
Memory-Based Dual Gaussian Processes for Sequential Learning

Paul E. Chang * 1 Prakhar Verma * 1 S.T. John 1 2 Arno Solin 1 2 Mohammad Emtiyaz Khan 3

Abstract

Sequential learning with Gaussian processes

(GPs) is challenging when access to past data

is limited, for example, in continual and active

learning. In such cases, errors can accumulate

over time due to inaccuracies in the posterior,

hyperparameters, and inducing points, making

accurate learning challenging. Here, we present

a method to keep all such errors in check using

the recently proposed dual sparse variational

GP. Our method enables accurate inference for

generic likelihoods and improves learning by

actively building and updating a memory of past

data. We demonstrate its effectiveness in several

applications involving Bayesian optimization,

active learning, and continual learning.

1. Introduction

Sequential decision-making requires uncertainty esti-

mates that can be used to plan for the future. For this

reason, Gaussian process (GP) models are popular for

sequential problems in applications such as model-based

reinforcement learning (Deisenroth & Rasmussen, 2011)

and Bayesian optimization (Garnett, 2023). However,

exact online inference in GPs requires access to all past

data, which becomes infeasible over time as the amount

of data grows (Csató & Opper, 2002). Sparse GP methods

can reduce this cost, but they too assume access to all

past data. For example, the popular sparse variational GP

(SVGP) and variational free energy (VFE, Titsias, 2009)

methods require multiple passes through the data during the

stochastic training (Hensman et al., 2013). This can lead to

inaccuracies for continual or active learning, where access

to past data is limited and errors can accumulate over time.

Errors can arise from multiple sources: inaccurate posteriors,
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Figure 1. Our sequential learning method provides an accurate

posterior (top), kernel hyperparameters (middle), and sparse rep-

resentation (bottom). A key contribution is to add memory of

relevant past data (shown in the bottom row with ) in addition to

inducing inputs (shown with +).

wrong hyperparameter values, or poor sparse representa-

tions. Various techniques can be used to control such errors,

but past attempts struggled to find a coherent solution to the

problem. Initially, Csató & Opper (2002) used expectation

propagation (EP) for inference and a projection method

for sparsity but did not estimate hyperparameters. More

recently, Bui et al. (2017) did estimate hyperparameters

but found EP to perform worse than variational inference.

Maddox et al. (2021) did not optimize hyperparameters or

use the evidence lower bound (ELBO) objective but instead

resorted to a Laplace approximation for non-Gaussian

likelihoods. Their method to obtain sparse representation

uses a gradient method combined with pivoted Cholesky.

Kapoor et al. (2021) attempt to improve performance by

using a structured covariance during inference, but the cost

grows with tasks which is due to the increasing size of the

sparse representation. These attempts use a mix of methods

to control various errors, which all lead to complications.

We aim to build a single coherent method by tackling

various errors simultaneously; see Fig. 1 for an overview.

We adapt the dual-SVGP method of Adam et al. (2021) to

perform sequential learning with generic likelihoods. A

key contribution of our work is to improve performance by
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adding a memory set of past examples. A sufficiently large

memory can achieve arbitrarily close performance to the

batch case, and the performance loss can be minimized by

choosing the set carefully. For such selection, we propose a

new score called the Bayesian leverage score which uses the

dual parameters of the dual-SVGP posterior to characterize

relative importance of past examples. Overall, our memory-

based SVGP enables us to tackle the various errors arising in

sequential learning. It also avoids the complications arising

in previous work on sequential learning, as discussed below:

1. Unlike Csató & Opper (2002), we aim to minimize the

ELBO which aligns better with Bui et al. (2017) who

also found the ELBO to give better results than EP. Our

dual parameters can be seen as an estimate of those

used in Csató & Opper (2002, Lemma 1).

2. Similarly to Bui et al. (2017), we obtain a pseudo-data

interpretation but it is derived from the dual parame-

terization. Our approach directly addresses the issues

they aim to solve and is more straightforward.

3. Unlike Maddox et al. (2021), we estimate hyperparam-

eters and use a variational method for inference.

4. Unlike Kapoor et al. (2021), we use a fixed number

of inducing inputs and instead increase the memory

size. The cost grows linearly as opposed to a cubically

increasing cost of their method. We also do not need

any regularization for hyperparameters.

Our use of memory is similar to recent continual learning

methods (Nguyen et al., 2018; Titsias et al., 2020; Pan et al.,

2020; Khan & Swaroop, 2021), but we select the memory

via an extension of leverage scores (Cook & Weisberg, 1980;

Alaoui & Mahoney, 2015). We demonstrate effectiveness

of our approach on several applications involving Bayesian

optimization, active learning, and continual learning.

2. Sequential Learning with a GP

We consider sequential learning in models with a GP prior

over functions, f ∼ GP(0, κθ). The prior is characterized

by a covariance (kernel) function κθ(x,x
′), where x,x′ are

input vectors and θ denotes the hyperparameters. Observa-

tions (xi, yi) are modeled by the likelihood p(yi | fi) given

a function value fi = f(xi). In the sequential setting, we

first compute the posterior on Dold = (Xold,yold) where

Xold is a matrix containing all the past inputs x¦
i as rows

and yold is a vector containing all the past outputs yi. Then,

when new data Dnew = (Xnew,ynew) is observed, our goal

is to update the posterior and hyperparameters.

The posterior inference in the sequential setting is challeng-

ing because the cost grows cubically in the size of data

(denoted by n). We can see this by expressing the posterior

p(fi|y) as follows (Csató & Opper, 2002, Lemma 1),

Ep(fi |y)[fi] = k¦
xiα, (1)

Varp(fi |y)[fi] = κii − k¦
xi(Kxx + diag(β)−1)−1kxi,

where α and β are vectors of n dual parameters,

αi = Ep(fi |y)[∇fi log p(yi | fi)],

βi = Ep(fi |y)[−∇
2
fi
log p(yi | fi)],

(2)

respectively; a derivation is given in App. A.1. Here, we

use Kxx to denote the n × n matrix with κ(xi,xj) as the

ijth entry. Similarly, kxi denotes a vector where each jth

element is κ(xi,xj), and κii = κ(xi,xi). The parameters

(αi, βi) are the dual parameters that arise in the dual for-

mulations used in, for example, support vector machines

(Cortes & Vapnik, 1995), whose origins are found in work

by Kimeldorf & Wahba (1971). The posterior holds for

generic likelihoods, even a non-Gaussian one, and no ap-

proximations are involved.

More importantly, the expressions in Eq. (1) and Eq. (2)

clearly show the challenge of sequential learning, where

as data grows, so do (α,β), and naïve computation of the

posterior is now O((nold + nnew)
3) due to the matrix inver-

sion, quickly making inference infeasible. Csató & Opper

(2002) suggested storing and using only a subset of past data

to reduce the computation. They estimate (αi, βi) using a

Gaussian approximation to p(fi |y), obtained by EP, but

did not consider updating the hyperparameters.

In the full-batch case, scaling can be improved using the

SVGP method (Titsias, 2009; Hensman et al., 2013), which

optimizes an ELBO to select hyperparameters θ, inducing

inputs Z = (z1, . . . , zm) with m j n, and the posterior

qu(u) = N(u |m,V) defined over functions ui = f(zi)
at zi. The ELBO is given by

Lbatch =
∑

i∈Dold∪Dnew

Equ(fi)[log p(yi | fi)]− DKL[qu(u) ∥ pθ(u)],

(3)

which uses the following posterior predictive distribution,

qu(fi) = N(fi |a
¦
i m, κii − a¦

i Kzzai + a¦
i Vai), (4)

where a¦
i = k¦

ziK
−1
zz , and pθ(u) is the GP prior over u.

The last term in the bound is the Kullback–Leibler diver-

gence (KLD). The method assumes that all data is available

throughout training, so it does not directly apply in the

sequential setting.

Bui et al. (2017) extend the SVGP method in an ad-hoc way

by adding two additional KLD terms to match the previous

posterior and prior at the old inducing inputs. Let Zold

denote the old inducing inputs with uold = f(Zold) and

posterior predictive quold
(fi). Also, let pθold

(fi) denote the
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prior for the old hyperparameters θold. Given the new data

Dnew, Bui et al. modify the ELBO as follows,

∑

i∈Dnew
Equ(fi)[log p(yi | fi)]− DKL[qu(u) ∥ pθ(u)]

+ DKL[qu(uold) ∥ pθold
(uold))]

− DKL[qu(uold) ∥ quold
(uold)], (5)

where the last two KLD terms are the newly added terms

which are meant to penalize deviations from both the old

prior and posterior. This is an indirect way to keep the

solutions close to the full-batch case, but it does not always

work well (we give empirical evidence in Sec. 4).

Maddox et al. (2021) revisit the approach of Bui et al. (2017)

in the context of Bayesian optimization and active learn-

ing. They simplify the derivation for the Gaussian case via

pseudo-data. They resort to a Laplace approximation to han-

dle non-Gaussian likelihoods. Laplace approximation is a

more ‘local’ one than those obtained by variational methods

and it can give worse results (Opper & Archambeau, 2009).

In addition, they do not optimize hyperparameters.

We will now show that the above difficulties can be alle-

viated by using the method of Adam et al. (2021): we can

estimate the parameterization of Csató & Opper (2002), im-

prove the ELBO of Bui et al. (2017), improve over Laplace

approximation of Maddox et al. (2021), and, unlike Kapoor

et al. (2021), keep the computational cost from exploding.

3. A Memory-based Dual-SVGP Method

We adapt the dual-SVGP method of Adam et al. (2021)

to enable accurate inference in the sequential case. We

first describe the dual form of the SVGP solution and then

use it to derive a new memory-based objective to perform

sequential learning. Then, we optimize the new objective

by using the dual-SVGP algorithm to update the posterior,

hyperparameters, and inducing inputs. Finally, we present

the new Bayesian leverage score to select the memory.

3.1. The Dual Form of the SVGP Solution

The dual form of the sequential SVGP solution has a strik-

ingly similar form to the full-GP case given in Eq. (1). Con-

sider the following ELBO defined over the old data,

Lold =
∑

i∈Dold

Equ(fi)[log p(yi | fi)]− DKL[qu(u) ∥ pθ(u)].

(6)

Adam et al. (2021) show that a stationary point qold
u (u) =

N(u |mold,Vold) has a dual form for its natural parameters:

(Vold)−1mold =
∑

i∈Dold
aiβ̂

old
i ŷold

i , (7)

(Vold)−1 =
∑

i∈Dold
aiβ̂

old
i a¦

i +K−1
zz , (8)

where ŷold
i = α̂old

i /β̂old
i + a¦

i m
old is a ‘pseudo’ output, and

(α̂old
i , β̂old

i ) are defined as

α̂old
i = Eqold

u
(fi)[∇fi log p(yi | fi)],

β̂old
i = Eqold

u
(fi)[−∇

2
fi
log p(yi | fi)].

(9)

The result follows from Eq. (21) in Adam et al. (2021). A

proof is given in App. A.2 where we also derive a dual-form

for the predictive distribution qold
u (fi):

Eqold
u

(f)[fi] = k¦
ziK

−1
zz α

old
u , (10)

Varqold
u

(f)[fi] = κii − k¦
zi

[

K−1
zz −

(

Kzz +Bold
u

)−1
]

kzi.

The form is strikingly similar to Eq. (1) but it uses two

dual parameters consisting of an m-length vector αold
u and

m×m-size matrix Bold
u , defined as

αold
u =

∑

i∈Dold
kzi α̂

old
i ,

Bold
u =

∑

i∈Dold
kzi β̂

old
i k¦

zi.
(11)

The pair (αold
u ,Bold

u ) can be seen as ‘amortized’ dual pa-

rameters which do not depend on the data size n, but rather

provide a distilled compact summary through m inducing

inputs. Similarly, the pair (α̂old
i , β̂old

i ) can be seen as an esti-

mate of (αi, βi) in Eq. (2) obtained by using qold
u (fi) instead

of the exact posterior p(fi|y
old).

The posterior can also be expressed in a form where likeli-

hoods are replaced by their Gaussian approximations,

qold
u (u) ∝ eu

¦(Vold)−1mold− 1

2
u¦(Vold)−1u

∝ pθ(u) e
u¦(Vold)−1mold− 1

2
u¦((Vold)−1−K−1

zz
)u

∝ pθ(u)
∏

i∈Dold
e−

1

2
β̂old
i

(ŷold
i

−a
¦

i
u)2 , (12)

where the second line is obtained by adding and subtracting

u¦K−1
zz u/2 and the third line is obtained by using Eqs. (7)

and (8) and then completing the squares. Previous works

used EP to obtain such site parameters (Csató & Opper,

2002; Bui et al., 2017), but we obtain them with SVGP too.

Adam et al. (2021) further show that the dual form can be

used to improve hyperparameter optimization. The idea is to

fix the dual parameters in Eq. (12) and treat both pθ(u) and

ai = k¦
ziK

−1
zz as functions of θ. Then, plugging Eq. (12)

into Eq. (6) gives rise to an objective which, compared to

the ELBO, is better aligned with the marginal likelihood;

see App. B of Adam et al. (2021). They propose a stochastic

expectation-maximization procedure in which the posterior

is updated by maximizing Eq. (6) and hyperparameters are

updated using the new objective.

In the next section, we will derive a new objective for se-

quential learning where memory is used to mimic the batch-

SVGP of Eq. (3). Similarly to Bui et al. (2017), we also use

the pseudo-data idea, but our approach is more straightfor-

ward and directly addresses the issues they aim to solve.
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3.2. Memory-based Objective for Sequential Learning

Our goal is to closely mimic the batch-SVGP objective

given in Eq. (3). We make two modifications to the batch

objective. First, instead ofDold, we use a subset of examples

stored in a memory setM:

∑

i∈Dnew∪M

Equ(fi)[log p(yi | fi)]− DKL[qu(u) ∥ pθ(u)]. (13)

For M = Dold, we exactly recover Lbatch and, for small

memory size, the error can be minimized by carefully choos-

ingM as a representative set of Dold.

Second, we reuse the old posterior qold
u (u) which contains a

distilled summary of the old data in its dual parameters. Our

key idea is to express the prior in terms of the old posterior

by using Eq. (12),

pθ(u) ∝
qold
u (u)

∏

i∈Dold
e−

1

2
β̂old
i

(ŷold
i

−a¦

i
u)2
∝

qold
u (u)

p̂Dold
(u)

, (14)

where we rewrite the denominator as a Gaussian:

p̂Dold
(u) = N(u | ỹold, Σ̃

old
), (15)

ỹold = Kzz(B
old
u )−1αold

u +mold
u , (16)

Σ̃
old

= Kzz(B
old
u )−1Kzz. (17)

A derivation is in App. A.3. The denominator can be seen

as pseudo-data, similar to those derived in Bui et al. (2017).

Eq. (14) is exact whenever qold
u (u) is an exact stationary

point of Eq. (6), for example, in the very first update. How-

ever, in sequential learning, qold
u (u) is almost never exact be-

cause errors can accumulate due to lack of full access to data

at subsequent updates. To handle this, we rewrite Eq. (15)

where only examples inM are used in the denominator:

qold
u (u)

p̂Dold
(u)
≈

q̂old
u (u)

p̂M(u)
, (18)

where q̂old
u is an estimate of qold

u (u) (see Sec. 3.3). The

denominator is defined in similar ways but using onlyM.

We will use this as our new prior which can be obtained

from the dual parameters by removing contributions ofM,

αold\M
u = αold

u −
∑

i∈M kziα̂
old
i , (19)

Bold\M
u = Bold

u −
∑

i∈M kziβ̂
old
i k¦

zi. (20)

Here, for notational simplicity, we use (αold
u ,Bold

u ) to denote

the dual parameters of q̂old
u (u). A derivation is in App. A.3

along with expressions for the mean and covariance.

Replacing pθ(u) in Eq. (13) with the new prior (Z denotes

the normalizing constant), we arrive at

Lq
seq =

∑

i∈Dnew∪M

Equ(fi)[log p(yi | fi)]− DKL

[

qu(u)∥
q̂old
u (u)

Z p̂M(u)

]

.

(21)

Why do we expect the new objective in Eq. (21) to be more

accurate? One explanation is to see the new objective as an

improved version of variational continual-learning (VCL)

(Nguyen et al., 2018), by rewriting it as

Lq
seq =

∑

i∈Dnew

Equ(fi)[log p(yi | fi)]− DKL[qu(u) ∥ q̂
old
u (u)]

+
∑

i∈M

Equ(fi)[log p(yi | fi)]− Equ(u)[log p̂M(u)]. (22)

The first two terms are equal to the VCL objective where

the estimated old posterior is used as the new prior. VCL

is exact only when the old posterior is exact, which, as

discussed before, is unlikely in practice. To address

this issue, in the third term we add a few representative

examples of Dold usingM. The fourth term is subtracting

the pseudo-data to avoid double-counting the contributions

of the examples inM.

The new objective directly addresses the issues raised by

Bui et al. (2017) regarding hyperparameter learning, who

add two KLD terms (see the last two lines of Eq. (5)). This

essentially uses the ratio quold
(uold)/pθold

(uold), which is

proportional to the pseudo-data. In contrast, in our objective,

we use the exact likelihood (the third term in Eq. (22)) in

addition to the pseudo-data (the fourth term). The two terms

are added on top of the VCL objective where q̂old
u (u) is used.

In the limit ofM = Dold, we have Lq
seq = Lbatch (assuming

Z and θ to be the same): In this case, the first terms of

both Eq. (21) and Eq. (3) are equal; the second terms can

also be seen to be equal using Eq. (14). By using a good

representative memory of the past data, we expect to mimic

the batch-SVGP objective. Using memory to improve se-

quential learning is unique to our approach.

3.3. Inference using the Memory-Based Objective

We will optimize the new objective in Eq. (21) by using

the Bayesian learning rule (BLR) of Khan & Rue (2021)

which is a natural-gradient descent algorithm. This method

is also used by Adam et al. (2021) who write the update in

a natural-parameter form. We will instead use a form where

we update the estimate of the dual pair (α
(t)
u ,B

(t)
u ) at each

iteration t. A detailed derivation is given in App. A.4 and

below we give the final update,

α(t)
u ← (1− ρ)α(t−1)

u + ρ
(

αold\M
u +

∑

i∈Dnew

kziα̂
(t)
i

)

,

B(t)
u ← (1− ρ)B(t−1)

u + ρ
(

Bold\M
u +

∑

i∈Dnew

kziβ̂
(t)
i k¦

zi

)

.

(23)

The update adds the contribution of the new data using

the dual parameters (α̂
(t)
i , β̂

(t)
i ) which are defined similarly

to Eqs. (7) and (8) but by using the most recent poste-

rior q
(t−1)
u (fi). The mean and covariance of the posterior
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Figure 2. Ablation study on split MNIST to explore the benefits of memory and Bayesian leverage score (BLS). (a) Evolution of test set

accuracy of our method as we move data from training set to test set based on BLS ranking vs. randomly. (b) Digits from the training set

with lowest↔highest BLS, high BLS digits are more unusual and more difficult to learn than digits with low BLS score. (c) Evolution of

test set accuracy as the memory size is increased; memory size of just 5% achieves satisfactory performance.

needed to compute the expectations are obtained as follows,

m(t) ← α(t)
u
, V(t) ←

(

K−1
zz

B(t)
u

K−1
zz

+K−1
zz

)−1
. (24)

3.4. Learning of Hyperparameter and Inducing Inputs

For hyperparameter learning, we will use the new ELBO

derived by Adam et al. (2021) who show faster convergence;

also see the recent work by Li et al. (2023). As before, we

will derive it by assuming that Dold is available and then we

will make approximations to handle the sequential case.

We follow the procedure given in Adam et al. (2021, App. B).

Let qnew
u

(u) denote the solution obtained by maximizing

Eq. (3). The idea is to take its dual form and fix (ŷnew
i , ˆ́new

i )
while treating both pθ(u) and ai as functions of θ:

qnew
u

(u;θ) ∝ pθ(u)
∏

i∈D e−
1
2
ˆ́new
i

(ŷnew
i
−u¦

a
θ

i
)2 , (25)

where D = Dnew ∪ Dold and we have indicated explicit

dependency on θ by denoting aθ

i and qnew
u

(u;θ). Then,

plugging Eq. (25) in Eq. (6) gives the following objective

(see App. B in Adam et al., 2021, for details):

Lθ

seq = logZ(θ) + c(θ), (26)

c(θ) =
∑

i∈D

Eq(fi;θ)[log p(yi | fi)]− Eq(u;θ)[log p̂D(u)],

logZ(θ) = −
1

2
log

∣

∣Kθ

zz
(Bnew

u
)−1Kθ

zz
+Kθ

zz

∣

∣

−
1

2
b¦

(

Bnew
u

+Kθ

zz

)−1
b+ const.

Here, we keep Bnew
u

fixed, and treat everything else as a

function of θ. We define b = (Bnew
u

)−1αnew
u

+mnew which

contains the part in ỹnew that are fixed.

For the sequential setting, we modify the first term in c(θ) by

using a stochastic approximation for the sum over Dold. We

approximate it by usingM and scale it to get an unbiased

estimate of the gradient,

∑

i∈Dnew

Eq(fi;θ)[log p(yi | fi)]

+
nold

nM

∑

i∈M

Eq(fi;θ)[log p(yi | fi)].

Here, nold and nM are the size of Dold andM respectively.

This is similar to the approach of Titsias et al. (2020).

To update the inducing inputs, we use the pivoted-Cholesky

method of Burt et al. (2020). A similar method is used by

Maddox et al. (2021) but in combination with gradient based

optimization. We find that our framework gives much better

performance using the pivoted-Cholesky alone, and we do

not need any gradient based optimization of inducing points.

We concatenate [Zold,Xnew] and use pivoted-Cholesky to

get the new inducing points Znew. Having moved the in-

ducing points to Znew, we now need to adjust the varia-

tional parameters which are still defined over the old induc-

ing points Zold. We adjust this using a projection matrix

P = KZnew,Zold
K−1

Zold,Zold
to get the new dual parameters,

αu ← Pαu and Bu ← PBuP
¦. (27)

3.5. Memory Selection using Bayesian Leverage Score

Another key contribution of our work is to select and update

a memory of the past data to improve learning. We present

a new score called the Bayesian leverage score (BLS) to

actively build and update the memory. The score extends

the classical ridge leverage score (RLS, Alaoui & Mahoney,

2015), which is commonly used to select subsets for linear

regression. We generalise it to the SVGP case, and use it

to build a memory for sequential learning. Fig. 2b gives

an example of ranking data instances by BLS (details in

Sec. 4.3).
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Algorithm 1 Dual-SVGP with memory

1: Initialize αu,Bu,Zold,θ,M
2: for each new data do

3: Observe new data (ynew,Xnew)
4: Update Z using pivoted-Cholesky on [Zold,Xnew]
5: Project old (αu,Bu) to new Z using Eq. (27)

6: Update (αu,Bu) by using Eqs. (23) and (24)

7: Update θ by optimizing Eq. (26)

8: Update memoryM using the method from Sec. 3.5

9: end for

Consider the following linear model, yi = a¦i u+ ϵi, where

yi are the observations, ai are the features, u is the param-

eter vector, and ϵi ∼ N(0, Ã2). If we consider Bayesian

linear regression in this model, i.e. we place a prior over the

weights N(u;0,Kzz), then

p(u |y) ∝ N(0,Kzz)
∏n

i=1 e
− 1

2σ2 (yi−a
¦

i
u)2 , (28)

highlighting the similarity to Eq. (12). The ridge leverage

score for the ith example is defined as

hRLS
i = a¦i

(

1

Ã2
AA¦ +Kzz)

−1

)−1

ai, (29)

where A = (a1, . . . ,an). Examples with high leverage

scores are often far away from other observations and have

high predictive uncertainty.

Comparing the above linear model to Eq. (12), we see that

the SVGP posterior is equivalent to the posterior of a lin-

ear model with a major difference: the noise is now het-

eroscedastic with variance 1/ ˆ́new
i for the ith example. This

motivates the following Bayesian generalisation of RLS,

which we refer to as the Bayesian leverage score (BLS),

hBLS
i = a¦i

(

A diag(β̂
new

)A¦ +K−1
zz

)−1

ai. (30)

We do not have to invert Kzz explicitly. The score can

be computed without any additional cost by rewriting it in

terms of predictive variance v̂i of qu(fi), that is,

hBLS
i = ˆ́new

i v̂new
i . (31)

For Gaussian likelihoods, BLS in Eq. (31) reduces to RLS

because ˆ́
i = 1/Ã2, but unlike RLS, the BLS also applies to

non-Gaussian likelihoods. When selecting the memory, we

want representative examples. We achieve this by sampling

memory points from the new batch weighted by the BLS

score. This biases our memory towards more difficult exam-

ples whilst covering the typical set, which we find improves

performance. The final algorithm is given in Alg. 1.

4. Experiments

We perform a range of experiments to show the capability

of the proposed method on various sequential learning

problems. For sequential decision-making tasks, we apply

our method to Bayesian Optimization (BO) and Active

Learning (AL) (Sec. 4.1). Building on Chang et al. (2022),

we show how ‘fantasy’ batch acquisition functions can be

built for simple acquisition functions and demonstrate the

effectiveness on the ‘lunar landing’ BO problem and the

‘hotspot modelling’ AL problem.

In streaming tasks, data comes in small batches, where

the total number of data points is unknown, and all SVGP

parameters should be optimized. This limits the use of

the methods by Maddox et al. (2021) and Kapoor et al.

(2021). Therefore, we compare the proposed method against

Bui et al. (2017) on streaming UCI tasks and on a real-

world robot task (Sec. 4.2). Finally, we consider the split-

MNIST continual learning problem, where the data is non-

stationary, but the total number of tasks and data points

are known beforehand. Thus, in Sec. 4.3 we compare the

proposed method to Kapoor et al. (2021) and Bui et al.

(2017). Additionally, we include a study on the benefits of

our BLS score over a random selection of memory.

4.1. Bayesian Optimization and Active Learning

The lunar lander problem is a challenging optimization

problem that aims to successfully land a vehicle inside a

specific region of a lunar surface (Moss et al., 2020). Here,

every action performed by the lander results in a reward.

The aim is to optimize the total reward. Various environ-

mental components add to the model’s stochasticity, making

it a challenging problem. The setup with the sources of

stochasticity and the multiple states of the lander is shown

in Fig. 3. The search space spanning over R
12 is high-
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Figure 3. Bayesian optimization on a lunar landing setup. The goal

is to successfully land on the surface between the flags. Compared

against the non-batch solution and a batch solution using parallel

Kriging (Ginsbourger et al., 2010), the proposed approach achieves

higher reward in less function evaluations.
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dimensional, making the task challenging. However, build-

ing a batch based on fantasy points can help overcome

the difficulty in BO. These fantasy points are simulated

points (xi,yi) obtained from the acquisition function µ(·)
by xi = argmaxx µ(x) and sampling the corresponding

yi from the current model. We then condition the fanta-

sized point into the posterior using our dual updates, and

repeat the procedure for subsequent query points, thereby

constructing a batch of query points (see Alg. 2 in App. A.5).

We model the problem using a regression model that aims

to maximize the reward and a classification model that mod-

els whether the landing was successful. The acquisition

function is a product of the Expected Improvement of the

regression model and the predictive mean of the classifica-

tion model. In both the models, we make a batch of fantasy

points. For details see App. B.4.

The presence of the non-Gaussian likelihood in the classi-

fication model prevents the use of many advanced batch

acquisition functions which exploit properties unique to

Gaussian likelihoods, such as q-KG (Wu & Frazier, 2016).

Our method is agnostic to the likelihood and also allows

batching of fantasy points in this challenging setup. We run

two baselines: a non-batch version of the proposed method

and a standard batch BO method proposed by Ginsbourger

et al. (2010). Each method gets the same set of 24 initial

data points and optimizes over 90 function evaluations.

Both batch methods build batches of three query points. We

run the experiment with five random initial observations

and visualize individual and average reward curves over

the BO iterations in Fig. 3. Our method improves over the

non-batch setting and over the batch method of Ginsbourger

et al. (2010), showing the usefulness of our batch method

and robustness to the non-Gaussian likelihood.

We also consider the schistosomiasis hotspot modelling ac-

tive learning problem from Maddox et al. (2021) (originally

based on Andrade-Pacheco et al., 2020). In the same SVGP

model and setup (we use Maddox et al.’s code, though we

turn off their tempering, which improves all methods), our

method for updating the posterior leads to clear improve-

ment of MSE and slightly improved accuracy (Fig. 4) whilst
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Figure 4. Schistosomiasis hotspot modelling experiment of Mad-

dox et al. (2021)’s online variational conditioning method (OVC).

We report mean ± standard error over 50 seeds, showing better

performance of the proposed method.

Table 1. UCI data sets: negative log predictive density, mean (stan-

dard deviation) over 10-fold cross-validation, lower is better.

Data set Offline Ours Bui et al.

ELEVATORS .50 (.01) .57 (.02) .57 (.02)
BIKE .24 (.03) .44 (.03) .49 (.03)
MAMMOGRAPHIC .40 (.04) .41 (.05) .42 (.05)
BANK .25 (.03) .26 (.03) .28 (.04)
MUSHROOM .00 (.00) .02 (.00) .08 (.01)
ADULT .32 (.00) .35 (.01) .36 (.00)

being faster. On the same GPU, Maddox et al.’s online vari-

ational conditioning (OVC) method took on average 85 s
per step (standard deviation 11 s); ours took on average 62 s
(standard deviation 7 s).

4.2. Streaming Tasks

Under streaming scenarios, where data comes in small

batches and the total number of data points is unknown,

we include two different experiment setups: UCI tasks and

the so-called banana data set, as well as a real-world robot

data set for mapping magnetic anomalies in an indoor space.

UCI and Banana We consider a setup where the ba-

nana data set and UCI (Dua & Graff, 2017) data sets are

converted into streaming setups by splitting them into sets,

D={D1,D2, . . .}. The model at each step has access only

to the current set Dk. For UCI data sets, we sort with re-

spect to the the first input dimension. Fig. 1 (top) shows the

posterior obtained by the proposed method on the banana

data set. Details about the setup and comparison with other

methods can be found in App. B.1. In UCI data sets, we

experiment with both regression and classification setups.

The offline model has access to the whole data and can take

multiple passes. Therefore, the offline model is used as a

gold-standard baseline and we compare our method with

Bui et al. (2017). Table 1 shows the mean test negative log

predictive density (NLPD) over 10-fold cross-validation,

where Z,θ,αu, and Bu are optimized. Other evaluation

metrics, setup, and implementation details are available in

App. B.5. In the streaming setting, the proposed method

performs comparable to Bui et al. (2017).

Sequential Learning of Magnetic Anomalies We con-

sider the task of online mapping of local anomalies in the

ambient magnetic field. We follow the experiment setup

and data provided in Solin et al. (2018), where a small

wheeled robot equipped with a 3-axis magnetometer moves

around in a 6m× 6m indoor space. We assign a GP prior

GP(0, Ã2
0 + »Mat.

Ã2,ℓ
(x,x′)) to the magnetic field strength

over the space under the presence of Gaussian measurement

noise with variance Ã2
n.

We include two experiments: In Fig. 5a, we simultaneously

learn the hyperparameters (Ã2
0 , Ã

2, ℓ, Ã2
n) and a representa-
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Magnetometer

After path 1 After path 2 After path 3 After path 4

(a) Experiment #1: Sequential estimation of magnetic field anomalies in a fixed-size domain with multiple observation paths

Step #0 Step #5 Step #10 Step #15 Step #20

RMSE: Ours vs. Bui et al. 7.79 vs. 8.31 7.75 vs. 10.9 7.40 vs. 9.90 7.38 vs. 9.79

(b) Experiment #2: Maintaining representation in a sequential setting in an ever-expanding domain

Figure 5. Sequential estimation of anomalies by the proposed method in the local ambient magnetic field strength (10 µT 90 µT)

as mapped by a small wheeled robot. Two experiments for learning the hyperparameters and representation: (a) Complete trajectories are

received and the model does not have access to the previous trajectories. (b) Data is received during the exploration of the space requiring

the method to spread out a fixed number of inducing points. Each step shows RMSE values comparing our method to Bui et al. (2017).

tion in terms of inducing points and memory. Our method

is able to form a representation by spreading inducing

points and learning the hyperparameters progressively. This

has practical importance in real-world robot estimation

tasks, where the robot is not constrained to a predefined

area (a weakness in Solin et al., 2018). In Fig. 5b, we now

receive data continuously during exploration. The visu-

alization shows the mean estimate with marginal variance

(uncertainty) controlling the opacity. We recover the same

local estimate as in experiment Fig. 5a and outperform the

baseline given by Bui et al. (2017). See details in App. B.3.

4.3. Continual Learning on Split MNIST

Split MNIST (Zenke et al., 2017) is a continual learning

benchmark and a variant of MNIST where training data

comes in five batches of two digits each, i.e. 0 and 1 ,

2 and 3 , . . . , 8 and 9 . Performance is measured by multi-

class classification accuracy on all digits seen thus far. The

model at each step has access only to the current batch of

the classification task and thus should learn incrementally

on different tasks without forgetting previous ones. Fig. 6

compares the accuracy during the training on each task, sub-

divided into batches. Our sequential model does well at

remembering previous tasks (only marginal drops in accu-

racy in each column of Table 2), while the model of Bui

et al. (2017) forgets the previous tasks. We also slightly

outperform Kapoor et al. (2021), for whom compute scales

cubically with the number of tasks and who need an addi-

tional hyperparameter regularization term. Therefore, we

distinguish it from other baselines which do not suffer from

the same complexity with the number of tasks (Table 3).

We include an experiment to show that our BLS is a useful

metric to characterise and determine the difficulty of input

points. We consider continual learning on split MNIST as

before, but now we select data points from our training set

and move them to the test set. Points are chosen either

Table 2. Test accuracy (and standard deviation over different ran-

dom seeds) on split MNIST over all tasks thus far for the proposed

method. High accuracy over all previous tasks shows that the

method does not suffer from forgetting.

Task 0 , 1 2 , 3 4 , 5 6 , 7 8 , 9

#1 .98(.005)
#2 .68(.029) .95(.003)
#3 .88(.005) .87(.004) .98(.002)
#4 .86(.006) .89(.004) .94(.007) .97(.004)
#5 .95(.014) .87(.011) .90(.011) .93(.005) .90(.014)

Ours

Bui et al.
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Figure 6. Accuracy on split MNIST over training with different

random seeds. The training starts with 0 vs. 1 and each task

introduces new digits while testing on all classes thus far. The

overall accuracy (mean over tasks) drops when introducing a new

task, but recovers and does not suffer from forgetting over tasks.
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Table 3. Test final accuracy and NLPD (standard deviation over

different random seeds) of various methods on the split MNIST

task. We include Kapoor et al. (2021) as a baseline.

Method Accuracy NLPD

SVGP (Baseline) .962(.001) 0.155(0.002)
Bui et al. (2017) .200(.001) 2.150(0.019)
Ours (without memory) .208(.007) 68.038(2.830)
Ours (with memory) .909(.001) 0.316(0.010)

Kapoor et al. (2021) .905(.010) 0.324(0.018)

randomly or based on the BLS score. We then retrain the

model on the reduced training set and test on the increased

test set. Figure 2a shows the performance of the selection

methods. Random selection of the points has a small nega-

tive effect on performance. However, using the BLS score

is detrimental, showing the importance of the examples for

the model that are moved to the test set. Figure 2b shows

digits with the highest BLS score. We also study the effect

of the size of the memory, and show how it affects the model

accuracy. We train our sequential model with different mem-

ory sizes using BLS and report test accuracy (see Fig. 2c).

As expected, the accuracy increases with memory size, but

remarkably a memory size of just 5% achieves satisfactory

performance. Experiment details can be found in App. B.2

and further evaluation of the BLS score on UCI in Table 7.

4.4. Timing Experiment

Finally, to show the benefit of natural gradient optimization

for variational parameters, we perform a timing experiment

against Bui et al. (2017) in Fig. 7 in a streaming setting

on the ‘adult’ UCI data set. We see speed improvements

in inference wall-clock timings with the same performance

(note the x-axis is in log-scale).

5. Discussion and Conclusions

The difficulty in building a sequential sparse GP model is

due to the lack of access to previous data. Approaches that

do not consider the dual parameter perspective fail to see the

essence of the inference problem; how to accurately infer

the dual parameters in a sequential manner. The problem

formulation was presented in Csató & Opper (2002), but

there an EP inference scheme was used. This paper shows

how to update parameters sequentially using variational

approximate inference.

Furthermore, we use natural gradient updates which come

easily in the dual parameter formulation allowing for a

method (i.e., few inference step iterations) that works with

general likelihoods. Lack of access to past data also makes

it challenging to learn hyperparameters θ. The problem

worsens in the non-stationary continual learning setting.

Here, to counter the problem of forgetting previous data,
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Figure 7. NLPD against wall-clock time of the proposed method

and Bui et al. (2017) on ‘adult’ UCI data set when only variational

parameters are optimized. At the same performance, the proposed

method is significantly faster than Bui et al. (2017).

we introduce the concept of memory, a technique shown to

have success in deep learning (Pan et al., 2020). We find

that a small amount of memory can dramatically improve

performance by replicating the offline ELBO solution.

Our memory approach is novel and different from previ-

ous work, which attempts to replace missing data with

additional regularization terms in the ELBO (Bui et al.,

2017; Kapoor et al., 2021). Our final method manages to

control the error that come from inference, learning and

representation (memory and inducing points). Furthermore,

our method can be applied to a variety of sequential

learning tasks. Given the importance of memory to our

method, a good selection technique is paramount. We

derive a new Bayesian leverage score, given its connection

to Bayesian approximate inference. The score generalizes

the prevalent RLS score used for kernel sampling methods

(Alaoui & Mahoney, 2015). We find the importance of the

dual parameters again, as they are a crucial component of

the BLS. We demonstrate the applicability of our method

to a complex combined batch Bayesian optimization and

active learning problem, and continual learning problem.

A reference implementation of the methods presented

in this paper is available at: https://github.com/

AaltoML/sequential-gp.
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Appendix

We include technical details of the methods that were omitted for brevity in the main paper. Additionally, we provide details

on the experiments and evaluation setup for reproducing the results in the main paper, and include further results, figures,

and tables that extend the evaluation.

A. Method Details

A.1. Equivalence to Csató and Opper

The result from Csató & Opper (2002) (cf. Lemma 1) assumes a Gaussian prior p(f) with a mean function m(x) and

covariance »(x,x′), with likelihood p(D | f) where f = [f1, f2, . . . , fn] is a vector of function values fi = f(xi). For this

case, they use the following two parameterization,

qi =

∫

∇fip(D | f)
p(f)

∫
p(D | f)p(f) df

df ,

Ri,j =

∫

∇2
fi,fj

p(D | f)
p(f)

∫
p(D | f)p(f) df

df − qiqj .

(32)

For the case when p(D | f) =
∏N

i=1 p(yi | fi), we can show the following,

qi = ³i and Ri,j =

{
´i, when i = j
0, when i ̸= j

,

where ³i and ´i are as defined in Eq. (2). We first show the proof for qi,

qi =

∫

∇fip(D | f)
1

p(D | f)

p(D | f)p(f)
∫
p(D | f)p(f) df

df

=

∫

∇fi log p(D | f)p(f | D) df

=

N∑

j=1

∫

∇fi log p(yj | fj)p(f | D) df

=

∫

∇fi log p(yi | fi)p(f | D) df

=

∫

∇fi log p(yi | fi)p(fi | D) dfi

= Ep(fi |yn)[∇fi log p(yi | fi)]. (33)

Here, the first line is obtained by simply multiplying and dividing by p(D | f), and we get the second line by using the

definition of the posterior p(f | D) and the fact that∇ log p(D | f) = [∇p(D | f)]/p(D | f). The third line follows from the

assumption that the likelihood factorizes over data examples, and the fourth line obtained by noting that∇fi log p(yj | fj) is

non-zero only when i = j. The fifth line follows by marginalizing out all fj other than fi, and the final line is just a different

way to write the expectation.

For Ri,j , we proceed in a similar fashion. We will use the following identity to write∇fi,fjp(D | f) in terms∇fi log p(D | f):

1

p(D | f)
∇2

fifj
p(D | f) = ∇2

fifj
log p(D | f) + [∇fi log p(D | f)]

[
∇fj log p(D | f)

]
. (34)

This can be proved by rearranging the derivative of ∇2
fifj

log p(D | f) by using the fact that ∇ log p(D | f) =

12
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[∇p(D | f)]/p(D | f) (which we also used in the derivation of qi above). Using this we can simplify Ri,j ,

Ri,j =

∫

∇2
fi,fj

p(D | f)
1

p(D | f)

p(D | f)p(f)
∫
p(D | f)p(f) df

df − qiqj

=

∫ [

∇2
fifj

log p(D | f) + [∇fi log p(D | f)]
[
∇fj log p(D | f)

]]

p(f | D) df − qiqj

=

∫ [

∇2
fifj

log p(D | f)
]

p(f | D) df +

∫

[∇fi log p(D | f)]
[
∇fj log p(D | f)

]
p(f | D) df − qiqj

=

n∑

k=1

∫ [

∇2
fifj

log p(yk | fk)
]

p(f | D) df +
∑

l,m

∫

[∇fi log p(yl | fl)]
[
∇fj log p(ym | fm)

]
p(f | D) df − qiqj ,

(35)

where in the first line we multiply and divide by p(D | f) and use Eq. (34) and definition of the posterior to get to the second

line. The third line is a rearrangement, and the last line is obtained by using the factorial property of the likelihood.

For the second term we get it to be non-zero when i = l and j = m, and then integrating over all function values, except fi
and fj , the term reduces to qiqj , which can be cancelled out. This gives us the following expression,

Ri,j =
n∑

k=1

∫ [

∇2
fifj

log p(yk | fk)
]

p(f | D) df

=

{
Ep(fi |yn)[∇

2
fifj

log p(yi | fi)], when i = j,

0, when i ̸= j.

(36)

This is because the derivative inside is only nonzero when i = j = k, and we can express the integral only over fi. This

proves the required result.

A.2. Derivation of the Dual-form of the SVGP Stationary Point

We will derive the dual-form of the stationary point of the following SVGP objective:

L(q) =
∑

i∈D

Equ(fi)[log p(yi | fi)]− DKL[qu(u) ∥ pθ(u)]. (37)

Derivation simplifies by using natural and expectation parameters of qu(u) = N(u|m,V), denoted by λ and µ respectively,

λ = (λ(1),λ(2)) = (V −1m, −
1

2
V −1), µ = (µ(1),µ(2)) = (m, mm¦ + V ),

Taking the gradient with respect to µ of Eq. (37) at a stationary point q∗µ(u), we get

0 =
∑

i∈D

∇µEq∗
u
(fi)[log p(yi | fi)]−∇µDKL[q

∗
u
(u) ∥ pθ(u)],

=
∑

i∈D

∇µEq∗
u
(fi)[log p(yi | fi)]− (λ∗ − λprior),

=⇒ λ∗ = λprior +
∑

i∈D

∇µEq∗
u
(fi)[log p(yi | fi)], (38)

where λprior = (0,−K−1
zz

/2) is the natural parameter of the prior pθ(u).

We can expand this equation and write two equations corresponding to the two natural parameters (V−1∗ m∗, −V
−1
∗ /2).

We get the following for the first natural parameter,

V−1∗ m∗ =
∑

i∈D

∇µ(1)Eq∗
u
(fi)[log p(yi | fi)]

=
∑

i∈D

aiEq∗
u
(fi)[∇ log p(yi | fi)]−

∑

i∈D

aiEq∗
u
(fi)[∇

2 log p(yi | fi)]a
¦
i m∗

=
∑

i∈D

ai(³̂
∗
i +

ˆ́∗
i a
¦
i m∗) (39)

13
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In the second line we used the identity given in Khan & Rue (2021, Eq. 10) which uses chain-rule and Bonnet’s result. This

gives us Eq. (7). This also matches with Eq. 21 of Adam et al. (2021) who define ¼∗1,i = ³̂∗i +
ˆ́∗
i a
¦
i m∗.

Similarly for the second natural parameter,

−
1

2
V−1∗ = −

1

2
K−1

zz
+
∑

i∈D

∇µ(2)Eq∗
u
(fi)[log p(yi | fi)]

= −
1

2
K−1

zz
+

1

2

∑

i∈D

aiEq∗
u
(fi)[∇

2 log p(yi | fi)]a
¦
i

= −
1

2
K−1

zz
−

1

2

∑

i∈D

ai
ˆ́∗
i a
¦
i (40)

Here again, in the second line we used the identity given in Khan & Rue (2021, Eq. 11) which uses chain-rule and Price’s

result. This gives us Eq. (8). This too matches with Eq. 21 of Adam et al. (2021).

We will now derive the dual-form similar to Eq. (1). Rearranging and substituting Eq. (40) in to Eq. (39), we get,

[V−1∗ − ai
ˆ́∗
i a
¦
i ]m∗ =

∑

i∈D ai³̂
∗
i =⇒ K−1

zz
m∗ = K−1

zz

∑

i∈D kzi³̂
∗
i

︸ ︷︷ ︸
=αu

V−1∗ = K−1
zz

+K−1
zz

(
∑

i∈D kzi
ˆ́∗
i k
¦
zi)K

−1
zz

=⇒ V−1∗ = K−1
zz

+K−1
zz

∑

i∈D kzi
ˆ́
ik
¦
zi

︸ ︷︷ ︸

=Bu

K−1
zz

(41)

Now substituting these results into Eq. (4), we get the results:

Eq∗
u
(f)[fi] = k¦

ziK
−1
zz

m∗ = k¦
ziK

−1
zz

αu,

Varq∗
u
(f)[fi] = »ii − k¦

zi

[
K−1

zz
−K−1

zz
V∗K

−1
zz

]
kzi = »ii − k¦

zi

[

K−1
zz
− (Kzz +B∗

u
)
−1

]

kzi

(42)

Thus proving that we can rewrite the posterior process in terms of the sparse dual parameters.

A.3. Derivation of the Pseudo-Data and New Prior

We first derive the distribution form used in Eq. (14) for the following,

p̂D(u) ∝
∏

i∈D

e−
1
2
ˆ́∗
i (ŷ

∗

i−a
¦

i u)2 = N(u | ỹ∗, Σ̃
∗
), (43)

where ( ˆ́∗i , ŷ
∗
i ) are obtained by training on the data D. We start by writing the product in a matrix form,

log p̂D(u) = −
1

2
u¦(Σ̃

∗
)−1u+ u¦(Σ̃

∗
)−1ỹ + const.

log
∏

i∈D

e−
1
2
ˆ́∗
i (ŷ

∗

i−a
¦

i u)2 = −
1

2
u¦A¦diag(β̂

∗
)Au+ u¦A¦diag(β̂

∗
)ŷ∗ + const.

(44)

where A = KxzK
−1
zz

, and ŷ∗ and β̂
∗

are vectors of all ŷ∗i and ˆ́∗
i respectively. Then, we simply match the terms in u. First,

by matching the quadratic term, we get,

(Σ̃
∗
)−1 = A¦diag(β̂

∗
)A = K−1

zz
Kzxdiag(β̂

∗
)KxzK

−1
zz

= K−1
zz

B∗
u
K−1

zz
(45)

which gives us the third equation in Eq. (15). Next, by matching the linear term in u, we get,

ỹ∗ = Σ̃
∗
A¦diag(β̂

∗
)ŷ∗

= Kzz[B
∗
u
]−1KzzK

−1
zz

Kzxdiag(β̂
∗
)ŷ∗

= Kzz[B
∗
u
]−1Kzxdiag(β̂

∗
)[diag(β̂

∗
)−1α̂∗ +Am∗]

= Kzz[B
∗
u
]−1Kzxα̂

∗ +Kzz[B
∗
u
]−1Kzxdiag(β̂

∗
)KxzK

−1
zz

m∗

= Kzz[B
∗
u
]−1α∗

u
+Kzz[B

∗
u
]−1B∗

u
K−1

zz
m∗

= Kzz[B
∗
u
]−1α∗

u
+m∗, (46)
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which recovers the second equation in Eq. (15). Note that we can use different forms as well. For example, an equivalent

way to write Eq. (15) is

p̂Dold
(u) = N(u|Σ̃

old
(Vold)−1mold, Σ̃

old
), (47)

ỹold = Σ̃
old
(Vold)−1mold, (48)

Σ̃
old

=
[
(Vold)−1 −K−1

zz

]−1
,

which is in terms of the mean and covariance of the posterior. This expression is similar to the one used in Bui et al. (Eq. 7

2017). All such forms are equivalent. We use Eq. (15) because it uses dual parameters which are readily obtained through

the natural-gradient method of Adam et al. (2021).

We can write p̂M(u) in a similar way,

p̂M(u) ∝
∏

i∈M

e−
1
2
ˆ́old
i (ŷold

i −a
¦

i u)2 = N(u | ỹM, Σ̃
M
). (49)

The expressions for ỹM and Σ̃
M

are derived by repeating the same derivation but now only involving i ∈M. For example,

(Σ̃
M
)−1 =

∑

i∈M

ai
ˆ́old
i a¦i = K−1

zz

(
∑

i∈M kzi
ˆ́old
i k¦

zi

)

︸ ︷︷ ︸

=BM
u

K−1
zz

ỹM = Σ̃
M ∑

i∈M

ai
ˆ́old
i ŷold

i = Kzz[B
M
u

]−1
∑

i∈M

kzi(³̂
old
i + ˆ́old

i a¦i m
old)

= Kzz[B
M
u

]−1
∑

i∈M

kzi³̂
old
i

︸ ︷︷ ︸

=αM
u

+

[

Kzz[B
M
u

]−1
(

∑

i∈M

kzi
ˆ́old
i kzi

)

K−1
zz

]

m∗

= Kzz[B
M
u

]−1αM
u

+m∗. (50)

Next, we derive the mean and covariance of the new prior q̂old
u
(u)/p̂M(u) ∝ N(u|mprior,Vprior). Let us denote the current

estimate of the dual pair by (αold
u
,Bold

u
) as defined in Eq. (11). There, the whole Dold is used but, in reality, the dual pairs

are learned sequentially and may not represent the exact dual parameters. Still, we use the same notation for convenience.

The current natural-parameters of the posterior can be then written by rewriting Eqs. (7) and (8) in terms of the dual pairs,

(V̂old)−1m̂old = K−1
zz

αold
u

+K−1
zz

Bold
u
K−1

zz
mold,

(V̂old)−1 = K−1
zz

Bold
u
K−1

zz
+K−1

zz
.

(51)

Similarly, we can write the natural parameters of p̂M(u) in terms (of the current estimate) of (αM
u
,BM

u
),

(V̂M)−1m̂M = (Σ̃
M
)−1ỹM = K−1

zz
αM

u
+K−1

zz
BM

u
K−1

zz
m∗,

(V̂M)−1 = (Σ̃
M
)−1 = K−1

zz
BM

u
K−1

zz
.

(52)

The natural parameters of the new prior are simply obtained by subtracting the natural parameters given above,

(Vprior)−1mprior = (V̂old)−1m̂old − (V̂M)−1m̂M = K−1
zz

αold\M
u

+K−1
zz

Bold\M
u

K−1
zz

mold,

(Vprior)−1 = (V̂old)−1 − (V̂M)−1 = K−1
zz

Bold\M
u

K−1
zz

+K−1
zz

,
(53)

where (α
old\M
u , B

old\M
u ) are defined in Eqs. (19) and (20).

A.4. Derivation of the Natural-Gradient Descent Algorithm

We will optimize the new objective in Eq. (21) by using the Bayesian learning rule (BLR) of Khan & Rue (2021) which is

a natural-gradient descent algorithm. We start by denoting the natural and expectation parameters of a posterior q
(t)
u (u)
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obtained in the t’th iteration by λ(t) and µ(t) respectively. We denote the natural parameters of the prior q̂old
u
(u)/p̂M(u) ∝

N(u|mprior,Vprior) by λprior; an expression is given in Eq. (53). With these, the BLR update can be written as the following,

λ(t) ← (1− Ä)λ(t−1) + Ä

(
∑

i∈Dnew

∇µ Equ(fi)[log p(yi | fi)]
∣
∣
µ=µ(t) + λprior

)

. (54)

To simplify the implementation, we will write the updates in terms of the estimate of the dual pair (α
(t)
u ,B

(t)
u ) at iteration t.

We make use of the fact that each iterate λ(t) has the same dual form as in Eq. (52). This is written below,

(V(t))−1m(t) = K−1
zz

α(t)
u

+K−1
zz

B(t)
u

K−1
zz

m(t),

(V(t))−1 = K−1
zz

B(t)
u

K−1
zz

+K−1
zz

.
(55)

As shown in Eq. (53), the prior λprior too has the same form written in terms of the dual parameters (α
old\M
u , B

old\M
u ).

Finally, as shown in Eqs. (39) and (40), the natural-gradients too can be written in the same form,

∑

i∈Dnew
∇µ(1)Equ(fi)[log p(yi | fi)]

∣
∣
µ=µt

= K−1
zz

(
∑

i∈Dnew
kzi³̂

(t)
i

)

+K−1
zz

(
∑

i∈Dnew
kzi

ˆ́(t)
i k¦

zi

)

K−1
zz

m(t), (56)

∑

i∈Dnew
∇µ(2)Equ(fi)[log p(yi | fi)]

∣
∣
µ=µt

= K−1
zz

(
∑

i∈Dnew
kzi

ˆ́(t)
i k¦

zi

)

K−1
zz

, (57)

where ³̂
(t)
i and ˆ́(t)

i are defined similarly to Eqs. (7) and (8), but now by using q
(t−1)
u (fi),

³̂
(t)
i = E

q
(t−1)
u

(fi)
[∇fi log p(yi | fi)],

ˆ́(t)
i = E

q
(t−1)
u

(fi)
[−∇2

fi
log p(yi | fi)]. (58)

We can use these to simply write the update in terms of the dual pair. Essentially, we use the following equivalent update,

α(t)
u
← (1− Ä)α(t−1)

u
+ Ä

(

αold\M
u

+
∑

i∈Dnew
kzi³̂

(t)
i

)

,

B(t)
u
← (1− Ä)B(t−1)

u
+ Ä

(

Bold\M
u

+
∑

i∈Dnew
kzi

ˆ́(t)
i k¦

zi

)

.
(59)

This is followed by an update of the mean and the covariance given below,

m(t) ← α(t)
u
, V(t) ←

(

K−1
zz

B(t)
u

K−1
zz

+K−1
zz

)−1

. (60)

This is derived by using Eq. (55) and simplifying similarly to the first equation in Eq. (41).

A.5. Bayesian Optimization / Active Learning Algorithm

In Alg. 2, we include the algorithm that is used in the Bayesian optimization experiment in the main paper (Sec. 4.1), where

we fantasize a batch with dual conditioning. The algorithm uses the method outlined in the paper combined with any simple

acquisition function µ(·).

Algorithm 2 Fantasizing a batch with Dual Conditioning.

Input: current model parameters θ, Z, (αu,Bu), acquisition function µ(·), batch size k
Initialize: Xb = ∅

1: for i in 1, 2, . . . , k do ▷ k is desired number of query points

2: xi = arg maxx µ(x) ▷ Calculate µ(x) using prediction function Eq. (4) at x

3: yi = E[f(xi)] ▷ Fantasized y is mean of the GP at xi

4: Dnew = (xi, yi) ▷ The fantasized data point is treated as new data

5: Compute (αu,Bu) using Dnew using method in Adam et al. (2021) ▷ Dual conditioning

6: Xb ← Xb ∪ xi ▷ xi is added to the current batch points

7: end for

Return: Xb ▷Xb is the chosen batch of points.
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(a) Offline SVGP model
(baseline)

1 2 3

4

(b) Streaming dual SVGP
(ours)

1 2 3

4

(c) OVC
(Maddox et al., 2021)

Figure 8. Conditioning on streaming banana data set; data appears batch by batch (1–4). The plot shows the decision boundary and

the predictive class probability, with colour shading and increasing the more certain the model is about the class. The inducing

points are overlaid as black dots. (a) Offline SVGP model trained with full data. (b) Dual SVGP model conditioned on the data appearing

in batches. (c) Online Variational Conditioning (OVC, Maddox et al., 2021) model on batched data.

B. Experiment Details

In Sec. 4, we performed a series of experiments and ablation studies to showcase the capability of our proposed method in

various setups. We also compared against other methods, in particular Bui et al. (2017) and Maddox et al. (2021). Here, we

provide further details regarding the setup and the experiments performed.

B.1. Streaming Banana Data Set

The streaming banana classification experiment was used by both Bui et al. (2017) and Maddox et al. (2021). The data set is

divided into four batches of 100 points each. First, we compare within the setup of Maddox et al. (2021), who focused on fast

conditioning, but kept the hyperparameters fixed. Second, we compare with Bui et al. (2017), who address hyperparameter

learning without considering the speed of conditioning.

Fast Conditioning For a fair comparison against Maddox et al. (2021) in this experiment we also keep the hyperparameters

fixed. The problem’s challenge is that previous batches are not accessible; only the inferred variational parameters are

available. Therefore, online models are needed to condition on new data. As an oracle baseline, we trained an offline SVGP

model on the full data (see Fig. 8a). All three models are intialized with 25 inducing points and a Matérn-5/2 kernel. The

hyperparameters for our streaming dual SVGP and Maddox et al. (2021)’s OVC model are taken from the full offline model:

only conditioning is performed when the batches of data are received.

We compare decision boundary and predictive class probability of the three models in Fig. 8. The OVC method as introduced

by Maddox et al. (2021) essentially initializes new models on each batch and then combines them, hence the increasing

number of inducing points for this model. The evolution of the class probability of dual SVGP and OVC is shown in Fig. 8b

and Fig. 8c, respectively. The class probability obtained by the dual SVGP model after seeing the final batch closely matches

that of the offline SVGP model. In contrast, the OVC method does not recover the full-data decision boundary, and its

uncertainty does not match the offline baseline well.

Hyperparameter Learning Next, we conduct an experiment in which we learn all the hyperparameters (αu,Bu,θ,Z), in

contrast to the previous experiment where the hyperparameters were fixed. We compare to Bui et al. (2017), who previously

considered a similar test setup. Again, as an oracle baseline, an offline SVGP model is trained on the full data (see Fig. 9a).

All three models are intialized with 25 inducing points and Matérn-5/2 kernel. The hyperparameters for the dual SVGP are

optimized using Adam optimizer (Kingma & Ba, 2015) with learning rate 10−2 and for Bui et al. (2017) we use L-BFGS.
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(a) Offline SVGP model

1 2 3

4

(b) Streaming dual SVGP

1 2 3

4

(c) Bui et al. (2017)

Figure 9. Streaming banana data set when (αu,Bu,θ,Z) are learnt; data appears batch by batch (1–4). The plot shows the decision

boundary and the predictive class probability, with colour shading and increasing the more certain the model is about the

class. The inducing points are overlaid as black dots.

(for Bui et al. (2017)’s model, we tried both Adam optimizer and L-BFGS optimizer; L-BFGS gave better results).

We compare the decision boundary and predictive class probability of the three models in Fig. 9. The evolution of the class

probability of our dual SVGP and Bui et al. (2017) is shown in Fig. 9b and Fig. 9c.

B.2. Split MNIST

For split MNIST (see Sec. 4.3), we use the standard MNIST data provided by TensorFlow. We concatenate the standard

train and test set provided and split it 80 : 20 for training and testing. Each task is sub-divided into batches of 4000.

Both the models, our proposed model and the Bui et al. model, use a Matérn-5/2 kernel initialized with unit variance and

lengthscale. We use 10 latent GPs which matches the number of classes, with 300 inducing variables, and use a softmax

likelihood.

For hyperparameter learning in our proposed model, we use the Adam optimizer (Kingma & Ba, 2015) with learning rate

10−2 for 100 iterations for each set of data. The number of memory points for each set of tasks is set to 400. We also found

that for this task the removal of memory set from the variational parameters actually gave worse performance for split

MNIST so do not perform the removal the last term of Eq. (13), we suspect this is due to the highly non-stationary nature of

the problem and how double counting dual variables alleviates the difficulty.

For Bui et al., we experiment with the L-BFGS optimizer as well as Adam optimizer with 50 and 100 iterations; in this case

we found that Adam works better (L-BFGS fails to learn subsequent tasks). The accuracy over tasks for different numbers

of iterations can be seen in Tables 4 and 5.

B.3. Magnetic Anomaly Modelling

For the robot experiment for learning magentic field anomalies, we use the data from Solin et al. (2018) that is available at

https://github.com/AaltoML/magnetic-data. The exact metric position of the robot is provided time-synced

to magnetometer samples from a low-cost/high-noise Invensense MPU-9150 magnetometer sampled at 50 Hz. As discussed

in Solin et al. (2018), GPs provide a principled approach for modelling smooth anomalies in the magnetic vector field.

We consider the task of online mapping of local anomalies in the ambient Earth magnetic field. These anomalies are induced

by the bedrock and magnetic material in the building structure indoors. We follow the experiment setup and data provided in

Solin et al. (2018), where a small wheeled robot equipped with a 3-axis magnetometer moves around in an indoor space
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measuring roughly 6m× 6m. We consider a simplified model, where we assign a GP prior to the magnetic field strength

∥H∥ ∼ GP(0, Ã2
0 + »Mat.

Ã2,ℓ
(x,x′)) (in µT) over the space under presence of Gaussian measurement noise with variance Ã2

n.

We include two separate experiments with different data paths in the same space. The first experiment (Fig. 5a) uses four

separate paths of the robot that cover slightly different parts of the space. Under the sequential learning framework, we

simultaneously learn the four hyperparameters (Ã2
0 , Ã

2, ℓ, Ã2
n) and the representation in terms of inducing points and memory.

The high measurement noise renders the value of single data points small and stresses the importance of the sparse approach.

The problem is sequential, as we only receive information as the robot moves through the input space and do not have access

to all previous data. Our sequential method is able to form a representation by spreading inducing points and learning the

hyperparameters progressively. Showing the method has practical importance in real-world robot estimation tasks, where

the robot is not constrained to a predefined area. This has been a weakness in previous approaches that have considered a

fixed domain to form an efficient sparse basis function decomposition of the problem in that domain. In Fig. 5b, the set

up of the second experiment is similar, but now we receive data during each robot path instead after one exploration. The

visualization shows the mean estimate with marginal variance (uncertainty) controlling the opacity. We recover the same

local estimate as in experiment Fig. 5a.

The data is a set of 9 trajectories out of which we use 5 for the experiments. For Experiment #1, Fig. 5a, we use trajectory 1,

2, 4, and 5 (with n = 8875, 9105, 7332, 8313, respectively) and for Experiment #2, Fig. 5b, we use trajectory 3 (n = 9404).

For both the experiments, we use a sum of two kernels: constant kernel and a Matérn-5/2 kernel. For the constant kernel,

we set the initial variance as 500. The number of inducing variables is set to 100 in both the experiments, and we use a

Gaussian likelihood initialized with a noise variance of 0.1. For optimization of the hyperparameters, we use the Adam

optimizer with learning rate 10−2 for 20,000 iterations. For Experiment #2, we split trajectory 3 into 20 sets, thus each set

has around 470 data points.

B.4. Lunar Landing

For the lunar landing experiment (see Sec. 4.1), we use a combination of two models: a regression model with the aim to

increase the reward and a classification model for success or failure. Both the models are the proposed dual SVGP model

with Gaussian likelihood and Bernoulli likelihood, respectively. For the regression model, we use an ARD Matérn-5/2 kernel

with initial variance calculated from the initial observation data and the lengthscale initialized with 0.2. We use a Gaussian

likelihood with an initial unit noise variance. For the classification model, we use an ARD squared exponential kernel with

the magnitude initialized with 100 and lengthscale with 0.2. For the classification model, we fix the magnitude. Both models

use 100 inducing points. The acquisition function is the product of ExpectedImprovement from the regression model and

the ProbabilityOfValidity from the classification model. Initial data for both the batch version and the non-batch version is

the same set of 24 points. For the batch models, we use a batch-size of 3 and both the models are optimized for 90 function

evaluations. We run the experiment with 5 random initial observations and plot the mean and individual rewards along with

the BO iterations in Fig. 3.

B.5. UCI Data Sets

We benchmark on UCI data sets both for regression and classification tasks (see Sec. 4.2). We report negative log predictive

density (NLPD), root mean square error (RMSE) for regression tasks, and classification error for classification tasks in

Table 4. Test accuracy (and standard deviation over different

random seeds) on split MNIST over all tasks thus far for Bui

et al. (2017). Low accuracy over all previous tasks shows

that the method suffers from forgetting. (Adam optimizer, 50

iteration loops)

Task 0 , 1 2 , 3 4 , 5 6 , 7 8 , 9

#1 .72(.01)
#2 .11(.01) .36(.26)
#3 .04(.02) .02(.00) .95(.01)
#4 .02(.01) .01(.00) .03(.01) .98(.00)
#5 .06(.04) .06(.04) .05(.04) .10(.04) .55(.34)

Table 5. Test accuracy (and standard deviation over different

random seeds) on split MNIST over all tasks thus far for Bui

et al. (2017). Low accuracy over all previous tasks shows that

the method suffers from forgetting. (Adam optimizer, 100

iteration loops)

Task 0 , 1 2 , 3 4 , 5 6 , 7 8 , 9

#1 .99(.00)
#2 .01(.00) .96(.00)
#3 .02(.04) .02(.04) .80(.40)
#4 .00(.00) .00(.00) .00(.00) .99(.00)
#5 .00(.00) .00(.00) .00(.00) .00(.00) .97(.00)
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Table 1 and Table 6 over 10-fold cross-validation. We run three models: offline model and two online models (Ours, and

Bui et al.). The offline model has access to the whole data and is used as baseline. Ours is our proposed method where all

the parameters (αu,Bu,θ,Z) are learnt. Bui et al. is the model proposed by Bui et al. (2017).

All the models use a Matérn-5/2 kernel with lengthscale and variance initialized to 1.0, a Gaussian likelihood with initial

noise variance 0.1, and 100 inducing points. For converting the data sets into a streaming setting, we sort the data on the

first dimension and split the data set into 50 subsets for all data sets apart from Mammographic (20 subsets). For variational

parameters (αu,Bu) of our proposed model, we use natural gradient updates, with learning rate 0.8 and 2 update steps for

regression and learning rate 0.5 and 4 update steps for classification. For learning hyperparameters (¹,Z), we use the Adam

optimizer (Kingma & Ba, 2015) with learning rate 10−2 and 100 update steps. For optimizing the parameters of Bui et al.’s

model, we tried both Adam and second-order optimization using L-BFGS. In our experiments, we found that L-BFGS with

100 iteration steps or until the default convergence condition is met works the best, and used this for the final results. The

offline model is trained using Adam optimizer with learning rate 10−2.

Table 6. Root mean square error (RMSE) (for regression tasks, R) and classification error (for classifi-

cation tasks, C ) on 10-fold cross-validation for UCI data sets, lower is better.

Data set Dimension (N , D) Offline Ours Bui et al.

ElevatorsR (16599, 18) .39(.00) .42(.01) .42(.01)
BikeR (17379, 17) .29(.01) .37(.01) .38(.01)
MammographicC (961, 6) .18(.01) .81(.03) .81(.04)
BankC (4521, 17) .11(.01) .88(.01) .89(.02)
MushroomC (8124, 22) .00(.00) .97(.03) .99(.01)
AdultC (48842, 15) .16(.00) .82(.01) .83(.01)

B.6. UCI Data sets: BLS and Random

We experiment with two different techniques for updating memory: random and the proposed Bayesian leverage score

(BLS). We report the negative log predictive density (NLPD) (Table 7) and showcase BLS outperforming random memory

technique.

All the models use a Matérn-5/2 kernel with lengthscale and variance initialized to 1.0, a Gaussian likelihood with initial

noise variance 0.1, and 100 inducing points. For converting the data sets into a streaming setting, we sort the data on the

first dimension and split the data set into 10 subsets for all data sets. For variational parameters (αu,Bu) of our proposed

model, we use natural gradient updates, with learning rate 0.8 and 2 update steps for regression and learning rate 0.2 and

10 update steps for classification. For learning hyperparameters (¹,Z), we use the Adam optimizer (Kingma & Ba, 2015)

with learning rate 10−2 and 100 update steps. For optimizing the parameters of Bui et al.’s model, we tried both Adam and

second-order optimization using L-BFGS. In our experiments, we found that L-BFGS with 100 iteration steps or until the

default convergence condition is met works the best, and used this for the final results. The offline model is trained using

Adam optimizer with learning rate 10−2.

Table 7. Negative log predictive density (NLPD) on

5-fold cross-validation for UCI data sets, lower is

better, for both random and Bayesian leverage score.

Data set Random BLS

Adult .35(.01) .34(.01)
Bank .29(.03) .27(.03)
Mushroom .03(.00) .03(.00)
Mammographic .45(.03) .43(.02)
Elevators .63(.02) .63(.04)
Bike .47(.05) .46(.03)
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