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Abstract

Deep learning models aim to improve diagnostic workflows, but fairness evaluation1

remains underexplored beyond classification, e.g. in image segmentation. Unad-2

dressed segmentation bias can lead to disparities in the quality of care for certain3

populations, potentially compounded across clinical decision points and amplified4

through iterative model development. Here, we audit the fairness of the automated5

segmentation labels provided in the breast cancer tumor segmentation dataset6

MAMA-MIA. We evaluate automated segmentation quality across age, ethnicity,7

and data source. Our analysis reveals an intrinsic age-related bias against younger8

patients that continues to persist even after controlling for confounding factors,9

such as data source. We hypothesize that this bias may be linked to physiological10

factors, a known challenge for both radiologists and automated systems. Finally,11

we show how aggregating data from multiple data sources influences site-specific12

ethnic biases, underscoring the necessity of investigating data at a granular level.13

1 Introduction14

Automated segmentation of breast tumors is a critical step in diagnosis, monitoring, treatment15

planning, and advancing robot-assisted surgeries [Michael et al., 2021, Benjelloun et al., 2018].16

Inaccurate segmentation can lead to missed diagnoses, suboptimal treatment plans, and heterogeneous17

health outcomes across the patient population [Veta et al., 2014]. While recent advancements in18

deep learning have reached state-of-the-art performance [Isensee et al., 2021], their "fairness"– the19

principle that a model should not systematically disadvantage certain patient subgroups– remains a20

critical but often-overlooked aspect in medical image segmentation studies [Larrazabal et al., 2020].21

The lack of datasets pairing high-quality imaging with demographic information and clinical metadata22

has limited the study of bias in medical image segmentation [Suresh and Guttag, 2019]. The MAMA-23

MIA dataset [Garrucho et al., 2024] addresses this gap, providing a multi-center cohort including24

detailed demographic information, clinical characteristics, and technical specifications. We perform a25

careful audit of the automated deep learning segmentations released as part of MAMA-MIA, following26

the fairness under unawareness paradigm [Barocas et al., 2023, Puyol-Antón et al., 2021]. We focus27

on ethnicity- and age-related disparities, motivated by clinical literature suggesting a correlation28

between younger patients, breast tissue density, and model performance on tumor detection tasks,29

caused by challenging tumor delineation for both radiologists and automated systems [Freer, 2015,30

Kontos et al., 2019, Tiryaki and Kaplanoğlu, 2022].31

Our study provides: (i) to our knowledge, a first comprehensive fairness audit examining the32

intersection of multiple sensitive attributes in the MAMA-MIA breast tumor segmentation dataset,33

revealing statistically significant age- and ethnicity-based performance disparities; (ii) evidence that34

aggregating multi-center data and interaction between multiple factors can obscure site-specific ethnic35

bias; and (iii) a preliminary analysis on whether the bias is caused by lack of representation.36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



2 Dataset and Methodology37

The MAMA-MIA Dataset is a large, multi-center breast cancer benchmark of dynamic contrast-38

enhanced magnetic resonance images (DCE-MRI) [Garrucho et al., 2024]. Integrating four cohorts39

hosted on TCIA1, it contains 1,507 T1-weighted DCE-MRI cases of female breast cancer patients.40

We analyze key demographic and technical attributes with complete data coverage and established41

clinical relevance to segmentation performance: Ethnicity: Caucasian (74.9%), African-American42

(16.0%), Asian (5.7%), and other minority groups (3.4%); Age Groups: Young (<40 years, 23.2%),43

Middle (40-55 years, 50.1%), Older (>55 years, 26.6%). We discretize the continuous age variable44

into three bins informed by clinical literature on breast density changes and menopausal status45

transitions [Boyd et al., 2007, Checka et al., 2012]. The dataset uniquely includes dual annotations:46

Tumor regions manually segmented by a panel of 16 expert radiologists, serving as ground-truth47

annotations (gold labels) and automated segmentation masks from a model trained on external data48

(silver labels). The silver labels come with dual-expert qualitative ratings (Good, Acceptable, Poor,49

or Missed) assessing their visual quality. This dual annotation structure enables investigation of both50

model performance disparities and potential label quality biases across subgroups.51

A Fairness Auditing Framework based on fairness under unawareness is adopted, following52

Chen et al. [2019]. Notably, [Puyol-Antón et al., 2021] conducted a pioneering work auditing53

deep learning models for cardiac image segmentation, assessing bias in models trained without54

explicit knowledge of sensitive attributes. We evaluate bias in automatic segmentation qual-55

ity by comparing silver labels against gold labels using the Dice Score, 95th percentile Haus-56

dorff Distance (HD95), and expert quality ratings. To formally quantify disparities, we mea-57

sure the Demographic Parity Difference (DPD) = |P (ŷ = 1|A = a) − P (ŷ = 1|A = b)| and58

Disparate Impact Ratio (DIR) = min(P (ŷ=1|A=a),P (ŷ=1|A=b))
max(P (ŷ=1|A=a),P (ŷ=1|A=b)) . Here, ŷ = 1 is the beneficial out-59

come (e.g., a high-performance segmentation), A is the sensitive attribute (e.g., age or ethnicity), and60

a, b are distinct subgroups within that attribute [Caton and Haas, 2024, Castelnovo et al., 2022].61

For these metrics, samples scoring in the top 25% for each metric were classified as high performers.62

Fairness gap (§) is the absolute difference in mean performance between the highest- and lowest-63

performing demographic subgroups [Tran and Woo, 2025].64

To isolate the effect of representational imbalance, we conducted a controlled experiment using a65

setup designed to be representative of the original automated model. We trained a standard nnU-Net66

model using a 5-fold cross-validation scheme on an age-balanced cohort (n=1,047). This cohort was67

created by downsampling the ’Middle’ and ’Older’ groups to match the ’Young’ group (n=349) and68

used only expert-annotated gold labels for training.69

Statistical Analysis was used to assess performance differences across demographic subgroups. We70

first employ Ordinary Least Squares (OLS) regression [Zdaniuk, 2014] to model the relationship71

between sensitive attributes and performance metrics. Given that the performance metric distributions72

were non-normal (confirmed by Shapiro-Wilk tests), we used the non-parametric Kruskal-Wallis73

H-test to identify significant differences in performance across age and ethnicity groups. Where a74

significant overall difference was found, we conducted post-hoc pairwise comparisons to identify75

which specific subgroups differed, using Bonferroni correction. For the analysis of categorical expert76

ratings, the Chi-square test was used.77

3 Results and Discussion78

Age-Related Performance Disparities: Our analysis reveals that the automated silver labels have79

lower quality for younger patients, a statistically significant disparity that persists beyond simple80

representational imbalance. Across the complete cohort, segmentation quality improves with age. A81

baseline OLS regression (Performance ~ Age) demonstrates a significant, although small, relation82

between age and segmentation performance (Dice score: R2 = 0.0104, p = 0.0001; HD95: R2 =83

0.0093, p = 0.0009), as visualized in Fig.1 (Right). These quantitative results are reflected in fairness84

metrics, which show a notable performance gap; for the Dice score, the DPD was 0.0887, with the85

‘young‘ group achieving a high performance at only 70% the rate of the ‘older‘ group (DIR = 0.699).86

1The Cancer Imaging Archive (TCIA) hosts de-identified cancer imaging datasets. Cohorts include: DUKE,
I-SPY1 & 2, and NACT.
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To determine if this bias was merely a confounding effect of the data source, we adjusted our OLS87

model to account for the source dataset, fitting a model of the form Performance ~ AgeGroup88

+ DataSource. An ANOVA comparison between the baseline and the source-adjusted models89

confirmed that the source dataset is a significant factor (Dice: F = 11.76, p = 1.3× 10−7; HD95:90

F = 11.07, p = 3.4× 10−7). Even after this adjustment, the age effect remained highly significant,91

indicating the bias is not solely attributable to dataset-specific characteristics. This points towards92

an intrinsic bias. Further analysis revealed an interaction effect between age and dataset (Dice:93

p = 1.6× 10−8), suggesting the magnitude of age-related bias varies depending on the data source.94

Our controlled experiment on the age-balanced cohort confirmed the age-related bias is intrinsic,95

with a statistically significant fairness gap of 0.0399 (ANOVA p=0.0260) persisting even after96

eliminating representational imbalance, as shown in the comparative results in Table1.97

Table 1: Age-Stratified Performance

Age Balanced Cohort Automated
Young 0.7304 ± 0.2333 0.8082 ± 0.2193
Middle 0.7333 ± 0.2253 0.8204 ± 0.2139
Older 0.7703 ± 0.1899 0.8612 ± 0.1679

§ 0.0399 0.0530
p-value 0.0260 0.0006

Figure 1: Analysis of Age-Related Bias. (Left) Comparison between model trained on balanced
cohort vs. automated model segmentation i.e., the full (imbalanced) cohort, showing that a significant
fairness gap remains even after balancing the training cohort. (Right) OLS regression visualizing the
significant positive correlation between age and Dice score.

Ethnic Disparities and the Masking Effect of Data Aggregation: A global analysis across the98

aggregated dataset presents a misleading picture of ethnic fairness. For the Dice score, initial analysis99

suggests minimal disparity, with a non-significant Kruskal-Wallis test (H = 5.09, p = 0.166) and a100

near-equitable DIR of 0.89. Conversely, the HD95 metric indicates a significant disparity against the101

Asian subgroup (p = 0.0046), with a more critical DIR of 0.52. This inconsistency highlights the102

unreliability of aggregated analysis.103

The true extent of bias is only revealed when disaggregating by data source. ANOVA test104

(Performance ~ Ethnicity + DataSource), confirms that the data source is a highly signif-105

icant variable for both Dice (F = 11.78, p = 1.2× 10−7) and HD95 (F = 9.10, p = 6.0× 10−6).106

This demonstrates that institutional or cohort-specific factors are major confounders. For example,107

while the global DPD in Dice scores was only 3.0%, it amplified to 10.0% within the ISPY2 cohort.108

This disparity, entirely masked by pooling data, reveals that certain ethnic groups face substantial109

performance degradation in specific clinical contexts.110

Additionally, we also find that the interpretation of ethnic bias is dependent on the evaluation metric.111

For the Dice score, a measure of volumetric overlap, the disparity proved to be an intrinsic bias, as112

adjusting for the data source only reduced its effect size by 6.2%. In contrast, for the HD95 score,113

a measure of boundary accuracy, the bias was largely a result of source confounding; adjusting for114

the data source reduced its effect size by a substantial 64.0%. This divergence suggests the model115

produces different types of segmentation errors for certain ethnic groups.116

Outlook: We present a comprehensive fairness audit of a breast tumor segmentation model using117

the multi-center MAMA-MIA dataset, revealing significant age and ethnic disparities. Our analysis118

identified a persistent intrinsic bias against younger patients that survives balanced training, and119

severe, site-specific ethnic biases that are masked by multi-center data aggregation. This audit120

establishes a foundation for investigating the causal mechanisms underlying these biases. Future121

work will therefore focus on these origins through controlled training experiments and a systematic122

examination of annotation quality for evidence of label bias, with the ultimate goal of developing123

targeted mitigation strategies to ensure equitable model performance.124
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Potential Negative Societal Impacts125

The primary motivation for this work is to mitigate the negative societal impact of biased AI systems126

in healthcare. Our goal is to promote equity by identifying performance disparities so they can be127

addressed before deployment. However, we recognize that this research, like any fairness audit, could128

have unintended negative consequences.129

The most direct negative impact stems from the subject of our study itself. If the biases we identify in130

the segmentation model are not rectified, its deployment in a clinical setting would perpetuate and131

potentially amplify existing health inequities. Younger patients and certain ethnic minorities would132

receive a lower quality of diagnostic support, which could lead to delayed diagnoses, suboptimal133

treatment planning, and ultimately, worse health outcomes. Our work seeks to prevent this exact134

scenario. Furthermore, there is a risk that our findings could be misinterpreted. A superficial reading135

might lead to the oversimplified conclusion that “all AI is biased,” fostering general distrust in136

valuable clinical tools.137

Despite these risks, we firmly believe that the benefit of transparently reporting these biases far138

outweighs the potential for misuse. The greatest harm comes from allowing such disparities to remain139

hidden, where they can silently influence patient care. By bringing these issues to light, we intend140

to spur corrective action and encourage the development of more robust and equitable medical AI141

systems.142
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