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ABSTRACT

Self-supervised learning (SSL) has emerged as a powerful pretraining strategy to
learn transferable representations from unlabeled data. Yet, it remains unclear how
long SSL models should be pretrained for such representations to emerge. Con-
trary to the prevailing heuristic that longer pretraining translates to better down-
stream performance, we identify a transferability trade-off : across multiple SSL
methods, architectures, and datasets, we observe intermediate checkpoints yield-
ing stronger out-of-domain (OOD) generalization, while models pretrained longer
tend to instead only improve in-domain (ID) accuracy. From this observation, we
hypothesize that SSL progresses through learning phases that can be character-
ized through the lens of critical periods (CP). Prior work on CP has shown that
neural networks trained under supervised learning exhibit early phases of high
plasticity, followed by a consolidation phase where adaptability declines but task-
specific performance keeps increasing. Since traditional CP analysis depends on
supervised labels, for SSL we rethink CP in two ways. First, we inject deficits
to perturb the pretraining data and measure the quality of learned representations
via downstream tasks. Second, to estimate network plasticity during pretraining
we compute the Fisher Information matrix on pretext objectives, quantifying the
sensitivity of model parameters to the supervisory signal defined by the pretext
tasks. We conduct several experiments to demonstrate that SSL models do ex-
hibit their own CP, with CP closure marking a sweet spot where representations
are neither underdeveloped nor overfitted to the pretext task. Leveraging these in-
sights, we propose CP-guided checkpoint selection as a mechanism for identifying
intermediate checkpoints during SSL that improve OOD transferability. Finally,
to balance the transferability trade-off, we propose CP-guided self-distillation,
which selectively distills layer representations from the sweet spot (CP closure)
checkpoint into their overspecialized counterparts in the final pretrained model.

1 INTRODUCTION

Self-supervised learning (SSL) leverages pretext tasks (e.g., contrasting views or predicting masked
inputs) to learn representations from unlabeled data that transfer well to downstream tasks (Ozbulak
et al., 2023; Gui et al., 2024). While prior work has studied how well SSL models transfer (Erics-
son et al., 2021a), why they transfer (Ericsson et al., 2021b), and under what conditions they suc-
ceed (Tian et al., 2020; Zhao et al., 2020; Cole et al., 2022; Dubois et al., 2022; 2023), it remains
unclear how long to pretrain SSL models for transferable representations to emerge.

Without knowing when the SSL model has learned enough from its pretext task, pretraining risks
both under- and over-training. Stopping too early yields underdeveloped representations, such that
a common practice is that longer pretraining is beneficial (Chen et al., 2020; He et al., 2022). How-
ever, pretraining for too long increases computational costs and risks overfitting to pretraining biases.

Determining the optimal pretraining duration is difficult because SSL objectives are only implicitly
aligned with downstream transferability (Balestriero et al., 2023; Reizinger et al., 2025). Typi-
cally, the quality of SSL representations is assessed after pretraining via linear probing or fine-
tuning (Chen et al., 2020; Kumar et al., 2022; Balestriero et al., 2023). Such post-hoc evaluation is
costly to repeat across tasks and, more importantly, provides no guidance during pretraining about
whether learned representations are underdeveloped or already overspecialized to the pretext task.
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Figure 1: (Left) Conceptual schematic of downstream performance of SSL models across a sequence
of pretrained checkpoints. In-domain (ID) downstream performance increases with pretraining.
Out-of-domain (OOD) transferability, however, peaks at an intermediate checkpoint and declines
thereafter, indicating that broadly transferable representations emerge early in pretraining. (Right)
Conceptual schematic of Fisher Information (FI) dynamics during SSL pretraining. The curve shows
three phases. Phase 1 (Plasticity) shows a rise in FI when representations are highly sensitive to
changes. Phase 2 (Consolidation), where FI declines and plateaus as representations stabilize. The
Critical Period (CP) closes once FI levels off into a plateau, but before the phase enters Phase 3
(Overspecialization), where FI remains stable but OOD transferability declines due to overtraining.
Red shading highlights the loss of transferability beyond CP closure. (Takeaway) The end of CP
marks a sweet spot where representations are neither underdeveloped nor overfitted to pretext biases.

By evaluating checkpoints across the SSL pretraining trajectory (Figure 1, left) we identify a trans-
ferability trade-off: intermediate checkpoints often achieve better out-of-domain (OOD) transfer
than later checkpoints, whereas extended pretraining gives higher in-domain (ID) performance. This
pattern implies that pretraining does not simply yield representations that improve uniformly across
domains. Instead, we hypothesize that SSL progresses through distinct learning phases where the
properties of the learned representations shift: early phases support OOD generalization, while later
phases specialize toward the pretraining data distribution and improve ID accuracy.

To build intuition, we draw on the notion of critical periods (CP). Prior work (Achille et al., 2018)
reports that, much like in biological systems, neural networks exhibit CP: they undergo an early win-
dow of high plasticity (when representations are highly sensitive to changes) followed by a consoli-
dation phase (when representations stabilize and adaptability declines). In supervised learning, these
phases were revealed through perturbation experiments, where temporary distortions of the training
data (e.g., perturbing inputs mid-training) permanently impaired generalization if applied during
early epochs but had little effect if applied later. This temporal sensitivity can be explained through
Fisher Information (FI) (Fisher, 1925), which quantifies how strongly small parameter changes af-
fect model predictions and serves as a proxy for information plasticity (Achille et al., 2018; Berariu
et al., 2021). Early in training, FI rises and plasticity is high, so perturbations strongly reshape
representations and leave lasting effects. As training continues, FI declines and representations con-
solidate, so later perturbations have little impact. Overall, CP analyses reveal when representations
are adaptable or rigid, which may offer insight into transfer dynamics (Achille et al., 2018).

Yet critical periods (CP) have not been studied in SSL, where transferability between pretraining and
downstream tasks is key. Unlike supervised learning, SSL derives its supervisory signal from the
structure of the data rather than explicit labels, making prior CP analyses inapplicable. We therefore
reformulate CP analyses to track information plasticity during SSL without downstream supervision.
This is achieved in two ways: (1) applying perturbations during pretraining to test stage-wise effects
on downstream transferability, and (2) redefining Fisher Information with respect to pretext tasks.

We find that SSL models also undergo a structured progression (Figure 1, right). During SSL pre-
training, Fisher Information (FI) rises sharply, indicating a phase of high plasticity in which repre-
sentations are highly sensitive to updates. FI then declines and stabilizes, marking a consolidation
phase where task-irrelevant variability is discarded and representations lose sensitivity to new infor-
mation. We identify CP closure at the end of consolidation: representations are sufficiently devel-
oped for transfer, but not yet overfitted to the pretext task. Beyond CP closure, FI further stabilizes
but OOD generalization degrades, revealing a previously undefined stage of overspecialization.
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This pattern helps explain our empirical findings that intermediate SSL checkpoints often transfer
better OOD than later checkpoints: before CP closure, models retain plasticity that supports gener-
alization beyond the pretraining distribution, while later checkpoints past CP closure have anchored
to pretext-specific biases. Although the timing of these transitions varies across SSL methods, ar-
chitectures, and datasets, the presence of critical periods is consistent.

Building on these observations, we show that critical periods provide a guide to steer SSL. CP-
guided checkpoint selection uses CP closure as an unsupervised indicator, favoring OOD transfer,
while pretraining beyond closure prioritizes ID performance. To balance this trade-off, we pro-
pose CP-guided self-distillation: during fine-tuning, we distill early-layer features from CP-selected
checkpoints into the early layers of longer-pretrained models while leaving later layers intact.

Our contributions can be summarized as follows:

• We reveal a transferability trade-off in SSL pretraining. Across SSL methods, architec-
tures, and datasets, intermediate checkpoints often yield stronger out-of-domain (OOD)
transferability, while models pretrained longer tend to improve in-domain (ID) accuracy.
This calls for rethinking the standard practice in SSL that longer pretraining translates to
better representations for downstream tasks (§2).

• We connect this phenomenon to the notion of critical periods (CP), providing the first study
of CP in SSL and their impact on transferability. Since SSL objectives differ from super-
vised learning, we reformulate CP analyses for SSL by introducing perturbations into pre-
training and redefining Fisher Information in terms of pretext tasks rather than downstream
labels. These analyses reveal that SSL models also exhibit their own CP (§3).

• We identify a previously uncharacterized overspecialization phase, where prolonged pre-
training anchors models to pretext-specific biases and reduces OOD generalization. Build-
ing on this insight, we propose two interventions: CP-guided checkpoint selection, which
uses CP closure to identify intermediate checkpoints with stronger OOD robustness, and
CP-guided self-distillation, which restores early-layer features from CP checkpoints into
later checkpoints to recover OOD performance while retaining ID strength (§4).

2 DOES LONGER SELF-SUPERVISED PRETRAINING ALWAYS IMPROVE
DOWNSTREAM TRANSFERABILITY?

Prior work in self-supervised learning (SSL) reported that longer pretraining improves downstream
performance (Goyal et al., 2019; Chen et al., 2020; He et al., 2022). This has led to the de facto prac-
tice of pretraining SSL models for as long as compute budgets allow. We show that this improvement
does not universally hold. Instead, we observe a transferability trade-off: while extended pretrain-
ing improves in-domain (ID) performance, it often diminishes out-of-domain (OOD) transferability.

2.1 EXPERIMENTAL SETUP

To analyze the effect of pretraining duration broadly across methods, architectures, and datasets,
we experiment with two main families of SSL. For discriminative SSL, we include both con-
trastive (SimCLR (Chen et al., 2020)) and non-contrastive methods (VICReg (Bardes et al., 2021),
DINO (Caron et al., 2021)). For generative SSL, we use MAE (He et al., 2022). For architectures,
we use ResNet-50 (SimCLR, VICReg) and ViT-B16 (DINO, MAE), covering convolutional and
transformer-based backbones. Across these schemes, optimizers used vary between SGD, LARS,
and AdamW. For datasets, we pretrain on ImageNet-1K (Deng et al., 2009) (large-scale natural
imagery) and fMoW-RGB (Christie et al., 2018) (large-scale satellite imagery).

We pretrain each model from scratch for 1000 epochs, saving checkpoints every 50 epochs. Down-
stream transfer is evaluated along two dimensions (Marks et al., 2025). In-domain (ID) performance
is measured by fine-tuning on labeled versions of the pretraining data and reporting accuracy on its
held-out test set. Out-of-domain (OOD) performance is measured by fine-tuning on datasets out-
side the pretraining distribution and evaluating on their test sets. For each checkpoint, we fine-tune
and compare against the model pretrained for 1000 epochs, which we refer to as final checkpoints.
Details on pretraining, downstream settings and datasets are provided in Appendix A.
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2.2 RESULTS

Figure 2 shows downstream transfer performance of SSL models across pretraining durations.
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Figure 2: Transferability trade-off in SSL. The x-axis shows a sequence of checkpoints (every 50
epochs), and the y-axis shows downstream performance relative to the final checkpoints.

Extended pretraining induces a transferability trade-off along the pretraining data distribu-
tion We find that OOD transfer peaks at intermediate checkpoints and declines thereafter, while ID
performance continues to rise (Figure 2). For example, VICReg-RN50 reaches its highest OOD
accuracy around 350 epochs before dropping. A similar trend appears for MAE and DINO with
ViT-B16: OOD transfer rises early, peaks, and then declines, while ID performance on fMoW-val
continues to increase. SimCLR-RN50 follows the same trade-off but peaks later, around 850 epochs.
This divergence indicates that intermediate checkpoints yield broadly transferable representations,
though the exact timing varies by method, with later checkpoints increasingly specializing to the
pretraining distribution. ImageNet-based results show a similar trend, as reported in Appendix B.

3 CRITICAL PERIODS IN SELF-SUPERVISED LEARNING

Insights from Section 2 raise the question: why do different stages of pretraining yield such different
transfer properties? We hypothesize that SSL pretraining progresses through structured learning
phases. To examine this, we draw on the notion of critical periods (CP). Prior work shows that
neural networks undergo phases of early plasticity, when representations are highly sensitive to
change, followed by reduced plasticity and consolidation (Achille et al., 2018; Kim et al., 2023).
Yet whether such phases exist in SSL, and how they relate to transferability, remains unexplored. If
SSL models pass through periods of heightened plasticity followed by stabilization, these transitions
may underlie the observed transferability trade-off. Probing when plasticity is present or lost during
pretraining offers a way to map the learning phases and examine their link to transferability.

To investigate possible explanations, in the next section we revisit critical period analyses in su-
pervised learning (§3.1), followed by its reformulation for SSL via two approaches: perturbation
experiments on pretraining data (§3.2) and Fisher Information on pretext objectives (§3.3).

3.1 PRIOR CRITICAL PERIOD ANALYSES REQUIRE RETHINKING FOR SSL

How critical periods have been studied in supervised learning (SL). Prior work identifies critical
periods in SL in two ways (Achille et al., 2018). First, perturbation experiments probe whether the
timing of perturbations matters. If altering the input distribution early in training degrades final ac-
curacy, while the same change later has little effect, this marks a critical early phase. Second, Fisher
Information (FI) (Fisher, 1925) analysis provides a continuous marker of plasticity. Computed with
respect to class-label likelihoods, FI quantifies the sensitivity of model predictions to small parame-
ter changes. Intuitively, a rise in FI reflects heightened plasticity, when the network is responsive to
updates and can reorganize its representations. As FI declines, plasticity decreases and the network
consolidates what it has learned, becoming less adaptable to new information (Achille et al., 2018).

Why critical periods analyses must be rethought for SSL. Both approaches assume labeled data,
but SSL pretraining is decoupled from labels and optimizes proxy objectives on unlabeled data. One
could study critical periods during fine-tuning, when downstream labels are available, but this only
reveals how a fixed representation adapts to one task, not how transferable representations emerge
during pretraining. Our focus is SSL pretraining itself, since this stage defines a generic prior aimed
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at broad downstream applicability. Formally, pretraining on unlabeled data DA produces a posterior
p(θ | DA), which serves as the prior for downstream data DB . To capture how this prior evolves,
critical periods must be analyzed during pretraining, not after.

Probing critical periods in SSL. To study critical periods in SSL, we introduce two probes during
pretraining. (1) Deficit injection on the unlabeled pretraining data perturbs the input distribution.
The pretext task remains unchanged, but the self-supervision signal is degraded (e.g., input pertur-
bations remove fine-grained cues, making data pairs harder to align or reconstructions less informa-
tive). By varying when deficits are introduced and measuring their impact on downstream transfer,
we can identify phases when representations are more or less sensitive to change. (2) Fisher Infor-
mation on pretext objectives quantifies the sensitivity of model parameters to the supervisory signal
defined by the pretext tasks. Tracking FI over pretraining reveals when parameters remain adaptable
and when they consolidate, which is crucial in SSL since the value of pretraining lies in producing
transferable representations. Identifying when representations are still malleable versus when they
have committed helps explain when they are effective for downstream transfer.

3.2 PROBE 1: DEFICIT INJECTION ON UNLABELED PRETRAINING DATA

The central question is: does the impact of input perturbations during SSL pretraining depend on
when they occur? If perturbations early in pretraining change the final representations, as reflected
in downstream performance, while the same perturbations later in pretraining have little effect, then
the SSL model exhibits a critical period.

Let D = {xi}Ni=1 denote samples from a clean distribution p(x). A model learns a representation
function fθ : X → Rd with parameters θ, trained with a self-supervised loss ℓSSL(fθ(x)), such as
contrastive loss or reconstruction error.

To inject a deficit, we replace clean training samples with data drawn from a perturbed distribution
p′(x) starting at onset epoch t0 and lasting for a duration of ∆t epochs. After this window, training
resumes on clean data until epoch T , where T > t0 +∆t.

We denote the encoder trained entirely on clean data as fθ∗ (baseline) and the encoder trained with
a deficit window as fθ′ . To quantify the effect of the intervention, we compare downstream transfer
performance between these models. Let Φ(·) denote a downstream evaluation metric (e.g., classifi-
cation accuracy). The sensitivity score is defined as

S(t0) = Φ(fθ∗)− Φ(fθ′). (1)

This score reflects the relative degradation in downstream performance caused by the intervention.
A critical period exists if early interventions consistently yield higher sensitivity than later ones.

Deficit Settings. Following prior work (Achille et al., 2018), we simulate sensory deprivation by
replacing inputs with Gaussian noise. For SSL methods, the pretext objectives (e.g., contrastive
alignment or masked reconstruction) continue updating during the deficit window, but the super-
visory signal comes from noise rather than meaningful images. As a result, the model learns nui-
sances that are not useful for downstream transfer. Each deficit is applied for a fixed window (5,
30, 50 epochs) at varying onset times t0: early (epoch 0), middle (epoch 450), and late (epoch 750),
following (Kleinman et al., 2024). After the deficit window, training resumes on clean inputs (until
epoch T = 1000). We use the same evaluation settings as in Section 2.1.

Early SSL pretraining phases are more sensitive to deficits. Figure 3 shows the sensitivity S(t0)
of learned representations to Gaussian noise deficits introduced at different times during pretraining.

Across all SSL methods, we find that deficits applied at the start of pretraining cause larger degra-
dation than when the same deficits are introduced later. On average across methods and deficit du-
rations, early deficits reduce accuracy by about 14 points, compared to 8 points for middle deficits
and only 3 points for late deficits. SimCLR is the most vulnerable overall, followed by VICReg
and DINO, while MAE is comparatively more robust. While the absolute magnitude of sensitivity
varies by method, the trend is consistent: the beginning of pretraining is a critical window where
perturbations to the data distribution leave long-lasting effects on learned representations. A similar
trend is observed for ImageNet-pretrained SSL models, with results provided in Appendix B.
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Figure 3: Sensitivity S(t0) to input perturbations introduced at different stages of SSL pretraining on
fMoW. Each curve shows the effect of applying noise of varying duration at different phases (early,
middle, late). Higher values indicate stronger lasting degradation in downstream accuracy relative
to a clean baseline. Models are fine-tuned on fMoW-train and evaluated on held-out fMoW-val.

3.3 PROBE 2: TRACKING FISHER INFORMATION ON PRETEXT OBJECTIVES

Perturbation experiments reveal whether temporary interventions have lasting effects, but they do
not explain why sensitivity varies across pretraining. To provide an analytical perspective, we study
the evolution of Fisher Information (FI) (Fisher, 1925) during SSL pretraining. FI measures how
strongly parameters influence the predictive distribution and has been used to quantify parameter
importance (Amari, 1998; Kirkpatrick et al., 2017; Achille et al., 2018). FI is also a positive semi-
definite approximation of the Hessian, capturing local curvature of the loss landscape (Martens,
2020). Unlike the full Hessian, the trace of FI can be estimated efficiently during pretraining.

In SSL, supervision is provided by pretext tasks that define targets y based directly on the in-
put (Balestriero & LeCun, 2024). For instance, in contrastive learning, y specifies positive and
negative pairs from augmentations of x, while in masked image modeling, y denotes masked in-
put regions to be reconstructed. More generally, the model’s approximation of these supervisory
signals can be represented as a conditional distribution pθ(y|x) defined by the model parameters θ,
which governs training (Alshammari et al., 2025). From this perspective, FI computed on pθ(y|x)
quantifies parameter sensitivity to the supervisory signal from pretext tasks. This follows prior work
linking FI to network plasticity (Kirkpatrick et al., 2017; Achille et al., 2018; Lewandowski et al.,
2023): increasing FI corresponds to phases of heightened plasticity, while stabilization of FI reflects
consolidation. These phases indicate when representations are most malleable and when they begin
to resist change, with implications for transferability (Jastrzebski et al., 2021; Berariu et al., 2021).

Consider a model with parameters θ ∈ Rd, trained on inputs x ∼ p̂(x) where p̂(x) is the empirical
distribution of D. To quantify local sensitivity, we consider an infinitesimal perturbation of the
parameters, θ′ = θ + δθ. The effect of this perturbation is measured by the Kullback–Leibler (KL)
divergence between pθ′(y|x) and pθ(y|x). A second-order Taylor expansion gives

Ex∼p̂(x) KL(pθ(y|x) ∥ pθ′(y|x)) = 1
2 δθ

⊤F δθ + o(∥δθ∥2), (2)

where the Fisher Information Matrix (FIM) is

F := Ex∼p̂(x) Ey∼pθ(y|x)
[
∇θ log pθ(y|x)∇θ log pθ(y|x)⊤

]
. (3)

The matrix F characterizes how perturbations to the parameters θ influence the model’s predictive
distribution. Parameter-space directions with large eigenvalues of F correspond to high sensitivity,
whereas directions with small eigenvalues can be altered with minimal impact on model behavior.

Since computing the full FIM is intractable, we use its trace as a scalar measure of total sensitivity:

tr(F ) = Ex∼p̂(x) Ey∼pθ(y|x)
[
∥∇θ log pθ(y|x)∥2

]
. (4)

The trace of F is the expected squared norm of the score function. In practice, we approximate
tr(F ) using gradients of the self-supervised loss with respect to θ, which correspond to gradients of
log pθ(y|x) under the pretext task.

Plasticity peaks, declines, and stabilizes in SSL pretraining. Figure 4 shows Fisher Information
(FI) trajectories during SSL pretraining, providing a quantitative view of how plasticity evolves
over time. Across methods, FI rises early, peaks, and then declines before stabilizing. For example,
VICReg exhibits an FI peak around epoch 50 followed by stabilization around epoch 350. For MAE,
FI rises sharply until about epoch 50, then declines and stabilizes around epoch 150.
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Figure 4: Fisher Information dynamics during SSL pretraining on fMoW.

We define the critical period (CP) as the sequence of epochs before FI stabilizes. During this phase,
the model is highly plastic and representations remain malleable. Once FI stabilizes, the CP is
considered closed: representations commit to existing knowledge and become less sensitive to new
information as task-irrelevant variability is discarded. These dynamics align with the perturbation
experiments in Figure 3. Deficits introduced during the early phase, while the network was still in
its CP, had lasting effects on representation quality. In contrast, deficits introduced after the CP pro-
duced only minor effects because the model had already consolidated and become less responsive to
change. The decline of FI therefore captures a temporal asymmetry in SSL pretraining and provides
an indicator of when the CP is open or closed. ImageNet FI results are provided in Appendix B.

4 CRITICAL PERIODS AS A GUIDE FOR EFFICIENT AND TRANSFERABLE SSL

In the previous section, our analyses revealed that self-supervised learning (SSL) also exhibits crit-
ical periods (CP). Here, we investigate how CP dynamics relate to downstream transferability and
propose two simple yet effective CP-guided interventions for efficient and transferable SSL.

4.1 CONNECTING CRITICAL PERIODS WITH DOWNSTREAM TRANSFERABILITY

To test whether critical periods (CP) relate to transferability trade-offs (§2), we align Fisher Infor-
mation (FI) trajectories with downstream performance across pretraining epochs. Figure 5 shows a
consistent pattern across SSL methods: out-of-domain (OOD) transferability peaks near the point
where FI stabilizes (grey shading marks CP closure), then declines and does not recover, even as
in-domain (ID) accuracy continues to rise. ImageNet-based results are reported in Appendix B.
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Figure 5: Relation between Fisher Information (FI) dynamics and downstream transferability. FI
trajectories (black) are aligned with downstream performance (colored lines) across checkpoints.

The Overspecialization Phase. We define the divergence between rising ID and declining OOD
performance as the onset of an overspecialization phase. After CP closure, representations continue
to specialize on the pretext distribution by discarding variability deemed irrelevant for the pretext
task. While this pruning benefits ID performance, it also discards information that is useful for OOD
transfer, leading to a divergence between the two (Figure 1). This indicates that CP closure provides
a sweet spot where representations are sufficiently learned but not yet overfitted to the pretext task.

Fisher Information dynamics explain delayed trade-offs. As noted in Section 2, SimCLR’s trans-
ferability trade-off emerges later than in other SSL methods. Fisher Information trajectories show
that SimCLR’s critical period closes much later, delaying overspecialization. This is consistent with
evidence that contrastive objectives, which rely on large sets of positives and negatives, converge
more slowly (Chen et al., 2020; 2022; Shah et al., 2022; Tong et al., 2023).
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4.2 CRITICAL PERIOD-GUIDED CHECKPOINT SELECTION (CPCS)

Selecting the right SSL checkpoint is non-trivial, as earlier checkpoints risk underdeveloped repre-
sentations while later ones overspecialize to the pretext task. The finding that OOD transferability
peaks near the end of the critical period (CP) suggests a practical strategy. Rather than defaulting to
the conventional final checkpoint, we propose Critical Period-guided Checkpoint Selection (CPCS),
which leverages Fisher Information (FI) dynamics to identify CP closure checkpoints.

CPCS requires no extra cost post-pretraining and provides a label-free signal for selecting a check-
point at CP closure, which our results show coincides with peak OOD transferability, just before
overspecialization. In practice, one can (i) monitor FI trace across epochs, (ii) detect CP closure
when the FI slope stabilizes (e.g., below a tolerance for p consecutive epochs), and (iii) use this
checkpoint for downstream transfer. This rule-of-thumb narrows the search space: CP closure of-
fers a safe choice when OOD transfer is important, while continuing pretraining beyond CP closure
remains beneficial when ID accuracy is the priority. Additional results are provided in Appendix C.

4.3 CRITICAL PERIOD-GUIDED SELF-DISTILLATION (CPSD)

While intermediate checkpoints exhibit stronger out-of-domain (OOD) generalization, later check-
points continue to achieve higher in-domain (ID) accuracy. This trade-off reflects complementary
properties: CP checkpoints capture broadly transferable features, while post-CP checkpoints spe-
cialize toward pretext-specific signals, increasing alignment with the pretraining distribution.

To mitigate this loss of OOD transferability, we propose CP-guided self-distillation (CPSD), a light
post-pretraining strategy that reuses existing checkpoints. The idea is simple: use the CP checkpoint
as a teacher for the intermediate layers of the post-CP checkpoint (student). During downstream
fine-tuning, we optimize the task loss Ltask (e.g., cross-entropy for classification) together with a
distillation loss applied only to intermediate layers L. The overall objective is

L = Ltask + λ
∑
l∈L

∥f student
l − f teacher

l ∥22, (5)

where λ is a hyperparameter and the last layers are optimized only with Ltask.

The intuition comes from our layer-wise probing analysis (Figure 6): CP checkpoints achieve con-
sistently stronger OOD performance across the network, with the gap largest in the early layers. In
contrast, post-CP checkpoints provide higher ID accuracy in the later layers, reflecting the benefits
of extended pretraining when downstream ID tasks are aligned with the pretraining data distribu-
tion. Crucially, the ID gains in the later layers build on early layers specialized to the pretraining
distribution, which helps explain why stronger ID performance comes at the cost of reduced OOD
generalization. CPSD addresses this trade-off by restoring the early layers of the final checkpoint
toward their CP state to recover OOD robustness, while preserving the late layers of the post-CP
checkpoint to maintain the ID strength gained through extended pretraining.
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Figure 6: Layer-wise probing for OOD transfer (left: VICReg pretrained on fMoW, evaluated on
EuroSAT-Spatial) and for ID performance (right: VICReg pretrained and evaluated on fMoW).

Results. Table 1 reports top-1 accuracy on downstream classification tasks. CP-guided self-
distillation mitigates the ID-OOD trade-off by distilling early-layer features from the CP-guided
checkpoint into the final checkpoint. CPSD not only improves OOD beyond the CP checkpoint but
also preserves ID strength. Distillation settings and additional results are provided in Appendix D.
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Table 1: Downstream classification results after pretraining with VICReg-RN50 on fMoW. Results
are averaged over 3 runs. Results style: best, second best.

Model fMoW-val (ID) fMoW-WILDS (OOD) EuroSAT (OOD) EuroSAT-Spatial (OOD)

Final ckpt (ep. 1000) 0.621 ± 0.021 0.241 ± 0.034 0.864 ± 0.017 0.851 ± 0.028

CP-guided ckpt (ep. 350) 0.610 ± 0.025 0.430 ± 0.031 0.931 ± 0.013 0.912 ± 0.022

CP-guided self-distill 0.617 ± 0.018 0.445 ± 0.029 0.954 ± 0.011 0.925 ± 0.019

5 DISCUSSION & RELATED WORK

In this work, we studied a simple yet underexplored question: how long should we pretrain self-
supervised learning (SSL) models? Contrary to the prevailing heuristic that longer pretraining trans-
lates to better downstream performance (Chen et al., 2020; He et al., 2022), we find that the answer
is more nuanced. Surprisingly, earlier checkpoints achieve stronger out-of-domain (OOD) transfer
than later ones, while the latter improve in-domain (ID) performance. The transferability trade-off
across pretraining duration indicates that SSL undergoes a phase transition, akin to critical periods.

Critical early learning phases. Originating in biology, critical periods refer to windows of height-
ened plasticity during which neural circuits are particularly sensitive to early experience (Kandel
et al., 2000; Hensch, 2004; Knudsen, 2004). A similar effect has been reported in artificial neural
networks: changes in the early training phase shape the final representation, whereas changes later
have limited impact. Input perturbations applied early permanently reduce generalization, while
the same perturbations applied later are recoverable (Achille et al., 2018; Kleinman et al., 2024;
Altıntaş et al., 2025). Moreover, regularization methods (weight decay or data augmentation) only
have large effects when applied early in training (Golatkar et al., 2019; Liu et al., 2020; Kalra
& Barkeshli, 2023). Conceptually, critical periods mark a transition from a high-plasticity stage,
where representations are rapidly formed, to a consolidation stage, where representations stabilize
and task-irrelevant information is discarded (Shwartz-Ziv & Tishby, 2017; Achille et al., 2018).

Exploring critical periods in SSL. Whether SSL exhibits critical periods (CP) similar to super-
vised learning, and how these phases affect downstream transfer, remains unexplored. Building on
recent calls for a temporal perspective on SSL (Simon et al., 2023; Reizinger et al., 2025), we inves-
tigate the emergence of CP in SSL and their impact on transferability. Our results reveal that SSL
pretraining undergoes structured phases: early epochs exhibit high plasticity, while later epochs
consolidate the model into patterns dictated by the pretraining setup. Beyond plasticity and con-
solidation, we identify a subsequent phase of overspecialization that has not been characterized
before. During overspecialization, OOD generalization declines, indicating that representations be-
come increasingly bound to pretraining source data and pretext task. This phased learning dynamics
elucidate when representations are broadly transferable, complementing prior work that investigated
SSL transferability only after full pretraining (Ericsson et al., 2021a;b).

Several implications follow. SSL is often targeted as a pathway to task-agnostic representa-
tions (Qiang et al., 2024; Reizinger et al., 2025). This has fueled the rise of foundation models,
whose general-purpose representations transfer across tasks and domains (Bommasani, 2021). From
this perspective, SSL pretraining defines a distribution over parameters that serves as a prior for all
possible downstream tasks. This prior is only useful to the extent that it supports adaptation, yet
SSL is not devoid of specialization. Even without labels, every pretext objective imposes implicit
supervisory signals (Balestriero & LeCun, 2024; Wang et al., 2024), shaping the invariances and
biases the model encodes. Since downstream tasks are unknown at pretraining time, SSL has no
guidance for distinguishing task-relevant from task-irrelevant variation (Kleinman et al., 2021), so
models may capture nuisances alongside useful features (Xiao et al., 2020; Robinson et al., 2021;
Wang et al., 2022; Bandara et al., 2023; Rabin et al., 2024; Qiang et al., 2025). With extended pre-
training, the prior increasingly aligns with the pretext task, reducing network plasticity. This tension
is salient for foundation models, whose utility depends on SSL producing broadly adaptable priors.

Our analysis centers on vision models, but whether similar phases occur in language or multimodal
settings is an open question. Another direction is to extend critical period analysis to the sample
level, ranking data by when and how long they contribute to learning, which could provide guidelines
for curricula and data-efficient SSL.
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Gül Sena Altıntaş, Devin Kwok, Colin Raffel, and David Rolnick. The butterfly effect: Neural net-
work training trajectories are highly sensitive to initial conditions. In Forty-second International
Conference on Machine Learning, 2025.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Randall Balestriero and Yann LeCun. The birth of self supervised learning: A supervised theory. In
NeurIPS 2024 Workshop: Self-Supervised Learning-Theory and Practice, 2024.

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,
Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, et al. A cookbook of self-
supervised learning. arXiv preprint arXiv:2304.12210, 2023.

Wele Gedara Chaminda Bandara, Celso M De Melo, and Vishal M Patel. Guarding barlow twins
against overfitting with mixed samples. arXiv preprint arXiv:2312.02151, 2023.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith, Razvan Pas-
canu, and Claudia Clopath. A study on the plasticity of neural networks. arXiv preprint
arXiv:2106.00042, 2021.

Rishi Bommasani. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A EXPERIMENTAL DETAILS FROM SECTION 2

A.1 PRETRAINING SETUP

Datasets. We use two large-scale datasets for SSL pretraining, chosen as the standard benchmarks
for natural and satellite imagery. ImageNet-1K (Deng et al., 2009) contains 1.28M training images
and 50K validation images across 1,000 object categories of natural images. fMoW-RGB (Christie
et al., 2018) contains over 1M satellite images spanning 63 building and land-use categories.

Hyperparameters. We follow the official setups from SimCLR (Chen et al., 2020), VICReg
(Bardes et al., 2021), DINO (Caron et al., 2021), and MAE (He et al., 2022). All experiments
use a batch size of 1024 with cosine learning rate schedules. For SimCLR, we use SGD with mo-
mentum 0.9, learning rate 0.3, and weight decay 1×10−4 (replacing the LARS optimizer used in the
original large-batch setup). For VICReg, we use LARS with momentum 0.9, learning rate 0.2, and
weight decay 1×10−6. For DINO, we use AdamW with learning rate 5×10−4 and weight decay
scheduled from 0.04 to 0.4, with student temperature τs = 0.1, teacher temperature τt = 0.07,
and teacher momentum increasing from 0.996 to 1.0. For MAE, we use AdamW with learning rate
1.5×10−4, weight decay 0.05, and masking ratio 0.75. All experiments were run on 8× NVIDIA
A100-SXM4-80GB GPUs with mixed-precision training.

Augmentations. For all SSL methods, we use the official augmentation pipelines. SimCLR
(Chen et al., 2020): contrastive loss with temperature τ = 0.1; random resized cropping (scale
0.08–1.0), random horizontal flipping (p=0.5), color jitter (brightness=0.8, contrast=0.8, satura-
tion=0.8, hue=0.2; p=0.8), random grayscale (p=0.2), and Gaussian blur (p=0.5). VICReg (Bardes
et al., 2021): invariance, variance, and covariance loss weights (25, 25, 1) with the same augmenta-
tion pipeline as SimCLR. DINO (Caron et al., 2021): multi-crop with two global crops (224px,
scale 0.4–1.0) and eight local crops (96px, scale 0.05–0.4). Augmentations include color jitter
(0.8,0.8,0.8,0.2; p=0.8), Gaussian blur (p=1.0 on global crops, p=0.5 on local crops), and solar-
ization (p=0.2 on one global crop). Student and teacher temperatures are τs = 0.1, τt = 0.07, and
teacher momentum increases from 0.996 to 1.0. MAE (He et al., 2022): masking ratio 0.75 with
random cropping (224px) and random horizontal flipping (p=0.5).

A.2 DOWNSTREAM SETUP

Tasks. Our primary downstream task is image classification, and we follow the definition of in-
domain (ID) and out-of-domain (OOD) transfer from (Marks et al., 2025). After pre-training, models
are fine-tuned on a labeled downstream dataset and evaluated on its held-out split. ID transfer is
where the downstream dataset matches the pre-training distribution. OOD transfer is where the
downstream dataset differs from the pre-training distribution.

Datasets. For models pretrained on ImageNet-1K, ID transfer is measured by fine-tuning on the
ImageNet-1K training set and evaluating on the validation set. OOD transfer reflects shifts away
from this source. We consider three OOD datasets. Stanford Cars (Krause et al., 2013) for fine-
grained object recognition, CUB-200 (Wah et al., 2011) for fine-grained natural categories, and
SUN397 (Xiao et al., 2010) for scene recognition.

For models pretrained on fMoW-RGB, ID transfer is measured on the held-out fMoW-RGB valida-
tion split. We consider three OOD datasets. fMoW-WILDS (Koh et al., 2021) partitions the same
dataset by geographic region, inducing spatial domain shifts. EuroSAT (Helber et al., 2019) uses
Sentinel-2 imagery with a different sensing modality. EuroSAT-Spatial (Stewart et al., 2022) uses
the same EuroSAT data but splits data along longitude to induce spatial distribution shifts.

Evaluation. We follow standard evaluation protocols in SSL (Balestriero et al., 2023). Models are
evaluated using top-1 classification accuracy on the held-out validation or test split of each down-
stream dataset. We use official splits when available and adopt a standard 80/20 split otherwise. For
ResNet backbones, we fine-tune with SGD (momentum 0.9) for 100 epochs using batch size 256,
a cosine learning rate schedule with base LR 0.1, and weight decay 10−4. For ViT backbones, we
fine-tune with AdamW for 100 epochs using batch size 256, a cosine learning rate schedule with
base LR 5× 10−4, and weight decay 0.05.
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B IMAGENET-BASED RESULTS

Transferability Trade-Off in SSL (§2). Figure 7 shows that the trade-off between in-domain (ID)
and out-of-domain (OOD) performance is present in ImageNet-pretrained models.
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Figure 7: The x-axis shows a sequence of checkpoints (every 50 epochs), and the y-axis shows
downstream performance relative to the final checkpoints.

Representation Sensitivity to Perturbations (§3.2). Figure 8 shows that in ImageNet-pretrained
models, sensitivity to input perturbations is highest during the early phase of pretraining.
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Figure 8: Sensitivity to input perturbations during pretraining reflected in downstream performance.

Fisher Information Dynamics in SSL (§3.3). Figure 9 shows that ImageNet-pretrained models
follow a pattern where Fisher Information rises early, peaks, and then declines before stabilizing.
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Figure 9: Fisher Information dynamics during SSL pretraining on ImageNet-1K.

Critical Periods and Transferability (§4.1). Figure 10 shows that in ImageNet-based models,
OOD peaks near CP closure before declining, while ID continues to rise (overspecialization).
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Figure 10: FI trajectories (black) are aligned with downstream performance (colored lines).
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C ADDITIONAL: CRITICAL PERIOD-GUIDED CHECKPOINT SELECTION

Additional SSL Method (DINOv2). We also use DINOv2 (Oquab et al., 2023), a state-of-the-art
SSL method that combines image-level and patch-level objectives. Incorporating DINOv2 allows
us to test whether critical periods also emerge in this setting and whether our findings still hold.

Setting. We pretrain DINOv2 with an EMA teacher and a student trained using AdamW with a
cosine warmup schedule. Weight decay is annealed from 0.04 to 0.4 with a cosine schedule. The
loss combines an image-level DINO objective (class tokens), a patch-level iBOT objective (masked
tokens, applied only on the student), and a KoLeo regularizer (λ = 0.1). Teacher momentum is
scheduled from 0.992 to 1.0. We use a ViT-S/16 backbone with DropPath 0.1, LayerScale 10−5,
and standard DINO multi-crop augmentations. For evaluation, we follow Appendix A.2.

Results. Figure 11 shows the Fisher Information (FI) dynamics during pretraining and their relation
to downstream transfer for DINOv2. In Figure 11 (left), FI rises sharply at the start of pretraining
but rapidly decays and stabilizes by epoch 200-250, indicating closure of the critical period. As
shown in Figure 11 (right), using checkpoints around this closure yields peak OOD performance,
while later training leads to overspecialization: OOD transfer declines and does not recover.
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Figure 11: Analysis of DINOv2-ViT-S16 pretrained on fMoW-RGB.

D ADDITIONAL: CRITICAL PERIOD-GUIDED SELF-DISTILLATION

Setting. For distillation, we use the first residual stage (layer1) of ResNet-50 and the first three
Transformer blocks of ViT-B16 (aligning [CLS] tokens). Models are trained with AdamW for 100
epochs (batch 256, base LR 10−4 with cosine schedule, weight decay 0.05), using λ = 0.5 (Eq. 5).

Table 2: Classification results across methods pretrained on fMoW. Results style: best, second best.

Method fMoW-val (ID) fMoW-WILDS (OOD) EuroSAT (OOD) EuroSAT-Spatial (OOD)

SimCLR-RN50
Final ckpt (ep. 1000) 0.614 ± 0.019 0.401 ± 0.027 0.958 ± 0.012 0.879 ± 0.021

CP-guided ckpt (ep. 850) 0.593 ± 0.022 0.418 ± 0.025 0.960 ± 0.011 0.887 ± 0.018

CP-guided self-distill 0.616 ± 0.017 0.425 ± 0.023 0.971 ± 0.010 0.914 ± 0.016

VICReg-RN50
Final ckpt (ep. 1000) 0.621 ± 0.021 0.241 ± 0.034 0.864 ± 0.017 0.851 ± 0.028

CP-guided ckpt (ep. 350) 0.610 ± 0.025 0.430 ± 0.031 0.931 ± 0.013 0.912 ± 0.022

CP-guided self-distill 0.617 ± 0.018 0.445 ± 0.029 0.954 ± 0.011 0.925 ± 0.019

DINO-ViT-B16
Final ckpt (ep. 1000) 0.707 ± 0.018 0.364 ± 0.027 0.957 ± 0.013 0.887 ± 0.021

CP-guided ckpt (ep. 400) 0.684 ± 0.020 0.434 ± 0.026 0.975 ± 0.012 0.908 ± 0.019

CP-guided self-distill 0.692 ± 0.019 0.440 ± 0.024 0.979 ± 0.011 0.915 ± 0.018

MAE-ViT-B16
Final ckpt (ep. 1000) 0.679 ± 0.020 0.307 ± 0.028 0.930 ± 0.014 0.841 ± 0.023

CP-guided ckpt (ep. 150) 0.609 ± 0.018 0.387 ± 0.027 0.945 ± 0.012 0.858 ± 0.020

CP-guided self-distill 0.638 ± 0.019 0.388 ± 0.026 0.947 ± 0.011 0.861 ± 0.018
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