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ABSTRACT

The ability to combine linguistic guidance from others with direct experience is
central to human development, enabling safe and rapid learning in new environ-
ments. How do people integrate these two sources of knowledge, and how might
AI systems? We present a computational framework that models human social
learning as joint probabilistic inference over structured, executable world models
given sensorimotor and linguistic data. We make this possible by turning a pre-
trained language model into a probabilistic model of how humans share advice
conditioned on their beliefs, allowing our agents both to generate advice for others
and to interpret linguistic input as evidence during Bayesian inference. Using
behavioral experiments and simulations across 10 video games, we show how
linguistic guidance can shape exploration and accelerate learning by reducing risky
interactions and speeding up key discoveries in both humans and models. We
further explore how knowledge can accumulate across generations through iterated
learning experiments and demonstrate successful knowledge transfer between hu-
mans and models — revealing how structured, language-compatible representations
might facilitate human-machine collaborative learning.

Code: github.com/ccolas/language_and_experience
Demo: cedriccolas.com/demos/language_and_experience

1 INTRODUCTION

Imagine learning to forage mushrooms in autumn woods. Each outing provides direct experience
of promising slopes and soil conditions. But an experienced forager’s advice can transform your
exploration in two crucial ways: “Never touch the red ones with white spots; they’re deadly” helps
you avoid fatal mistakes, while “Look for chanterelles near oak trees after warm rains” turns random
wandering into focused search. This ability to integrate linguistic guidance with direct experience
is fundamental to human intelligence, enabling not only safer and more efficient learning, but also
the accumulation of knowledge across generations (Tomasello, 2009; Boyd et al., 2011). Yet, we
still lack a general computational account of how humans combine these two modes of knowledge
acquisition to inform exploration and decision-making in complex tasks.

Current computational models capture only fragments of this dual learning capability. Reinforcement
learning (RL) agents, for example, can master complex tasks but require extensive trial-and-error —
millions of interaction steps — before achieving proficiency (Sutton and Barto, 2018; Mnih et al.,
2015). Theory-based RL mitigates this limitation by combining planning with Bayesian inference
over structured world models, achieving human-like sample efficiency, yet remains incapable of
social learning (Tsividis et al., 2021; Griffiths et al., 2010; Lake et al., 2017). Attempts to bridge
this gap with language-conditioned RL integrate linguistic input into the learning process but rely
on massive amounts of paired experience and language, making real-world application impractical
(Zhong et al., 2020; Luketina et al., 2019). While large language models (LLMs) excel at processing
linguistic guidance flexibly (Brown et al., 2020), they struggle with interactive planning and embodied
learning (Valmeekam et al., 2023; Paglieri et al., 2024). Bayesian models of social cognition provide
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Figure 1: Overview of the model and experiments a) Experimental design: players (participants or
models) are given N=10 lives to learn to play a new video game, either from experience only (Player 1)
or from experience and advice written by a previous player (Player 2). b) Example learning trajectory:
The model maintains beliefs about possible game rules and objectives (programs at bottom), and
constantly refines them based on an initial linguistic guidance and new incoming experience.

a promising step towards integrating observed behaviors and language to infer goals (Shafto et al.,
2014; Jara-Ettinger et al., 2016), yet they typically operate in simple, non-interactive tasks with
predefined hypothesis spaces (Ying et al., 2023; Zhi-Xuan et al., 2024).1

Our primary aim is to contribute to cognitive science by offering a computational account of how
humans integrate language and experience. We propose a Bayesian framework that treats linguistic
guidance and direct experience as complementary evidence sources learners can leverage to infer
executable, program-like world models. To make this possible, we introduce three key contributions:

• LMs as speaker models: We leverage LMs to approximate the probability that a human with
specific world beliefs would produce particular linguistic advice, enabling our model to interpret
and generate human-interpretable guidance.

• Inference from linguistic evidence: This speaker model is used to evaluate the plausibility
of received advice under different candidate world models, allowing linguistic input to shape
Bayesian inference alongside experiential learning.

• LM-accelerated inference: We use LMs to transform advice into targeted proposal distributions,
guiding Bayesian updates towards the most promising regions of the hypothesis space.

These mechanisms allow our computational model to learn efficiently from naturalistic linguistic
input, update beliefs in real-time, and share discoveries with others — forming the basis for more
structured and communicative learning systems.

We validate our framework through human experiments and computational simulations, showing
that linguistic guidance accelerates learning, shapes exploration strategies, and supports knowledge
transfer across generations as well as between humans and models. These results reveal how language
drives cultural transmission and illustrate how structured, language-compatible representations can
facilitate human–AI collaborative learning.

2 VIDEO GAMES AS LEARNING ENVIRONMENTS

Video games provide an ideal experimental paradigm for studying social and individual learning
(Allen et al., 2024): they offer rich causal environments for systematic exploration, create natural
pressure to learn efficiently through costs like lost lives, and enable the study of how complex
mechanics can be communicated through language. Drawing inspiration from earlier work modeling
human causal learning (Tsividis et al., 2021; Tomov et al., 2023), and cultural knowledge transmission
(Tessler et al., 2021), we reuse a suite of 10 games defined in the Video Game Description Language
(VGDL) (Schaul, 2013).

1See more detailed related work in Appendix Section A.
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Figure 2: Game example (beesAndBirds).
Players must discover rules and objectives on their
own, sometimes helped with advice from others,
to solve 4 game levels (right: levels 1 and 2/4).

VGDL lets us define games by specifying object
types, collision effects, rewards, and win/loss
conditions (e.g. yellow objects are deadly, vic-
tory requires eliminating green objects; see Fig-
ure 2 and DSL description in Appendix Sec-
tion C). This formal representation enables pre-
cise experimental control and provides a struc-
tured language for our model to represent and
update hypotheses about game dynamics. Play-
ers, however, encounter the games as grids of
colored squares, having to discover game dy-
namics and objectives through exploration. Our
games were designed to test diverse learning
capabilities: some require spatial reasoning to
navigate hazards (pushBoulders) or use telepor-
tation mechanics (portals); others demand quick tactical decisions like shooting threats (aliens) or
defending resources (plaqueAttack). Most challenging are games requiring systematic experimenta-
tion to discover novel objects through object combinations (relational). Play them here.

3 COMPUTATIONAL MODEL OF INTEGRATED LEARNING

We frame game learning as a problem of sequential decision-making under uncertainty (Kaelbling
et al., 1998). At each time step t, agents select actions at to maximize expected cumulative rewards:

at = argmax
a

Esi+1∼P (si+1 | si,a)

[ ∞∑
i=t

γi−tri

]
,

where si and ri are the agent’s state and reward at time i, and γ is a discount factor. The main challenge
lies in the agent’s uncertainty about the transition function P (si+1 | si, a), which is governed by
unknown game dynamics.

Our approach extends the theory-based RL framework by proposing to infer causal world models
jointly from experience and linguistic guidance to support goal-directed planning and strategic
exploration (Tsividis et al., 2021). The model alternates between three phases: 1) it constructs and
infers a posterior over probabilistic world models given both experience and linguistic guidance, 2) it
plans action sequences by identifying and pursuing high-value interactions that balance exploration
and exploitation, and (3) it executes these actions in the game. The following sections detail each
component of this learning loop.

3.1 INFERENCE OF STRUCTURED, CAUSAL WORLD MODELS

Our agent models its environment with a distribution over structured world models, each represented
as a probabilistic program specifying game rules and objectives. These beliefs are continually
updated as the agent gathers new evidence from gameplay experience E and linguistic guidance L.
We formalize these beliefs update as a Bayesian inference over possible world theories T :

P (T |E, L) ∝ P (E |T )× P (L |T )× P (T ),

where P (T ) encodes prior beliefs over plausible world models, while P (E |T ) and P (L |T ) measure
the consistency of theory T with experiential and linguistic evidence, respectively. As illustrated
in Figure 1b, the agent continuously refines its beliefs, incrementally integrating new data from
experience and reinterpreting language to narrow down its hypothesis space. In the following
subsections, we detail: 1) the search space of possible world models, 2) the likelihood functions that
quantify the fit of experience and linguistic guidance, and 3) the inference algorithm that efficiently
approximates the posterior distribution over possible worlds.

A space of possible worlds. World models are programs specifying the transition function and
reward structure, while inference consists of updating a posterior distribution over these executable
programs. Each candidate world model, or theory T , is represented as a VGDL program that specifies
object types for each object color (e.g. missile, shooting avatar), interaction effects between objects
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(e.g. collision with yellow kills avatar), reward functions (e.g. +1 when avatar kills green), and
win/loss conditions (e.g. kill all green), see example in Figure 2 and complete list of VGDL primitives
in Appendix Section C. We define a simplicity-biased prior P (T ) over the search space, favoring
theories with fewer rules: 1) object types are uniformly distributed, 2) any object pair has a p = 0.25
chance of interacting, with interaction types sampled uniformly, and 3) each object’s death has a
p = 0.1 chance of contributing to win or loss conditions. Sampling a theory from this prior involves
generating object types, object pair interactions, and win/loss conditions accordingly. These theories
are executable: they can be compiled into playable games that lets the agent simulate trajectories
internally. Play them yourself on our demo website.

Likelihood from experience. To estimate the likelihood P (E |T ), we first decompose the agent’s
experience E — a sequence of symbolic state transitions — into a sequence of discrete events ei
(object movements, appearance or disappearance, rewards, and win/loss events). We assume that these
local events are conditionally independent given the theory T , which lets us factorize the likelihood
as P (E |T ) =

∏n
i=1 P (ei |T ). Because candidate world models are executable, we can estimate

P (ei |T ) through simulations. Specifically, we replay the agent’s actions under T by initializing
the game engine to the agent’s previous state and executing its chosen action. We then track the
occurrence of each observed event ei across 20 independent simulations, using their frequencies as
empirical estimates of P (ei |T ).
Likelihood from language. Linguistic advice received from other agents serves as evidence for
evaluating candidate theories T , modeled through Bayesian Theory-of-Mind (Baker et al., 2011).
We formalize P (L |T ) as the probability that a speaker, believing T to be true, would produce
the observed message L. To approximate this, we use a language model (LLaMA-3.1-70B) as a
probabilistic speaker model. Given a description of T , the LM is prompted to generate advice for a
future player, see prompt in Appendix J. The likelihood is then estimated as the LM’s probability
of producing the exact message L: P (L |T ) ≈ PLM(L | prompt(T )). This approximation measures
how well T explains the speaker’s linguistic behavior: e.g. if L contains the advice “avoid yellow at
all cost!”, then P (L |T ) will be higher if T contains the rule “yellow kills avatar,” than if it does not.

Although PLM(L | prompt(T )) is not an accurate model of human speakers, our inference procedure
relies only on relative likelihoods across theories. What matters for the posterior is the pattern of
likelihood differences between candidate theories, not the absolute scale. This use of approximate
generative models is common in Bayesian cognitive modeling, where the goal is to capture how
linguistic evidence shifts beliefs across hypotheses rather than to recover exact speaker probabilities.

Inference algorithm. The space of possible theories is vast — exceeding 1020 configurations for
games with just five objects — making exact Bayesian inference intractable. To approximate the
posterior distribution P (T |E, L), we use a particle filter with Metropolis rejuvenations (Metropolis
et al., 1953; Chopin, 2002). We maintain a population of M = 20 candidate theories and iteratively
refine them by: (1) resampling theories proportional to their posterior probability, and (2) proposing
local modifications guided by observed events and linguistic guidance (see details in Appendix
Section E). These modify exactly one rule at a time: an object’s type, the interaction between
a pair of objects, a win condition, a loss condition, or a reward function. They are accepted in
proportion to the ratio of posterior probabilities between modified and original theories: paccept =
min(1, P (T ′ |E, L)/P (T |E, L)) (Metropolis et al., 1953). This process efficiently approximates
the posterior distribution P (T |E,L) over candidate theories, with each particle Ti assigned a weight
wi proportional to its posterior probability given experience and linguistic guidance. The resulting
distribution represents the agent’s belief over possible game dynamics and objectives. The agent
executes one inference step (1 resampling step + 5 rejuvenation steps) every 20 environment steps,
and 20 inference steps every time a new kind of object appears in the scene, or when the agent dies;
see full pseudo-code of the inference algorithm in Appendix Section D.

Language-guided proposals. We use the same LM to bias the proposal of game rules — e.g. after
receiving the message “yellow kills you,” the LM may propose rules capturing this lethal interaction:

P (rnew | rold, E, L, T ) ∝
(
(P0(rnew |E, T ) + PLM(rnew | prompt(L, T ))

)
/2

where rnew is a candidate rule (e.g. “yellow kills avatar”), rold is the current rule, P0 is the base
proposal distribution, and PLM is the probability the language model assigns to that rule given the
message. This is implemented by prompting the LM with the received message L and instructing
it to answer multiple-choice questions about specific VGDL rules: e.g. does the yellow object: 1)
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kills the avatar, 2) steps back against the avatar, etc.; see detailed prompt in Appendix Section J. This
process biases inference towards theories containing rules most compatible with received advice,
resulting in faster convergence.

3.2 GOAL-DIRECTED PLANNING AND STRATEGIC EXPLORATION

To maximize its expected long-term utility, the agent must balance exploration — gathering informa-
tion to refine its world model — and exploitation — leveraging its current understanding to achieve
game objectives. Planning is guided by the maximum a posteriori (MAP) theory TMAP, inferred
during Bayesian updates: the agent’s best estimate of game rules and objectives. Based on TMAP
simulations, the agent selects high-level goals, and plans action sequences to achieve them.

Goal sampling. Based on TMAP, the agent defines a space of high-level goals as object-object
interactions that it can cause in the environment: collisions between the agent, something it can
push or shoot, and any other object. Each goal is assigned two values: 1) an exploitation value
reflecting its contribution to game objectives (e.g. higher if it is thought to trigger a reward or a win),
and 2) an exploration value representing its potential to reduce model uncertainty, measured as the
disagreement about what would happen across the M = 20 candidate world models. Subgoals are
sampled in proportion to their combined value, balancing both learning and game progress.

Action planning. To achieve these goals, the agent optimizes 10-step action sequences using TMAP
for simulation. Initial action plans are refined through a simple genetic algorithm to maximize both
game rewards and progress toward goals. To prevent catastrophic errors, the agent performs ten
3-step lookaheads to detect possible deaths or major deviations from the expected reward, triggering
replanning when necessary. More details about planning can be found in Appendix Section F.

3.3 GENERATING LINGUISTIC GUIDANCE FOR OTHERS

The agent generates linguistic advice for future players by sampling from the same speaker model
used to evaluate language likelihood during inference — effectively translating its MAP theory TMAP
into natural language Lgenerated ∼ PLM(L, |, prompt(TMAP)). This provides optimal speaker modeling
when message emitters are computational agents and approximate modeling when they are human.
By using the LM both to interpret linguistic guidance and to generate it, the agent captures key
aspects of Bayesian Theory of Mind — modeling how humans communicate their beliefs and how
they interpret the beliefs of others through language.

3.4 BASELINE MODELS

We compare our approach to three baselines: 1) Oracle: a model that plans to solve the game
using ground-truth game rules, 2) Deep RL: a Double Deep Q-Network agent implementing pure
trial-and-error learning without structured representations (Mnih et al., 2015; Van Hasselt et al.,
2016), and 3) pure LM: an LM agent (LLaMA-3.1-70B) that leverages state-of-the-art techniques to
scaffold long-term decision making: ReAct approach (Yao et al., 2022), use of a scratch pad (Nye
et al., 2021) and chain-of-thought reasoning towards beliefs updating and plan formation (Wei et al.,
2022); see detailed prompt in Appendix Section J). These baselines test the importance of structured
representations and goal-directed planning. Note that we do not compare to language-conditioned RL
baselines (Luketina et al., 2019; Colas et al., 2022). These methods rely on thousands of episodes
of paired (state, language) supervision to learn how to map linguistic inputs to action policies, and
they do not generalize to new, idiosyncratic messages seen only once. In our design, each player
receives a single novel message per game — mirroring human one-shot social learning — so language-
conditioned RL would receive no opportunity to learn from language and would behave identically to
pure deep RL, which we already include as a baseline.

4 EXPERIMENTAL PARADIGM

To investigate how humans and computational models integrate experiential and linguistic evidence
during learning, we conducted a series of IRB-approved experiments comparing three learning
conditions (see Figure 1a):
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1. Experience: Players learn solely through direct interaction with the game.
2. Experience + human message: Players receive additional advice from previous human players.
3. Experience + model message: Players receive additional advice from previous model players.

This design allows us to examine both the effectiveness of linguistic guidance and potential asymme-
tries in human-model knowledge transfer. In each condition, players had 15 lives to solve four levels
of each game, advancing only after completing the current level.

Participants. We recruited 122 participants through Prolific to play 5 randomly-assigned games. To
ensure task engagement while maintaining a representative sample, we excluded participants who
failed to complete at least one level in ≥ 3 games (final N=120). Participants were randomly assigned
to one of the 3 conditions (N=40 each). In social conditions, each participant received advice from
a randomly-selected previous player (either human or model) who had completed the game in the
experience-only condition (1-to-1 mapping).

Procedure. All participants first completed a brief tutorial game to familiarize themselves with the
interface and basic game mechanics. In social conditions, participants read advice from previous
players before starting each new game, and during gameplay. After completing each game (either by
winning or depleting lives), participants wrote advice “to help future players who have not yet played
the game.” This prompt encouraged participants to distill their learned knowledge into linguistic
guidance, see full instructions in Appendix Section G.

Analysis approach. To evaluate learning efficiency, we tracked both the number of lives required
to complete each level and the total proportion of levels completed. We use a normalized area-
under-curve (nAUC) metric (∈ [0, 1]) to integrate both proficiency and learning efficiency. To
analyze message effectiveness, we manually coded advice content along four dimensions: the fraction
of useful information about game dynamics, about loss conditions, about win conditions, and the
presence of incorrect information. This coding scheme lets us examine how specific types of linguistic
guidance shape exploration and learning outcomes. We will report differences between conditions as
∆(nAUC).

Computational simulations. We conducted 20 simulation runs per condition, matching the human
sample size to enable direct comparison. The model received the same information as human
participants: in social conditions, it processed the same messages (human- or model-generated) that
humans received, while in the experience-only condition, it learned purely through interaction. We
also ran iterated learning experiments where a sequence of 10 agents, each given two lives, played
the game and passed a message to the next agent. This design tests whether partial knowledge can
accumulate incrementally across generations, mirroring human cultural learning (Tessler et al., 2021).

5 RESULTS

We first examine how humans and models learn novel games from pure experience, before analyzing
how linguistic guidance shapes this process. We then look at human–model transfer, before exploring
how our model can accumulate partial knowledge across generations. Our results reveal both striking
similarities and systematic differences in learning strategies across humans and models.

5.1 LEARNING FROM EXPERIENCE
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deep RL
pure LLM
oracle model

Figure 3: Learning from experience.
Median across games (N=10, IQ range).

How efficiently can humans and models learn novel game
dynamics through pure experience? Both demonstrated
remarkable sample efficiency, with median participants
solving 9 of 10 games and our model solving all 10 games
within a 10-life budget (Figure 3). However, systematic
differences emerged in games requiring specific cognitive
capabilities (see per-game plots in Appendix Figure 7).
In relational, which demands systematic exploration of
object combinations, humans showed a bimodal pattern:
25% achieved model-like efficiency by systematically test-
ing interactions, while 40% failed to solve even two out of
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four levels. This split suggests that while humans can perform systematic experimentation, not every-
one defaults to it — unlike our model which explicitly reasons about information gain. Conversely,
in avoidGeorge, which requires rapid planning to protect allies, models consistently outperformed
humans (median levels: 4 vs 0), likely due to their capacity for accurate short-term planning.

The importance of structured reasoning becomes clear when comparing against baselines. Pure
deep RL (double DQN) failed to solve any level within 10 lives, while pure LM agents never solved
more than one level per game, often solving none (7/10 games). The stark difference between these
baselines and both human and model performance underscores the value of structured theories of
game dynamics in supporting efficient exploration and decision-making. Knowing the model of the
world (oracle model) lets agents solve most games within their first life (see Figure 3 and Appendix
Figure 7).

5.2 LEARNING FROM EXPERIENCE AND HUMAN LANGUAGE

Having established baseline learning capabilities, we next examine how linguistic guidance from pre-
vious human players shapes exploration and learning outcomes. Our results demonstrate substantial
benefits from social learning while revealing key patterns in effective knowledge transmission.

Benefits of linguistic guidance. How does linguistic guidance shape learning? Both humans and
our model showed significantly faster learning when provided with human-written advice, reducing
median attempts needed by 1.75 for humans (4→2.25) and 1.25 for models (2.5→1.25) (see Figure 4).
To quantify these benefits in terms of learning speed, we computed a normalized area under the
learning curve (nAUC). A fixed-effect model controlling for game difficulty revealed significant
improvements from linguistic guidance for both humans (∆(nAUC) = 0.12, p = 2.2 × 10−4) and
models (∆(nAUC) = 0.04, p = 3.3 × 10−2). These benefits were most pronounced in games with
opaque mechanics like relational, or multiple hazards like portals and jaws, where guidance could
directly communicate critical interactions. Benefits were smallest in games requiring primarily motor
skills like aliens, missileCommand or plaqueAttack.

What makes effective guidance? Analysis of message content revealed systematic patterns in
communication and message effectiveness. Most messages (88%) contained information about game
dynamics (“[avoidGeorge] light blue can transform green into them”), with many also including
information about win (64%, e.g. “[jaws] The objective is to stay alive”) and loss conditions (74%,
e.g. “[avoidGeorge] you lose if all squares get turned purple”). A small but notable fraction (11%)
contained errors (e.g. “[relational] Push all the blue into the orange,” when blue should contact
yellow). Longer messages and those containing detailed win conditions proved particularly beneficial
to both models and humans(p = 6.3 × 10−3 and p = 0.031 respectively). Importantly, messages
that helped humans also helped models, shown by significant correlations in performance gains
across nAUC (r = 0.17), lives to first level (r = 0.24), and lives to second level (r = 0.16, all
p < 0.02) — suggesting shared mechanisms for integrating linguistic and experiential knowledge.

How language shapes exploration. Linguistic guidance systematically altered how players explored
game mechanics. Messages warning about dangers significantly reduced costly mistakes: in average,
humans and models receiving such warnings experienced between 37% and 67% fewer deaths in
avoidGeorge, relational, jaws, and aliens. Messages about key mechanics accelerated their discovery:
in relational, players informed about tool creation discovered essential combinations 43% to 83%
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Figure 4: Learning from experience and human advice. In most games, both humans (blue) and
our model (orange) learn significantly faster with human advice (plain lines) than without (dashed
lines), see median in Figure 5a. The pure LLM baseline does not learn significantly better with advice,
solving the first level in only 3/10 games (N=20, median ± interquartile range).
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faster, while in plaqueAttack they learned to revive allies 43% to 62% faster when told about this
possibility. However, incorrect advice could also mislead: in avoidGeorge, the human player and
the model who were wrongly warned about the danger of green blocks (in fact harmless) completely
avoided them for the first three episodes, while others players interacted with them in average 5 times
in the same period — demonstrating how unhelpful linguistic advice can also shape direct experience.

5.3 FROM COGNITIVE MODELS TO LEARNING PARTNERS?

Our model demonstrated the ability to efficiently learn from human-generated advice. But can it also
help humans in return? Can it generate guidance that is useful to other models and, more importantly,
to humans? Leveraging its LM-based advice generation capability (Section 3.3), our model produced
detailed, pedagogical advice that rivaled human teaching. For example, in preconditions:

“Control the darkblue square with arrow keys. Your goal is to kill all gold objects
by touching them, earning points along the way. Watch out for green objects —
touching them will kill you unless you have white resources to protect yourself.
Collect white resources to safeguard against green, and use them to kill green
objects if needed, but be aware that each kill will cost a resource.”

Model-generated guidance significantly improved learning for both humans (∆(nAUC)= 0.15, p <
10−5) and models (∆(nAUC)= 0.088, p < 10−8) compared to experience alone. Interestingly, models
learned better from model- than human-generated advice (∆(nAUC)= 0.052, p < 10−10), while these
gave humans only a modest advantage (∆(nAUC)= 0.035, p = 0.26, n.s.).

These asymmetries reveal important differences in human and model communication. When we had
our model generate advice based on human players’ trajectories, models still learned better from this
model-generated guidance than from human-written messages (∆(nAUC)= 0.21, p < 10−8). This
suggests the asymmetry stems not from differences in knowledge, but from communication style.
Human messages often included metacognitive strategies (“take time to look for safe patterns”),
analogies (“orange is like terminator”), or emotional content (“[I] was left very confused”) — aspects
that human learners readily use but our model finds harder to interpret. These differences highlight
the potential and challenges for language-mediated human-machine collaborative learning. We show
more examples of human- and model-generated messages in Appendix Section I and on our website.

Ablating language-guided proposals in our model leads to a significant performance drop compared
to the full version (∆(nAUC) = −0.058, p = 7.2 × 10−4). This ablated version still leverages
language likelihood, which lets it outperform learning from experience alone (∆(nAUC) = −0.030,
p = 5.7× 10−3), see Method Section 3.1 and Appendix Figure 8.

Variability across games: Our results reveal interesting patterns in the success and failures of
linguistic guidance (Figure 5b). Models learning from other models show consistent benefits across
all games because models generate more comprehensive messages and process advice more reliably
than humans on average. In contrast, human learners show minimal improvements in games requiring
rapid reactions and precise motor control (portals, plaqueAttack, aliens, missileCommand), where
linguistic advice cannot substitute for motor practice. Models struggle to learn from humans in
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Figure 5: Bidirectional human–model learning. a) Median performance across games for humans
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relational, where humans often provide imprecise descriptions of complex rule interactions, and
plaqueAttack, where humans frequently omit important mechanics they discovered. In contrast,
all learners benefit from both human and model advice in games like avoidGeorge, where the
critical strategy is non-obvious, and beesAndBirds, jaws, and pushBoulders, where key dangers are
memorable and straightforward to describe. These patterns suggest that social learning strategies like
selecting pedagogical teachers or aggregating multiple sources of advice could mitigate some failure
cases.

5.4 GENERATIONAL LEARNING

While the previous experiments allowed social learners to benefit from fully explored game mechanics,
real-world learning often relies on partial and imperfect knowledge transmission. To investigate
whether our model could replicate this gradual accumulation of knowledge, we designed an iterated
learning experiment inspired by Tessler et al. (2021). In this setting, each agent interacts with the
game environment for only two lives before generating advice to the next agent. This cycle continues
across 10 generations for each of the 10 games, with performance tracked generation by generation.

Our results show that performance reliably increases across generations in all games where models
do not already achieve mastery from generation 1 (preconditions and aliens) (Figure 6). Some games
reached near-complete mastery by Generation 2, while others showed more gradual improvements.
A fixed-effect model controlling for game variability confirmed this trend, showing significant
improvements over the first generation for all others (∆(nAUC)i>1 ∈ [0.44, 0.57], all p < 10−10).

However, in plaqueAttack and relational, we observe occasional regressions where later genera-
tions underperform earlier ones, highlighting the brittleness of single-teacher transmission. These
regressions stem from structural properties of the games. Relational requires coordinating many inter-
dependent transformation rules, and even when players know the correct rules, a single mis-push can
irreversibly block progress within the two-life limit, making performance volatile across generations.
PlaqueAttack involves fast-paced action with two different viable survival strategies (eliminating
attackers or reconquering damaged bases). Messages can describe only one of these strategies, which
can inadvertently steer later generations away from exploring the alternative, resulting in intermittent
drops in performance. These task-specific constraints explain why cumulative improvement is less
stable in these games than in others with more linguistically compressible mechanics. This phe-
nomenon could be mitigated through the integration of multiple teachers or teacher selection (Kendal
et al., 2018; Schultner et al., 2024). Together, these findings indicate that agents can build upon
fragmented experiences to gradually refine their world models over generations, mirroring learning
dynamics observed in human populations (Tessler et al., 2021).

6 DISCUSSION

Our approach aligns with a longstanding research program in which human mental representations are
modeled as structured, program-like generative theories, and learning is understood as probabilistic
inference over these structures (Griffiths et al., 2010; Lake et al., 2017; Rule et al., 2020). This
perspective has been highly successful in explaining human causal reasoning (Tenenbaum et al., 2006;
Griffiths and Tenenbaum, 2009), intuitive physics (Battaglia et al., 2012; Smith et al., 2023), or social
reasoning (Baker et al., 2011; Ying et al., 2024): people form hypotheses about latent mechanisms,
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simulate their consequences, and revise them in light of new evidence. Executable, program-like
world models are a natural next step in this line of work (Tsividis et al., 2021), and our contribution
can be seen as extending this framework to the domain of social learning by integrating linguistic
guidance and direct experience within a unified inferential model.

Our experiments showed that our computational model reproduces key features of human social
learning: advice reduces the attempts needed for success by shaping exploration, supports genera-
tional knowledge accumulation, and even allows model-generated guidance to help human learn-
ers—demonstrating bidirectional knowledge exchange.

While VGDL is only a coarse approximation of human game representations, our results show it
captures enough structure to study social learning and afford bidirectional human–model knowledge
transfer. Future work could leverage library-learning methods (Ellis et al., 2020; Wong et al., 2021)
to model the emergence of shared representations through linguistic interaction, potentially driving
representational convergence rather than requiring pre-aligned representations.

Our results show that linguistic guidance often speeds and safeguards exploration, but when advice
is wrong it can restrict search — mirroring the “double-edged sword of pedagogy” observed in
developmental psychology (Bonawitz et al., 2011). Humans counter this issue by evaluating testimony
against prior causal theories before integrating it (Harris et al., 2018; Sobel and Kushnir, 2013). To
match this sophistication, computational models will need meta-cognitive mechanisms to judge the
reliability of advice and adjust their exploration accordingly.

This paper opens several avenues for future work. Human-generated messages often include game
abstractions, high-level strategies, and planning heuristics that our model currently cannot leverage.
Extending the framework to interpret and learn from these richer forms of guidance — e.g. through
inference of auxiliary reward functions, planning abstractions and strategies — could unlock enhanced
social learning capabilities (Silver et al., 2024, e.g., ). It would also be valuable to examine in
more detail which linguistic abstractions — beyond rule and win/loss information — facilitate robust
generational transfer, building on methodologies from prior human iterated-learning studies in VGDL
environments (Tessler et al., 2021). Beyond passive learning, our model could be further extended to
make decisions about who to learn from based on perceived expertise or success — a capacity known
as prestige-based social learning (Kendal et al., 2018; Schultner et al., 2024). Future work could also
investigate how different LLM families behave within our framework in their dual roles as advice
generators (speakers) and approximations of human speakers (speaker models). Because our method
uses LLMs both to produce pedagogical messages and to evaluate the likelihood of human-written
advice, comparing families with different inductive biases could reveal how model-specific language
priors shape both message interpretation and learning outcomes.

From an artificial intelligence perspective, an important direction for future work is extending this
framework to real-world, continuous, and more complex environments. Doing so will require
advances in program synthesis, scalable probabilistic inference, and hardware capable of performing
inference over rich, unstructured programming languages such as Python (Tang et al., 2024; Lehrach
et al., 2025). This is an active and rapidly growing area of research,2 with significant investment and
recent progress in LLM-driven code generation and executable world modeling (Cusumano-Towner
et al., 2019; Lew et al., 2023; Loula et al., 2025). Although this may seem challenging, humans
routinely construct rich executable models in code — physical engines, video game environments,
simulation of complex systems — which allow them to reason about highly complex processes,
explore counterfactual scenarios, and deepen their understanding of the world. These practices
illustrate the feasibility and potential benefits of scaling program-like world models to richer domains.

Finally, our results point to exciting possibilities for human-machine collaborative learning. Our
model not only benefits from human-generated guidance but also contributes back through effec-
tive, pedagogical advice — closing the collaborative loop. This demonstrates a first step toward
bidirectional learning systems capable of supporting human learners. The future directions outlined
above — handling richer linguistic guidance, adaptive trust in information sources, and scaling to
open-ended domains — would represent major steps toward AI systems that not only learn efficiently
but also teach, collaborate, and adapt within complex social learning networks, augmenting collective
intelligence in hybrid human–AI communities (Colas et al., 2022; Brinkmann et al., 2023; Collins
et al., 2024).

2e.g., see recent library scaling probabilistic programming with GPUs via Jax.
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REPRODUCIBILITY STATEMENT

Section 3 details the full model specification and inference procedure. Section 4 describes the human
and model experimental design. The appendices provide additional details including: the description
of all VGDL primitives, the inference pseudo-code, details about guided proposals and planning,
instructions used for human data collection and full prompts used by the LM components of our
model. The codebase will be released at github.com/ccolas/language_and_experience. Together these
resources allow full replication of the experiments.
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A EXTENDED RELATED WORK

Language and RL. Language has emerged as a powerful tool to enhance reinforcement learning
(RL) by conveying state abstractions (Narasimhan et al., 2018), world dynamics (Zhong et al., 2020),
auxiliary reward functions (Goyal et al., 2019), and task decompositions (Shridhar et al., 2021;
Sharma et al., 2021). Its inherent compositionality and abstraction capabilities allow agents to pursue
more abstract goals (Jiang et al., 2019), generalize effectively across diverse environments (Zhong
et al., 2020) and goals (Hill et al., 2020; Colas et al., 2020), and structure long-term decision-making
more effectively (Hu et al., 2019; Chen et al., 2021). Despite these advances, most language-based
RL approaches rely on substantial amounts of paired data to ground linguistic information in agent
experience, limiting their scalability and resemblance to human-like social learning. Language
models (LMs) promise more flexible combination of language and decision-making (Ahn et al.,
2022; Huang et al., 2022), yet they struggle to learn complex embodied skills that require low-
level perception and temporally extended actions (Valmeekam et al., 2023; Paglieri et al., 2024).
Nottingham et al. (2023) use LLMs to generate complete world model hypotheses that are then
verified through experience. Our approach introduces a Bayesian framework that treats experience
and language as two complementary sources of evidence in the inference of world models. This joint
inference enables rapid adaptation to new linguistic inputs and tasks from the very first interaction,
bypassing the need for extensive paired data.

Bayesian models of social cognition. Bayesian models of social cognition have proven to be
powerful tools for modeling theory of mind (ToM)—the ability to infer the hidden goals, beliefs, and
intentions of others from observable behavior or linguistic cues (Baker et al., 2011; 2017; Frank and
Goodman, 2012; Goodman and Frank, 2016). These models formalize social inference as an inverse
planning problem, where observers assume that agents act approximately rationally towards their
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goals and use this assumption to infer likely mental states (Baker et al., 2011; 2017). Extensions
of these frameworks to language understanding have resulted in the Rational Speech Acts model,
which interprets communication as recursive social reasoning: listeners reason about what a speaker
intends to convey based on the assumption that speakers choose utterances optimally, given their
own beliefs (Frank and Goodman, 2012; Goodman and Frank, 2016). More recent work integrates
Bayesian reasoning with modern machine learning to enable richer social inferences. For instance,
(Zhi-Xuan et al., 2023) leverage large language models (LLMs) as priors in a Bayesian goal inference
system, allowing for the efficient suggestion and evaluation of likely goals in complex environments.
Similarly, (Ying et al., 2024) introduce a language-augmented ToM model that translates natural
language statements about beliefs into formal epistemic representations, enhancing agents’ ability
to reason about others’ knowledge and intentions. By combining linguistic input with structured
probabilistic models, these approaches extend traditional ToM beyond purely behavioral cues, opening
new avenues for interactive and socially aware AI agents (Vélez and Gweon, 2021). However, these
models operate in settings where the transition dynamics are fully known and deterministic, and
inference is restricted to identifying a latent goal or belief state from demonstrations. In contrast, our
setting requires agents to infer the entire causal structure of each new environment — object types,
interaction rules, and win/loss conditions—directly from experience, making joint inference from
language and action substantially more challenging. Our work builds on these ideas by leveraging
Bayesian inference to jointly interpret linguistic and experiential data, allowing agents to efficiently
acquire world models from sparse social interactions.
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Figure 7: Learning from experience. Both humans and our model achieve high sample efficiency
across most games. Systematic differences emerge in relational, which requires systematic testing of
object combinations, and avoidGeorge, which demands rapid and precise planning. Deep RL and
pure LM baselines fail to solve games efficiently, highlighting the value of structured representations
(N=20, median ± interquartile range).

C VGDL: GAME PRIMITIVES, STATE AND ACTION SPACES

We work with a subset of the VGDL domain. Here are the possible types of avatars:

• MovingAvatar: controllable player that can move in the four directions with a certain speed
based on keyboard presses

• ShootAvatar: MovingAvatar that can also shoot objects stype when the player presses the space
bar

• FlakAvatar: ShootAvatar that can only move sideways and always shoot upwards.

Here are the possible object types and their parameters:

• Immovable: object that cannot move
• Flicker: object that disappears after total steps
• SpawnPoint: object that spawn objects stype with probability p
• ResourcePack: object that can be collected (see interaction addResource and removeResource)
• Passive: object that can be pushed (see interaction bounceForward)
• Missile: object that moves in one direction with a certain speed and an original orientation.

They can change direction (see interactions turnAround and reverseDirection
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• Bomber: the combination of a missile and a spawner (with their combined parameters)
• Chaser: object that moves in the direction of the nearest target object stype, with a certain speed
• RandomNPC: object that moves in a random direction with a certain speed
• Portal: object that can teleport another object contacting it to another exit object (see interaction

teleportTo).

All moving objects move every cooldown environment steps.

Interactions describe what happens when two objects contact. Here are the possible interaction types
and their parameters:

• noInteraction: nothing happens
• killSprite: the second object kills the first object
• transformTo: the second object transforms the first object into a third object stype
• removeResource: the second object decreases the count of resource from the first object
• addResource: the second object increases the count of resource of the first object
• killIfHasLess: the second object kills the first if it has less than 1 resource stype
• stepBack: objects step back (second steps back first, if not possible the second does)
• bounceForward: the second object pushes the first if possible (e.g., unless it is blocked)
• turnAround: the first object (a missile) does one block down and switches direction when

encountering the second object
• reverseDirection: the first object (a missile) reverses direction when encountering the second

object

killSprite and transformTo interactions can further lead to a positive (+1), negative (-1) or null (0)
reward.

Lose conditions can be:

• Timeout: the player loses if it runs out of time before solving the task
• CountIsZero(objs): the player loses if at least one of the objects objs has no remaining instances

in the game.

Win conditions can be:

• Survive: the player wins if it survives long enough
• CountIsZero(objs): the player wins if the count of all objects objs goes to zero (e.g., they were

all killed or disappeared)

Size of the search space and game difficulty.

The size of the search space is a direct function of the number of objects. The avatar must have an
avatar type among 3, each other object should have an object type among 10; each pair of objects
must have an interaction type among 10; win and lose conditions can apply to any list of objects
from 0 to all. Without accounting for type parameters (e.g., chasing object have a target, transform
interaction transform objects into a specific type, etc), game spaces already scale 1030 for the smallest
games involving 5 objects (missileCommand, preconditions). Other games might have up to 10
objects (plaqueAttack, portals). The difficulty of a game is not necessarily correlated to the size of the
search space. For instance, some object types can be inferred quickly from movement observations,
while others require direct interactions. The layout and game rules might also make exploration, or
planning more or less complex for different games.

Perception and action. Players have five possible actions: four directional moves (arrow keys) and
a shoot action (space bar) when the game includes a ShootAvatar or a FlakAvatar. Computational
agents also have access to a NOOP action, while human players can simply choose not to act. After
taking a non-NOOP action, computational agents must wait for 4 environment steps before being
able to take a new one, a way of capturing human reactive time (5 fps). The game runs at 20 frames
per second. Humans perceive the game visually, with the current reward displayed at the top (see
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Figure 2), whereas computational agents perceive symbolic states consisting of object properties
(object id, color, position), rewards, and win/loss events.

D INFERENCE PSEUDO-CODE

Algorithm 1 shows the pseudo-code of the inference algorithm — a particle filter with Metropolis
rejuvenations — used to update the agent’s beliefs about possible games it might be playing, supported
by experiential and linguistic evidence (Del Moral et al., 2006; Metropolis et al., 1953). The Perturb
operator replaces one rule of the VGDL game description at a time, according to guided proposals
(see Appendix Section E below). We picked the number of particles to be N = 20.This involves a
trade-off:

• Exploration: too few theories lead to under-representation of uncertainty, reducing the
model’s ability to identify informative subgoals and to explore sufficient alternative variations
in the space of possible theories.

• Computation: each Metropolis update requires updating all particles and computing language
likelihoods via the LLM, which is the computational bottleneck of the approach.

Empirically, 10 particles was faster but sometimes failed to discover high-posterior theories quickly
enough for the agent to survive, while 20 ensured a more robust and fast exploration of the theory
space. More particles might slightly improve the performance of the inference, but will make the
system slower to run and experiment with.

Algorithm 1 Particle filter with Metropolis rejuvenation

Params: N number of particles/theories, p(T ) prior over theories, S,R number of steps and rejuvenation
steps.
Inputs: inference step s, new experiential data Ds, particles θs (for s > 0).

▷ bold indicates vectors of size N
if s == 0 then ▷ Sample initial particles from prior

T0 ∼ p(T )

for s ∈ [1, S] do ▷ inference step
Ts ← Ts-1
for r ∈ [1, R] do ▷ MCMC rejuvenation step

T ′
s ← Perturb(Ts) ▷ Propose move

α← p(Ds,T
′
s)

p(Ds,Ts)
▷ Metropolis acceptance

for i ∈ [1, N ] if u ∼ U(0, 1) < αi do
T i
s ← T

′i
s ▷ Accept move

w ← Norm(p(Ds, Ts)) ▷ Update weights
Ts ← Resample(Ts,w) ▷ SMC resampling step

Return: argmax T i
t+S

∈Tt+S
p(Ds, T

i
t+S) ▷ Return MAP theory

E GUIDED PROPOSALS

We use biased proposals to initialize the set of 20 candidate theories and to generate rejuvenation
moves (Perturb operator in Algorithm 1). These proposals are guided by both experience and linguistic
evidence, accelerating convergence towards theories that better explain the agent’s observations.

Experience-driven proposals bias the sampling process in the following ways:

• objects observed to have moved cannot be assigned an object type incompatible with movements
(e.g., Immovable, or Flicker),

• objects moving in one direction are more likely to be assigned type object types that move linearly
(Missile and Bomber than object types that allow movements in all directions (RandomNPC„
Chaser),

• objects pairs involved in collisions preceding observed rewards are more likely to be assigned
reward-generating interactions.
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Figure 8: Ablation of language-guided proposals. a) Median performance across games for models
learning from experience alone (blue), or experience and language, using language likelihood and
language-guided proposals (orange), or ablating language-guided proposals (green). (N=20, error
bar: interquartile range).

F DETAILS ABOUT PLANNING

Our model strategically balances curiosity-driven exploration with goal-directed exploitation, mirror-
ing human problem-solving strategies (Tsividis et al., 2021). From the current best theory TMAP, we
generate candidate subgoals: specific collisions between pairs of objects that the agent can cause to
occur by either touching another object itself, or by pushing or spawning an object onto it. Candidate
subgoals are assigned values based on their exploration and exploitation potentials:

Value(g) = ExplorationValue(g) + ExploitationValue(g).

The exploration value measures disagreement between theories in the current population:

ExplorationValue(g) = 1− maxi count(i | g)∑
i count(i | g)

where count(i | g) is the count of theories assigning interaction type i to subgoal g.

The exploitation value rewards key game mechanics:

ExploitationValue(g) =



10 if g contributes to win condition
8 if g protects essential resources
6 if g creates useful tools
2 if g collects resources or rewards
0 else

To achieve these goals, the model evolves short 10-step action sequences (e.g. move left, shoot, move
up) through stochastic search, using TMAP to simulate outcomes. Action plans are iteratively mutated
and refined over three generations using a simple genetic algorithm, where mutations crop and regrow
action sequences from a uniformly sampled mid-point. Each sequence a is evaluated according to:

V (a) = Rgame(a) +Rgoal(a) +Rwin/loss(a),

where Rgame is the game’s reward function under TMAP, Rgoal rewards progress toward the selected
subgoal (between 0 and 1), and Rwin/loss provides +100 for winning and -100 for losing.

Additionally, the model performs 10 3-step lookaheads to avoid catastrophic errors, triggering
replanning when the originally predicted value deviates significantly from the distribution of values
for newly simulated trajectories:

V (aoriginal) > max
i∈1...10

V (alookaheadi).

This safety mechanism prevents the agent from executing plans that appeared promising under limited
simulation but fail under more extensive testing, or when unexpected changes in the environment
render the original plan ineffective.
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G HUMAN DATA COLLECTION: INSTRUCTIONS AND PARTICIPANT
RECRUITMENT

We recruited 122 adult English-speaking participants through Prolific to play 5 randomly-assigned
games. To ensure task engagement while maintaining a representative sample, we excluded partici-
pants who failed to complete at least one level in ≥ 3 games (final N=120). Participants’ median
completion time was 49.30 minutes, and the median hourly pay rate was $10.41/hr.

Before playing the games, participants read the following instructions:

Instructions for human data collection

In this experiment, you will play different games before describing
each game to another participant who has not yet played.
You will play 5 different games. Each game will be played using the
arrow keys and spacebar on your keyboard.
You will start each game with 15 lives. Each game has 4 levels. Your
goal is to win all 4 levels of the game in as few lives as possible.

You lose a life when you lose a level. There are different ways of
winning and losing. Possible ways to win a level include removing all
objects of particular colors, reaching a particular object, or
surviving for long enough.

Possible ways to lose a level include allowing all objects of
particular colors to die or disappear, or by not solving the level
fast enough.

You move on to the next level of a game only after winning the
current level. You will finish a game when you win all 4 levels, or
when you have lost 15 lives.

After finishing a game, you will be asked to describe the game to
another participant who has not yet played. Your goal is to help them
solve the game in as few lives as possible. You will be required to
spend at least 30 seconds describing each game.

\textbf{Bonus opportunity: Solve each game in as few lives as
possible!}
On each game, you can win up to $\$0.20$ based on your performance.
Your rank on each game will be computed relative to other
participants, based on the number of levels you complete, and how
many lives you take to complete them. For each game you will earn the
max bonus multiplied by the proportion of other participants you
outrank!

\textbf{Bonus opportunity: Write useful descriptions!}
On each game, you can win up to an additional $\$0.20$ based on your
description. Another group of participants will read descriptions
before playing each game, and receive bonuses up to $\$0.20$ based on
their relative rank. On each game, you will additionally receive the
bonus earned by the player who reads your description, so help them
win!

// [Optionally, for participants in condition 2 and 3 (social
learning)]
When starting each game, you will be shown a message from another
player who has already played the game. You should use this message
to help you play the game, but keep in mind that it’s possible that
it contains mistakes.

When starting each game, participants in Condition 1 received no game specific advice, as shown in
Figure 9a, while participants in Conditions 2 and 3 saw a message from a previous player, as shown
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in Figure 9b. Players in Conditions 2 and 3 can still read the message as they play. After completing
each game, participants in all conditions were asked to describe the game to a future player, as shown
in Figure 9c.

(a) Game play, Condition 1.

(b) Game play, Conditions 2 and 3. (c) After playing the game.

Figure 9: Screenshots of the game screens for the different experimental conditions. (a) Condition 1:
individual gameplay instructions. (b) Conditions 2 and 3: social gameplay instructions. (c) Message
interface shown to participants for writing advice to future players. Note that players in the social
conditions can see the message during gameplay.

H COMPUTATIONAL RESOURCES

The model requires a GPU to run the LM, we use one NVIDIA A100 (80Gb). We use prompt caching
using the vLLM library to speed up the generation of proposals. Simulation runs vary in function
of game complexity (slower with more objects) and the learning speed of the agent (runs end early
when all levels are solved), taking anywhere between an hour and a day, depending on games and
conditions.

I EXAMPLE MESSAGES

Below are example messages generated by humans and model players in the social learning experi-
ments.

Example of human messages in social learning experiment

[beesAndBirds] "Move the darkblue square by pressing the arrows keys.
You win the game the touching the green square, you can also touch
red but not needed. Avoid touching the moving yellow square because
they can kill you. The green squares can destroy the yellow and
orange squares when you free it from the purple squares. You can
destroy purple squares by touching it."

[aliens] "You must use space bar to shoot and hit the pink moving
squares. You are also needed to dodge the red squares that are being
shot by the pink squares. You will dodge by using the left, right, up

22



Published as a conference paper at ICLR 2026

and down keys. You must destroy all the pink squares before they
reach the bottom."

[jaws] "I think if you move the block over the purple and reds you
will win the game. You will lose the game if you go over other color
blocks."

[preconditions] "eat the white tiles to enable you knock down the
green tiles toget to the yellow tiles. your objective is to get to
the yellow tiles"

[missile_command] "So the main goal is to protect the GREEN tiles by
making sure the RED tiles and the YELLOW tiles don’t touch them and
you can win even if you only have ONE GREEN tile left. As soon as you
click START, they will start moving and you need to act fast by
trying to interact with the RED and YELLOW tiles to make them
disappear using the SPACEBAR while next to them. The YELLOW tiles
move faster than the red so try to prioritize them if possible but
there will be times that you would need to sacrifice one GREEN tile
to make one YELLOW tile disappear because at that same time, you can
possibly eliminate 2-3 RED tiles because they are slower. You win the
level by keeping at least one GREEN tile intact and you lose when
you lose all five of them."

[pushBoulders] "Move darkblue square by using the arrow keys. Avoid
touching the orange squares because they can kill you, push the green
into orange to make orange disappear. Avoid pink square because it
can kill, move pink by pushing green into it. You can touch lightblue
square to make it disappear. Also you can touch yellow square to
make it disappear and win the game."

[avoidGeorge] "Game 4: Move your dark blue square quickly to avoid
the light blue square. Use the brown spacebar to turn the green
squares back to purple. Shoot the squares next to you with the brown
square to eliminate them."

[plaqueAttack] "Use your arrows to shoot from your square to protect
the red and yellow squares. If the other colors get to red and yellow
and turn them before you can eliminate them, you lose."

[relational] "Use the arrow keys to move the orange cubes to merge
the darkblue and white cubes by pressing the space bar key. Avoid
colliding with the rest of the cubes in the game"

[portals] "You need to move your character over the gold and light
blue squares. To win the game you need to get to the light green
square. In the levels coming up you needs to move up from light blue
to dark blue to get to different areas. Do not let the other colors
touch you because you will lose a life."

Example of model messages in social learning experiment

[beesAndBirds] "Use arrow keys to move your darkblue. To win,
eliminate all green by touching them, earning points for each kill.
Be careful: you’ll die if you touch yellow or orange, but you can use
lightgreen to your advantage - it can kill both yellow and orange.
Touch red and purple to kill them, but they’re not your main
objective."

[aliens] "Use left and right arrow keys to move your darkblue square
and spacebar to shoot blue squares. To win, eliminate all orange,
pink, and brown - shooting blue at pink will kill them and earn

23



Published as a conference paper at ICLR 2026

points, but watch out as pink can kill you on contact. Protect
yourself from pink and red, which can also kill you, and avoid
touching them. Blue objects can help by killing pink, but be aware
that blue and white objects kill each other, and pink can generate
more red objects."

[jaws] "Control your darkblue square with arrow keys. Your goal is to
survive for as long as possible. Be careful, as orange, brown, and
pink objects will kill you on contact - orange objects will even
chase you. Stay away from them and try to navigate around the safe
darkgray, purple, and green objects to stay alive."

[preconditions] "Use arrow keys to move your darkblue square. Your
goal is to eliminate all gold objects by touching them to earn points.
Be careful, as green objects will kill you on contact unless you
have a white resource to protect yourself - collect white resources
to stay safe. You can also kill green objects by touching them, but
they’ll take a resource from you in the process."

[missile_command] "Use arrow keys to move the darkblue square and
spacebar to shoot pink. To win, eliminate all red and gold - shoot
pink at them to kill and earn points. Protect green objects, as you’
ll lose if they all die, and try to avoid letting red and gold kill
them as this will also cost you points. Red and gold objects will
chase green, so use this to your advantage and take them out with
pink squares."

[pushBoulders] "Use arrow keys to move your darkblue square. To win,
eliminate all gold objects by touching them or pushing green onto
them - you’ll earn points for each gold destroyed. Be careful:
touching orange or pink will kill you. Green is a valuable ally, as
it can also kill gold and earn you points, so use it to your
advantage by pushing it onto gold. Protect yourself and keep pushing
green to clear the way to victory, as dying means losing the game."

[avoidGeorge] "Use arrow keys to control your darkblue square and
spacebar to shoot brown. To win, survive long enough while keeping
green objects alive - they can be created by shooting brown at purple
or letting orange touch purple. Watch out: lightblue objects will
kill you on contact and can also turn green back into purple, so
protect your green! You’ll earn points when brown or orange transform
purple into green, but lose points if lightblue kills you."

[plaqueAttack] "Use arrow keys to move your darkblue and spacebar to
shoot lightred. Your goal is to eliminate all purple, orange, brown,
and lightblue while keeping yellow and red alive. To help you,
lightred objects will kill orange and brown on contact, so position
them to clash. You can also shoot lightred at orange and brown to
kill them directly. Touching green objects transforms them into
yellow, earning you points, and touching blue objects transforms them
into red, also earning points. Be careful, as orange and brown can
transform yellow into green, losing you points, and blue objects can"

[relational] "Use arrow keys to move your darkblue square. To win,
eliminate all blue objects, which can be done by pushing them onto
yellow objects - when they kill each other, you gain points. Be
careful not to touch white objects, as they’ll kill you. You can also
transform objects to help your strategy: touch red to turn them into
yellow, touch pink to turn them into orange, and push orange onto
purple to turn them into yellow."

[portals] "Use arrow keys to move your darkblue square. Your goal is
to eliminate all lightgreen objects by touching them to earn points
and win the game. Be careful - darkgreen, pink, and lightred objects
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will kill you on contact, so avoid them. You can teleport using
lightblue to gold and blue to lightorange to help navigate. Brown
objects move randomly, but won’t harm you, and other objects are
stationary, so use them to your advantage."

J PROMPTS

Prompt for language likelihood estimation and language generation

# Game Message Generation Task

You are writing standardized messages to describe a 2D video game
based on the game’s mechanics.

### Instructions
Each message should explicitly state:
- How to control the game
- How to win
- How you could lose/die
- How to get/lose points
- Key game mechanics that aren’t obvious while playing

### Context
- The player controls the darkblue object
- In some games, it can shoot other objects of a particular color
- Each object color is associated to a particular object type
conditioning how they move
- Effects can apply when two colors collide, eg one can kill the
other, one can transform the other into a third color, one can push
the other, etc
- Possible wining conditions include: surviving long enough, or
killing all objects of one or several target colors
- Possible losing conditions include: reaching a timeout before
wining, or seeing all objects in a list of colors dying/disappearing

### Writing Rules
- Mention all important interactions in the game
- State each interaction in a single clear sentence
- List all killing and transformation interactions
- Always specify win and loss conditions

### Example

Who you are and how you move:
- You control the darkblue square with arrow keys.
How you win and lose:
- You get points when pink objects transform blue objects into purple
objects.
- You lose points when darkred objects kill purple objects.
- You win the game when all blue and orange objects are dead.
- You lose if all purple and lightred objects die.
What you can do:
- You can shoot pink squares by pressing space bar.
- You can kill orange objects by shooting pink objects at them.
- You can transform blue objects into purple objects by shooting pink
objects at them.
What can kill you:
- Orange objects will kill you if you touch them.
Other possible interactions:
- You can push lightred objects.
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- Darkred objects can kill purple objects by touching them.
- Darkred objects can kill lightred objects by touching them.
Other objects:
- Pink objects move along one direction.
- Darkred objects chase the nearest purple object.
- Orange objects move along one direction.
- Purple and blue objects do not move.

Message:
You control a darkblue square with arrow keys. You can shoot pink
objects by pressing space bar. Orange objects kill you when they
touch you. Pink objects kill orange objects when they touch them.
Pink objects transform blue objects into purple objects when they
touch them. You can push lightred objects. Darkred objects kill
purple and lightred objects when they touch them. Pink objects move
in one direction. Darkred objects chase the nearest purple object.
Orange objects move in one direction. Purple and blue objects don’t
move. You get points when pink objects transform blue objects into
purple objects. You lose points when darkred objects kill purple
objects. You win when all blue and orange objects are dead. You lose
if all purple and lightred objects die.

### Task

{THEORY DESCRIPTION}

Message:
{MESSAGE} # we compute the likelihood of these tokens

Prompt for making rules proposals

# Game Rules Analysis Task

You are analyzing messages written by video game players to help you
play a game for the first time. These games feature colored objects
interacting in a 2D space, where players control a darkblue object.
The messages describe controls, scoring systems, win/loss conditions,
hazards, core mechanics, and give you tips to help you win the game.

### Your Task
You will be asked to answer four types of questions:
- What is the type of objects of [color1]?
- What happens to objects of [color1] when they collide with objects
of [color2]?
- Does the player need to kill all objects of [color1] to win?
- Does the player lose when all objects of [color1] die?

Answer questions by looking for explicit statements in the message
about:
- How objects move and how they behave, eg can you use them as a
portal, can you push them, do they chase other objects, etc.
- Objects killing other objects
- Objects transforming into other objects
- Win conditions involving killing objects
- Loss conditions involving object death

### Rules for Answering
- Only use information explicitly stated in the message
- You are the darkblue object.
- Do not make assumptions about interactions not mentioned
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- Pick the "I don’t know" answer if the corresponding information is
ambiguous, contradicting, or absent
- Pay attention to interaction direction - if A kills B, it doesn’t
mean B kills A
- Each question comes with a fixed set of possible answer. You must
pick one of the answer. If the correct answer is not in the list,
pick the "I don’t know" answer.
- If the way to win is to kill some object, then having all these
objects disappear/die does NOT cause you to lose
- If you need to "protect [color1] objects" or "kill [color2] objects
before they kill / transform [color1] objects", you must answer:
- "You lose if all [color1] objects die or disappear", note that
transformations kill the transformed objects.

- If you need to reach / touch / kill by touching [color1] objects to
win, this means you can kill color1 objects. You MUST answer:
- "[color1] objects die when they collide with darkblue objects".

- If the message says you can "collect [color1]":
- either [color1] is a resource, and you must answer that "you can
collect [color1] resources"
- OR [color1] is not a resource, and you must answer that "you can
kill [color1] objects"

- If the message says you can destroy/kill/eliminate [color1] objects
if you have enough [color2] resources, the two following statements
are true:
- "[color1] objects die when they collide with darkblue objects but
also take a [color2] resource from them’
- AND "darkblue objects die if they don’t have enough resources when
they collide with [color1] objects"

- Objects that kill you when you lack resources also die when they
touch you, and take one resource from you.
- "[color1] objects die when they collide with darkblue objects but
also take a [color2] resource from them"

- When [color1] objects take away some resource / your health when
you touch them, they also die:
- "[color1] objects die when they collide with darkblue objects but
also take a [color2] resource from them’

- Use the ... after "Reasoning:" to reason about the game before
generating your answer.

### Example Game 1

Message from the player:
"Orange objects kill you when they touch you. You kill purple objects
when you touch them. Lightgreen objects chase orange objects and can
kill them when they touch them. You win when you kill all purple
objects. You lose if orange kills you."

--

What happens to darkblue objects when they collide with orange
objects?
1) nothing happens to darkblue objects when they collide with orange
objects
2) darkblue objects die when they collide with orange objects
3) darkblue objects get transformed when they collide with orange
objects
4) darkblue objects steal resource from orange objects when both
collide
5) darkblue objects die if they don’t have enough resources when they
collide with orange objects
6) I don’t know / something else

Reasoning: .......................
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Answer (pick one from the list):
2) darkblue objects die when they collide with orange objects

--

What happens to orange objects when they collide with darkblue
objects?
1) nothing happens to orange objects when they collide with darkblue
objects
2) orange objects die when they collide with darkblue objects
3) orange objects get transformed when they collide with darkblue
objects
4) orange objects steal resource from darkblue objects when both
collide
5) orange objects die if they don’t have enough resources when they
collide with darkblue objects
6) I don’t know / something else

Reasoning: .......................

Answer (pick one from the list):
6) I don’t know / something else

Note: orange kill darkblue (the player), but we don’t know what
happens to orange when they touch (maybe nothing)

--

How do orange objects behave?
1) orange objects cannot move
2) orange objects do not move and disappear after a certain time
3) orange objects regularly spawn/generate other objects
4) orange objects can be pushed
5) orange objects move along one axis
6) orange objects move along one axis and regularly spawn/generate
objects
7) orange objects chase or flee another object
8) orange objects move randomly
9) orange objects are portals
10) I don’t know

Reasoning: .......................

Answer (pick one from the list):
10) I don’t know

--

How do lightgreen objects behave?
1) lightgreen objects cannot move
2) lightgreen objects do not move and disappear after a certain time
3) lightgreen objects regularly spawn/generate other objects
4) lightgreen objects can be pushed
5) lightgreen objects move along one axis
6) lightgreen objects move along one axis and regularly spawn/
generate objects
7) lightgreen objects chase or flee another object
8) lightgreen objects move randomly
9) lightgreen objects are portals
10) I don’t know

Reasoning: .......................
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Answer (pick one from the list):
7) lightgreen objects chase or flee another object

--

Do you need to kill purple objects to win?
1) To win you need to reach/touch purple objects
2) To win you need to kill all purple objects
3) To win you don’t need to kill all purple objects
4) To win I don’t know if you need to kill or reach/touch all purple
objects

Reasoning: .......................

Answer (pick one from the list):
2) To win you need to kill all purple objects

--

Do you need to kill orange objects to win?
1) To win you need to reach/touch orange objects
2) To win you need to kill all orange objects
3) To win you don’t need to kill all orange objects
4) To win I don’t know if you need to kill or reach/touch all orange
objects

Reasoning: .......................

Answer (pick one from the list):
4) To win I don’t know if you need to kill or reach/touch all orange
objects

--

Do you lose if orange objects die?
1) You lose if all orange objects die or disappear
2) You don’t lose if all orange objects die or disappear
3) I don’t know if you would lose if all orange objects die or
disappear

Reasoning: .......................

Answer (pick one from the list):
2) You don’t lose if all orange objects die or disappear

### Example Game 2

Message from the player:
"You can shoot brown objects. Brown objects kill gold objects when
they touch them. Gold objects transform purple objects into lightred
objects when they touch them. You transform lightred objects into
purple objects when you touch them. You lose if all purple objects
are transformed into lightred objects. You win if you survive long
enough."

--

What happens to gold objects when they collide with brown objects?
1) nothing happens to gold objects when they collide with brown
objects
2) gold objects die when they collide with brown objects
3) gold objects get transformed when they collide with brown objects
4) gold objects steal resource from brown objects when both collide
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5) gold objects die if they don’t have enough resources when they
collide with brown objects
6) I don’t know / something else

Reasoning: .......................

Answer (pick one from the list):
2) gold objects die when they collide with brown objects

--

What happens to purple objects when they collide with gold objects?
1) nothing happens to purple objects when they collide with gold
objects
2) purple objects die when they collide with gold objects
3) purple objects get transformed when they collide with gold objects
4) purple objects steal resource from gold objects when both collide
5) purple objects die if they don’t have enough resources when they
collide with gold objects
6) I don’t know / something else

Reasoning: .......................

Answer (pick one from the list):
3) purple objects get transformed when they collide with gold objects

--

What happens to lightred objects when they collide with gold objects?
1) nothing happens to lightred objects when they collide with gold
objects
2) lightred objects die when they collide with gold objects
3) lightred objects get transformed when they collide with gold
objects
4) lightred objects steal resource from gold objects when both
collide
5) lightred objects die if they don’t have enough resources when they
collide with gold objects
6) I don’t know / something else

Reasoning: .......................

Answer (pick one from the list):
6) I don’t know / something else

--

How do lightred objects behave?
1) lightred objects cannot move
2) lightred objects do not move and disappear after a certain time
3) lightred objects regularly spawn/generate other objects
4) lightred objects can be pushed
5) lightred objects move along one axis
6) lightred objects move along one axis and regularly spawn/generate
objects
7) lightred objects chase or flee another object
8) lightred objects move randomly
9) lightred objects are portals
10) I don’t know

Reasoning: .......................

Answer (pick one from the list):
10) I don’t know
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--

Do you need to kill brown objects to win?
1) To win you need to reach/touch brown objects
2) To win you need to kill all brown objects
3) To win you don’t need to kill all brown objects
4) To win I don’t know if you need to kill or reach/touch all brown
objects

Reasoning: .......................

Answer (pick one from the list):
3) To win you don’t need to kill all brown objects

--

Do you lose if purple objects die?
1) You lose if all purple objects die or disappear
2) You don’t lose if all purple objects die or disappear
3) I don’t know if you would lose if all purple objects die or
disappear

Reasoning: .......................

Answer (pick one from the list):
1) You lose if all purple objects die or disappear

--

Do you lose if lightred objects die?
1) You lose if all lightred objects die or disappear
2) You don’t lose if all lightred objects die or disappear
3) I don’t know if you would lose if all lightred objects die or
disappear

Reasoning: .......................

Answer (pick one from the list):
2) You don’t lose if all lightred objects die or disappear

### Task

Message from the player:
{MESSAGE}

[QUESTION]
[CHOICES]

Reasoning: .......................

Answer (pick one from the list):
[CANDIDATE ANSWER] # we compute the likelihood of all possible
candidate answer tokens

Prompt for the pure-LLM baseline

{basicstyle=\ttfamily\small}
You are trying to solve a video game you have never player before.

### Information about the game:
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- The game contains colored square objects of size 1
- It is defined by:
- one object type for each object color (eg a missile, a random NPC,
an immovable object, a pushable object, a portal, etc.)

- interactions for each possible pair of object color (eg no
interaction, one dies, one is transformed into the other, one pushes
the other, one steps back, etc.). These define what happens when

objects of these two colors collide.
- wining conditions: you may win by surviving long enough or when
you kill all objects from a specific list of colors (eg kill all
green and white to win)
- losing conditions: you may lose if you don’t win fast enough, or
if all objects of a specific color die (eg you lose if either all
red die or all blue die)

- Each object color corresponds to a different type of object, but
all objects of one color have the same type and behave the same way
- Each pair of object colors can have at most 1 type of interaction
- Some objects (color1) can transform certain objects (color2) into
yet other objects (color3).
- Possible ways to act in the game are to touch objects, push objects
or shoot. Yourself, the objects you push, or shoot can interact with
other objects. Sometimes they will push them, kill them, transform
them. Sometimes nothing happens.

### State description:
- You will be shown your recent actions and the corresponding history
of game states, as well as object movements between these states
- A game state is composed of lists of object positions grouped by
object color
- Positions are indicated as (x, y) where x is between x=0 (LEFT) and
x=max_x (RIGHT), and y is between y=0 (TOP) and y=max_y (BOTTOM).
- When x increases, objects move to the right, when x decreases,
objects move to the left. When y increases, objects move downwards,
when y decreases, objects move upwards. Moving UP decreases y,
movement = (0, -1).
- Objects have size 1. They collide when delta_x or delta_y is below
1.
- Look for wall positions, you cannot move through walls and shouldn’
t try to move in the direction of a wall.

### Analysis:
- Observe the recent history of states and actions in the environment
- Observe your scratchpad where you store your analysis of the game
and strategy to solve it
- If your previous action was unsuccessful, try to understand why.
- If you won or lost in the previous episode, try to understand why.
- Be careful about picking the right action to go where you want to
go.
- Try to predict the movements of important moving objects so you can
either catch or avoid them with your next action.
- Analyze your scratchpad, should you rephrase it to be more compact
and up to date?
- Analyze both to update your understanding of the game, your
strategy, and prepare for action.
- Don’t forget to plan for your next action. You might want to
explore the world and touch, push or shoot objects, or you might want
to plan towards the goal.

### Scratchpad update:
- Decide whether to append information to the scratchpad or to
replace the text in the scratchpad by new text.
- The scratchpad should contain everything you know about the
environment: possible interactions, what kills you, what you think
the goal of the game is, what makes you lose, etc.
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- The scratchpad should contain your current plan to explore or solve
the game.
- The scratchpad is the only memory that will be transmitted to the
next decision making step, write down everything you need.
- To append text, use <append> text to append goes here </append>
- To replace text, use <replace> new text goes here </replace>
- When replacing the scratchpad, all replaced text will be forgotten,
be careful.
- No need to write down observations in the scratchpad, you will be
provided with the last observations every time you are asked to
generate a new action.
- Write your goal in the scratchpad so you can keep it in mind at the
next step.
- The scratchpad has a maximum size of 400 words, you should
sometimes use the <replace> command to summarize its content and keep
it concise.
- You start each new episode with the scratchpad from the last
episode. It will contain useful information about the game you’re
playing (eg how you can die, win, or important game dynamics), but
may also contain outdated information (eg object positions, or
previous strategy from the last episode).
- When reaching the end of the episode, rewrite the scratchpad to
transmit information about what you learn so you can do better in the
next episode.

### Actions:
- Possible actions are: UP, DOWN, LEFT, RIGHT, SPACE_BAR and NOOP.
- UP decreases y (0, -1), DOWN increases y (0, +1), LEFT decreases x
(-1, 0), RIGHT increases x (+1, 0), SPACE_BAR and NOOP do not move
you.
- SPACE_BAR let’s you shoot / spawn objects in some games (not all).
- Try SPACE_BAR sometimes to see if anything happens, and write to
the scratchpad what happens.
- Make sure your actions get you closer to your goal. It’s easy to
pick the wrong action and get further away, pay attention!
- Every time you pick an action that is not NOOP, you will have to
wait 4 environment steps before picking a new action. If you select
NOOP you can select another action at the next environment step.

### Answer format:
- Analyze what you know about the game and the history of recent game
states
- Update the scratchpad
- Select the action to execute next

Your response should be formatted in this way:

% first the analysis
<analysis>
write here your reflection and analysis of available information,
what you understand about the game, your plan to update the
scratchpad and your strategy for picking the next action.
</analysis>

% then update the scratchpad with either
<append>
text to append to the scratchpad goes here
</append>
% or
<replace>
text to replace the scratchpad with goes here
</replace>

% finally pick an action among UP, DOWN, LEFT, RIGHT, SPACE_BAR, NOOP
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<act>
action goes here
</act>

### Example

#### Recent history
% game history appears here

#### Old scratchpad
Orange objects can kill you so you should watch out. Shooting red
objects seem to kill them. I’m not sure what the goal is yet. I can
push blue objects but not purple ones.
Strategy: I should try to touch the yellow object to see what happens,
maybe I need to reach it?

#### Example answer

<analysis>
It seems orange just killed the blue object? I should add this to the
scratchpad. I’m still relatively far from the yellow object I should
keep moving in that direction.
My next move should be UP.
</analysis>

<append>
Orange kill blue when they touch.
</append>

<act>
UP
</act>
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K BASELINE COMPARISONS

Figure 10 shows the performance of the deep RL baseline when run for up to 2,000 episodes.

For completeness, we considered whether similar long-horizon runs should be performed for the
LLM agent. This is not feasible for several reasons. First, the LLM agent is extremely expensive
to execute: it produces a chain-of-thought plan at every time step, and concatenating these traces
quickly saturates the context window, preventing the model from carrying information across many
episodes. Second, longer training is unlikely to change outcomes. Inspection of the model’s reasoning
traces shows persistent difficulties in (1) inferring rules from observations, (2) forming coherent
multi-step plans, and (3) executing those plans reliably. These limitations mirror recent findings on
LLM performance in long-horizon video-game benchmarks (e.g., Balrog AI (Paglieri et al., 2024)),
where LLMs perform poorly even when given full rule descriptions. VGDL games are even more
challenging, as each new game introduces novel rules that must be inferred from scratch. For these
reasons, long-horizon rollouts are not expected to materially improve the LLM baseline.
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Figure 10: Deep RL performance with extended training horizons (2,000 episodes per game, double
DQN). Aliens is solved within the first 50 lives, as it brings a dense straightforward signal (+1 for
each alien shot). beesAndBirds, jaws and missileCommand can also be solved within the first 2,000
episodes, as they also demonstrate relatively straightforward reward signals. In all other games,
DDQN fails to explore sufficiently, e.g., solving none of the levels in relational, preconditions, and
avoidGeorge due to sparse rewards. These results illustrate the difficulty of learning to solve unknown
VGDL games without explicit world modeling.
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