
Under review as submission to TMLR

Robust Hybrid Learning With Expert Augmentation

Anonymous authors
Paper under double-blind review

Abstract

Hybrid modelling reduces the misspecification of expert models by combining them with
machine learning (ML) components learned from data. Similarly to many ML algorithms,
hybrid model performance guarantees are limited to the training distribution. Leveraging
the insight that the expert model is usually valid even outside the training domain, we
overcome this limitation by introducing a hybrid data augmentation strategy termed expert
augmentation. Based on a probabilistic formalization of hybrid modelling, we demonstrate
that expert augmentation, which can be incorporated into existing hybrid systems, improves
generalization. We empirically validate the expert augmentation on three controlled experi-
ments modelling dynamical systems with ordinary and partial differential equations. Finally,
we assess the potential real-world applicability of expert augmentation on a dataset of a real
double pendulum.

Figure 1: APHYNITY, an existing hybrid modelling strategy, is unable to predict accurately the dynamic of
a 2D diffusion reaction for a shifted test distribution, although it predicts well configurations that follow the
training distribution. APHYNITY+, the same model fine-tuned with our expert augmentation, generalizes to shifted
distributions as expected from the validity of the underlying physics.

1 Introduction

Generalizing to unseen data is crucial to make a model applicable in the real world. When training and test
data are independently and identically distributed (IID), we assess the model generalization on a held-out
subset of the training data. Unfortunately, the training and test scenarios do not entirely overlap in practice.
This observation has motivated many recent research efforts to focus on the robustness of ML models
(Gulrajani & Lopez-Paz, 2020; Geirhos et al., 2020; Koh et al., 2021). Common strategies can be broadly
grouped into two categories. The first class of methods aims to align properties of the model (e.g., invariance,
equivariance or monotonicity) with expertise in the problem of interest (Cubuk et al., 2019; Mahmood et al.,
2021; Keriven & Peyré, 2019; Silver et al., 2017). The second category is data-focused (Sagawa et al., 2019;
Arjovsky et al., 2019; Krueger et al., 2021; Creager et al., 2021), and leverages variations present in the
training data, e.g., some methods minimize the worst-case sub-group performance, to achieve robustness.

The data-oriented methods, which include Group-DRO (Sagawa et al., 2019) and Invariant Risk Minimiza-
tion (Arjovsky et al., 2019, IRM), can be very appealing because they only require implicit specification
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of invariances via domains or environments. However, these methods rely on variations in the training
data, which may be insufficient when the problem is too complex, or the variations of interest are absent
from the training set. On the other hand, methods based on domain-specific expertise do not suffer from
such limitations. Embedding expertise into a model can be done via architectural inductive biases (LeCun
et al., 1995; Xu et al., 2018), data augmentation (Cubuk et al., 2019), or a learning objective that enforces
established symmetries of the problem (Cranmer et al., 2020). For example, simple data augmentation
techniques combined with convolutions lead to excellent performance on natural image problems (Cubuk
et al., 2019). Another natural approach to embedding expertise in ML models, and the one studied in this
paper, is called hybrid learning. This framework combines an expert model (e.g., physics-motivated equations)
with a learned component that improves the expert model so that the combination better fits real-world
data. In hybrid learning, the expert model plays a central role and is supposed to provide a simple and
well-grounded parametric description of the process considered. The expert model is often motivated by the
underlying physics system’s. Hence, we will use the terms expert model and physical model interchangeably.

In recent works (Yin et al., 2021; Takeishi & Kalousis, 2021; Qian et al., 2021; Mehta et al., 2020; Lei
& Mirams, 2021; Reichstein et al., 2019), hybrid learning demonstrated success in complementing partial
physical models and improving the inference of the corresponding parameters. We observe that current hybrid
learning algorithms are sub-optimal in the amortized inference setting – when we aim to build hybrid models
that are valid for various test configurations. Contrary to the common belief that hybrid learning achieves
better generalization than black box ML models, we argue and demonstrate that hybrid learning algorithms
do not yet meet their promise regarding robustness in amortized settings. Although hybrid learning achieves
strong performance on IID test distributions by exploiting the inductive bias of the expert models, their
performance collapses when the test domain is not included in the training domain. This is unsatisfactory as
the expert model is typically well-defined far outside the training distribution.

A test distribution not covered by the training data but for which an expert model exists often happens in
the real world. For instance, Qian et al. (2021) apply hybrid learning to a pharmacological model describing
the effect of a COVID-19 treatment for which only a limited quantity of real-world data is available. In
this context, although the underlying biochemical dynamic of treatments is well modelled, data is often
scarce and biased. Therefore, the hybrid model does not necessarily generalize to configurations that the
pharmacological model well models if they are not part of the training set.

We introduce expert augmentations for training augmented hybrid models (AHMs), a procedure that extends
the range of validity of hybrid models and improves generalization, as pictured by Figure 1. Our contribution
is to first formalise the hybrid learning problem as: 1) Learning a probabilistic model partially defined by the
expert model; 2) Performing inference over this probabilistic hybrid model. In this context, we show that
hybrid learning is vulnerable to distribution shifts for which the expert model is well defined (see Figure 1,
bottom row). Motivated by our analysis, we propose to fine-tune the hybrid model on an expert-augmented
dataset that includes distribution shifts (see results of augmentation in Figure 1, middle row). These expert
augmentations only rely on the hybrid model itself, leveraging that the expert model is also well-defined
outside of the training distribution. Our experiments on various controlled problems demonstrate that
AHMs improve the generalization capabilities of state-of-the-art hybrid learning algorithms on synthetic and
real-world data in the amortize setting.
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Figure 2: A hybrid probabilistic model
which describes the relationship between
a given input X and the output Y for
a configuration of the system as defined
by the latent variables Ze and Za. The
prescribed expert model defines the con-
ditional density p(ye|ze, x), where Ye is
an approximation of Y . Hybrid learning
aims at learning the conditional distribu-
tion p(y|za, ye, x).

Algorithm 1 Expert augmented hybrid learning
1: D := {(x(i), y(i))}Ni=1 ∈ (X × Y)N ▷ A training set
2: qψ(za, ze|x, y) ▷ A parametric encoder
3: p(ye|x, ze) ▷ An expert model
4: pθ(y|x, ye, za) ▷ A parametric interaction model
5: l(x, y, θ, ψ) ▷ A hybrid learning objective function
6: p+(ze) ▷ A prior distribution on ze that covers both train and test

scenarios
7: procedure Training
8: ψ⋆, θ⋆ ← arg minψ,θ E(x,y)∼D [l(x, y, θ, ψ)]
9: θ⋆ is frozen.

10:
+

D ← GenerateAugmentedSet
11: D ←

+

D ∪D
12: Finetuning the encoder on the augmented training set:
13: ψ⋆ ← arg min

ψ
E(x,y)∼D [l(x, y, θ⋆, ψ)]

− E
(x,y,ze)∼

+
D

[log qψ(ze|x, y)]
(1)

14: return ψ⋆, θ⋆

15: end procedure
16: procedure GenerateAugmentedSet
17:

+

D ← {}
18: for each (xo, yo) ∈ D do
19: za ∼ qψ⋆(za, ze|xo, yo)
20: ze ∼ p+(ze)
21: ye ∼ p(ye|x, ze)
22: y ∼ pθ⋆(y|x, ye, za)
23:

+

D ←
+

D ∪ {(xo, y, ze)}
24: end for
25: return

+

D
26: end procedure

2 Hybrid learning

In order to show that our proposed expert augmentations lead to robust models, we first formalize hybrid
learning with the probabilistic model depicted in Figure 2. In this Bayesian network, capital letters denote
random variables (e.g., Y ) and, in the following, we will use calligraphic letters for the domain of the
corresponding realization (e.g., y ∈ Y). In our formalism, the expert model is a conditional density p(ye|x, ze)
that describes the distribution of the expert response Ye to an input x together with a parametric description
of the system ze, denoting expert or physical parameters. We augment the expert model with the interaction
model which is a conditional distribution p(y|x, ye, za) that describes the distribution of the observation Y
given the input x, the expert model response ye, and a parametric description of the interaction model za.

Our goal is to create a robust predictive model p(y|x, (xo, yo)) of the random variable Y , given the input
x together with independent observations (xo, yo) of the same system, where the subscript o denotes an
observed quantity. As a concrete example, we consider predicting the evolution of a damped pendulum
(described in Section 4.1) given its initial angle and speed (x =

[
θ, θ̇

]
) and a sequence of observations of the

same pendulum. The expert model we assume is able to describe a frictionless pendulum whose dynamic
is only characterized by one parameter ze := ω0, denoting its fundamental frequency. The expert model is
misspecified. It does not model the friction with a second parameter za := α, the damping factor. In this
problem, (xo, yo) and (x, y) are IID realization of the same pendulum which corresponds, in general terms, to
samples from p(x, y|za, ze) for some fixed but unknown values of za and ze. The expert variables ze (e.g.,
ω0) together with za (e.g., α) should accurately describe the system that produces Y (e.g., the evolution of
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the pendulum’s angle and speed along time) from X (e.g., the initial pendulum’s state). In our setting we
assume that we are given a pair (xo, yo) (e.g., past observations) from which we can accurately infer the state
of the system (za, ze) as described by the interaction and expert models, and then predict the distribution of
Y for a given input x (e.g., forecasting future observations) to the same system. Provided all probability
distributions in Figure 2 are known, the Bayes optimal hybrid predictor pB is

pB(y|x, (xo, yo)) = Ep(za,ze|(xo,yo)) [p(y|x, za, ze)] , (2)

as shown in Appendix E. In the amortized setting, we aim to learn a model of both the predictive model
p(y|x, za, ze) and of the posterior over the parameters p(za, ze|(xo, yo)). We will see that existing hybrid
learning algorithms neglect the importance of building a robust encoder p(za, ze|(xo, yo)) to make predictions
in out-of-distribution (OOD) settings. We expect that the interaction between ze and y is essentially defined
by the expert model thus it should be possible, and preferable, to learn an predictive model of Y whose
performance guarantees are as independent as possible from the training distribution of the expert variables ze.
Indeed, the range of validity of the expert model might be broader then the observed training configurations.
However, we demonstrate below that existing algorithms’ performance collapses when the distribution of ze
shifts. The expert augmentation introduced in this paper improves the robustness of hybrid models to such
shifts.

2.1 Hybrid generative modelling

We consider expert models that are deterministic; that is, for which pθ(ye|x, ze) is a Dirac distribution. The
expert model describes the system as a function fe : X ×Ze → Ye that computes the response ye to an input
x, parameterized by expert variables ze. The goal of hybrid modelling is to augment the expert model with a
learned component from data as depicted in Figure 2. Formally, given a dataset D = {(x(i), y(i))}Ni=1 of N
IID samples, we aim to learn the interaction model pθ(y|x, ye, za) that fits the data well but is close to the
expert model. For example, we could define closeness via a small L2-distance between expert and hybrid
outputs or via a small Kullback-Leibler (KL) divergence between the marginal distributions of Y and Ye.

Learning a model that is close to the expert model and fits the training data well is a hard problem. However,
the APHYNITY algorithm (Yin et al., 2021) and the Hybrid-VAE (Takeishi & Kalousis, 2021, HVAE) are
two recent approaches that offer promising solutions to this problem. We now briefly describe how they these
methods approximate the Bayes optimal predictor of Equation (2). Our augmentation strategy is compatible
(and effective) with both approaches.

APHYNITY. Yin et al. (2021) formulate hybrid learning in a context where the expert model is an
ordinary differential equation (ODE). They consider an additive hybrid model that should perfectly fit
the data, which is equivalent to assuming the conditional distribution pθ(y|x, ye, za) is a Dirac distribution.
Formally, they solve the optimization problem

min
ze,Fa

||Fa|| s.t. ∀(x, y) ∈ D,∀t,dyt
dt

= Fe(yt) + Fa(yt)

with y0 := x, (3)

where || · || is a norm operator on the function space, Fa : Yt×Za → Yt is a learned function, Fe : Yt×Ze → Yt
defines the expert model and D is a dataset of initial states x := y0 and sequences y ∈ Y := (Yt)k, where k
is the number of observed timesteps. APHYNITY solves this problem with Lagrangian optimization and
Neural ODEs (Chen et al., 2018) to compute derivatives. In the context of ODEs, the random variable X is
the initial state of the system at t0 and Y is the observed sequence of k states between t0 and t1.

This formulation only considers learning a missing dynamic for one realization of the system described by
Figure 2, for a single za and ze. However, we are interested in learning a hybrid model that works for the
full set of systems described by Figure 2. As suggested in Yin et al. (2021), we use an encoder network
gψ(·, ·) : X ×Y → Za×Ze that corresponds to a Dirac distribution located at gψ as the approximate posterior
qψ(za, ze|x, y). The interaction model is a product of Dirac distributions whose locations correspond to the
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solution of the ODE

dyt
dt

= Fe(yt, ze) + Fa(yt, za; θ), y0 := x. (4)

Hence the corresponding approximate Bayes predictor replaces the parameters (za, ze) in Equation (4) with
the prediction of gψ and predicts a product of Dirac distributions.

Hybrid-VAE (HVAE). In contrast to APHYNITY, the hybrid-VAE proposed by Takeishi & Kalousis
(2021) is not limited to additive interactions between the expert model and the ML model, nor to ODEs.
Instead, their goal is to learn the generative model described by Figure 2. They achieve this with a variational
auto-encoder (VAE) where the decoder specifically follows Figure 2. Similarly to the amortized APHYNITY
model, the encoder gψ(x, y) predicts a posterior distribution over za and ze, and the model is trained with
the classical Evidence Lower Bound on the likelihood (ELBO). Takeishi & Kalousis (2021) observe that
relying only on an architectural inductive bias and maximum likelihood training is not enough to ground the
generative model to the expert equations. They propose to add three regularizers RPPC , RDA,1, and RDA,2
that encourage the generative model to rely on the expert model. The final objective is

max
θ,ψ

ED [ELBO((x, y);ψ, θ)] + αRPPC + βRDA,1 + γRDA,2. (5)

The first regularizer, RPPC , encourages the marginal distribution of samples generated by the complete
model to be close to the marginal distribution that would be only generated by the physical model. The two
other regularizers specifically require the encoder network for ze to be made of two sub-networks. The first
network filters the observations to keep only what can be generated by the expert model alone, and the second
should map the filtered observations to the posterior distribution over ze. RDA,1 penalizes the objective if
the observations generated by the expert model are not close to the filtered observations. Finally, RDA,2
relies on data augmentation with the expert model to enforce that the second sub-network correctly identifies
the expert variables ze when the observations are correctly filtered. We refer the reader to Appendix B
and Takeishi & Kalousis (2021) for more details on HVAE. For HVAE, the approximate predictor takes the
form described by Equation (2) where p(za, ze|(xo, yo)) is approximated by the encoder qψ(za, ze|x, y) and
p(y|x, za, ze) by the learned hybrid generative model.

Ze

Z̃e
+

Ze
+

ΩΩ̃
Ω Za

∗
Za

p(ze|x, y) ≈ qψ(ze|x, y)︸ ︷︷ ︸

︷ ︸︸ ︷
p(x, y|ze) = Ep(za)p(ye|x,ze)[p(x)p(y|x, ye, za)]

≈ Ep(za)p(ye|x,ze)[p(x)pθ(y|x, ye, za)]
Figure 3: Visualization of the distribution shifts considered in this work. The train support Ω of (x, y) results from
(za, ze) ∈ Za × Ze. The test supports (in red) are denoted with a tilde symbols as Z̃e for ze and Ω̃ for (x, y). The
augmented support

+
Ω (in green) includes both train and test scenarios and corresponds to (za, ze) ∈ Za ×

+
Ze. The

outer violet domain that includes
+
Ω depicts one of our experiment in which the domain of za is also shifted. Hybrid

modelling algorithms alone may learn a mapping pθ :
+
Ze →

+
Ω but augmentation is necessary to learn the inverse

mapping qψ :
+
Ω →

+
Ze.

3 Robust hybrid learning

We now formalize our definition of out of distribution (OOD) and robustness. In general, a test scenario is
OOD if the joint test distribution p̃(x, y) is different from the training distribution p(x, y), that is d(p̃, p) > 0
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for any properly defined divergence or distance d. In the following, we reduce our discussion to a sub-
class of distribution shifts for which the marginal train and test distributions over ze may be different,
d(p(ze), p̃(ze)) > 0, but the marginals of za and x are constant. As a consequence, the joint distribution of
(x, y) pairs is also shifted. Formally, the training and test distributions are respectively defined as

p(x, y) := Ep(ze)p(za)p(ye|x,ze) [p(x)p(y|x, ye, za)] ,
p̃(x, y) := Ep̃(ze)p(za)p(ye|x,ze) [p(x)p(y|x, ye, za)] .

In this context, we demonstrate, theoretically and empirically, that classical hybrid models fail. To address
this failure, we introduce augmented hybrid models and show that, under some assumptions, they achieve
optimal performance on both the train and test distributions.

Our goal is to learn a predictive model

pθ,ψ(y|x, (xo, yo)) = Eqψ(za,ze|xo,yo)
p(ye|x,ze)

[pθ(y|x, ye, za)]

that is exact on both the train and test domains when they follow the aforementioned training and testing
distribution shifts. We say that a learned predictive model p̂(a|b) is E-exact, or exact on the sample space E ,
if p̂(a|b) = p(a|b) ∀(a, b) ∈ E . Here we qualify a predictive model as robust to a test scenario if its exactness
on the training domain is sufficient to ensure exactness on the test domain.

We now define an augmented distribution +
p(ze) over the expert variables whose support

+

Ze includes the
joint support Ze ∪ Z̃e between the train and test distribution of the physical parameters. As depicted in
Figure 3, we denote the corresponding support over the observation space X × Y as

+

Ω for the augmented
distribution, Ω for the training distribution, and Ω̃ for the test distribution. In this context, and with A1, we
may demonstrate that even under perfect learning, classical hybrid learning algorithms do not produce an
Ω̃-exact predictor while our augmentation strategy does.

Assumption 1 (A1): Hybrid modelling learns an interaction model pθ(y|ye, x, za) that is
+

Ω-exact.

Although strong, A1 is consistent with the recent literature on hybrid modelling, which assumes that the
expert model p(ye|x, ze) is an accurate description of the system, thereby the interaction model pθ(y|ye, x, za)
should not be overly complex. As an example, we consider an additive interaction model in our experiments
for which extrapolation to unseen ye holds if the additive assumption is correct. That said, we still notice
that the exactness of the interaction model pθ on the augmented support

+

Ω is insufficient to prove that the
predictive model pθ,ψ is

+

Ω-exact. Indeed, the encoder qψ is only trained on the training data and cannot rely
on a strong inductive bias in contrast to pθ. Thus, even if the encoder is exact on the training distribution,
the corresponding predictive model is not

+

Ω-exact. While the decoder’s performance are not limited to the
training scenarios thanks to the broader validity of the expert model, the encoder does not generalize to
unseen settings as it is purely data-driven.

3.1 Expert augmentation

We propose a data augmentation strategy to improve the robustness of hybrid models to unseen test scenarios.
Once trained, the hybrid model is composed of an encoder qψ and an interaction model pθ that are respectively
Ω- and

+

Ω-exact. We may create a new training distribution with a support over
+

Ω by sampling physical
parameters ze from a distribution that covers

+

Ze. Then, we train the encoder qψ on the augmented domain
+

Ω, under perfect training the predictive model pθ,ψ(y|x, (xo, yo)) is
+

Ω-exact, hence exact on both train and
test domains. The expert augmentation is formally described in algo:augmentation.

Our learning strategy is grounded in existing hybrid modelling algorithms, and here, we focus on APHYNITY
and HVAE. We first train an encoder qψ and a decoder pθ with a hybrid learning algorithm. Together with

experts we then decide on a realistic distribution +
p(ze) and create a new dataset

+

D := {(ze, xi, yi)}
+
N
i=1 by

sampling from the hybrid generative model defined by Figure 2 and the interaction model pθ. A notable
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difference between the augmented training set
+

D and the original training set D is that the former contains
ground truth values for the expert’s variables ze. As we assume that the interaction model is

+

Ω-exact,
we freeze it and only fine-tune the encoder qψ on

+

D. We use a combination of the loss function ℓ of the
original algorithm (e.g., Equation (5) for HVAE, and the Lagrangian of Equation (3) for APHYNITY) and a
supervision on the latent variable objective to learn a decoder that solves

ψ⋆ = arg min
ψ

E+
p(ze)p(za)p(x)p(y|x,ze,za) [ℓ(x, y; θ, ψ)− log qψ(ze|x, y)] , (6)

≈ arg min
ψ

1
+

N

∑
(ze,x,y)∈

+
D

ℓ(x, y; θ, ψ)− log qψ(ze|x, y).

In our experiments we chose a Gaussian model for the posterior, which is equivalent to a mean squared
error (MSE) loss on the physical parameters. We provide a detailed description of the expert augmentation
scheme in Appendix A. In principle, we could also remove the regularizers, the norm of fa for APHYNITY
or αRPPC , RDA,1, and RDA,2 for the Hybrid-VAE, from the loss function l as Equation (6) only aims to
improve the encoder whereas these terms mainly aim to regularize the interaction model. However, in practice,
we have observed that this does not matter.

As a side note, we would like to emphasize the difference between the data augmentation proposed in this
paper and the one from Takeishi & Kalousis (2021). While HVAE also requires to sample new physical
parameters ze, it is only to ensure that a sub-part of the encoder is able to infer correctly ze given ye. This
augmentation does not contribute robustness to distribution shifts on y in contrast to ours.

4 Experiments

We assess the benefits of expert augmentation on three synthetic problems and one real-world experiment
that are described by the ODE

dyt
dt

= Fe(yt; ze) + Fa(yt; za), (7)

where Fe : Yt ×Ze → Yt is the expert model and Fa : Yt ×Za → Yt complements it. In our notation X is
the initial state y0 and the response Y is the sequence of states y1:t1 := [yi∆t]t1/∆ti=1 . For all experiments we
train the models to maximize pθ,ψ(y = y1:t1 |x = y0) on the training data. We validate and test the models on
the predictive distribution p(y = y1:t2 |x = y0, xo = y0, yo = y1:t1), where t2 > t1 assesses the generalization
over time. A brief description of the different problems is provided below.

4.1 Synthetic experiments

The damped pendulum is often used as an example in the hybrid modelling literature (Yin et al., 2021;
Takeishi & Kalousis, 2021). The system’s state at time t is yt =

[
θt θ̇t

]T , where θt is the angle of the
pendulum at time t and θ̇t its angular speed. The evolution of the state over time is described by Equation (7),
where ze := ω, za = α and

Fe :=
[
θ̇ −ω2

0 sin θ
]T and Fa :=

[
0 −αθ̇

]T
. (8)

The corresponding systems are defined by the damping factor α and ω0, the fundamental frequency of the
pendulum.

The RLC series circuits are electrical circuits made of 3 electrical components that may model a large range
of transfer functions. A schematic of such circuit is shown in Figure 10. These models are often used in biology
(e.g., the Hodgkin-Huxley class of models (Hodgkin & Huxley, 1952), in photoplethysmography (Crabtree &
Smith, 2003)) and in electrical engineering to model the dynamics of various systems. The system’s state at
time t is yt =

[
Ut It

]T , where Ut is the voltage over the capacitor and It the current in the circuit. The
evolution of the state over time is described by Equation (7), where ze := {L,C}, za = {R} and
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Figure 4: The double pendulum setup. (a) A photograph of the double pendulum at rest, reproduced from Asseman
et al. (2018). (b) A simplified sketch of the setup. (c) An example of the time series extracted from the videos of the
double pendulum.

Fe :=
[

It
C1

L (Vt − Ut)

]
and Fa :=

[
0
−RC It

]
. (9)

The dynamics described by the RLC circuit is more diverse than for the pendulum and the system can be
hard to identify. This system is characterised by the resistance R, capacitance C, and inductance L, provided
Vt is known.

The 2D reaction diffusion was used by Yin et al. (2021) to assess the quality of APHYNITY. It is a 2D
FitzHugh-Nagumo on a 32× 32 grid. The system’s state at time t is a 2× 32× 32 array yt =

[
ut vt

]T . The
evolution of the state over time is described by Equation (7), where ze := {a, b}, za = {k} and

Fe :=
[
a∆ut
b∆vt

]
and Fa :=

[
Ru(ut, vt; k)
Rv(ut, vt)

]
, (10)

where ∆ is the Laplace operator, the local reaction terms are Ru(u, v; k) = u−u3−k−v and Rv(u, v) = u−v.
This model is interesting to study as it considers a state space for which neural architectures may have a
real advantage compared to other ML models. In particular, convolutional neural networks are effective for
processing signals with spacial and/or temporal correlation.

In these experiments we analyze the effect of our data augmentation strategy on APHYNITY and HVAE.
All models explicitly use the assumption that the interaction model follows the structure of Equation (7).
For each problem the validation and test sets are respectively IID and OOD with respect to the training
distribution. The best models are always selected based on validation performance, that is with samples
from Ω. We provide additional details on the different expert models, dataset creation, and neural networks
architectures in Appendix C.

4.2 A real world dataset - the double pendulum

We next validate the benefit of the expert augmentation in a controlled real-world setting. The dataset
of a double pendulum introduced by Asseman et al. (2018) contains 21 videos of the pendulum shown in
Figure 4a. Each run lasts approximately 40 seconds and is recorded at 400Hz. We can extract the position
of the pendulum limbs from each frame with elementary computer-vision tools. Each recording starts from
different initial conditions, leading to many states of this chaotic system. For illustration, we showcase the
evolution of the arms’ angles over time in Figure 4c.

We sketch a simplified representation of the double pendulum in Figure 4b. Its state is a four-dimensional
vector yt =

[
θ1(t) θ2(t) θ̇1(t) θ̇2(t)

]T , containing the position and speed of both masses. We can derive
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Figure 5: The average log-MSEs over 10 runs for three synthetic problems on the validation and test sets. We
compare HVAE (in red) and APHYNITY (in green), in light colours, to their expert augmented versions HVAE+
and APHYNITY+, in darker colours. On the test sets, AHMs outperform the original models, and by a large margin
on the pendulum and diffusion problems. Moreover, augmentation conserves the relatively good performance on the
validation set (IID w.r.t. the training set).

(e.g., (Stachowiak & Okada, 2006)) the kinetics of the frictionless pendulum from first-principle physics,

θ̈1 = −g(2m1 +m2) sin θ1 −m2g sin(θ1 − 2θ2)− 2 sin(θ1 − θ2)m2(θ̇2
2
l2 + θ̇1

2
l1 cos(θ1 − θ2))

l1(2m1 +m2 −m2 cos(2θ1 − 2θ2)) , (11)

θ̈2 = 2 sin(θ1 − θ2)(θ̇1
2
l1(m1 +m2) + g(m1 +m2) cos θ1 + θ̇2

2
l2m2 cos(θ1 − θ2))

l2(2m1 +m2 −m2 cos(2θ1 − 2θ2)) . (12)

This ODE is a suitable expert model candidate for a real-world double pendulum.

We assume that m1 = m2. Therefore the effect of masses reduces to constant values in the expert ODE.
The length of the two arms are known, l1 = 91mm and l2 = 70mm. The total energy of the double
pendulum decreases over time in all videos, which lets us speculate about frictions, not explained by the
expert model. In addition, the expert model does not consider potential vibrations or errors in extracting
the arms’ positions. Hybrid learning has the potential to correct these mispecifications automatically. In
comparison, the characterisation of the frictions from first-principle physics is challenging and is still a research
subject (Aghili, 2020).

Similarly to the damped pendulum, we consider the initial angular positions, θ1(t = 0) and θ2(t = 0), known.
The encoder must predict the initial angular speeds ze := {θ̇1(t = 0), θ̇2(t = 0)} which are the only free
parameters of the expert model. The encoder only observes θ1 between t = 0ms to t = 10ms and θ2 between
t = 5ms to t = 10ms which makes the estimation of ze complicated. Then we predict the angular positions
between t = 0 and t = 20ms given θ1(t = 0) and θ2(t = 0) and the estimation of ze := {θ̇1(t = 0), θ̇2(t = 0)}
via the hybrid decoder.

We create a dataset with many initial conditions by splitting the videos into consecutive chunks of 20 frames
sub-sampled at 100Hz, i.e., 200ms of video. We construct a distribution shift, as shown in Figure 11 from
Appendix C.5, over the expert variables ze by splitting each 40 seconds sequence into three parts. The
training set only contains chunks from the last 16 seconds of each run. It corresponds to configurations with
smaller energy and, thus, slower angular speeds than the test set, which only contains frames from the first
12 seconds. The validation set contains the remaining 12 seconds of frames in the middle.

4.3 Results

Performance gain from augmentation. This experiment demonstrates that HVAE and APHYNITY are
not robust to OOD test scenarios in opposition to the corresponding AHMs, as shown in Figure 1 for the 2D
diffusion problem and in Appendix D for the two other problems. We emphasize that our intention is not
to declare a winner between HVAE and APHYNITY. Indeed, both algorithms have already demonstrated
performance superior to black box ML models. Hence, we only report a very simple baseline that is the mean
value of the signals. We want to compare performance in OOD settings and empirically validate the benefit
of AHMs. We compare the predictive performance in Figure 5 (see Table 1 for the raw numbers). Although
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classical hybrid learning strategies do very well on the IID validation set, they exhibit poor generalization on
OOD test sets for all three problems. We also observe some disparity between APHYNITY and HVAE. In
addition to different learning strategies, this is probably due to differences in the networks’ architectures as
they were respectively inspired from the corresponding pendulum experiment in each paper. However, even if
one method may outperform the other for some problems, they both benefit from our augmentation strategy
(APHYNITY+, HVAE+). Overall, the effect of augmentation goes up to dividing the test error by a factor
of e4.6 ≈ 100 in some cases.

Figure 6: Comparison of mean relative precision (in %, ± indicates one standard deviation) over 10 runs of predicted
physical parameters of different hybrid modelling strategies in validation and OOD test settings. Augmented versions
are denoted with a +. While the accuracy of APHYNITY and HVAE is good on the validation set, it collapses on the
OOD test set. On the opposite, the augmented versions perform well on both validation and test sets.

Stability for non-exact models. The empirical results from Figure 5 are very important as they show that
even when the decoder is not Ω-exact (and hence not

+

Ω-exact), augmentation may still work. In particular,
Figure 6 shows that the encoder does not predict the physical parameters perfectly. This indicates that
the encoder is not Ω-exact and neither should be the decoder. This plot shows the relative error on the
physical parameters computed as

∑k
i=1

1
k

∣∣∣ zie−µiθ
zie

∣∣∣, where µiθ is the estimated most likely value of the ith

component of the physical parameters. We first notice that APHYNITY and HVAE perform differently and
their performance depends on the specific problem. While APHYNITY accurately estimates the physical
parameters on the IID validation set for the 3 problems, HVAE’s performance are mixed on the RLC problem
as it makes prediction that are around 120% away from the nominal parameter value on average whereas
APHYNITY reduces this error to 6%. Interestingly, we observe that the proposed augmentation strategies
improve the encoder such that it accurately estimates the physical parameters also on the OOD test set
even for HVAE on the RLC problem. This confirms that the augmentation strategy is helpful even when
the hybrid model is not Ω-exact. As a conclusion, augmented hybrid learning outperforms classical hybrid
learning both on the predictive accuracy and at inferring the expert variables.

Effect of out of expertise shift. This experiment supports that our augmentation strategy may remain
beneficial even when the train and test supports of za are not identical. This scenario corresponds to samples
(x, y) generated by (za, ze) ∈ (

∗
Za \ Za) × Z̃e depicted by the violet domains in Figure 3. In Figure 7 we

observe the log-MSE of augmented and non-augmented hybrid models trained for (za, ze) ∈ Za ×Ze on test
data that are generated with (za, ze) ∈ Z̃a × Z̃e. For the pendulum, the support over za = α is [0, 0.3] in
train and [0.3, 0.6] in test; For the 2D reaction diffusion, za = k is [0.003, 0.005] in train and [0.005, 0.008] in
test. We observe that augmented models outperform the original models by a large margin. These results
suggest that augmentation could be very valuable in practice, even when the distribution shift is also caused
by non expert variables. However, if the shift on za becomes the dominant effect, augmented models also
eventually becomes vulnerable to shifts on ze as demonstrated by supplementary experiments in Appendix C.

Real-world double pendulum. In Figure 9, we compare the empirical performance of APHYNITY(+)
and HVAE(+) with two baselines: 1) Expert only: the ODE of a friction-less double pendulum, 2) ML
only: an agnostic neural ODE. We conclude the potential effectiveness of expert augmentation for real-world
settings from this experiment. We observe in Figure 9a that the augmentation improves the validation and
test predictive performance by a non-negligible margin, as confirmed visually by Figure 8. In addition, the
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augmentation improves the estimation of the expert parameters by up to a factor of two for APHYNITY in
the OOD test scenarios, as shown in Figure 9b. In order to achieve these results, we finetune the encoder on
expert augmentations with θ̇1 ∼ U [−15, 15] and θ̇2 ∼ U [−30, 30].

We have observed that optimizing the HVAE on the double pendulum data eventually becomes numerically
unstable along training. It is why we did not manage to obtain HVAE’s performance on par with APHYNITY
and the ML only baseline. In consequence, the expert augmentation is also unstable if it relies on the best
model. We circumvent these numerical issues by applying the expert augmentation to an earlier version of the
HVAE model. The expert augmented model outperforms the best HVAE model on predicting the trajectory
as seen in Figure 9a. Finally, we study the effect of applying the expert augmentation at various stages
during training for APHYNITY in Appendix D.4. We observe that expert augmentation may reduce the gap
between the train/validation/test performance on the double pendulum even when the interaction model is
not fully trained. This result hints again that expert augmentation can help even when the interaction model
is not learned perfectly.

Figure 7: The average log-MSEs over 10 runs for the
damped pendulum and 2D reaction diffusion problems on
a test distribution for which za, in addition to ze, is also
shifted. AHM achieves better peformance than standard
algorithms even when the test distribution support za differs
from the training.

Figure 8: A cherry-picked example of the predicted
angular positions of the double pendulum. We ob-
serve that the proposed expert augmentation allows
the hybrid model to predict more accurately the state
of the double pendulum in the future than the non-
augmented hybrid model.

(a) (b)

Figure 9: The results of the double pendulum experiment. (a) The average log-MSEs over three experiments.
The baselines rely either only on the expert ODE or a neural ODE to predict the pendulum’s state. The proposed
expert augmentation slightly reduces the predictive performance on the training set for APHYNITY but increases the
generalisation capabilities of both APHYNITY and the HVAE. APHYNITY+ outperforms the baselines on all sets. (b)
The average relative errors on the initial angular speeds over three runs. The proposed expert augmentation improves
the accuracy of the physical parameters estimation both in the IID and OOD settings for APHYNITY.
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5 Related work

5.1 Hybrid modelling

Hybrid Learning, or gray box modelling as called in its early days in the 90’s (Psichogios & Ungar, 1992;
Rico-Martinez et al., 1994; Thompson & Kramer, 1994; Rivera-Sampayo & Vélez-Reyes, 2001; Braun &
Chaturvedi, 2002), has been a popular method to learn models that are both expressive and interpretable,
while also allowing them to be learnt on fewer data. The interest for hybrid learning (Mehta et al., 2020; Lei
& Mirams, 2021; Reichstein et al., 2019; Saha et al., 2020; Guen & Thome, 2020; Levine & Stuart, 2021;
Espeholt et al., 2021) has greatly increased since the outbreak of recent neural network architectures that
simplify the combination of physical equations within ML models. As an example, Neural ODEs (Chen et al.,
2018) and convolutional neural networks (LeCun et al., 1995, CNN) are privileged architectures to work
with dynamical systems described by ODEs or PDEs. While most of the literature focus on the predictive
performance of hybrid models, recent work have also shown that this framework helps to infer the physical
parameters accurately (Yin et al., 2021; Takeishi & Kalousis, 2021). This is aligned with Zyla et al. (2020)
(see Section 40.2.2.2) which observe that inference on incomplete models results in a systematic bias. Similar
to hybrid learning, they extend the model with nuisance parameters in order to improve its fidelity, and to
reduce the systematic bias.

In this work, we decided to study Yin et al. (2021) and Takeishi & Kalousis (2021) for two reasons that
distinguish them from the rest of the literature. First, these are notable examples of algorithms that can
be applied to a broad class of problems in contrast to papers that focus on specific applications (Lei &
Mirams, 2021; Reichstein et al., 2019). Second, those methods also learn a reliable inference model for the
physical parameters, suggesting that the expert model is used properly in the generative model, which is a
key assumption for our augmentation. While Takeishi & Kalousis (2021) claim to achieve robustness, we
argue that this statement is incomplete as HVAE fails in OOD settings. In particular, their approach is
only able to generalize with respect to unseen time or initial state if the model correctly identifies the latent
variables za, ze. HVAE cannot generalize to new physical parameters because the encoder’s validity is bound
to the training set for the physical parameters.

5.2 Combining hybrid modelling and data augmentation

Close to our idea is the one proposed in Shrivastava et al. (2017) where they train a GAN model that improves
the realism of a simulated image while conserving its semantic content (e.g., eyes colour) as modeled by the
simulation parameters. The generated data with their annotations may then be used for a downstream task,
such as inferring the properties of real images that corresponds to simulation parameters. The GAN objective
from Shrivastava et al. (2017) requires that the two distributions induced by the semantic content of real
and simulated data are identical. On the opposite, we consider training data that corresponds to expert
parameters with limited diversity, and overcome this scarcity with expert augmentation. Another line of
work similar to ours is Sim2Real, which considers the task of transferring a model trained on simulated data
to real world (Doersch & Zisserman, 2019; Sadeghi et al., 2018; 2017). Robust hybrid learning, as a way to
enhance simulations, could be used for Sim2Real.

5.3 Robust ML and invariant learning

Various statistical methods have been introduced to ensure models generalize under distribution shift. Domain-
adversarial objectives aimed at learning (conditionally) invariant predictors (Ganin et al., 2016; Zhang et al.,
2017; Li et al., 2018), GroupDRO (Sagawa et al., 2019) optimizing for worst-case loss over multiple domains
and IRM (Arjovsky et al., 2019) as well as sub-group calibration (Wald et al., 2021) aiming to satisfy
calibration or sufficiency constraints to learn features invariant across domains. Extensions, able to infer
domain labels from training data have been proposed as well (Lahoti et al., 2020; Creager et al., 2021),
partially inspired by fairness objectives (Hébert-Johnson et al., 2018; Kim et al., 2019). In contrast to AHM,
all of these methods rely on the variation of interest being present in the training data.
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6 Discussion

We now discuss the potential limitations of our method and its underlying assumptions.

Erroneous interaction model. The exactness of the hybrid component pθ(y|x, ye, za) is a critical as-
sumption underlying our expert-based augmentation strategy. Unfortunately, this component is learned
from training data only. Hence, we cannot prove its exactness on the test domain in the general case as
the input domain over Ye may be different from the training. However, we argue that assumptions on the
class of interaction model may alleviate this problem. As an example, we might consider to chose the best
interaction model over a fixed set of potential interaction. If the correct interaction is present in this set we
should eventually select it from data. A less extreme example is when we consider an additive hybrid model
and embed this hypothesis into the interaction model, generalization to unseen ye follows as long as the
range of values is the same as in the training set. If this assumption is too strong, we could still expect that
pθ(y|x, ye, za) generalizes to unseen ye because hybrid learning drives y samples from pθ to be close to ye. It
implies that the corresponding function approximator is stable, which helps generalizing to unseen scenarios.
However, we must acknowledge that we cannot guarantee the stability of the interaction model in the general
case. Thus, in practice, finding a good inductive bias for the interaction model may be important. However,
we expect that in many cases it is easier to embed the right inductive bias in the interaction model rather
than in the encoder. Indeed, the parameter identification (the encoder qψ) is often less-well understood or
more complex than the generative model itself.

Diagnostic. While crucial, we cannot guarantee the exactness of the decoder pθ in general because we only
evaluate the encoder and the decoder jointly on data points (x, y, xo, yo). However, in some cases we can
detect model misspecification by observing that the predictive model pθ,ψ(y|x, xo, yo) is imperfect. Making
this observation is not always simple as it requires prior knowledge on the expected accuracy of an exact
model. However, when the system is deterministically identifiable, we may argue that the accuracy should be
only limited by the intrinsic noise between x and y given za and ze.

Relaxing exactness. Even with a solid inductive bias on the decoder, achieving exactness is hard to
achieve in practical settings. However, our experiments demonstrate that expert-augmentation works in
practice. We can explain this by looking at Figure 3. If the generative model that maps x and (za, ze) is
incorrect, the mapping from Za and Ze could be slightly off from

+

Ω. However, this does not preclude the
set of augmented samples from being closer to

+

Ω than Ω and from inducing a better predictive model on
+

Ω
than the original model trained only on Ω. Another argument is the effectiveness of data augmentation for
training classical deep learning models, which works well even when some augmentations do not generate
realistic samples.

Limitations. We have considered expert models that are parameterized by a small number of parameters
and are covered densely via sampling. For higher dimensional parameter space the augmentation strategy
might become inapplicable. Hence, a more ingenious sampling strategy, such as worst-case sampling, would
be required. Another difficulty is choosing a plausible range of parameters that contains both the train and
the test support; this will often need a human expert in the loop. If the chosen distribution does not cover
some test configurations the robustness guarantees for these configurations collapse. On the opposite, a
distribution that is too broad may also impact negatively the quality of the model. For instance, learning the
right encoding behaviour for those unnecessary configurations requires representation capacity that is then
unavailable for IID configurations. In this case the model might perform worse than before augmentation on
the training distribution. Indeed, the experimental results have shown that the training error may slightly
increase while the test error decreases.

In addition, we assume that the train distribution of za is representative of the test distribution. We
empirically observed that a softer version of this assumption could be enough. However, performance will
eventually decline as the support of the test distribution for za is far from the training domain. Finally, we
have only validated our expert augmentation for amortized inference settings. Nevertheless, online inference
algorithms, such as Markov-chain Monte Carlo, also require careful tuning of their hyperparameters (Campbell
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et al., 2021) or learning distributions (Brofos et al., 2022) to work in practice and are eventually tied to the
specific problem of interest. Thus, there might be opportunities to generalize our expert augmentation to
non-amortized settings.

7 Conclusion

We have described hybrid learning with a probabilistic model in which one component of the latent process,
denoted the expert model, is known. In this context, we have established that state-of-the-art algorithms are
vulnerable to distribution shifts. Grounded in this formalisation, we have derived that expert augmentations
induce robustness to OOD settings if the said algorithms behave as expected. We have shown on a set
of synthetic settings and on a real-world system the favorable effect of expert augmentation on the OOD
performance where standard hybrid learning algorithm fails. Finally, we have discussed how our assumptions
transfer to real-world settings and have described potential shortcomings.

Our augmentation should benefit from future progress in hybrid learning as it shall apply to most hybrid
modelling algorithms. Providing more substantial constraints on the targeted hybrid model is an essential
direction for further improving the robustness of hybrid models. For instance, the minimal description length
principle (Grünwald, 2007) could be an excellent resource for investigating the balance between the model’s
capacity and robustness. In parallel, empirical and theoretical investigations of the learnt interaction model’s
properties in various practical settings would unlock new understandings of the capabilities and limitations
of hybrid learning algorithms. In the context of expert augmentation, it should enable to do more realistic
assumptions for its applicability and to derive more precisely the expected robustness gain. Future work
is also needed to show how hybrid learning and expert augmentation translate into performance gain over
classical ML on challenging real-world applications.
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A Additional description of expert augmentation

We provide the procedure to do expert augmentation for robust hybrid learning as the sequence of steps
below.

1. Train both the encoder qψ(za, ze|x, y) and the interaction model pθ(y|xo, za, ye) with a hybrid learning
algorithm, by minimizing the corresponding loss L(ψ, θ) = ED [ℓ(x, y; θ, ψ)] on the training set D;

2. Decide on an augmented distribution
+

p(ze) for ze that contains both train and test scenarios;

3. Reproduce the following steps to generate a dataset
+

D of observations and expert variables (x, y, ze) ∼
Ep(za)p(ye|ze,x,y) [p(ze)p(x)pθ(y|ye, za, x)]:
(a) Sample (xo, yo) from the data;
(b) Sample za from the posterior qψ(za|xo, yo);
(c) Sample ze from p+(ze);
(d) Push forward x, za and ze in the generative model as ye ∼ p(ye|xo, ze) and y ∼ pθ(y|xo, za, ye);
(e) Add the triplet (xo, y, ze) to the augmented training set

+

D.

4. Freeze the interaction model, and fine-tune the encoder qψ(za, ze|x, y) on the augmented dataset
+

D
by minimizing

+

L(ψ, θ) = E+
D

[ℓ(x, y; θ, ψ)− log qψ(ze|x, y)].

Algorithm 2 Expert augmented hybrid learning
1: D := {(x(i), y(i))}Ni=1 ∈ (X × Y)N ▷ A training set
2: qψ(za, ze|x, y) ▷ A parametric encoder
3: p(ye|x, ze) ▷ An expert model
4: pθ(y|x, ye, za) ▷ A parametric decoder
5: l(x, y, θ, ψ) ▷ A hybrid learning objective function
6: p+(ze) ▷ A prior distribution on ze that covers both train and test scenarios
7: procedure Training
8: ψ⋆, θ⋆ ← arg minψ,θ E(x,y)∼D [l(x, y, θ, ψ)]
9:

+

D ← GenerateAugmentedSet
10: ψ⋆ ← arg minψ E

(x,y,ze)∼
+
D

[l(x, y, θ⋆, ψ)− log qψ(ze|x, y)]
11: return ψ⋆, θ⋆

12: end procedure
13: procedure GenerateAugmentedSet
14:

+

D ← {}
15: for each (xo, yo) ∈ D do
16: za ∼ qψ⋆(za, ze|xo, yo)
17: ze ∼ p+(ze)
18: ye ∼ p(ye|x, ze)
19: y ∼ pθ⋆(y|x, ye, za)
20:

+

D ←
+

D ∪ {(xo, y, ze)}
21: end for
22: return

+

D
23: end procedure

B Additional details on the hybrid-VAE

We now provide the definition of the different regularizers employed by the hybrid-VAE. Our definition
slightly differs from Takeishi & Kalousis (2021) as we explicitly accounts for known input variables x and
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thus consider a dataset of pairs (x, y). Although our framework should hold for non-deterministic expert
models, we have directly employed the regularizers proposed by Takeishi & Kalousis (2021) which assume a
deterministic expert models. We encourage the non-familiar reader to check the original work on hybrid-VAE
for a thorough discussion of the effect of the different regularizers.

The first regularizer RPPC aims to inhibit unnecessary flexibility of the learned parts of the decoder. To
this purpose, Takeishi & Kalousis (2021) proposes to minimize the Kullback-Leibler divergence between the
posterior predictive distributions of the hybrid model and the expert model:

KL
[
pθ,ψ(y|D)||peθ,ψ(y|D)

]
,

where
pθ,ψ(y|D) =

∫
pθ(y|xo, za, ze)qψ(za, ze|xo, yo)pD(xo, yo)dxodyodzadze,

and
peθ,ψ(y|D) =

∫
pθ(ye|xo, ze)qψ(ze|xo, yo)pD(xo, yo)dxodyodze.

As the posterior predictive distributions are intractable, Takeishi & Kalousis (2021) introduce a lower bound
on it as

RPPC = Ex,xo,yo∼pD

[
Eq(za,ze|xo,yo)KL [pθ(y|x, za, ze)||pθ(ye|x, ze)] + KL [qψ(za, ze|xo, yo)||p(za)p(ze)]

]
.

The second regularizer RDA,1 helps the two-steps encoder of the hybrid-vae to be grounded into the physics.
The first encoder should map the input to signals that can be produced by the expert model. Formally,
Takeishi & Kalousis (2021) propose to enforce this with

RDA,1 = EpD(x,xo,yo)q(za|xo,yo)
[
||gP,1(xo, yo, za)− sg(ye(xo, ze = gP,2(gP,1(xo, yo, za))||22

]
,

where the encoder first output a posterior q(za|xo, yo) for za, then transform yo into something that should
match the expert model with gP,1, and finally gP,2 output the posterior distribution over the physical
parameters. The symbol sg denote the stop gradient operator.

Finally, the third regularizer helps the second second step of encoding gP,2 to properly encode any physical
configuration. In particular, it should be able to encode properly any pair (x, ye) that we could generate with
the expert model. The regularizer takes the form

RDA,2 = Ex,ze ||gP,2(ye(x, ze))− ze||22.

C Additional details on experiments

C.1 Hyperparameter Search

For the three synthetic experiments with APHYNITY, we have performed a bayesian optimization search
with 4×100 trials to find this set of hyperparameters. The ranges for the search were: τ2 ∈ [0, 10], λ0 ∈ [0, 20],
weight decay ∈ [0, 0.1], Niter ∈ {0, . . . , 10}, lr ∈ [0.0005, 0.1].

For the three synthetic experiments with HVAE, we have performed a bayesian optimization search with
20× 25 trials to find this set of hyperparameters. The ranges for the search were: α ∈ [0, 100], β ∈ [0, 100],
γ ∈ [0, 100], lr ∈ {0.001, 0.0005, 0.0001}.

From the result of these searches we have chosen the hyperparameters values provided below. Reproducing
our experiments by re-generating new synthetic datasets can change the numbers. However we have observed
a constant benefit of applying the expert augmentation even when the non-augmented model was not tuned
perfectly.

For the double pendulum experiment we did not run any hyperparameter search and there might exist better
set of hyperparameters. However, our objective was only to show that expert augmentation helps to gain
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performance in OOD settings, even when the experiments is not well-controlled. We believe our conclusion
should not be sensitive to applying augmentation on a better fine-tuned model. Our theory suggest the
opposite: if the model is better, it should be able to generate good augmented samples and gain generalization
capabilities.

C.2 Damped pendulum

Datasets. We use Neural Ordinary Differential Equations (NODE) (Chen et al., 2018) to solve the ODE
ruling the damped pendulum. Each sample is simulated for t0 = 0s, t1 = 5s, and t2 = 20s, with a time
resolution equal to 0.1 second. The models are trained with only the realizations between t0 and t1. At test
and validation time, the pair (xo, yo) = (y0, [yi∆t]t1/∆ti=1 ), x = yt1 and the model predicts y = [yi∆t]t2/∆ti=t2/∆t+1.
The initial angular speed is always 0 and θ0 ∼ U(−π2 ,

π
2 ).

The training set is made of 1000 samples and the validation set of 100 samples. They are both generated
by sampling uniformly za := α from Za := [0, 0.6] and ze := ω0 from Ze := [1.5, 3.1]. The shifted test set
contains 100 samples generated by sampling uniformly za in Za and ze in Z̃e := [0.5, 1.5].

APHYNITY. Our model is composed of a 1-layer RNN with 128 units that encodes the input signal y0:t1
as h(y0:t1) ∈ R128. An MLP with 3 layers of 150 units and ReLU activations maps h to R+ to predict ω0.
The function fa : R128 × R2 is an MLP with 3 layers of 50 units and ReLU activations (no activation for
the last layer). The models are trained for 50 epochs with Adam with no weight decay and a learning rate
equal to 0.0005. For the Lagrangian optimization we use Niter = 5, λ0 = 10, τ2 = 5 (see (Yin et al., 2021).
The augmented data are generated by sampling uniformly ze ∈

+

Ze := [0.5, 3.5] and za from the marginal
predictive prediction of the model, that is we use the training dataset to infer values of za and use these as
samples. The batch size is 100.

HVAE. We use the notations from Takeishi & Kalousis (2021) to describe the architecture of the VAE. The
network gp,1 : R2 × Rda , where da = 1 is the size of the latent space for the interaction model, is supposed to
filter the observations so that they can be generated by the expert model. It has 2 hidden layers with 128
units, gp,2 is an MLP with the following hidden layers [128, 128, 256, 64, 32] and takes the full sequence of
filtered states and predicts the mean and variance of a normal distribution that parameterize the posterior
pθ(ze|x, y, za). Another network, ga takes the sequence of observations and predict the posterior distribution
of za as a normal distribution. This network has the following hidden layers [256, 256, 128, 32]. All networks
have SeLU activations. In general the decoder of HVAE can be anything that combines the expert model in
order to produce samples in the observation space, as we made the hypothesis that the ODE is just missing
an additive term, the decoder is a NODE where the function is the sum of fe and fa a two hidden layers
MLP with 64 units and SeLU activation (except for the last layer that has no activation). The likelihood
model is also Gaussian with the mean being predicted by the NODE and the variance learned but shared
for all observations. For additional details on our architecture and implementation details we encourage the
interested reader to check our code.

The networks are trained jointly for 1000 epochs with Adam optimizer, with a learning rate equal to 0.0005,
weight decay equal to 0.000001 and batch size 200. The other parameters are set to γ = 1, α = 0.01 and
β = 0.01. The HVAE also relies on some augmentation during training and in order to compare fairly our
model to theirs we use the same distribution for our augmentation and theirs that is za ∼ N (0, I) and
ze ∼ U(0.5, 3.5).

C.3 RLC series

Datasets. Similar to the damped pendulum, we use NODE to solve the ODE ruling the RLC circuit.
Each sample is simulated for t0 = 0s, t1 = 5s, and t2 = 20s, with a time resolution equal to 0.1 second.
The models are trained with only the realizations between t0 and t1. At test and validation time, the pair
(xo, yo) = (y0, [yi∆t]t1/∆ti=1 ), x = yt1 and the model predicts y = [yi∆t]t2/∆ti=t2/∆t+1. In all experiments, the initial
value for U0 ∼ N (0, 1) and I0 = 0, the voltage source delivers a AC + DC tension V (t) = 2.5 sin(4πt) + 1.
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Figure 10: A generic schematic of a RLC series circuit.

The training set is made of 2000 samples and the validation set of 100 samples. They are both generated by
sampling uniformly za := R from Za := [1, 3] and ze := [L,C] from Ze := [1, 3]× [0.5, 1.5]. The shifted test
set contains 100 samples and is generated by sampling uniformly za in Za and ze in Z̃e := [3, 5]× [1., 2.5].

APHYNITY. Our model is composed of a 1-layer RNN with 128 units that encodes the input signal y0:t1
as h(y0:t1) ∈ R128. An MLP with 3 layers of 200 units and ReLU activations maps h to R2

+ that predicts L
and C. The function fa : R128×R2 is an MLP with 3 layers of 150 units and ReLU activations (no activation
for the last layer). The models are trained for 50 epochs with Adam with no weight decay and a learning
rate equal to 0.0005. For the Lagrangian optimization we use Niter = 5, λ0 = 10, τ2 = 5 (see (Yin et al.,
2021)). The augmented data are generated by sampling uniformly ze ∈

+

Ze := [1, 5]× [0.5, 2.5] and za from
the marginal predictive prediction of the model, that is we use the training dataset to infer values of za and
use these as samples. The batch size is 100.

HVAE. We use the same networks’ architectures than for the damped pendulum experiment. Except that
gp,1 is has 3 hidden layers with 100 units.

The networks are trained jointly for 1000 epochs with Adam optimizer, with a learning rate equal to 0.0005,
weight decay equal to 0.000001 and batch size 100. The other parameters are set to γ = 1, α = 0.01 and
β = 0.01. The HVAE also relies on some augmentation during training and in order to compare fairly our
model to theirs we use the same distribution for our augmentation and theirs that is za ∼ N (0, I) and
ze ∼ U(1, 5)× U(0.5, 2.5).

C.4 2D reaction diffusion

Datasets. Similar to the damped pendulum, we use NODE to solve the PDE ruling the reaction diffusion.
We closely follow the experimental setting described in Yin et al. (2021) and approximate the Laplace operator
with a 3 × 3 discrete version of the operator. Each sample is simulated for t0 = 0s, t1 = 1s, and t2 = 5s,
with a time resolution equal to 0.1 second. The models are trained with only the realizations between t0
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and t1. At test and validation time, the pair (xo, yo) = (y0, [yi∆t]t1/∆ti=1 ), x = yt1 and the model predicts
y = [yi∆t]t2/∆ti=t2/∆t+1. The initial state is sampled from a uniform distribution in [0, 1].

The training set is made of 2000 samples and the validation set of 100 samples. They are both generated by
sampling uniformly za := k from Za := [0.003, 0.005] and ze := [a, b] from Ze := [0.001, 0.002]× [0.003, 0.007].
The shifted test set contains 100 samples and is generated by sampling uniformly za in Za and ze in
Z̃e := [0.002, 0.004]× [0.001, 0.1].

APHYNITY. Our model is composed of a deep CNN that encodes the input sequence of 10 images.
The exact architecture can be found in the code. The dimension of za is equal to 10. Similarly to
Yin et al. (2021) the function fa is a 3-layers CNN with ReLU activations. The models are trained for
500 epochs with Adam with no weight decay and a learning rate equal to 0.0005. For the Lagrangian
optimization we use Niter = 1, λ0 = 10, τ2 = 5.. The augmented data are generated by sampling uniformly
ze ∈

+

Ze := [0.001, 0.004]× [0.001, 0.01] and za from the marginal predictive prediction of the model, that is
we use the training dataset to infer values of za and use these as samples. The batch size is 100.

C.4.1 HVAE

We use the notations from Takeishi & Kalousis (2021) to describe the architecture of the VAE. The network
gp,1 : R2×32×32 × Rda is a conditional U-net, where da = 10 is the size of the latent space for the interaction
model, is supposed to filter the observation so that they can be generated by the expert model. The networks
gp,1 and ga share a common backbone CNN and are, in addition, respectively parameterized by 2 3-layers
MLPs. All networks have ReLU activations. In general the decoder of HVAE can be anything that combines
the expert model in order to produce samples in the observation space, as we made the hypothesis that
the ODE is just missing an additive term, the decoder is a NODE where the function is the sum of fe and
fa a 3-layers CNN. The likelihood model is also Gaussian with the mean being predicted by the NODE
and the variance learned but shared for all observations. For additional details on our architecture and
implementation details we encourage the interested reader to check our code.

The networks are trained jointly for 1000 epochs with Adam optimizer, with a learning rate equal to 0.0005,
weight decay equal to 0.00001 and batch size 100. The other parameters are set to γ = 1, α = 0.01 and
β = 0.01. The HVAE also relies on some augmentation during training and in order to compare fairly our
model to theirs we use the same distribution for our augmentation and theirs that is za ∼ N (0, I) and
ze ∼ U(0.001, 0.004)× U(0.001, 0.01).

C.5 Double pendulum

Figure 11 shows the marginal distributions of the angular positions and speeds in the artificially split training,
validation and testing sets. We use this plot to inform the bounds of the uniform distributions we use to do
the expert augmentation.

In this experiment, we only used APHYNITY because our main goal was just to show the effectiveness of the
augmented version and not to compare HVAE to APHYNITY. In order to make APHYNITY works, we had
to extensively search for good hyperparameters. We eventually reach the following setup. The encoder is a
fully connected neural network with 3 layers of 300 neurons. Fa is also a fully connected neural network with
3 layers of 300 neurons and za ∈ R10. The models are trained for 100 epochs with Adam with no weight decay
and a learning rate equal to 0.0005. For the Lagrangian optimization we use Niter = 1, λ0 = 1000, τ2 = 5.
The batch size is 100.

The augmented data are generated by sampling uniformly ze ∈
+

Ze := [−15, 15]× [−30, 30] and za from the
marginal predictive prediction of the model, that is we use the training dataset to infer values of za and use
these as samples. These bounds were chosen by looking at the distribution in Figure 11 .

D Supplementary results

We now provide additional results for AHM versus standard models.

22



Under review as submission to TMLR

Figure 11: The distributions of initial angular positions and speeds in the experiment of the double pendulum.

D.1 Log-mses on the three synthetic problems

Table 1 presents the log-mses numbers on the three synthetic problems.

Dataset APH. HVAE APH.+ HVAE+

Pendulum Val. −2.7±0.3 −2.9±0.5 −3.4±0.3 −2.9±0.6
Test −0.9±0.2 −1.2±0.2 −3.3±0.3 −3.1±0.3

RLC Val. −6.3±0.2 −4.3±0.1 −6.8±0.2 −3.8±1.5
Test −2.5±0.1 −2.2±0.1 −3.0±0.3 −2.1±0.3

Diffusion Val. −2.9±0.3 −3.4±0.2 −2.7±0.3 −3.3±0.3
Test 1.0±0.4 0.9±0.8 −2.9±0.2 −3.5±0.1

Table 1: Comparison of the log-mse of different hybrid modelling strategies in validation and OOD test
settings. Except on RLC, AHMs always outperform the corresponding hybrid learning models on the test sets.
Good performance on the validation set are conserved with augmentation.

D.2 Distribution shift visualization

Similar to Figure 1, Figure 12 and Figure 13 showcase the behaviour of APHYNITY and APHYNITY+ for
OOD test samples.

D.3 On the effect of out of expertise shift

The additional results in Figure 14, Figure 15 and Figure 16 demonstrate that our augmentations is mostly
always beneficial. Although the benefit of augmentation decreases with the gap between the support of the
distributions of za and train and test times, it still performs either better or on par with non-augmented
hybrid learning models.

D.4 Applying augmentation at multiple stage of the learning

In order to check the robustness of applying the expert augmentation in practical settings, for the quality
of the interaction model is unknown, we study the improvement brought by applying augmentation at the
different stage of the training. Figure 17 shows that our augmentation robustly improves the test performance,
even when the finetuning is performed on models that are not trained until convergence. We also observe
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Figure 12: Comparison of the predictions made by APHYNITY and APHYNITY+ on the damped pendulum
problem for 3 diverse test examples. It is important to mention that the support of the test distribution is
disjoint from the training support. We clearly observe the beneficial effect of augmentation which lead to
more accurate predictions.

Figure 13: Comparison of the predictions made by APHYNITY and APHYNITY+ on the RLC series problem
for 3 diverse test examples. It is important to mention that the support of the test distribution is disjoint
from the training support. We can perceive the beneficial effect of augmentation which lead to more accurate
predictions in some cases. However both models are inaccurate. This indicates that the RLC series parameters
are not easily identifiable, hence the generative model is not exact and augmentation is not as useful as for
the diffusion and the pendulum.
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Figure 14: Damped pendulum. Effect of a distribution shift on the latent variable za of the interaction
model. When the shift of za is reasonable (less than 1), the augmented models outperforms standard models
even when the shift is only on za.

Figure 15: RLC series. Effect of a distribution shift on the latent variable za of the interaction model. We
observe that augmentation is always beneficial, even when the shift is only on za. As the dynamics of the
RLC series systems depends on the values of all 3 parameters R,L,C, we observe that some distribution
shift can even lead to improved performance for the augmented models as for APHYNITY+ when R ∈ [3, 4]

that, as the model gets better trained, it takes more finetuning iterations to maintain the same validation
performance. It is why in the results presented in the main text we used 100 epochs of finetuning in order to
get the best improvements from the expert augmentation.
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Figure 16: 2D diffusion reaction. Effect of a distribution shift on the latent variable za of the interaction
model. When the shift of za is reasonable (k < 0.008), the augmented models outperforms standard hybrid
learning even when the shift is only on za.

0 5 10 15 20 25 30 35
Best validation models along training

7

6

5

4

3

2

Lo
g-

m
se

Performance at different stages of the validation curve

Train
Validation
Test
APHYNITY
APHYNITY+ (1 epoch)
APHYNITY+ (10 epochs)

Figure 17: The performance of APHYNITY and APHYNITY+ along training. Plain lines represent the
evolution of training, validation and test log-mse of APHYNITY on the double pendulum along training.
Dashed lines and stared lines respectively depicts the performance when the corresponding model finetuned
respectively for one and ten epochs. Expert augmentation reduces the gap between the train, validation and
test log-mses at any stage of the training. In particular it tends to slightly decrease the test performance and
to improve the test performance, as expected from the augmentation strategy.
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E Optimal Bayes predictor

We define the optimal Bayes predictor from a family of approximators F of a quantity y given an input x
as the posterior distribution q(y|x) that has a minimal error on the true posterior p(x|y). We consider the
Kullback-Leibler divergence as the objective and formally define the optimal Bayes predictor pB(y|x) ∈ F as

pB(y|x) = arg min
q∈F

Ep(y|x)

[
log p(y|x)

q(y|x)

]
.

We assume the model in Figure 2 and are aiming for the Bayes optimal predictor of y given an input
x and a pair of observations p(xo, yo) taken from the same system; that is for y ∼ p(Y |x, za, ze) and
yo ∼ p(Y |xo, za, ze) coming from the same system’s parameters za and ze but potentially different perturbations
x (and xo). We consider a class of predictors expressed as an expectation of a universal conditional distribution
q(za, ze|(xo, yo)) over a universal conditional distribution q(y|x, za, ze). Any elements in F is defined as
Eq(za,ze|(xo,yo) [q(y|x, za, ze)] where q(za, ze|(xo, yo)) and q(y|x, za, ze) can be any continuous conditional
distribution. We also consider that all quantities discussed belong to Rk for k ∈ N and have continuous support.
We aim to prove that q(za, ze|(xo, yo)) = p(za, ze|(xo, yo)) and q(y|x, za, ze) = p(y|x, za, ze) constitutes the
Bayes optimal predictor of y given (x, xo, yo) in F . Indeed, we have:

Ep(za,ze|(xo,yo)) [p(y|x, za, ze)] =
∫
p(za, ze|(xo, yo))p(y|x, za, ze)dzadze (13)

=
∫
p(za, ze|(xo, yo))p(y|x, za, ze, (xo, yo))dzadze (14)

=
∫
p(y, za, ze|x, (xo, yo))dzadze (15)

= p(y|x, (xo, yo)), (16)

and thus

KL
[
p(y|x, xo, yo)||Ep(za,ze|(xo,yo)) [p(y|x, za, ze)]

]
= KL [p(y|x, xo, yo)||p(y|x, (xo, yo))] = 0 (17)

which is the minimal value of the objective function and is thus optimal.
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