. In Appendix C.2 we describe a polynomial-time construction of SSuI, which
essentially is a [46] construction for adjusted parameters, and prove that it satisfies the SSuI property.
Theorem 5. There is an explicit polynomial-time construction of an (n, `,,↵)-SSuI of length
O(`2 log2` n), provided ` � 3�/↵. Moreover, every element occurs in O(` log` n) queries.

Balanced IDs. Each element i in N has a unique ID represented by 2 log2 n bits, in which the
number of 1’s is the same as the number of 0’s; e.g., take a binary representations of elements i and
n� i, each in log2 n bits, and concatenate them (recall n = |N |). Balanced IDs have previously been
used in algorithms for decoding elements in Group Testing (see e.g., [50]).

4.2 Construction of Queries, Decoding and Analysis (Proof of Theorem 1)

Algorithm constructing queries. Assume ↵ � 2 and k > 3�k/(↵ � 1) (the opposite case will
be considered later) and let us take (n, `, 1/2, k,↵� 1)-SuI S(`), for ` being a power of 2 ranging
down from k to 3�k/(↵ � 1) (w.l.o.g. we could also assume that 3�k/(↵ � 1) is a power of 2).
Next, for each set S in these selectors we add the following family R(S) = {Ri(S)}2 log2 n

i=1 of sets
Ri(S) = {v 2 S : bv/2i�1c = 1 mod 2}. Intuitively Ri(S) is the set of elements from S that
have 1 on i-th least significant bit of Balanced ID. Let us call the obtained enhanced selectors (i.e.,
with additional families R(S), for every set S in the original selector) S̄(`). Then we concatenate
selectors R(S(`)), starting from the largest ` = k, to the smallest value ` = 3�k/(↵ � 1). An
(n, 3�k/(↵ � 1), k,↵ � 1)-SSuI T is concatenated at the end, with the same replacement of bits
1 and 0 that gives R(T ) as in the above (n, `, 1/2, k,↵ � 1)-SuI’s. In the case, where ↵ = 1 or
k  3�k/(↵� 1) then the sequence equals to (n, k, k,↵)-SSuI T concatenated as in the above with
R(T ). Algorithm 1 presents a pseudocode of the construction algorithm for ↵ > 1.

Algorithm 1: Construction of a sequence of queries solving QGT with ↵-capped feedback.
Input: Disperser G of degree d and entropy loss �

1 ` k,Q hi;
2 while ` >

3�k
↵�1 do

3 S  (n, `, 1/2, k,↵� 1)-SuI;
4 foreach S 2 S do

5 Q.append(S);
6 for i 1 to 2 log2 n do

/* Add a set of elements
from S that have 1 on
i-th least significant
bit of Balanced ID. */

7 Ri(S) {v 2 S : bv/2i�1c = 1
mod 2};

8 Q.append(Ri(S));

9 ` `/2;

10 T  (n, 3�k/(↵� 1), k,↵� 1)-SSuI;
11 foreach T 2 T do

12 Q.append(T );
13 for i 1 to 2 log2 n do

14 Ri(T ) {v 2 T : bv/2i�1c = 1
mod 2};

15 Q.append(Ri(T ));

16 return Q

6



*
S(32)
1 , R

⇣
S(32)
1

⌘
, S(32)

2 , R
⇣
S(32)
2

⌘
, . . .

| {z }
, S(16)

1 , R
⇣
S(16)
1

⌘
, S(16)

2 , R
⇣
S(16)
2

⌘
, . . .

| {z }
, T1, R (T1) , T2, R (T2) , . . .| {z }

+
hS(32)

1 , S(32)
2 , . . .i = S(32) = (64, 32, 1/2, 32, 16)-SuI

hS(16)
1 , S(16)

2 , . . .i = S(16) = (64, 16, 1/2, 32, 16)-SuI

hT1, T2, . . .i = T = (64, 8, 32, 16)-SSuI

for decoding 16 (out of
32) hidden elements

for decoding 8 (out of re-
maining 16) hidden elements

for decoding the remaining 8
hidden elements

Figure 1: An example of sequence of queries produced by Algorithm 1 for n = 64, k = 32,↵ = 17.
For simplicity we assume that 16 >

3�k
↵�1 � 8.

Decoding algorithm. During the decoding algorithm we process, in subsequent iterations, the
feedbacks from enhanced selectors S̄(`) for ` = k, k/2, k/4, . . . , 3�k/(↵� 1). We will later prove,
by induction, that during processing S̄(`), `/2 new elements from K are decoded. To show this, we
consider any iteration and let set K1 be the set of the elements that have been decoded in previous
iterations while set K2 = K \K1 be the set of unknown elements. We treat K1 as the interfering
set and, by the properties of S(`), we know that for at least `/2 elements v, there exists a query
S 2 S(`), such that v 2 S, |K1 \ S| < ↵ � 1, |K2 \ S| = 1. We observe that since we already
know the identifiers of all the elements from the interfering set K1, then using feedbacks from the
additional queries R(S) (corresponding to balanced IDs) we can exactly decode the identifier of v.
We do this for all `/2 elements that are possible to decode in this iteration and we proceed to the
next iteration. After considering all Selectors-under-Interference, we have only at most 3�k/(↵� 1)
unknown elements. To complete the decoding we use a Strong-Selector-under-Interference, where
the decoding procedure is exactly the same as in the case of SuI (the interfering set is also the set of
already decoded elements). The properties of SSuI guarantee that we decode the identifiers of all the
remaining elements from K. See the pseudocode of decoding Algorithm 2 for details of deocding for
↵ > 1. In the case where ↵ = 1 the decoding is straightforward, as the SSuI guarantees in this case
no interference, hence the results (due to our enhancement T̄ ) contain exactly the identifiers of the
elements from set K.
Lemma 1. There is an explicit polynomial-time algorithm constructing non-adaptive queries
Q1, . . . , Qm and decoding any hidden set K of size at most k  n, from the feedback vector in
polynomial time, under feedback F↵ and for m = O(( k↵ )

2
�
2 log3 n+ kd� log3 n) queries. Moreover,

every element occurs in O( k↵� log
2
n+ d� log3 n) queries.

Proof. We start from describing a procedure of revealing elements in any given set K of at most k
elements, together with a formal (inductive) argument of its correctness. Our first goal is to show that
by the beginning of S̄(`), for ` stepping down from k to 3�k/(↵� 1), we have not learned about the
identity of at most ` elements from the hidden set K.

The proof is by induction – it clearly holds in the beginning of the computation, as the set K has
at most ` = k elements. We prove the inductive step: by the end of S̄(`), at most `/2 elements are
not learned. We set K2 to be the set of learned elements and K1 = K \ K2. Clearly, |K2|  k,
and by the inductive assumption |K1|  `  k. For such K1 and K2, by the definition of SuI,
there are at most `/2 elements from K1 that are not occurring in some round without other such
elements or with at least ↵ � 1 of already learned elements from K2. Consider a previously not
learned element v 2 K1, for which there exists a good query in S̄(`), i.e., a query S 2 S̄(`) such
that S \ K1 = {v} and |S \ K2| < ↵ � 1. At this point of decoding of set K we know the
Balanced IDs of all elements from set K2. Hence we can calculate the 2 log2 n-bit feedback vector
from sets K2 \ R1(S),K2 \ R2(S), . . . ,K2 \ R2 log2 n(S). We compare this feedback vector
with the output of the enhanced selector, which is the feedback vector for sets K \ R1(S),K \
R2(S), . . . ,K\R2 log2 n(S). The difference between the latter and the former is exactly the Balanced
ID of v. In case this difference does not form a Balanced ID of any element, i.e., it has some value
bigger than 1 or otherwise the number of 1’s is different from log2 n, or in case F↵(K \ S) = ↵

(recall that S is also in the constructed selector) the feedback from this R(S) is ignored. This is
done to avoid misinterpreting the feedback and false discovery of an element which is not in K.
Indeed, first note that the fact |K \ S| � ↵ will automatically discard the part of the feedback from
K \ R1(S),K \ R2(S), . . . ,K \ R2 log2 n(S), as it indicates that the intersection is too large to
provide correct decoding of an element. Second, assuming |K \ S| < ↵, if there are no elements

7



Algorithm 2: Decoding of the elements for QGT with ↵-capped feedback.

Input: Result(Q) for queries Q 2 Q constructed by Algorithm 1, based on SuI S(`) for ` being
powers of 2 stepping down from k to 3�l

↵�1 and SSuI T .
1 ` k,Kacc  ; ; /* Set Kacc accumulates the decoded elements. */
2 while ` >

3�k
↵�1 do /* We decode l/2 elements in each iteration.*/

3 for i 1 to l/2 do

/* Look for query for which we can decode a new element. */
4 foreach S 2 S(`)

do

5 if Result(S) < ↵� 1 and |S \Kacc| = Result(S)� 1 then

6 Kacc  Kacc [ {DecodeElement(S,Kacc)} ;

7 ` `/2;
8 while ` > 0 do /* Iteratively decode all the remaining elements.*/
9 foreach T 2 T do

10 if Result(T ) < ↵� 1 and |T \Kacc| = Result(T )� 1 then

11 Kacc  Kacc [ {DecodeElement(T,Kacc)} ;
12 ` `� 1 ;

13 return Kacc

1 Procedure DecodeElement(Q,Kacc)
2 v  0;
3 for j  2 log2 n downto 0 do

/* Take the feedback from set Rj(Q). Calculate the feedback from
set Rj(Q), if hidden set was exactly Kacc. The difference is
j-th least significant bit of Balanced ID of new element v. */

4 v  2 · v + Result(Rj(Q))� |Rj(Q) \Kacc|
5 return v

in K1 \ S then the difference between feedbacks gives vector of zeros, and if there will be at least
two elements in K1 \ S, the difference between feedbacks will contain a value of at least 2 or all
1’s, as it will be a bitwise sum of at least two Balanced IDs of log2 n ones each. By the definition of
SuI we can find l/2 such elements v. This shows that during decoding of enhanced S̄(`) we learn
the identities of `/2 new elements. This completes the inductive proof. Note here that the inductive
step, being one of O(log n) steps, defines a polynomial time algorithm decoding some elements
one-by-one – indeed, it computes two feedbacks of polynomial number of queries, computes the
difference and deducts based on the structure of subsequent blocks of O(log n) size.

The above analysis implies, that before applying (n, 3�k/(↵ � 1), k,↵ � 1)-SSuI we have not
discovered at most 3�k/(↵ � 1) elements. Thus, by definition, (n, 3�k/(↵ � 1), k,↵ � 1)-SSuI
combined with Balanced IDs reveals all the remaining elements in the same way as the SuI’s
above – the only difference in the argument is that instead of leaving at most `/2 undiscovered
elements in the `-th inductive step, due to the nature of SuI’s, the SSuI guarantees that every
undiscovered element will occur in a good query. The same argument as for SuI’s proves that
the decoding algorithm defined this way works in polynomial time. By Theorem 3, the length of
(n, `, 1/2, k,↵)-SuI is O(min

�
n, `d� log2 n

 
), which sums up to O(kd� log2 n), and is multiplied

by ⇥(log n) due to amplification by Balanced IDs. By Theorem 5, the length of (n, 3�k/↵, k,↵)-
SSuI is O(( k↵ )

2
�
2 log2 n), and it is also increased by factor ⇥(log n) due to Balanced IDs. If we

apply the above reasoning with respect to the number of queries containing an element, we get that
every element occurs in O( k↵� log

2
n+ d� log3 n) queries.

Implementing ↵-Round-Robin for large values of k/↵. The question arises from the previous
result if one could efficiently construct a shorter sequence of queries if (k/↵)2 > n/↵? In the case
of full feedback (i.e., ↵ = k) the common way to deal with large values of k is via Round-Robin,
which means that queries are singletons and consequently, the length of such query sequence is n.
This also works for an arbitrary value of ↵  k, however the lower bound in Theorem 2 suggest that
in such case there could exist a shorter query system of length O((k + (n/↵)) polylog n). Indeed, if
we modify our construction in such case, we could obtain such a goal. Namely, we concatenate:

8



• selectors S̄(`), for ` being decreasing powers of 2 from ` = k to ` = 6�k/(↵� 1);
• selectors S̄|(`)↵ , for ` being decreasing powers of 2 from ` = 3�k/(↵� 1) to ` = 1.

In the case, where k > 6�k/(↵ � 1), then the construction contains only selectors S̄|(`)↵ . Then we
enhance them based on Balanced IDs, as in the previous construction. Then, applying Theorem 3
for concatenated S̄(`) and Theorem 4 for concatenated S̄|(`)↵ , instead of combination of Theorems 3
and 5 as it was in the proof of Lemma 1 with respect to S̄(`), we get the following result.
Lemma 2. There is an explicit polynomial-time algorithm constructing non-adaptive queries
Q1, . . . , Qm and decoding any hidden set K of size at most k  n, from the feedback vector in
polynomial time, under feedback F↵ and for m = O((k + n/↵)d� log3 n) queries. Moreover, each
element occurs in O(d� log3 n) queries.

Proof. The proof is analogous to the proof of Lemma 1, except that we continue proving the
invariant until ` = 6�/(↵ � 1), using same properties guaranteed by Theorems 3, and continue
the invariant until ` = 1, using SuI’s of slightly different length formula from Theorem 4. The
correctness argument, as well as polynomial-time query construction and decoding of the elements,
are the same as in the invariant proof in Lemma 1. Then, by Theorem 3 for concatenated S̄(`) and
by Theorem 4 for concatenated S̄|(`)↵ , we argue that the total length of the obtained sequence is
m = O((k + n/↵)d� log3 n). Indeed, the first part results from the telescoping sum for different `
and the second component is a logarithmic amplification of the original O((nd�/↵) log n) length
of SuI’s; all is amplified by O(log n) due to enhancement of the used SuI’s by Balanced IDs. In all
the components, every element belongs to O(d� log n) queries, by Theorems 3 and 4, in the final
sequence it occurs in O(d� log3 n) queries.

Combining Lemma 1 with Lemma 2 gives Theorem 1. Note that in both lemmas the decoding
algorithm proceeds query-by-query, each time spending polylogarithmic time on each of them;
additionally, for each decoded element, an update of the feedback of next queries needs to be done,
which takes time proportional to the number of occurrences of the discovered element in the queries.
Thus, it is asymptotically upper bounded by the length of the sequence plus k times the upper bound
on the number of occurrences of an element in the queries (polylogarithmic).

5 Lower Bound

Proof of Theorem 2. We will first show the min{n/↵, k2/↵2} component. Assume that a sequence
of queries Q1, Q2, . . . , Qt of length t solves Group Testing. We want to show the lower bound that
holds for any feedback function capped at ↵ hence we assume that the feedback function F returns
the whole set (i.e., the identifiers of all the elements). Recall that F works only for sets with at most
↵ elements. We begin by proving the following:
Claim A: For any set K, with |K|  k and any x 2 K, there must exist ⌧ 2 {1, 2, . . . , t}, such that
x 2 Q⌧ and |K \Q⌧ |  ↵+ 1.

The proof is by contradiction. Assume that such a set K⇤ and element x⇤ exist for which there is
no such query. Consider feedback vectors for sets K

⇤ and K
⇤ \ {x⇤}. For any query that does

not contain x
⇤, the feedback is clearly identical. For any query Q⌧ , such that x⇤ 2 Q⌧ , we have

|Q⌧ \K⇤| � ↵+2 and |Q⌧ \(K⇤ \{x⇤})| � ↵+1 and sets K⇤ and K
⇤ \{x⇤} are indistinguishable

under any feedback capped at ↵ hence the sequence of queries does not solve the problem. This
completes the proof of Claim A. ⌅
Take all queries that have at most ↵+ 1 elements and all elements that belong to such queries. We
have: Ns =

S
⌧2{1,2,...,t}|Q⌧ |↵+1 Q⌧ and remaining elements Nl = N \Ns. Consider two cases:

Case 1: |Ns| � n/2.

Observe that: t � |{⌧ 2 {1, 2, . . . , t} : |Q⌧ |  ↵+ 1}| � Ns
↵+1 �

n
2(↵+1) .

Case 2: |Nl| � n/2.

In this case, we take an arbitrary subset K1 of k/2 elements from Nl. For every element x 2 K1, we
consider a set of queries Q(x) = {Q⌧ 2 {Q1, Q2, . . . , Qt} : x 2 Q⌧ , |Q⌧ \K1|  ↵+1}. We show:

Claim B: For every x 2 K1, we have |Q(x)| � k
2(↵+2) . The proof is by contradiction. Assume

that for some x
⇤ 2 K1 we have |Q(x⇤)| < k

2(↵+2) . Then, for every query Q 2 Q(x⇤), we take

9



↵ + 2 � |Q \K1| elements from Q \ K1. Such elements exist since |Q| � ↵ + 2. Choose such
elements for each query in Q(x⇤) and gather them in set K2. Note that since |Q(x⇤)| < k

2(↵+2) ,
then |K2|  k/2. Now observe that set K1 [K2 and element x⇤ violate Claim A. The obtained
contradiction completes the proof of Claim B. ⌅
Now observe that each query belongs to at most ↵ + 1 sets Q(x) for different values of x 2 K1.
Thus: t �

P
x2K1

|Q(x)|
↵+1 � k2

4(↵+1)(↵+2) . To complete the proof observe that any algorithm must fall
either into Case 1 or Case 2, hence any algorithm needs to use ⌦

�
min{n/↵, k2/↵2}

�
queries.

To see that any algorithm in F↵ feedback model at least k log n
k

log↵ queries, observe that the feedback
vector must be unique for each set K with at most k elements. Hence we need at least

�n
k

�
different

feedback vectors for different sets. Feedback has at most ↵ values hence we get ↵t �
�n
k

�
and

t 2 ⌦(k
log n

k
log↵ ). This completes the proof of Theorem 2. ⌅

6 Extensions, Applications and Open Directions

Observations. The size of response to a capped quantitative query is not much bigger than beeping –
log↵ bits vs one bit of beeping – whereas the number of queries is smaller by a factor of ↵2 compared
to beeping. Thus, even after normalization of the query complexity by the inverse of the size of the
feedback, in the ↵-capped model it is nearly ↵

2 times better than the classic beeping, up to ↵ =
p
k.

Although optimizing the construction time is not our main focus, it is actually small. E.g., for
↵ =
p
k, the construction of all queries takes time eO(n

p
k). Most of the complexity comes from the

construction of SSuI (Alg 4) – for each element of the universe, we consider eO(
p
k) zeros of some

polynomial. We use a logarithmic number of SuIs in the construction, but each takes only eO(n) time
(Alg 3): in SuI for every element we list its neighborhood in disperser in polylogarithmic time [57]
and take the Cartesian product with a polylogarithmic Reed-Solomon type of codeword.

Fault-tolerance. Algorithms 1 and 2 are fault-tolerant with respect to f  c · k
↵ adversarially

jammed results, for some sufficiently small constant c > 0 – here by a jammed result we understand
receiving a null as a result of a query. It also tolerates stochastic failures, where a result is jammed
with probability p  c. Indeed, in adversarial failures we observe that, by dispersion, c · k

↵ could be
made negligible (by right selection of constant c) with respect to the number of selected elements in
SuI, and it is also smaller than the number of single occurrences (i.e., without interference from other
k � 1 elements) of an element in SSuI. Thus the analysis of the algorithms hold (the original analysis
have margins to accommodate those additional negligible jamming, as they were done with only
asymptotic upper bounds). The tolerance of stochastic failures follows from the fact that a random
p-fraction of results of queries coming from SuI’s and SSuI are again negligible from perspective of
the fraction of correctly encoded elements and can be accommodated by our asymptotic analysis.

Theorem 6. Algorithms 1 and 2 tolerate f  c · k
↵ adversarial jammings and stochastic jammings

with probability p  c, for some sufficiently small constant c > 0.

Other applications. Applications to efficient GT and dynamic maintenance of multi-sets, graphs,
as well as to Private Parallel Information Retrieval and coding, are detailed in Appendix B.

Open directions. Considering only polynomially-constructible query systems leaves some interest-
ing open directions. One such direction is whether optimal-length query sequence can be constructed
in polynomial time or perhaps it is possible to show some reduction that constructing a nearly-shortest
query sequence is computationally hard (even if we know that it exists). Shrinking polylogarithmic
gaps between lower and (existential) upper bounds and improving constants is another challenging
direction, as well as considering other interesting classes of GT models with an ↵-capped results, e.g.,
parity. We also believe that with some adjustment, capped GT codes could be applied to efficiently
solve many open problems in online streaming, communication and graph learning fields.

Acknowledgments and Disclosure of Funding

Dominik Pająk was supported by the National Science Centre, Poland (NCN), grant UMO-
2019/33/B/ST6/02988. Dariusz R. Kowalski was supported, in part, by the National Science Center,
Poland (NCN), grant UMO-2017/25/B/ST6/02010.

10



References

[1] D. Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

[2] N. Augenblick, J. T. Kolstad, Z. Obermeyer, and A. Wang. Group testing in a pandemic: The
role of frequent testing, correlated risk, and machine learning. Technical report, National Bureau
of Economic Research, 2020.

[3] W. H. Bay, E. Price, and J. Scarlett. Optimal non-adaptive probabilistic group testing in general
sparsity regimes. arXiv preprint arXiv:2006.01325, 2020.

[4] N. H. Bshouty. Optimal algorithms for the coin weighing problem with a spring scale. In COLT
2009 - The 22nd Conference on Learning Theory, Montreal, Quebec, Canada, June 18-21, 2009,
2009.

[5] C.-C. Cao, C. Li, and X. Sun. Quantitative group testing-based overlapping pool sequencing to
identify rare variant carriers. BMC bioinformatics, 15(1):1–14, 2014.

[6] J. Capetanakis. Generalized tdma: The multi-accessing tree protocol. IEEE Transactions on
Communications, 27(10):1476–1484, 1979.

[7] J. Capetanakis. Tree algorithms for packet broadcast channels. IEEE transactions on information
theory, 25(5):505–515, 1979.

[8] K. Censor-Hillel, B. Haeupler, N. A. Lynch, and M. Médard. Bounded-contention coding for
the additive network model. Distributed Computing, 28(5):297–308, 2015.

[9] M. Cheraghchi and J. Ribeiro. Simple codes and sparse recovery with fast decoding. In 2019
IEEE International Symposium on Information Theory (ISIT), pages 156–160. IEEE, 2019.

[10] B. S. Chlebus and D. R. Kowalski. Almost optimal explicit selectors. In M. Liskiewicz and
R. Reischuk, editors, Fundamentals of Computation Theory, 15th International Symposium,
FCT 2005, Lübeck, Germany, August 17-20, 2005, Proceedings, volume 3623 of Lecture Notes
in Computer Science, pages 270–280. Springer, 2005.

[11] S.-S. Choi and J. H. Kim. Optimal query complexity bounds for finding graphs. Artificial
Intelligence, 174(9-10):551–569, 2010.

[12] A. E. F. Clementi, A. Monti, and R. Silvestri. Selective families, superimposed codes, and
broadcasting on unknown radio networks. In Proceedings of the Twelfth Annual Symposium on
Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 709–718. ACM/SIAM,
2001.

[13] R. Clifford, K. Efremenko, E. Porat, and A. Rothschild. Pattern matching with don’t cares and
few errors. Journal of Computer and System Sciences, 76(2):115–124, 2010.

[14] A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, and P. Loick. Optimal group testing. In J. D.
Abernethy and S. Agarwal, editors, Conference on Learning Theory, COLT 2020, 9-12 July
2020, Virtual Event [Graz, Austria], volume 125 of Proceedings of Machine Learning Research,
pages 1374–1388. PMLR, 2020.

[15] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a
networked world: Distributed tracking of approximate quantiles. In Proceedings of the 2005
ACM SIGMOD international conference on Management of data, pages 25–36, 2005.

[16] G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams. Proceedings of
the VLDB Endowment, 1(2):1530–1541, 2008.

[17] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hierarchical heavy hitters
in data streams. In Proceedings 2003 VLDB Conference, pages 464–475. Elsevier, 2003.

[18] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most frequent items
dynamically. ACM Transactions on Database Systems (TODS), 30(1):249–278, 2005.

11



[19] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for compressed sensing. In
International colloquium on structural information and communication complexity, pages
280–294. Springer, 2006.

[20] P. Damaschke. Threshold group testing. Electronic Notes in Discrete Mathematics, 21:265 –
271, 2005. General Theory of Information Transfer and Combinatorics.

[21] A. De Bonis, L. Gasieniec, and U. Vaccaro. Generalized framework for selectors with applica-
tions in optimal group testing. In Automata, Languages and Programming, 30th International
Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings,
volume 2719 of Lecture Notes in Computer Science, pages 81–96. Springer, 2003.

[22] G. De Marco, T. Jurdzinski, and D. R. Kowalski. Optimal channel utilization with limited
feedback. J. Comput. Syst. Sci., 119:21–33, 2021.

[23] G. De Marco, T. Jurdzinski, D. R. Kowalski, M. Rózanski, and G. Stachowiak. Subquadratic
non-adaptive threshold group testing. J. Comput. Syst. Sci., 111:42–56, 2020.

[24] G. De Marco and D. R. Kowalski. Searching for a subset of counterfeit coins: Randomization
vs determinism and adaptiveness vs non-adaptiveness. Random Structures & Algorithms,
42(1):97–109, 2013.

[25] A. Djackov. On a search model of false coins. In Topics in Information Theory (Colloquia
Mathematica Societatis Janos Bolyai 16). Budapest, Hungary: Hungarian Acad. Sci, pages
163–170, 1975.

[26] R. Dorfman. The detection of defective members of large populations. The Annals of Mathe-
matical Statistics, 14(4):436–440, 1943.

[27] D. Du, F. K. Hwang, and F. Hwang. Combinatorial group testing and its applications, volume 12.
World Scientific, 2000.

[28] J. Engels, B. Coleman, and A. Shrivastava. Practical near neighbor search via group testing. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 9950–9962. Curran Associates, Inc.,
2021.

[29] U. Feige and A. Lellouche. Quantitative group testing and the rank of random matrices. CoRR,
abs/2006.09074, 2020.

[30] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Locating data sources in large distributed
systems. In J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and
A. Heuer, editors, Proceedings of 29th International Conference on Very Large Data Bases,
VLDB 2003, Berlin, Germany, September 9-12, 2003, pages 874–885. Morgan Kaufmann, 2003.

[31] R. Gallager. A perspective on multiaccess channels. IEEE Transactions on information Theory,
31(2):124–142, 1985.

[32] O. Gebhard, M. Hahn-Klimroth, D. Kaaser, and P. Loick. Quantitative group testing in the
sublinear regime. CoRR, abs/1905.01458, 2019.

[33] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate
histograms. ACM Transactions on Database Systems (TODS), 27(3):261–298, 2002.

[34] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. Fast, small-
space algorithms for approximate histogram maintenance. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing, pages 389–398, 2002.

[35] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. How to summarize the universe:
Dynamic maintenance of quantiles. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases, pages 454–465. Elsevier, 2002.

12



[36] S. Gollakota and D. Katabi. Zigzag decoding: combating hidden terminals in wireless networks.
In V. Bahl, D. Wetherall, S. Savage, and I. Stoica, editors, Proceedings of the ACM SIGCOMM
2008 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, Seattle, WA, USA, August 17-22, 2008, pages 159–170. ACM, 2008.

[37] V. Grebinski and G. Kucherov. Optimal reconstruction of graphs under the additive model.
Algorithmica, 28(1):104–124, 2000.

[38] A. G. Greenberg, P. Flajolet, and R. E. Ladner. Estimating the multiplicities of conflicts to speed
their resolution in multiple access channels. Journal of the ACM (JACM), 34(2):289–325, 1987.

[39] A. G. Greenberg and S. Winograd. A lower bound on the time needed in the worst case to
resolve conflicts deterministically in multiple access channels. Journal of the ACM (JACM),
32(3):589–596, 1985.

[40] M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. ACM
SIGMOD Record, 30(2):58–66, 2001.

[41] E. Hradovich, M. Klonowski, and D. R. Kowalski. Contention resolution on a restrained channel.
In 26th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2020,
Hong Kong, December 2-4, 2020, pages 89–98. IEEE, 2020.

[42] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in relational
databases. VLDB J., 13(3):207–221, 2004.

[43] P. Indyk. Deterministic superimposed coding with applications to pattern matching. In 38th
Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 127–136. IEEE Computer Society, 1997.

[44] P. Indyk. Explicit constructions of selectors and related combinatorial structures, with applica-
tions. In D. Eppstein, editor, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 697–704. ACM/SIAM,
2002.

[45] P. Indyk, H. Q. Ngo, and A. Rudra. Efficiently decodable non-adaptive group testing. In
M. Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1126–1142. SIAM,
2010.

[46] W. Kautz and R. Singleton. Nonrandom binary superimposed codes. IEEE Transactions on
Information Theory, 10(4):363–377, 1964.

[47] M. Klonowski, D. R. Kowalski, and D. Pajak. Generalized framework for group testing: Queries,
feedbacks and adversaries. Theor. Comput. Sci., 919:18–35, 2022.

[48] J. Komlós and A. G. Greenberg. An asymptotically fast nonadaptive algorithm for conflict
resolution in multiple-access channels. IEEE Trans. Inf. Theory, 31(2):302–306, 1985.

[49] D. R. Kowalski and D. Pajak. Light agents searching for hot information. In L. D. Raedt, editor,
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI
2022, Vienna, Austria, 23-29 July 2022, pages 363–369. ijcai.org, 2022.

[50] K. Lee, K. Chandrasekher, R. Pedarsani, and K. Ramchandran. Saffron: A fast, efficient, and
robust framework for group testing based on sparse-graph codes. IEEE Transactions on Signal
Processing, 67(17):4649–4664, 2019.

[51] W. Liang and J. Zou. Neural group testing to accelerate deep learning. In 2021 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages 958–963. IEEE, 2021.

[52] S. Mallapaty et al. The mathematical strategy that could transform coronavirus testing. Nature,
583(7817):504–505, 2020.

[53] J. L. Massey. Collision-resolution algorithms and random-access communications. In Multi-user
communication systems, pages 73–137. Springer, 1981.

13



[54] E. Porat and A. Rothschild. Explicit nonadaptive combinatorial group testing schemes. IEEE
Trans. Inf. Theory, 57(12):7982–7989, 2011.

[55] A. Sebő. On two random search problems. Journal of Statistical Planning and Inference,
11(1):23–31, 1985.

[56] N. Sinnott-Armstrong, D. L. Klein, and B. Hickey. Evaluation of group testing for sars-cov-2
rna. MedRxiv, 2020.

[57] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less condensers, unbalanced expanders, and
extractors. In J. S. Vitter, P. G. Spirakis, and M. Yannakakis, editors, Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 143–152. ACM, 2001.

[58] S. Ubaru, S. Dash, A. Mazumdar, and O. Gunluk. Multilabel classification by hierarchical
partitioning and data-dependent grouping. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
22542–22553. Curran Associates, Inc., 2020.

[59] J. X. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or false negative: Mining frequent
itemsets from high speed transactional data streams. In VLDB, volume 4, pages 204–215, 2004.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Our abstract and introduction states the theoretical
results that are later proven in our paper.

(b) Did you describe the limitations of your work? [Yes] Our assumed model (including
the result function) is described in Section 3.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our result
is theoretical hence does not have any direct negative impact. Also none of the existing
solutions to the Group Testing (which is a field with almost 80 years of history) were
harmful to the society.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The assump-

tions are given in a statement of each theoretical result.
(b) Did you include complete proofs of all theoretical results? [Yes] Some combinatorial

constructions (used in proofs of Theorems 3 4 5), are included Appendix C.
3. If you ran experiments...

14



(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15


	Introduction
	Our Results (see also Table 1)

	Previous and Related Work (see also Tables 1 and 2)
	The Model and the Problem
	Polynomial-time Constructions and Decoding
	Combinatorial Tools
	Construction of Queries, Decoding and Analysis (Proof of Theorem 1)

	Lower Bound
	Extensions, Applications and Open Directions
	Other Related Work
	Additional Extensions and Applications of Our Results
	Constructions of Combinatorial Tools
	Polynomial-time Construction of Selectors-under-Interference
	Polynomial-time Construction of Strong-Selectors-under-Interference


