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Abstract

Despite the recent progress on scaling multi-001
lingual machine translation (MT) to several002
under-resourced African languages, accurately003
measuring this progress remains challenging,004
since evaluation is often performed on n-gram005
matching metrics such as BLEU, which typi-006
cally show a weaker correlation with human007
judgments. Learned metrics such as COMET008
have higher correlation; however, the lack of009
evaluation data with human ratings for under-010
resourced languages, complexity of annotation011
guidelines like Multidimensional Quality Met-012
rics (MQM), and limited language coverage013
of multilingual encoders have hampered their014
applicability to African languages. In this pa-015
per, we address these challenges by creating016
high-quality human evaluation data with sim-017
plified MQM guidelines for error detection and018
direct assessment (DA) scoring for 13 typo-019
logically diverse African languages. Further-020
more, we develop AFRICOMET: COMET021
evaluation metrics for African languages by022
leveraging DA data from well-resourced lan-023
guages and an African-centric multilingual en-024
coder (AfroXLM-R) to create the state-of-the-025
art MT evaluation metrics for African lan-026
guages with respect to Spearman-rank corre-027
lation with human judgments (+0.441).028

1 Introduction029

Recent advances in machine translation (MT) have030

focused on scaling multilingual translation models031

and evaluation data to hundreds of languages, in-032

cluding multiple under-resourced languages (Fan033

et al., 2021a; NLLB-Team et al., 2022; Bapna et al.,034

2022; Kudugunta et al., 2023). However, measur-035

ing the progress made for these under-resourced036

languages accurately is difficult, since popular n-037

gram matching metrics, such as BLEU (Papineni038

et al., 2002), METEOR (Banerjee and Lavie, 2005),039

and ChrF (Popović, 2015), fail to capture semantic040

similarity beyond the lexical level (Zhang et al.,041

2020; Rei et al., 2020; Sai B et al., 2023). Vari- 042

ants of these metrics have been developed when 043

scaling to many languages such as spBLEU (Fan 044

et al., 2021a), but they often achieve worse corre- 045

lation to human judgements (Freitag et al., 2022) 046

when compared to embedding-based metrics like 047

BERTScore (Zhang et al., 2020), and learned met- 048

rics such as COMET (Rei et al., 2020). 049

While embedding-based metrics are currently 050

favored for evaluation in MT (Freitag et al., 2022), 051

the application of these metrics to under-resourced 052

languages faces three challenges: (1) lack of high- 053

quality training and evaluation data significantly 054

hampers the development of reliable metrics; (2) 055

the complexity of the Multidimensional Quality 056

Metrics (MQM) framework (Lommel et al., 2014) 057

presents a steep learning curve for non-expert bilin- 058

gual evaluators, complicating the process of ob- 059

taining accurate human assessments; and (3) the 060

limited language coverage of multilingual large 061

language models such as XLM-R (Conneau et al., 062

2020) restricts their applicability to various low- 063

resource languages (Alabi et al., 2022). 064

To address these challenges, recent work have 065

utilized the Direct Assessment (DA) scoring anno- 066

tations (Graham et al., 2013) collected by the or- 067

ganisers of WMT (Rei et al., 2022a) and leveraged 068

the transfer learning capabilities of multilingual 069

encoders to evaluate unseen languages (Rei et al., 070

2022b; Zerva et al., 2022a). However, the dearth of 071

evaluation data for under-resourced languages such 072

as African languages still remains a significant hur- 073

dle in validating these methods. What is worse, 074

as Rei et al. (2020) highlighted, the performance 075

of these approaches is often unpredictable for lan- 076

guages that were not included in the pre-training 077

phase of multilingual language models. 078

In this paper, we address these challenges 079

by enhancing the state-of-the-art COMET eval- 080

uation metric (Rei et al., 2022a) to various 081

under-resourced African languages. To overcome 082
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the scarcity of evaluation datasets, we create083

AFRIMTE—a human evaluation dataset focusing084

on MT adequacy and fluency evaluation for 13085

typologically diverse African languages. This is086

achieved through a participatory research method-087

ology, ensuring a comprehensive and representative088

data collection process (Nekoto et al., 2020). In089

addressing the complexities inherent in the MQM090

framework, we develop a simplified version that091

aligns with the tenets of Direct Assessment (DA)092

and is tailored specifically for non-expert evalua-093

tors, aiming to augment both usability and acces-094

sibility, thereby rendering the evaluation process095

more accessible to a wider spectrum of evaluators.096

Finally, we develop the first COMET model de-097

signed for MT evaluation for African languages,098

which were previously uncovered by the available099

state-of-the-art COMET models. Additionally, we100

introduce the first machine translation quality esti-101

mation (QE) model for African languages, which102

operates translation quality evaluation without re-103

quiring reference translations, setting a new bench-104

mark in the QE field (Fan et al., 2019; Specia et al.,105

2020, 2021; Wang et al., 2021a).106

To summarise, our contributions are as follows:107

(1) we propose simplified MQM evaluation guide-108

lines tailored for non-expert translators; (2) to sup-109

port the application of our guidelines, we develop110

a specialized annotation tool; (3) we develop high-111

quality human evaluation datasets focusing on ma-112

chine translation adequacy and fluency for 13 ty-113

pologically diverse African languages; (4) we es-114

tablish benchmark systems for MT Evaluation and115

Quality Estimation by employing transfer learn-116

ing techniques from existing, well-resourced DA117

data and utilizing an African-centric multilingual118

pre-trained language model; (5) to foster ongoing119

research in the domain of African machine trans-120

lation evaluation, we will release all evaluation121

datasets, code, and models publicly.1122

2 AFRIMTE: African Machine123

Translation Evaluation Dataset124

This section details the data and machine transla-125

tion engines used for annotation, outlines our anno-126

tation guidelines and procedure, describes the data127

quality assurance process, and presents a quantita-128

tive analysis of the collected data.129

1Will be released upon paper acceptance.

2.1 Dataset and MT Engine 130

Our annotation work concentrates on the dev 131

and devtest subsets from the FLORES-200 132

dataset (NLLB-Team et al., 2022). This is a multi- 133

way parallel dataset designed to enhance MT for 134

low-resource languages. Flores-200 source texts 135

were sampled from English Wikipedia articles and 136

reference translations into target languages were 137

produced by professional translators. We focus on 138

13 languages pairs (LPs): Darija-French (ary-fra), 139

English-Egyptian Arabic (eng-arz), English-French 140

(eng-fra)—a control LP, English-Hausa (eng-hau), 141

English-Igbo (eng-ibo), English-Kikuyu (eng-kik), 142

English-Luo (eng-luo), English-Somali (eng-som), 143

English-Swahili (eng-swh), English-Twi (eng-twi), 144

English-isiXhosa (eng-xho), English-Yoruba (eng- 145

yor), and Yoruba-English (yor-eng). Moreover, we 146

extend our annotation collection to include domain- 147

specific texts from News, TED talks, Movies, and 148

IT domains for English-Yoruba translation. This 149

aspect of our study follows the methodologies es- 150

tablished in prior research by Adelani et al. (2021) 151

and Shode et al. (2022), ensuring a comprehensive 152

and domain-varied evaluation. 153

To acquire MT outputs, we employed two open- 154

source MT engines: NLLB-200 (NLLB-Team 155

et al., 2022) (600M) and M2M-100 (Fan et al., 156

2021b) (418M). For eng-fra and eng-swh, we gen- 157

erated translations using M2M-100, while for all 158

other language pairs, we utilized NLLB-200. This 159

decision was informed by the notably high qual- 160

ity of the NLLB-200 translations to French and 161

Swahili, which were so proficient that our evalu- 162

ators found minimal errors. However, for certain 163

languages, such as eng-xho, we continued to use 164

the high-quality translations provided by NLLB- 165

200. Such a near-flawless MT scenario provides an 166

ideal context to test the robustness and sensitivity 167

of our MT evaluation and QE methods in situations 168

with minimal translation errors. 169

In the FLORES-200 dataset, we sample 270 and 170

250 sentences respectively from the dev and devtest 171

sets. The sampling reflects the averaged Sacre- 172

BLEU (Post, 2018) scores for both high-quality 173

and lower-quality translations across 21 language 174

pairs, ensuring a balanced representation of transla- 175

tion effectiveness.2 Finally, our annotation datasets 176

are structured as triple parallel, comprising <source, 177

machine translation, reference> for all LPs. 178

2Note that our project initially included more LPs, but due
to limited evaluators, 13 remained in AfriMTE.
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Figure 1: The screenshot of the user interface with an adequacy annotated task comprising the source sentence and
its corresponding translation in English-Yoruba.

Figure 2: Translation quality of all qualified annotated
translations as measured by raw DA scores across all
language pairs and domains in ascending order, with
medians displayed in the plot for adequacy (upper)
and fluency (lower).

2.2 Annotation Guidelines and Tool179

This section presents our annotation guidelines and180

introduces the annotation tool.181

2.2.1 Annotation Guidelines182

Recent findings (Freitag et al., 2021) have indi-183

cated that crowd-sourced DA annotations tend to184

be inconsistent in assessing the quality of high-185

performing MT systems. This led us to consider186

adopting the standardized MQM framework (Lom-187

mel et al., 2014)—an extensive method for assess-188

ing translation quality by defining various error di-189

mensions collected alongside error severity. How-190

ever, its complex nature presents a learning hurdle191

for non-expert evaluators, which was recognized192

during our annotation training phase. Research by193

Bentivogli et al. (2018) and Chatzikoumi (2020)194

shows that while DA has traditionally been used for195

both translation adequacy and fluency, it currently 196

focuses more on adequacy. Moreover, Graham et al. 197

(2013, 2017) suggests employing DA to evaluate 198

both aspects on a 100-point scale. Therefore, draw- 199

ing upon these findings, we propose a simplified 200

MQM guideline focusing on translation adequacy, 201

combining translation accuracy error detection with 202

DA scoring for ease of use by non-expert evalua- 203

tors. Additionally, we create a distinct MQM guide- 204

line for translation fluency, combining translation 205

fluency error detection with DA scoring. 206

Our evaluators assess translation adequacy and 207

fluency separately, each through a two-dimensional 208

approach: error highlighting and overall DA score 209

assignment. In assessing adequacy, evaluators re- 210

view both the source and translated texts, high- 211

lighting errors categorized as “Addition”, “Omis- 212

sion”, “Mistranslation”, and “Untranslated”. Dur- 213

ing the fluency assessment, evaluators focus solely 214

on the translated text, pinpointing errors in “Gram- 215

mar”, “Spelling”, “Typography”, and “Unintelli- 216

gible”. Each dimension is appraised separately to 217

ensure a comprehensive and accurate evaluation. 218

The specific error definitions are adapted from the 219

original MQM framework. 3 220

Upon completing error identification, evaluators 221

use the DA guidelines to assign a score between 222

0 and 100, reflecting the overall quality of ade- 223

quacy or fluency. In these scales, “0” is defined 224

as a “Nonsense/No meaning preserved” translation 225

for adequacy or an “Incomprehensible” translation 226

for fluency, while “100” signifies “Perfect meaning” 227

for adequacy or “Fluent and natural” for fluency. 228

To reduce subjectivity, we established two interme- 229

diate levels within each rating scale: one at “34” 230

and the another at “67”. Details of the adequacy 231

and fluency guidelines are illustrated in Figure 3 232

3https://themqm.org
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and 4, each with two sections: the error highlight-233

ing guideline and the DA scoring guideline.234

2.2.2 Annotation Tool235

To collect annotations following our tailored an-236

notation guidelines, we extended Annopedia—237

an open-source text annotation tool to suit our238

needs. Various features have been added, including239

presenting evaluators with annotation guidelines,240

adapting the interface to accommodate the error241

span highlighting and DA scoring functions, and ex-242

porting annotations appropriately. The customized243

tool provides a user-friendly interface designed for244

machine translation evaluation tasks. A screenshot245

of the annotation interface is displayed in Figure 1,246

where every evaluator can work independently.247

2.3 Annotation Quality Assurance248

We implement a stringent evaluation protocol for249

each translation, involving a minimum of two bilin-250

gual native speakers as evaluators, each with a251

Bachelor’s degree or higher. They are encouraged252

to highlight specific error spans first and then pro-253

vide a relevant DA score before submission. In254

preparation, each evaluator annotates 20 examples,255

and we organize a discussion among the evaluators256

to review annotations and address any assessment257

inconsistencies. This preliminary step is designed258

to familiarize evaluators with the guidelines and the259

dataset contexts. Some annotators may assign low260

DA scores but lack any corresponding error span261

highlighting. Hence, in the following data analysis262

of the correlation between error detection and over-263

all DA scoring, we will exclude such annotations.264

Upon completing annotations, we gather data265

and exclude any with DA score discrepancies ex-266

ceeding 34 points, as per our guidelines. This267

threshold is critical for ensuring the reliability of268

our annotations. To reduce bias among evaluators,269

we normalize DA scores at the evaluator level to270

get z-scores, and then average z-scores across eval-271

uators to obtain the final score of each translation.272

We present the counts of qualified translation anno-273

tations within the dev and devtest sets in Table 4274

and 5 in Appendix A.275

To further validate annotation consistency,276

we apply the inter-annotator agreement (IAA)277

method (Pavlick and Tetreault, 2016). Each an-278

notation instance is randomly split, with one as279

Annotator 1 and the average of others as Annotator280

2. We compute the Pearson correlation between281

these two groups, repeating this process 100 times.282

The average IAA scores are 0.797 for adequacy and 283

0.748 for fluency, demonstrating strong consistency 284

among evaluators. 285

2.4 Quantitative Analysis of Annotations 286

Overall Translation Quality Since the anno- 287

tation datasets, apart from the domain-specific 288

eng-yor ones, are multilingual parallel and orig- 289

inate from the same sources, comparing DA scores 290

across different LPs is a reasonably controlled com- 291

parison. We show the distribution of the raw DA 292

scores across all LPs in Figure 2.4 Notably, eng- 293

swh translations generated by M2M-100 exhibit the 294

lowest translation adequacy and fluency (median 295

DA: 58.67 and 68.83), whereas eng-xho transla- 296

tions produced by NLLB-200 score the highest (me- 297

dian DA: 100 for both). Moreover, ary-fra trans- 298

lations have the highest variance in adequacy and 299

eng-ibo in fluency. 300

Error Counts vs. DA score Equipped with anno- 301

tations predominantly comprising both overall DA 302

scores and detection of fine-grained error spans, we 303

aim to investigate the correlation between these two 304

aspects. As previously mentioned in Section 2.3, 305

some annotations have low DA scores without er- 306

ror span highlighting. Therefore, we exclude an- 307

notations with DA scores under 80 lacking error 308

span highlighting. After this filtration, we present 309

the counts of error words per category and their 310

sentence-level DA scores in Figures 5 and 6 respec- 311

tively in Appendix A for adequacy and fluency. 312

Mistranslation is the predominant error category 313

impacting adequacy, significantly contributing to 314

lower DA scores. Interestingly, eng-yor Movie 315

translations exhibit a higher incidence of Omission 316

errors, whereas eng-yor IT translations are more 317

prone to Addition errors. Unintelligible is the most 318

common error for fluency except for eng-swh, eng- 319

som and eng-hau. This trend is consistent in eng- 320

yor IT, TED talks, and News translations. 321

In order to better understand how error cate- 322

gories at the word level influence annotator judg- 323

ment at the sentence level, we have calculated and 324

reported Pearson, Spearman-rank, and Kendall- 325

rank correlation coefficients between counts within 326

each error category and corresponding scores (raw 327

DA scores and normalized z-scores) in Table 1. 328

These coefficients suggest that Mistranslation and 329

Unintelligible, as the most prevalent error types 330

4We still added domain-specific eng-yor annotations in the
plot.
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CRITERIA PEARSON SPEARMAN KENDALL
DA score Z-score DA score Z-score DA score Z-score

Mistranslation -0.478 -0.398 -0.675 -0.544 -0.546 -0.422
Omission -0.180 -0.196 -0.318 -0.304 -0.263 -0.246
Addition -0.236 -0.291 -0.207 -0.211 -0.172 -0.172
Untranslated -0.091 -0.101 -0.156 -0.119 -0.130 -0.097

Total Error -0.467 -0.479 -0.791 -0.687 -0.640 -0.533
Avg. Error -0.490 -0.490 -0.792 -0.681 -0.627 -0.516

Grammar -0.322 -0.191 -0.422 -0.279 -0.355 -0.223
Spelling -0.042 -0.075 -0.078 -0.103 -0.066 -0.084
Typography -0.158 -0.257 -0.180 -0.193 -0.153 -0.157
Unintelligible -0.442 -0.470 -0.466 -0.354 -0.396 -0.286

Total Error -0.546 -0.577 -0.685 -0.536 -0.576 -0.421
Avg. Error -0.509 -0.539 -0.685 -0.527 -0.568 -0.409

Table 1: Correlations between error counts and sentence-
level scores across error categories for adequacy (upper)
and fluency (lower) respectively. “Avg. Error” refers to
the average error counts per reference length.

for adequacy and fluency, exhibit moderate to high331

negative correlations with raw DA scores, indicat-332

ing their significant influence on the sentence-level333

DA evaluations of annotators. Furthermore, for334

both adequacy and fluency, the total and average335

error counts per reference translation length nega-336

tively correlate with raw DA scores and normalized337

z-scores, further affirming the significance of our338

simplified MQM guidelines.339

3 AFRICOMET: Benchmark Systems340

Here, we describe the development of our341

MT evaluation model for African languages us-342

ing AFRIMTE. The primary objective of our mod-343

eling is to predict normalized DA scores. Our inves-344

tigation revolves around three key questions: (1)345

the feasibility of constructing an MT evaluation346

system that leverages transfer learning from other347

languages to African languages, (2) the impact of348

using African language-enhanced pre-trained mod-349

els for MT evaluation systems, and (3) the potential350

benefits of an additional MT evaluation dataset in351

African languages for modeling.352

Our models are based upon the estimator frame-353

work (Rei et al., 2020), as illustrated in Figure 7 of354

Appendix A. In this architecture, the source (src),355

translation (mt), and reference translation (ref) are356

encoded separately using a multilingual encoder.357

The resulting word embeddings are passed through358

a pooling layer to create a sentence embedding359

for each segment. These sentence embeddings are360

then combined into a single vector and fed into a361

feed-forward regressor. The model is trained to362

minimize the mean squared error. We refer to this363

as “single-task learning” (STL). Furthermore, we364

adopt a unified approach (Wan et al., 2022), which365

integrates the tasks of <src, mt>, <mt, ref>, and366

<src, mt, ref> into one model, feeding all three367

inputs into the pre-trained model and uniformly 368

distributing weight across the three sentence-level 369

scores for the final score prediction for MT eval- 370

uation. We refer to this as “multi-task learn- 371

ing” (MTL). 372

3.1 Experimental Settings 373

3.1.1 Dataset 374

The adequacy dev sets in AFRIMTE are employed 375

as validation sets for modeling purposes, while the 376

adequacy devtest sets serve as the test sets. 377

Since 2017, organizers of WMT News trans- 378

lation tasks have been gathering human evalua- 379

tion using the DA method (Graham et al., 2013). 380

In addition, another large sourced DA annotation 381

set is the MLQE-PE datasets (Fomicheva et al., 382

2020), typically used in WMT Quality Estimation 383

Shared Tasks (Specia et al., 2020, 2021; Zerva 384

et al., 2022b). We employ these DA datasets as our 385

primary training data, similar to their application 386

in training the COMET metric (COMET22) (Rei 387

et al., 2022a). We label this training data as “WMT 388

Others”. 389

Recently, WMT 2022 Large-Scale African Ma- 390

chine Translation Shared Task5 introduces a DA 391

dataset of 99 source sentences from the FLORES- 392

200 test set (Adelani et al., 2022), covering 46 393

African language pairs across eight MT systems. 394

Despite its utility, it exhibits two potential limita- 395

tions: (1) the source context is constrained, consist- 396

ing of only 99 sentences, and (2) each translation 397

has been annotated by a single annotator, raising 398

concerns about the reliability of the assessments. 399

We refer to this dataset as “WMT African”. 400

Statistical summaries of the “WMT Others” and 401

“WMT African” datasets are provided in Table 6 402

and Table 7 respectively in Appendix A. Dupli- 403

cates of <src, mt, ref, DA score> have been ex- 404

cluded. When preprocessing, we also apply z- 405

normalization at the annotator level; to facilitate 406

interpretability and manage the unbounded nature 407

of the quality scores, we apply min-max scaling to 408

the normalized z-scores, adjusting their range to 409

fall between 0 and 1. 410

3.1.2 Model configurations 411

In the model setup, we utilize three multilingual 412

pre-trained encoders: XLM-R-L (Conneau et al., 413

2019), InfoXLM-L (Chi et al., 2020), and an 414

XLM-R-L model adapted to 17 African languages: 415

5https://www.statmt.org/wmt22/
large-scale-multilingual-translation-task.html
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AfroXLM-R-L (Alabi et al., 2022). Among these,416

XLM-R-L and InfoXLM-L have been used in the417

development of COMET22 (Rei et al., 2022a) and418

CometKiwi (Rei et al., 2022b) for the WMT 2022419

MT Evaluation and QE Shared Tasks; we provide420

a detailed overview of language coverage for these421

three models in Table 8 in Appendix A.422

We train our models with the open-source423

COMET metric codebase.6 Training for each424

model is executed on a single NVIDIA A100-425

SXM4-80GB graphics card, with a configured426

batch size of 16 and a gradient accumulation across427

2 batches. We follow the default settings for other428

hyper-parameters of the COMET metric.7429

3.1.3 Evaluation430

Pearson, Spearman-rank, and Kendall-rank are431

widely-used correlation coefficients to assess432

the correlation between automated and human-433

annotated scores. Recent findings (Deutsch et al.,434

2023) indicate that Pearson is complementary to435

Kendall, and Spearman balances between Pear-436

son’s effectiveness in noisy but linear scenarios and437

Kendall’s in ordered but non-linear ones. Thus, we438

utilize the Spearman-rank correlation coefficient as439

our primary monitoring metric during model train-440

ing. For testing, we report all 3 coefficients. More-441

over, to validate the statistical significance of our442

results, we use Perm-Both hypothesis test (Deutsch443

et al., 2021), using 200 re-sampling runs and setting444

p = 0.05, and it will produce rankings of various445

automatic metrics.446

3.2 Main Findings447

In this section, we will present our experimental448

results for our investigations around the three key449

questions mentioned at the beginning of Section 3.450

3.2.1 Transfer learning from well-resourced451

DA data with pre-trained encoders452

Initially, we develop our MT evaluation systems453

that leverage transfer learning from a variety of454

high-resource languages to African languages. We455

train our models on “WMT Others” and employ the456

adequacy dev and devtest sets within AFRIMTE457

as validation and test sets. As outlined in Sec-458

tion 3.1.2, to explore the impact of various multi-459

lingual encoders, we conduct experiments based460

on XLM-R-L, InfoXLM-L, and AfroXLM-R-L461

6https://github.com/Unbabel/COMET
7Hyper-parameters are configured at https://github.

com/Unbabel/COMET/tree/master/configs

for comparison. In our comparison, we bench- 462

mark our systems against (1) the widely used n- 463

gram matching based evaluation metrics Sacre- 464

BLEU (Post, 2018) and chrf++ (Popović, 2017), (2) 465

the embedding-based metric, BERTScore (Zhang 466

et al., 2020), (3) LLM Prompting based GPT-4 467

output with OpenAI API 8 and (4) the learned 468

COMET22 metric (Rei et al., 2022a), which uses 469

the XLM-R-L encoder and also “WMT Others” 470

as training data, but differs in validation, employ- 471

ing additional MQM data for English-German, 472

Chinese-English, and English-Russian from the 473

WMT 2021 News Shared Task. 474

Results of Spearman-rank correlation coeffi- 475

cients are shown in Table 2. Given that “WMT 476

Others” does not include any African language, 477

the results of “Learned COMET Metrics” illumi- 478

nate the effectiveness of various pre-trained multi- 479

lingual encoders for zero-shot scenarios. Among 480

them, AfroXLM-R-L achieves the highest average 481

result, demonstrating a promising ability to trans- 482

fer learning from non-African languages to African 483

languages, and its performance is enhanced fur- 484

ther with “multi-task learning”. We also present 485

Pearson and Kendall-rank correlation coefficient 486

results in Table 9 in Appendix A, and the trends 487

observed are consistent with those derived from 488

the Spearman’s analysis. Results of Perm-Both hy- 489

pothesis test for 3 coefficients are illustrated in Ta- 490

ble 10, 11 and 12 respectively in Appendix A. Both 491

AfroXLM-R-L based systems (STL and MTL) tend 492

to outperform N-gram matching based metrics, 493

BERTScore and COMET22, and show comparable 494

or superior results to GPT-4. 495

Particularly, our results reveal improvements for 496

eng-ibo and eng-yor (FLORES, News, and Ted 497

talks) when using AfroXLM-R-L instead of XLM- 498

R-L as encoder, aligning with their language cov- 499

erage in Table 8 in Appendix A. Moreover, eng- 500

kik and eng-luo also get enhanced despite not be- 501

ing included in AfroXLM-R-L. Further analysis 502

of correlations across four domain-specific eng- 503

yor datasets show that models trained based on 504

AfroXLM-R-L have the potential to surpass the 505

performance of COMET22, indicating its general- 506

ization for different domains despite being trained 507

on the News, Wikipedia and Health (eng-mar) do- 508

mains. Notably, GPT-4 shows impressive perfor- 509

mance in eng-yor and yor-eng MT evaluations. 510

8We prompt the “gpt-4-0613” version with the meta-
prompt designed as shown in Figure 8 in Appendix A.
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N-gram Matching Embedding-based LLM Prompting Learned COMET Metrics

SacreBLEU chrf++ BERTScore GPT-4
Baseline Single Task (Ours) Multi Task (Ours)

LP COMET22 XLM-R-L InfoXLM-L AfroXLM-R-L ★ AfroXLM-R-L ★

ary-fra 0.332 0.328 0.351 0.620 0.533 0.551 0.565 0.567 0.609
eng-arz 0.324 0.321 0.355 0.509 0.503 0.486 0.488 0.532 0.600
eng-fra 0.246 0.280 0.282 0.536 0.489 0.510 0.460 0.495 0.526
eng-hau 0.200 0.301 0.404 0.378 0.430 0.401 0.334 0.515 0.620
eng-ibo 0.339 0.424 0.403 0.271 0.373 0.413 0.377 0.592 0.616
eng-kik 0.273 0.295 0.276 0.269 0.202 0.281 0.249 0.389 0.410
eng-luo 0.182 0.279 0.365 0.246 0.062 0.201 0.241 0.283 0.359
eng-som 0.161 0.279 0.345 0.281 0.474 0.466 0.420 0.554 0.546
eng-swh 0.481 0.565 0.701 0.774 0.738 0.739 0.719 0.688 0.733
eng-twi 0.204 0.178 0.111 0.132 0.096 0.103 0.112 0.157 0.101
eng-xho 0.090 0.161 0.168 0.143 0.071 0.070 0.059 0.191 0.146
eng-yor 0.210 0.204 0.250 0.446 0.150 0.193 0.191 0.287 0.365
eng-yor (it) 0.295 0.346 0.421 0.447 0.334 0.256 0.268 0.266 0.418
eng-yor (movie) 0.238 0.221 0.303 0.544 0.334 0.338 0.364 0.372 0.390
eng-yor (news) 0.114 0.122 0.111 0.200 0.168 0.196 0.132 0.200 0.211
eng-yor (ted) 0.027 0.002 0.091 0.237 0.123 0.177 0.263 0.324 0.298
yor-eng 0.308 0.408 0.446 0.476 0.502 0.460 0.481 0.490 0.541

Avg. 0.237 0.277 0.317 0.383 0.328 0.344 0.337 0.406 0.441

Table 2: Spearman-rank correlation coefficients for MT evaluation models. For each LP, values in bold represent
the highest ranking obtained from the Perm-Both hypothesis test (Deutsch et al., 2021). Comprehensive results of
this test are detailed in Table 10. Averaged Spearman-rank correlations across LPs are presented in the last row.

3.2.2 Impact of an extra African DA dataset511

To discuss the potential benefits of an additional512

MT evaluation dataset in African languages, we513

conduct experiments based on AfroXLM-R-L514

across three distinct training data configurations:515

(1) “WMT African”, (2) “WMT Others”, and516

(3) a merged dataset of “WMT African” and517

“WMT Others”, which we refer to as “WMT518

Combined”. The STL and MTL results, includ-519

ing Pearson, Spearman-rank, Kendall-rank corre-520

lation coefficients, and Perm-Both hypothesis test521

results, are detailed in Table 13, 14, 15 and 16522

respectively in Appendix A. Remarkably, “WMT523

Others” yields higher Spearman-rank and Kendall-524

rank correlations than “WMT Combined”. While525

“WMT Combined” shows the highest Pearson cor-526

relation, it negatively impacts both Spearman-rank527

and Kendall-rank correlations. Examining all three528

correlation coefficients and the Perm-Both hy-529

pothesis test results reveals that models trained530

on “WMT Others” and “WMT Combined” sig-531

nificantly outperform the model trained solely on532

“WMT African”. This disparity in performance533

could be attributed to the limited size and diversity534

in the context of “WMT African”, highlighting a535

data scarcity issue in contrast to “WMT Others”. In536

summary, leveraging transfer learning from “WMT537

Others” based on AfroXLM-R-L proves effective538

in building African COMET models.539

3.3 The benchmark MT evaluation systems540

The AfroXLM-R-L based STL and MTL systems,541

trained with “WMT Others” and marked with ★542

in Table 2, are established as our benchmark MT 543

evaluation systems for African languages, which 544

achieves a Spearman-rank correlation up to 0.441 545

with human judgments. These two systems are 546

named AfriCOMET-STL and AfriCOMET-MTL. 547

4 Reference-free QE systems 548

Utilizing adequacy annotations within AFRIMTE, 549

we are able to develop reference-free models that 550

predict translation quality in the absence of refer- 551

ence translations, aligning with research advance- 552

ments in translation quality estimation (QE) (Fan 553

et al., 2019; Ranasinghe et al., 2020; Specia et al., 554

2020; Wang et al., 2021b,a; Specia et al., 2021; 555

Rei et al., 2022b; Zerva et al., 2022b). Our QE 556

models adhere to the same Estimator architecture 557

as AfriCOMET, but excluding the reference trans- 558

lation from model inputs. Both STL and MTL 559

methods can be applied. However, different from 560

applying MTL in MT evaluation, once the multi- 561

task model is trained, it strictly requires <src, mt> 562

as the input for inference and only generates the 563

corresponding <src, mt> score as its final score. 564

We choose AfroXLM-R-L and InfoXLM-L as 565

encoders and train our QE models on “WMT 566

Others”.9 These models are validated and eval- 567

uated using adequacy dev and devtest sets within 568

AFRIMTE. We benchmark our QE systems against 569

GPT-4 with meta-prompt as shown in Figure 8 in 570

Appendix A and CometKiwi (Rei et al., 2022b), 571

9We follow the hyper-parameter settings at https://
github.com/Unbabel/COMET/tree/master/configs, use
the same batch size and gradient accumulation, and utilize the
same hardware as when training the MT evaluation models.
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LLM Prompting Learned reference-free QE Metrics

GPT-4
Baseline Single Task (Ours) Multi Task (Ours)

CometKiwi InfoXLM-L AfroXLM-R-L ★ AfroXLM-R-L ★

LP Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

ary-fra 0.660 0.622 0.517 0.495 0.530 0.561 0.475 0.507 0.610 0.534
eng-arz 0.462 0.525 0.611 0.592 0.562 0.516 0.551 0.516 0.600 0.580
eng-fra 0.471 0.531 0.527 0.495 0.416 0.484 0.418 0.478 0.483 0.531
eng-hau 0.363 0.284 0.314 0.245 0.382 0.273 0.652 0.482 0.690 0.586
eng-ibo 0.221 0.119 0.205 0.188 0.335 0.334 0.644 0.631 0.597 0.574
eng-kik 0.227 0.213 0.277 0.247 0.409 0.339 0.631 0.415 0.437 0.317
eng-luo 0.039 -0.019 0.237 0.161 0.142 0.130 0.333 0.217 0.256 0.174
eng-som 0.179 0.219 0.266 0.357 0.155 0.251 0.302 0.482 0.302 0.510
eng-swh 0.693 0.731 0.787 0.756 0.699 0.637 0.644 0.587 0.737 0.718
eng-twi 0.270 0.047 0.097 0.026 -0.003 -0.050 0.290 0.061 0.279 0.060
eng-xho 0.251 0.105 0.127 -0.030 0.190 0.041 0.437 0.085 0.472 0.130
eng-yor 0.358 0.371 0.327 0.231 0.489 0.225 0.738 0.392 0.643 0.280
eng-yor (it) 0.321 0.289 0.375 0.388 0.299 0.304 0.654 0.318 0.641 0.419
eng-yor (movie) 0.429 0.491 0.151 0.041 0.328 0.240 0.557 0.314 0.450 0.311
eng-yor (news) 0.277 0.150 0.104 0.078 0.219 0.057 0.508 0.186 0.496 0.206
eng-yor (ted) 0.310 0.246 0.217 0.289 0.267 0.218 0.518 0.189 0.409 0.271
yor-eng 0.383 0.399 0.070 0.098 -0.007 0.059 0.181 0.208 0.383 0.414

Avg. 0.348 0.313 0.306 0.274 0.318 0.272 0.502 0.357 0.499 0.389

Table 3: Correlation coefficients (Pearson, Spearman-rank) for QE models. For each LP, values in bold represent
the highest ranking obtained from the Perm-Both hypothesis test (Deutsch et al., 2021). The comprehensive results
of this test are detailed in Table 17. Averaged correlations across LPs are presented in the last row.

which is similarly trained on “WMT Others” and572

leverages InfoXLM-L as its base encoder.573

QE systems are commonly assessed using Pear-574

son and Spearman-rank correlations as highlighted575

in (Zerva et al., 2022b). Our results, showcased576

in Table 3, along with the Perm-Both hypothesis577

test results in Table 17 in Appendix A, reveal the578

following insights. The InfoXLM-L STL model,579

trained on “WMT Others”, performs on par with580

CometKiwi under the same encoder configura-581

tions. However, the AfroXLM-R-L STL model582

exhibits significant improvements in both Pear-583

son and Spearman-rank correlations, superior over584

CometKiwi. Additionally, MTL training further585

boosts performance in Spearman-rank correlation.586

These highlight the effectiveness of transfer learn-587

ing from robust, non-African DA data, especially588

when utilizing AfroXLM-R-L as the pre-trained en-589

coder for the reference-free QE task. Moreover,590

when we compare Spearman results in Table 2591

and 3, AfroXLM-R-L based QE systems (STL592

and MTL) outperform GPT-4 by a larger margin593

than observed in MT evaluation, and the perfor-594

mance gap between QE and MT evaluation sys-595

tems is larger with GPT-4 (0.07 = 0.383− 0.313)596

compared to the AfroXLM-R-L based systems,597

(0.049 = 0.406 − 0.357) for STL and (0.052 =598

0.441 − 0.389) for MTL, demonstrating distinct599

advantages of supervised learned metrics.600

Finally, we introduce two benchmark QE sys- 601

tems for African MT: the AfroXLM-R-L based 602

STL and MTL models marked with ★ in Table 3, 603

and name them with AfriCOMET-QE-STL and 604

AfriCOMET-QE-MTL.10 605

5 Additional Evaluation 606

Additional evaluations have been conducted 607

on the generalization of our AfriCOMET and 608

AfriCOMET-QE systems to other datasets. Please 609

refer to Appendix A.2, A.3 and A.4 for details. 610

6 Conclusion 611

This study tackles the challenges of enhancing 612

the COMET metric for various under-resourced 613

African languages. We simplify the MQM 614

annotation guidelines, create an MT evalua- 615

tion dataset, AFRIMTE, covering 13 diverse 616

African languages, and establish benchmark MT 617

evaluation (AFRICOMET) and reference-free 618

QE (AFRICOMET-QE) systems. Our findings 619

show the feasibility of employing transfer learning 620

from well-resourced non-African DA data and an 621

African-centric multilingual pre-trained encoder, 622

AfroXLM-R for building MT evaluation and QE 623

systems for African languages. 624

10Please note that AfriCOMET-QE-MTL and AfriCOMET-
MTL are identical in training, as both are trained using the
same multi-task learning approach.
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Limitations625

Our current methods are subject to limitations.626

Firstly, while using AfroXLM-R-L as a pre-627

trained encoder enhances the performance of our628

benchmark systems for certain language pairs like629

eng-ibo, eng-kik, eng-luo and eng-yor, this im-630

provement isn’t consistent across all African lan-631

guages. For example, some language pair like eng-632

twi shows no such enhancement and it is also not633

covered by AfroXLM-R-L. Addressing the limited634

resources and coverage for such under-resourced635

language pairs like eng-twi remains a challenge636

and is a key area for future work.637

Secondly, both our MT evaluation and QE bench-638

mark systems are developed using adequacy an-639

notations within AFRIMTE, mainly drawing in-640

spiration from works by Bentivogli et al. (2018);641

Chatzikoumi (2020), which suggest that overall di-642

rect assessment largely focuses on adequacy. How-643

ever, upon analyzing the correlations between ade-644

quacy and fluency annotations, we have observed645

a slight negative correlation between total fluency646

counts in a translation and its adequacy DA score,647

with a Pearson correlation coefficient of −0.349.648

This finding raises the question: whether incor-649

porating fluency assessments in developing MT650

evaluation and QE models could yield any benefit.651

Exploring this possibility will be another area for652

future work.653

Thirdly, the comparison of Spearman correlation654

coefficients in Table 2 and Table 3 shows a signifi-655

cant performance gap between the AfroXLM-R-L656

based MT evaluation and reference-free QE sys-657

tems, both employing transfer learning. This dis-658

parity likely arises from the tasks’ different natures:659

MT evaluation models are trained with reference in-660

puts, resembling monolingual pattern-recognition661

tasks that compare machine translations with ref-662

erences. However, the QE task, inherently cross-663

lingual due to its reference-free nature, highlights664

the potential need for more African DA training665

data to bridge this gap. This area will be a key666

focus in our future research.667

7 Ethics Statement668

Our work and collection of data has been deeply669

rooted in the principles of participatory AI re-670

search (Nekoto et al., 2020), where the native671

speakers, most affected by lack of evaluation met-672

rics, are involved throughout the project as stake-673

holders. They contributed to the data and gave674

their consent to use this data for the enhancement 675

of COMET models for African languages. 676

On the data collected, there are no privacy con- 677

cerns since the source of the data is based on 678

Wikipedia general domain. 679
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A Appendix997

A.1 Supplementary materials998

The Appendix provides supplementary materials999

supporting the main paper, including (i) AFRIMTE1000

annotations statistics (Tables 4 and 5), (ii) De-1001

tailed simplified annotation guidelines (Figures 31002

and 4), (iii) Distributions of error counts and over-1003

all sentence-level DA scores (Figures 5 and 6),1004

(iv) The MT evaluation and QE model architec-1005

ture (Figure 7), (v) Meta-prompts for prompting1006

GPT-4 for MT evaluation and QE tasks (Figure1007

8), (vi) Statistical summaries of “WMT Others”1008

and “WMT African” datasets (Tables 6 and 7),1009

(vii) Overview of language coverage in various1010

pre-trained multilingual models (Table 8), (viii)1011

Pearson and Kendall-rank correlation coefficients,1012

and Perm-Both hypothesis test results for MT eval- 1013

uation models (Tables 9, 10, 11, and 12), (ix) Abla- 1014

tion study results for an extra African DA training 1015

dataset (Tables 13, 14, 15, and 16), and (x) Perm- 1016

Both hypothesis test results for QE models (Table 1017

17). 1018

A.2 Evaluation on the WMT African DA 1019

dataset 1020

Besides evaluating AfriCOMET and AfriCOMET- 1021

QE using the adequacy devtest sets within 1022

AFRIMTE, we conduct additional assessments on 1023

the “WMT African” dataset, despite its potential 1024

limitations discussed in Section 3.1.1. These as- 1025

sessments are justified because the “WMT African” 1026

dataset is not utilized in the development (training 1027

or validation) of the AfriCOMET or AfriCOMET- 1028

QE systems. As showcased in Table 18, in the 1029

MT evaluation task, AfriCOMET-STL surpasses 1030

the cutting-edge COMET22 system across all three 1031

correlation coefficients. Meanwhile, AfriCOMET- 1032

MTL shows a slight edge over COMET22 in the 1033

Pearson correlation coefficient. For QE, both 1034

AfriCOMET-STL and AfriCOMET-MTL signif- 1035

icantly outperform the state-of-the-art CometKiwi 1036

system. These comparisons are fair as all systems 1037

since they are trained using the same “WMT Oth- 1038

ers” dataset. This evaluation further validates the 1039

efficacy of our benchmark systems from an addi- 1040

tional perspective. 1041

A.3 Evaluation on the WMT 2022 1042

English-Yoruba QE test set 1043

The WMT organizers recently released an English- 1044

Yoruba DA dataset, serving as the zero-shot test 1045

set in the WMT 2022 Quality Estimation Shared 1046

Task. This dataset consists of 1010 DA annota- 1047

tions, prepared using DA guidelines different from 1048

ours, as outlined by Fomicheva et al. (2021). These 1049

annotations are sampled from Wikipedia, cover- 1050

ing seven topics, and translated into Yoruba us- 1051

ing Google Translate, as reported in Zerva et al. 1052

(2022b). We evaluate CometKiwi and our bench- 1053

mark AfriCOMET systems on this dataset, and 1054

results are shown in Table 19. The results demon- 1055

strate that our AfriCOMET-QE systems outperform 1056

CometKiwi significantly on this English-Yoruba 1057

dataset, underscoring the efficacy of AfriCOMET- 1058

QE systems even with differently guided DA anno- 1059

tations. 1060
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LP original # qualified # dev # devtest #

ary-fra 520 394 207 187
eng-arz 520 518 268 250
eng-fra 520 515 265 250
eng-hau 520 490 250 240
eng-ibo 520 240 120 120
eng-kik 520 410 208 202
eng-luo 520 499 257 242
eng-som 520 434 208 226
eng-swh 520 352 195 157
eng-twi 520 516 269 247
eng-xho 520 494 251 243
eng-yor 520 484 245 239
eng-yor (it) 250 217 - 217
eng-yor (movie) 270 219 - 219
eng-yor (news) 270 237 - 237
eng-yor (ted) 250 224 - 224
yor-eng 520 439 227 212

Table 4: Counts of qualified adequacy annotations for each language pair in dev and devtest sets, with English-
Yoruba exclusively as devtest in domain-Specific datasets.

LP original # qualified # dev # devtest #

ary-fra 520 459 239 220
eng-arz 520 518 268 250
eng-fra 520 459 244 215
eng-hau 520 482 234 248
eng-ibo 520 409 178 231
eng-kik - - - -
eng-luo - - - -
eng-som 520 450 224 226
eng-swh 520 376 177 199
eng-twi 520 518 269 249
eng-xho 520 497 250 247
eng-yor 520 495 261 234
eng-yor (it) 250 237 - 237
eng-yor (movie) 270 262 - 262
eng-yor (news) 270 258 - 258
eng-yor (ted) 250 243 - 243
yor-eng 520 500 258 242

Table 5: Counts of qualified fluency annotations for each language pair in dev and devtest sets, with English-Yoruba
exclusively as devtest in domain-specific datasets.

A.4 Generalization Evaluation1061

Given that our benchmark systems employ the1062

African language-enhanced AfroXLM-R-L pre-1063

trained model, assessing their generalization capa-1064

bilities on non-African datasets is crucial. The de-1065

velopment of both COMET22 and CometKiwi sys-1066

tems involves using the English-German, English-1067

Russian, and Chinese-English MQM datasets from1068

the WMT 2021 News Domain Translation Shared1069

Task as validation sets, featuring 8959, 8432, and1070

9750 MQM annotations, respectively. Therefore,1071

testing our benchmark systems on these three1072

datasets is practical to evaluate their generaliza-1073

tion in non-African language cases. We present1074

the results of correlation coefficients in Table 20. 1075

In MT evaluation and QE tasks, AfriCOMET and 1076

AfriCOMET-QE exhibit only a slight performance 1077

drop compared to COMET22 and CometKiwi sys- 1078

tems, respectively, which might be due to the adap- 1079

tation feasibility of the AfroXLM-R-L pre-trained 1080

encoder. This evaluation highlights the sustained 1081

generalization capabilities of our benchmark sys- 1082

tems. 1083
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Adequacy Annotation Guideline

You are asked to compare the meaning of a source segment and its translation. You will be presented with one pair of segments at a time, where a segment may 
contain one or more sentences. For each pair, you are asked to read the text closely and do the following:

1. Highlight the text spans that convey different meaning in the compared segments. After highlighting a span in the text, you will be asked to select the 
category that best describes the meaning difference using the following categories:

Source Text:
Omission: The highlighted span in the source text corresponds to information that does not exist in the translated text.
Mistranslation: The highlighted span in the source does not have the exact same meaning as the highlighted span in the translated text.

Translation Text:
Addition: The highlighted span in the translation corresponds to information that does not exist in the source text.
Mistranslation: The highlighted span in the translation does not have the exact same meaning as the highlighted span in the source segment.
Untranslated: The highlighted span in the translation is a copy of the highlighted span in the source segment but should be translated in the target language.

You can highlight as many spans as needed.

2. Assess the translation accuracy on a continuous scale [1-100] using the quality levels described below:

[0] Nonsense/No meaning preserved: Nearly all information is lost between the translation and source.
[34] Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts.
[67] Most meaning preserved: The translation retains most of the meaning of the source.
[100] Perfect meaning: The meaning of the translation is completely consistent with the source.

Figure 3: Adequacy annotation guideline for error highlighting [the first part] and DA score assignment [the
second part].

Fluency Annotation Guideline

You are asked to assess the fluency of a segment. You will be presented with one segment at a time, where a segment may contain one or more sentences. For 
each segment, you are asked to read it closely and do the following:

1. Highlight the text spans that contain fluency errors. After highlighting a span of text, you will be asked to select the category that best describes the fluency 
error using the following categories:

Grammar: The highlighted span corresponds to issues related to the grammar or syntax of the text, other than spelling and orthography.
Spelling: The highlighted span corresponds to issues related to spelling of words.
Typography: The highlighted span corresponds to issues related to punctuation and diacritics.
Unintelligible: The exact nature of the error cannot be determined. Indicates a major break down in fluency.

You can highlight as many spans as needed.

2. Assess the fluency of the segment on a continuous scale [0 ~ 100] using the quality levels described below:

[0] Incomprehensible: The translation is completely unintelligible and nonsensical. The text is difficult to understand.
[34] Poor grammar and disfluent: The translation contains significant errors in grammar, syntax, and vocabulary that affects the clarity and naturalness of 
the text.
[67] Grammatically correct, potentially unnatural: The translation is grammatically correct but may have some errors in spellings, word choice, or syntax. 
The language may not be natural.
[100] Fluent and natural: The translation contains no grammatical errors, the vocabulary is precise, and the text is easy to read and understand.

Figure 4: Fluency annotation guideline for error highlighting [the first part] and DA score assignment [the second
part].
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Figure 5: Counts of each error category and sentence-level translation quality measured by DA scores across all
language pairs and domains for adequacy.
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Figure 6: Counts of each error category and sentence-level translation quality measured by DA scores across all
language pairs and domains for fluency.
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Pretrained Encoder

Pooling Layer

Embedding Concatenation

Feed-Forward

MSE

Translation Source Reference

Figure 7: Estimator model architecture. A pre-trained cross-lingual encoder independently encodes the source,
translation, and reference. The resulting word embeddings are then passed through a pooling layer to create a
sentence embedding for each segment. Then, the corresponding sentence embeddings are combined and concatenated
into one single vector, passed to a feed-forward regressor. The entire model is trained by minimizing the Mean
Squared Error. Please note that only the source and translation are fed into the pre-trained encoder for training a
reference-free QE model.

Meta-Prompt for Prompting GPT4

You are a professional translator. You should assess the machine translation adequacy on a continuous scale [0-100] based on critical points described below:

[0]: Nonsense/No meaning preserved: Nearly all information is lost between the translation and source.
[34]: Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts.
[67]: Most meaning preserved: The translation retains most of the meaning of the source.
[100]: Perfect meaning: The meaning of the translation is completely consistent with the source.

Note that your score should lie in between two critical points, inclusive of the points themselves.

(for MT evaluation)
Presented below are the source sentence, its machine translation, and the corresponding reference translation:
Source sentence: {source sentence}
Machine translation: {translation sentence}
Reference translation: {reference sentence}

Please assess the above machine translation based on the source sentence and the reference translation. Note that you should only output the final score.

(for Quality Estimation)
Presented below are the source sentence and its machine translation:
Source sentence: {source sentence}
Machine translation: {translation sentence}

Please assess the above machine translation based on the source sentence. Note that you should only output the final score.

Figure 8: Meta prompts utilized in prompting GPT-4 (version: “gpt-4-0613”) for MT evaluation and Quality
Estimation tasks. Highlights are excluded from the prompts.
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LP Annotation Count Median Mean Std

ces-eng 27847 75.00 69.12 25.18
deu-ces 13804 56.00 53.35 32.97
deu-eng 99183 81.00 73.00 27.06
deu-fra 6691 78.00 71.04 27.44
eng-ces 60937 69.00 62.48 29.09
eng-deu 121420 90.00 80.79 23.2
eng-est 13376 51.00 51.82 29.83
eng-fin 34335 53.00 53.04 30.3
eng-guj 6924 48.50 49.70 28.16
eng-jpn 9578 72.67 68.31 20.45
eng-kaz 8219 57.50 54.16 28.86
eng-lit 8959 60.00 57.40 29.77
eng-lvs 5810 40.00 43.09 29.36
eng-mar 26000 71.75 70.08 10.15
eng-pol 10572 74.00 69.57 22.36
eng-rus 62749 75.00 67.98 27.26
eng-tam 7890 74.00 70.06 19.14
eng-tur 5171 50.00 48.10 33.92
eng-zho 90805 77.00 73.65 20.27
est-eng 29496 70.00 63.48 28.85
fin-eng 46145 75.00 66.29 29.17
fra-deu 3999 83.00 76.13 23.86
guj-eng 9063 58.00 55.70 29.61
jpn-eng 8939 76.00 70.72 24.8
kaz-eng 6789 72.00 64.72 28.09
khm-eng 4722 69.00 61.60 28.01
lit-eng 10315 77.00 70.23 25.31
npi-eng 9000 33.67 37.92 19.51
pol-eng 11816 80.12 76.14 21.62
pbt-eng 4611 70.00 64.14 25.61
ron-eng 9000 76.33 68.76 27.31
rus-eng 79280 84.00 75.38 25.24
sin-eng 9000 50.00 50.45 28.33
tam-eng 7577 72.00 65.45 26.68
tur-eng 30186 71.00 63.51 29.17
zho-eng 126947 79.00 73.37 24.67

Total Count 1027155

Table 6: Statistical summary of WMT Others across language pairs: annotation counts, and the median, mean, and
standard deviation of the DA scores. Language codes correspond to those specified in FLORES-200 (Goyal et al.,
2022).
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LP Annotation Count Median Mean Std

afr-eng 778 78.0 64.14 32.1
afr-ssw 594 68.0 55.32 29.76
amh-eng 594 72.5 60.32 33.4
eng-afr 593 63.0 62.23 30.74
eng-amh 594 55.0 48.37 27.87
eng-hau 592 69.0 58.58 38
eng-ibo 593 71.0 53.59 42.6
eng-kin 594 57.5 53.60 38.32
eng-lug 594 60.0 51.05 38.02
eng-nya 594 81.0 60.44 39.92
eng-orm 594 43.5 43.80 34.17
eng-sna 593 92.0 75.79 36.3
eng-ssw 594 58.0 50.87 33.69
eng-swh 591 85.0 71.13 32.83
eng-tsn 792 80.0 64.48 35.6
eng-xho 594 87.5 61.87 37.56
eng-yor 594 71.0 57.79 35.29
eng-zul 792 84.0 66.19 38.45
fra-lin 594 89.0 70.83 36.68
fra-swh 592 65.0 56.70 30.04
hau-eng 789 83.0 69.94 32.36
hau-ibo 594 48.0 46.74 38.42
ibo-eng 790 82.0 61.38 38.45
ibo-hau 593 69.0 51.78 37.19
ibo-yor 594 52.0 45.48 36.52
kin-eng 590 84.0 65.21 38.05
lin-fra 592 86.5 69.66 36.5
lug-eng 792 42.0 45.95 35.54
nya-eng 594 70.0 58.20 34.64
orm-eng 594 23.0 40.93 39.88
sna-eng 784 91.0 78.65 31.58
som-eng 594 70.0 58.17 34.95
ssw-eng 791 80.0 62.11 40.01
ssw-tsn 594 75.5 66.37 28.07
swh-eng 779 86.0 71.26 33.02
swh-fra 591 83.0 68.68 31.65
swh-lug 594 14.0 30.40 33.41
tsn-eng 791 63.0 54.25 35.24
tsn-tso 594 70.5 63.66 29.68
tso-eng 787 70.0 59.34 36.18
xho-eng 789 85.0 71.72 31.83
xho-zul 594 68.0 49.45 36.56
yor-eng 792 63.0 57.45 33.69
yor-ibo 594 80.0 67.69 33.09
zul-eng 788 90.0 68.47 38.54
zul-sna 593 82.0 64.89 42.39

Total 30022

Table 7: Statistical summary of WMT African across language pairs: annotation counts, and the median, mean,
and standard deviation of DA scores. Language codes correspond to those specified in FLORES-200 (Goyal et al.,
2022).
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Pre-trained Encoder Languages Covered Languages Uncovered

XLM-R-L English, French, Arabic, Hausa, Somali, Swahili, Xhosa Igbo, Luo, Kikuyu, Twi, Yoruba
InfoXLM-R-L English, French, Arabic, Hausa, Somali, Swahili, Xhosa Igbo, Luo, Kikuyu, Twi, Yoruba
AfroXLM-R-L English, French, Arabic, Hausa, Igbo, Somali, Swahili, Xhosa, Yoruba Luo, Kikuyu, Twi

Table 8: Overview of language coverage for XLM-Roberta-Large (XLM-R-L) (Conneau et al., 2019), InfoXLM-
Large (InfoXLM-L) (Chi et al., 2020), and AfroXLM-Roberta-Large (AfroXLM-R-L) (Alabi et al., 2022) as utilized
in this study.

N-gram Matching Embedding-based LLM Prompting Learned COMET Metric

SacreBLEU chrF++ BERTScore GPT4 Baseline Single Task (Ours) Multi Task (Ours)

LP COMET22 XLM-R-L InfoXLM-L AfroXLM-R-L ★ AfroXLM-R-L ★

ary-fra 0.307 / 0.234 0.402 / 0.233 0.414 / 0.242 0.693 / 0.467 0.584 / 0.379 0.634 / 0.397 0.631 / 0.406 0.595 / 0.406 0.685 / 0.447
eng-arz 0.241 / 0.222 0.290 / 0.214 0.314 / 0.234 0.454 / 0.379 0.528 / 0.347 0.533 / 0.339 0.498 / 0.337 0.526 / 0.371 0.602 / 0.423
eng-fra 0.268 / 0.171 0.339 / 0.193 0.358 / 0.195 0.495 / 0.385 0.475 / 0.344 0.469 / 0.359 0.443 / 0.324 0.515 / 0.351 0.522 / 0.372
eng-hau 0.248 / 0.137 0.445 / 0.206 0.576 / 0.283 0.664 / 0.278 0.589 / 0.302 0.503 / 0.286 0.473 / 0.229 0.682 / 0.365 0.696 / 0.445
eng-ibo 0.304 / 0.235 0.475 / 0.294 0.365 / 0.292 0.466 / 0.194 0.323 / 0.259 0.386 / 0.288 0.312 / 0.260 0.551 / 0.435 0.649 / 0.445
eng-kik 0.256 / 0.187 0.406 / 0.202 0.498 / 0.188 0.448 / 0.196 0.434 / 0.139 0.464 / 0.186 0.393 / 0.169 0.582 / 0.270 0.523 / 0.276
eng-luo 0.182 / 0.122 0.320 / 0.187 0.429 / 0.250 0.222 / 0.183 0.203 / 0.039 0.258 / 0.136 0.354 / 0.166 0.427 / 0.191 0.433 / 0.251
eng-som 0.170 / 0.108 0.317 / 0.196 0.298 / 0.240 0.485 / 0.205 0.526 / 0.338 0.503 / 0.334 0.465 / 0.297 0.470 / 0.398 0.391 / 0.389
eng-swh 0.459 / 0.334 0.648 / 0.408 0.773 / 0.516 0.768 / 0.604 0.779 / 0.560 0.771 / 0.567 0.775 / 0.546 0.729 / 0.508 0.754 / 0.552
eng-twi 0.185 / 0.137 0.223 / 0.120 0.292 / 0.074 0.456 / 0.096 0.378 / 0.064 0.341 / 0.070 0.274 / 0.078 0.396 / 0.104 0.295 / 0.071
eng-xho 0.124 / 0.072 0.246 / 0.128 0.306 / 0.132 0.433 / 0.117 0.234 / 0.055 0.202 / 0.054 0.278 / 0.046 0.473 / 0.150 0.465 / 0.115
eng-yor 0.236 / 0.144 0.355 / 0.143 0.462 / 0.176 0.674 / 0.334 0.367 / 0.103 0.329 / 0.131 0.353 / 0.129 0.463 / 0.201 0.694 / 0.256
eng-yor (it) 0.219 / 0.206 0.411 / 0.244 0.659 / 0.297 0.626 / 0.327 0.660 / 0.233 0.558 / 0.177 0.614 / 0.184 0.590 / 0.183 0.659 / 0.298
eng-yor (movie) 0.224 / 0.166 0.288 / 0.152 0.430 / 0.213 0.630 / 0.403 0.486 / 0.237 0.429 / 0.240 0.503 / 0.256 0.464 / 0.261 0.501 / 0.268
eng-yor (news) 0.207 / 0.081 0.294 / 0.086 0.366 / 0.075 0.521 / 0.144 0.395 / 0.118 0.373 / 0.137 0.392 / 0.090 0.508 / 0.136 0.501 / 0.147
eng-yor (ted) 0.037 / 0.019 0.100 / 0.002 0.284 / 0.062 0.451 / 0.176 0.351 / 0.083 0.377 / 0.122 0.449 / 0.185 0.539 / 0.224 0.408 / 0.207
yor-eng 0.257 / 0.208 0.389 / 0.281 0.425 / 0.308 0.464 / 0.338 0.508 / 0.354 0.452 / 0.323 0.486 / 0.335 0.512 / 0.345 0.544 / 0.382

Avg. 0.231 / 0.164 0.350 / 0.193 0.426 / 0.222 0.526 / 0.284 0.460 / 0.233 0.446 / 0.244 0.453 / 0.237 0.531 / 0.288 0.548 / 0.314

Table 9: Pearson and Kendall-rank correlation coefficients for MT evaluation models. For each LP, values in bold
represent the highest ranking obtained from the Perm-Both hypothesis test (Deutsch et al., 2021). Comprehensive
results of this test are detailed in Table 11 and 12. Averaged Pearson and Kendall-rank correlations across LPs are
presented in the last row.

N-gram Matching Embedding-based LLM Prompting Learned COMET Metric

SacreBLEU chrF++ BERTScore GPT-4
Baseline Single Task (Ours) Multi Task (Ours)

LP COMET22 XLM-R-L InfoXLM-L AfroXLM-R-L ★ AfroXLM-R-L ★

ary-fra 3 3 3 1 2 2 1 1 1
en-arz 4 4 4 2 2 3 3 2 1
en-fra 3 3 3 1 1 1 2 1 1
en-hau 5 4 3 3 2 3 3 2 1
en-ibo 2 2 2 3 2 2 2 1 1
en-kik 2 1 2 2 3 2 2 1 1
en-luo 3 2 1 2 3 2 2 1 1
en-som 5 4 3 3 2 2 2 1 1
en-swh 4 3 2 1 1 1 1 2 1
en-twi 1 1 2 1 2 2 1 1 2
en-xho 2 1 1 1 2 2 2 1 1
en-yor 3 3 2 1 4 3 3 2 2
en-yor (it) 2 2 1 1 2 3 2 2 1
en-yor (movie) 3 3 3 1 2 2 2 2 2
en-yor (news) 2 2 2 1 1 1 1 1 1
en-yor (ted) 3 3 2 1 2 2 1 1 1
yor-eng 3 2 2 1 1 2 1 1 1

Avg. 2.94 2.53 2.24 1.53 2.00 2.06 1.82 1.35 1.18

Table 10: Detailed rankings from the Perm-Both hypothesis test (Deutsch et al., 2021) of Spearman-rank correlation
coefficients corresponding to Table 2. The averaged ranks are presented in the last row.
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N-gram Matching Embedding-based LLM Prompting Learned COMET Metric

SacreBLEU chrf++ BERTScore GPT-4
Baseline Single Task (Ours) Multi Task (Ours)

LP COMET22 XLM-R-L InfoXLM-L AfroXLM-R-L ★ AfroXLM-R-L ★

ary-fra 4 3 3 1 2 2 2 2 1
eng-arz 3 3 3 2 2 2 2 2 1
eng-fra 3 2 2 1 1 1 1 1 1
eng-hau 4 3 2 1 2 3 3 1 1
eng-ibo 3 2 3 2 3 2 3 1 1
eng-kik 3 2 1 2 2 2 3 1 1
eng-luo 4 2 1 3 4 3 2 1 1
eng-som 3 2 2 1 1 1 1 1 1
eng-swh 3 2 1 1 1 1 1 2 1
eng-twi 2 2 2 1 1 1 2 1 2
eng-xho 3 2 2 1 2 3 2 1 1
eng-yor 4 3 2 1 3 4 3 2 1
eng-yor (it) 5 4 1 1 1 3 2 2 1
eng-yor (movie) 4 4 3 1 2 3 2 2 2
eng-yor (news) 3 2 2 1 2 2 2 1 1
eng-yor (ted) 5 5 4 1 3 3 2 1 2
yor-eng 3 2 2 2 1 2 1 1 1

Avg. 3.47 2.65 2.12 1.35 1.94 2.24 2.00 1.35 1.18

Table 11: Detailed rankings from the Perm-Both hypothesis test (Deutsch et al., 2021) of Pearson correlation
coefficients corresponding to Table 9. The averaged ranks are presented in the last row.

N-gram Matching Embedding-based LLM Prompting Learned COMET Metric

SacreBLEU chrf++ BERTScore GPT-4
Baseline Single Task (Ours) Multi Task (Ours)

LP COMET22 XLM-R-L InfoXLM-L AfroXLM-R-L ★ AfroXLM-R-L ★

ary-fra 3 3 3 1 2 2 1 1 1
eng-arz 4 4 4 1 2 2 3 2 1
eng-fra 3 3 3 1 1 1 2 1 1
eng-hau 5 4 3 3 2 3 4 2 1
eng-ibo 2 2 2 3 2 2 2 1 1
eng-kik 2 1 2 1 2 2 2 1 1
eng-luo 3 2 1 2 3 2 2 1 1
eng-som 4 3 3 3 2 2 2 1 1
eng-swh 4 3 2 1 1 1 1 2 1
eng-twi 1 1 2 1 2 2 1 1 2
eng-xho 2 1 1 1 2 2 2 1 1
eng-yor 3 3 3 1 4 3 3 2 2
eng-yor (it) 2 2 1 1 2 3 2 2 1
eng-yor (movie) 3 3 2 1 2 2 2 2 2
eng-yor (news) 2 2 2 1 1 1 1 1 1
eng-yor (ted) 3 3 2 1 2 2 1 1 1
yor-eng 3 2 2 1 1 2 2 1 1

Avg. 2.88 2.47 2.24 1.41 1.94 2.00 1.94 1.35 1.18

Table 12: Detailed rankings from the Perm-Both hypothesis test (Deutsch et al., 2021) of Kendall-rank correlation
coefficients corresponding to Table 9. The averaged ranks are presented in the last row.
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Training Data Settings

WMT African WMT Others WMT Combined

LP Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

ary-fra 0.307 0.287 0.201 0.595 0.567 0.406 0.567 0.547 0.388
eng-arz 0.215 0.270 0.177 0.526 0.532 0.371 0.517 0.506 0.351
eng-fra 0.380 0.276 0.190 0.515 0.495 0.351 0.545 0.501 0.355
eng-hau 0.676 0.354 0.240 0.682 0.515 0.365 0.764 0.489 0.342
eng-ibo 0.357 0.406 0.290 0.551 0.592 0.435 0.452 0.562 0.417
eng-kik 0.618 0.256 0.172 0.582 0.389 0.270 0.654 0.368 0.254
eng-luo 0.416 0.255 0.181 0.427 0.283 0.191 0.404 0.275 0.187
eng-som 0.479 0.388 0.271 0.470 0.554 0.398 0.590 0.546 0.390
eng-swh 0.642 0.533 0.373 0.729 0.688 0.508 0.735 0.692 0.515
eng-twi 0.436 0.124 0.082 0.396 0.157 0.104 0.484 0.203 0.139
eng-xho 0.519 0.092 0.072 0.473 0.191 0.150 0.573 0.200 0.155
eng-yor 0.597 0.127 0.083 0.463 0.287 0.201 0.668 0.285 0.202
eng-yor (it) 0.712 0.251 0.172 0.590 0.266 0.183 0.797 0.247 0.172
eng-yor (movie) 0.550 0.274 0.188 0.464 0.372 0.261 0.613 0.349 0.242
eng-yor (news) 0.468 0.066 0.045 0.508 0.200 0.136 0.614 0.204 0.141
eng-yor (ted) 0.404 0.084 0.058 0.539 0.324 0.224 0.608 0.220 0.151
yor-eng 0.406 0.386 0.256 0.512 0.490 0.345 0.511 0.495 0.346

Avg. 0.481 0.261 0.179 0.531 0.406 0.288 0.594 0.393 0.279

Table 13: Correlation coefficients (Pearson, Spearman-rank, Kendall-rank) for MT evaluation models trained with
single-task learning based on AfroXLM-R-L with varied training data settings. Comprehensive results of the
Perm-Both hypothesis test (Deutsch et al., 2021) are detailed in Table 14. The averaged correlation coefficients are
presented in the last row.

Training Data Settings

WMT African WMT Others WMT Combined

LP Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

ary-fra 2 2 2 1 1 1 1 1 1
eng-arz 2 3 3 1 1 1 1 2 2
eng-fra 2 2 2 1 1 1 1 1 1
eng-hau 2 2 2 2 1 1 1 1 1
eng-ibo 3 2 2 1 1 1 2 1 1
eng-kik 1 2 2 2 1 1 1 1 1
eng-luo 1 1 1 1 1 1 1 1 1
eng-som 1 2 2 2 1 1 1 1 1
eng-swh 2 2 2 1 1 1 1 1 1
eng-twi 1 2 2 2 1 2 1 1 1
eng-xho 1 2 2 2 1 1 1 1 1
eng-yor 2 2 2 3 1 1 1 1 1
eng-yor (it) 2 1 1 3 1 1 1 1 1
eng-yor (movie) 2 2 2 3 1 1 1 1 1
eng-yor (news) 2 2 2 1 1 1 1 1 1
eng-yor (ted) 2 3 3 1 1 1 1 2 2
yor-eng 2 2 2 1 1 1 1 1 1

Avg. 1.76 2.00 2.00 1.65 1.00 1.06 1.06 1.12 1.12

Table 14: Detailed rankings from the Perm-Both hypothesis test (Deutsch et al., 2021) of Pearson, Spearman-rank
and Kendall-rank correlation coefficients for MT evaluation models trained with single-task learning based on
AfroXLM-Roberta-Large with varied training data settings, corresponding to Table 13. The averaged ranks are
presented in the last row.
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Training Data Settings

WMT African WMT Others WMT Combined

LP Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

ary-fra 0.262 0.242 0.174 0.685 0.609 0.447 0.677 0.599 0.433
eng-arz 0.293 0.276 0.186 0.602 0.600 0.423 0.600 0.586 0.412
eng-fra 0.142 0.032 0.019 0.522 0.526 0.372 0.486 0.500 0.351
eng-hau 0.530 0.090 0.064 0.696 0.620 0.445 0.774 0.579 0.410
eng-ibo 0.124 0.196 0.140 0.649 0.616 0.445 0.621 0.507 0.364
eng-kik 0.519 0.233 0.161 0.523 0.410 0.276 0.630 0.332 0.225
eng-luo 0.320 0.270 0.181 0.433 0.359 0.251 0.460 0.370 0.252
eng-som 0.280 0.306 0.208 0.391 0.546 0.389 0.426 0.576 0.408
eng-swh 0.543 0.380 0.258 0.754 0.733 0.552 0.752 0.716 0.534
eng-twi 0.438 0.170 0.115 0.295 0.101 0.071 0.467 0.133 0.092
eng-xho 0.505 0.022 0.016 0.465 0.146 0.115 0.663 0.144 0.113
eng-yor (flores) 0.716 0.186 0.126 0.694 0.365 0.256 0.811 0.323 0.227
eng-yor (it) 0.741 0.298 0.208 0.659 0.418 0.298 0.817 0.261 0.255
eng-yor (movie) 0.482 0.092 0.060 0.501 0.390 0.268 0.572 0.314 0.214
eng-yor (news) 0.435 0.018 0.012 0.501 0.211 0.147 0.615 0.115 0.077
eng-yor (ted) 0.384 0.035 0.027 0.408 0.298 0.207 0.553 0.179 0.123
yor-eng 0.292 0.287 0.193 0.544 0.541 0.382 0.535 0.552 0.389

Avg. 0.412 0.184 0.126 0.548 0.441 0.314 0.615 0.399 0.287

Table 15: Correlation coefficients (Pearson, Spearman-rank, Kendall-rank) for MT evaluation models trained with
multi-task learning based on AfroXLM-R-L with varied training data settings. Comprehensive results of the
Perm-Both hypothesis test (Deutsch et al., 2021) are detailed in Table 16. The averaged correlation coefficients are
presented in the last row.

Training Data Settings

WMT African WMT Others WMT Combined

LP Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

ary-fra 2 2 2 1 1 1 1 1 1
eng-arz 2 2 2 1 1 1 1 1 1
eng-fra 3 3 2 1 1 1 2 2 1
eng-hau 2 2 3 1 1 1 1 1 2
eng-ibo 2 3 3 1 1 1 1 2 2
eng-kik 2 3 2 2 1 1 1 2 2
eng-luo 2 2 2 1 1 1 1 1 1
eng-som 3 3 2 2 2 1 1 1 1
eng-swh 2 2 2 1 1 1 1 1 1
eng-twi 1 1 1 2 1 1 1 1 1
eng-xho 2 2 2 2 1 1 1 1 1
eng-yor 2 2 2 2 1 1 1 1 1
eng-yor (it) 2 2 2 3 1 1 1 1 2
eng-yor (movie) 2 3 3 2 1 1 1 2 2
eng-yor (news) 2 2 2 2 1 1 1 2 2
eng-yor (ted) 2 3 3 1 1 1 1 2 2
yor-eng 2 2 2 1 1 1 1 1 1

Avg. 2.06 2.29 2.18 1.53 1.06 1.00 1.06 1.35 1.41

Table 16: Detailed rankings from the Perm-Both hypothesis test (Deutsch et al., 2021) of Pearson, Spearman-rank
and Kendall-rank correlation coefficients for MT evaluation models trained with multi-task learning based on
AfroXLM-Roberta-Large with varied training data settings, corresponding to Table 15. The averaged ranks are
presented in the last row.
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LLM Prompting Learned refence-free QE Metric

GPT4 Baseline Single Task (Ours) Multi Task (Ours)

CometKiwi InfoXLM-L AfroXLM-R-L ★ AfroXLM-R-L ★

LP Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

ary-fra 1 1 2 2 2 1 3 2 1 1
eng-arz 2 1 1 1 1 2 1 2 1 1
eng-fra 1 1 1 1 2 1 1 1 1 1
eng-hau 2 3 2 3 2 3 1 2 1 1
eng-ibo 2 3 3 3 2 2 1 1 1 1
eng-kik 3 2 3 2 2 1 1 1 2 1
eng-luo 3 2 2 1 2 1 1 1 1 1
eng-som 2 3 1 2 2 3 1 1 1 1
eng-swh 2 1 1 1 2 2 3 2 2 1
eng-twi 1 1 2 1 2 2 1 1 1 1
eng-xho 2 1 3 2 2 1 1 1 1 1
eng-yor 4 1 4 2 3 2 1 1 2 2
eng-yor (it) 2 2 2 1 2 2 1 2 1 1
eng-yor (movie) 2 1 4 3 3 2 1 2 2 2
eng-yor (news) 2 1 2 2 2 2 1 1 1 1
eng-yor (ted) 1 1 2 1 2 1 1 1 1 1
yor-eng 1 1 3 2 3 3 2 2 1 1

Avg. 1.94 1.53 2.24 1.76 2.12 1.82 1.29 1.41 1.24 1.12

Table 17: Detailed rankings from the Perm-Both hypothesis test (Deutsch et al., 2021) of Pearson and Spearman-rank
correlation coefficients corresponding to Table 3. The averaged ranks are presented in the last row.

MT Evaluation

MT Evaluation System Pearson Spearman Kendall

COMET22 (Rei et al., 2022a) 0.578 0.482 0.332
AfriCOMET-STL (Ours) 0.618 0.507 0.351
AfriCOMET-MTL (Ours) 0.591 0.486 0.333

Quality Estimation

QE System Pearson Spearman Kendall

CometKiwi (Rei et al., 2022b) 0.242 0.219 -
AfriCOMET-QE-STL (Ours) 0.552 0.413 -
AfriCOMET-QE-MTL (Ours) 0.558 0.445 -

Table 18: Performance comparison of COMET22 with our benchmark AfriCOMET systems and CometKiwi with
our benchmark AfriCOMET-QE systems on the “WMT African” dataset, the human evaluation set from the
WMT 2022 shared task: “Large-Scale Machine Translation Evaluation for African Languages” (Adelani et al.,
2022). Results are reported in terms of correlation coefficients: Pearson, Spearman-rank, and Kendall-rank for MT
evaluation; Pearson and Spearman-rank for QE. MT evaluation systems are evaluated using the source, the machine
translations, and the reference as model inputs, while QE systems are assessed relying only on the source and the
machine translation. Correlations are calculated between human-annotated DA scores and model-predicted scores.

Quality Estimation

QE System Pearson Spearman

CometKiwi (Rei et al., 2022b) 0.153 0.118
AfriCOMET-QE-STL (Ours) 0.461 0.482
AfriCOMET-QE-MTL (Ours) 0.485 0.495

Table 19: Performance comparison of CometKiwi and our Benchmark AfriCOMET-QE systems
on the English-Yoruba test set (https://github.com/WMT-QE-Task/wmt-qe-2022-data/tree/main/test_
data-gold_labels/task1_da/en-yo) from the WMT 2022 Quality Estimation Shared Task (Zerva et al., 2022b),
which includes 1010 DA annotations. Results are reported in terms of Pearson and Spearman-rank correlation
coefficients. All systems are trained on the same “WMT Others” dataset, and they are evaluated with source
and machine translation as model inputs. Correlations are calculated between human-annotated DA scores and
model-predicted scores.
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MT Evaluation Quality Estimation

COMET22 AfriCOMET-STL (Ours) AfriCOMET-MTL (Ours) CometKiwi AfriCOMET-QE-STL (Ours) AfriCOMET-QE-MTL (Ours)

LP Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Pearson Spearman Pearson Spearman

eng-deu 0.312 0.319 0.244 0.263 0.277 0.211 0.265 0.286 0.219 0.254 0.273 0.264 0.256 0.228 0.247
eng-rus 0.361 0.370 0.286 0.344 0.341 0.264 0.381 0.380 0.295 0.357 0.360 0.326 0.337 0.336 0.358
zho-eng 0.428 0.490 0.357 0.427 0.487 0.355 0.420 0.479 0.348 0.362 0.423 0.370 0.421 0.367 0.431

Avg. 0.367 0.393 0.296 0.345 0.368 0.277 0.355 0.382 0.287 0.324 0.352 0.320 0.338 0.310 0.345

Table 20: Generalization assessments: comparisons of COMET22 and AfriCOMET Systems for MT evaluation,
and CometKiwi and AfriCOMET-QE Systems for Quality Estimation, across English-German (eng-deu), English-
Russian (eng-rus), and Chinese-English (zho-eng) MQM Datasets in the WMT 2021 News Domain Translation
Shared Task. These three datasets serve as validation sets for COMET22 and CometKiwi systems, while remaining
unseen in training or validation for AfriCOMET and AfriCOMET-QE systems.

25


	Introduction
	AfriMTE: African Machine Translation Evaluation Dataset
	Dataset and MT Engine
	Annotation Guidelines and Tool
	Annotation Guidelines
	Annotation Tool

	Annotation Quality Assurance
	Quantitative Analysis of Annotations

	AfriCOMET: Benchmark Systems
	Experimental Settings
	Dataset
	Model configurations
	Evaluation

	Main Findings
	Transfer learning from well-resourced DA data with pre-trained encoders
	Impact of an extra African DA dataset

	The benchmark MT evaluation systems

	Reference-free QE systems
	Additional Evaluation
	Conclusion
	Ethics Statement
	Appendix
	Supplementary materials
	Evaluation on the WMT African DA dataset
	Evaluation on the WMT 2022 English-Yoruba QE test set
	Generalization Evaluation


