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Abstract

Perceiving the environment and its changes over time corresponds to two funda-1

mental yet heterogeneous types of information: semantics and motion. Previous2

end-to-end autonomous driving works represent both types of information in a3

single feature vector. However, including motion related tasks, such as prediction4

and planning, impairs detection and tracking performance, a phenomenon known as5

negative transfer in multi-task learning. To address this issue, we propose Neural-6

Bayes motion decoding, a novel parallel detection, tracking, and prediction method7

that separates semantic and motion learning. Specifically, we employ a set of8

learned motion queries that operate in parallel with detection and tracking queries,9

sharing a unified set of recursively updated reference points. Moreover, we employ10

interactive semantic decoding to enhance information exchange in semantic tasks,11

promoting positive transfer. Experiments on the nuScenes dataset with UniAD and12

SparseDrive confirm the effectiveness of our divide and merge approach, resulting13

in performance improvements across perception, prediction, and planning. The14

code will be released.15

1 Introduction16

Modular end-to-end (E2E) autonomous driving (AD) is gaining attention for combining the strengths17

of traditional pipeline methods with strict E2E approaches. In this framework, perception, prediction,18

and planning form the core set of tasks, which ideally complement one another to enhance overall19

system performance. However, the modular E2E framework also presents a multi-task learning20

challenge. A poorly designed multi-task learning structure could not only fail to facilitate mutual21

learning but also adversely affect individual tasks, a phenomenon known as negative transfer [1].22

The prevalent modular E2E approaches [2–5] typically employ a sequential structure (Fig. 1a). This23

structure aligns with how humans perform driving tasks and has demonstrated promising planning24

performance. However, these approaches exhibit negative transfer in object detection and tracking. In25

other words, the perception performance of jointly trained E2E models is typically inferior to those26

trained without the motion prediction and planning tasks.27

We analyze the underlying causes of negative transfer by inspecting the types of learned heterogeneous28

information: semantic and motion. Semantic information encompasses the categories of surrounding29

objects, lanes, crossings, etc., while motion information describes the temporal changes occurring30

within the environment. Sequential methods [2–4, 6] execute these two processes in succession. They31

first conduct detection and tracking and then use the extracted object features for trajectory prediction.32

This sequential design forces the features to contain motion information, compromising the initially33

learned semantic and leading to negative transfer in perception. The SHAP values analysis [7]34

provides supporting evidence for our argument. Another E2E structure is depicted in Fig. 1b. It35
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Figure 1: Comparison of E2E structures. In (a), semantic and motion learning occur sequentially.
In (b), the multi-head structure parallelizes tasks with different heads; however, motion and semantic
learning remain sequential in detection, tracking, and prediction. In (c), semantic and motion learning
are performed in parallel without latent feature sharing or gradient propagation. In contrast, the
exchange of information between the object and map perception modules is enhanced.

executes most tasks with different heads in parallel, as PARA-Drive [8] and NMP [9]. However, since36

detection and prediction remain sequential, the issue of negative transfer persists.37

In this work, we propose DMAD structure (Fig. 1c), Dividing and Merging motion and semantic38

learning for E2E Autonomous Driving. DMAD addresses the issue of negative transfer by separating39

semantic and motion learning. Furthermore, it leverages correlations among semantic tasks by40

merging them.41

For dividing, we propose Neural-Bayes motion decoder. We maintain a set of motion queries42

that attend to the sensor embeddings parallel to the object (detection and tracking) queries. The43

key difference between motion and object queries is that they are decoded into past and future44

trajectories rather than bounding boxes with classes. Motion and object queries share a single set of45

reference points, updated recursively by detection and prediction. It allows only limited information46

exchange between both types of queries, mediated through the reference points without gradient flow.47

Moreover, we calculate the object’s velocity using the predicted trajectory with finite differences,48

thereby removing the requirement for object queries to learn the velocity directly. In this manner,49

the object query focuses on learning semantic and appearance features, while the motion query is50

dedicated to capturing motion features. The two types of heterogeneous information are learned51

separately along distinct paths, effectively preventing negative transfer. Notably, the DMAD structure52

promotes motion learning to the same level of semantic learning, treating detection, tracking, and53

prediction as concurrent tasks for the first time, to the best of our knowledge.54

For merging, we propose interactive semantic decoder to enhance the exchange of semantic insights55

in detection and map segmentation. Object perception and map perception are inherently related56

tasks. Previous methods often overlook this connection, typically executing the two along parallel57

paths [2–4]. DualAD [6] leverages this correlation but allows only object perception to learn from58

the map. Our method uses layer-wise iterative self-attention [10] to enable mutual learning between59

object and map tasks, fostering positive transfer.60

Experiments on the nuScenes [11] dataset showcase the effectiveness of DMAD structure in mitigating61

negative transfer. Our approach achieves significant performance gains in perception and prediction,62

which benefits the planning module and outperforms state-of-the-art (SOTA) E2E AD models.63

Our key contributions are summarized as follows:64

• We examine the similarity and heterogeneity among tasks in modular E2E AD and argue that65

the prevailing design—learning information for conflicting tasks within a single feature—is66

2



Interactive semantic decoder

Neural-Bayes motion decoder

Inter-layer
ref. update

Inter-frame
ref. update

Positive
selection

e

Map queries

Object queries

e
Motion queries

Sensor embed.

e

e

Multi-view image queue 

Objects, maps

...

Pred., planning

Figure 2: An overview of DMAD. A backbone processes multi-view images into sensor embeddings.
Map and object queries are initialized, then interactively attend to the sensor embeddings for map and
object perception. Motion queries, mapped one-to-one with object queries, share reference points
that are iteratively updated. Finally, motion queries corresponding to detected objects are decoded
into future trajectories. The ego motion query (“e”) is used for planning. Gray dashed lines indicate
operations without gradient flow.

the cause of negative transfer in perception. We analyze SHAP values to validate this67

hypothesis. Conversely, we propose that information exchange between similar tasks can68

facilitate positive transfer.69

• We propose DMAD, a modular E2E AD paradigm that divides and merges tasks according70

to the information they are supposed to learn. This design eliminates negative transfer71

between different types of tasks while reinforcing positive transfer among similar tasks.72

• We introduce two decoders: the Neural-Bayes motion decoder for concurrent trajectory73

prediction with object detection and tracking; the interactive semantic decoder to enhance74

information sharing between object and map perception. The proposed decoders improve75

existing SOTA methods, leading to better performance across all tasks.76

2 Method77

Figure 2 shows an overview of DMAD structure. Sensor embeddings are extracted from multi-view78

camera images and are shared across all tasks, including detection, tracking, mapping, prediction, and79

planning. We initialize three distinct types of queries—object, map, and motion—which attend to the80

sensor embeddings to extract the specific information required for each respective task. Based on the81

type of information learned, the decoding process is divided into two pathways. On one way, object82

and map decoding are jointly performed within the Interactive semantic decoder, where both types83

of queries iteratively exchange latent semantic information at each decoding layer. On the other way,84

motion queries extract motion information from the sensor embeddings within the Neural-Bayes85

motion decoder. Each motion query is paired with an object query, using the object’s coordinates as86

a reference point at each decoding layer. After decoding each frame, the motion query’s predicted87

future waypoint becomes the object query’s reference point in the next frame, similar to the recursion88

of a Bayes filter [12]. The exchange of reference points is always without gradient. At last, the89

motion queries are passed on to the planning module. The system is fully E2E trainable, with motion90

and semantic gradients propagated in distinct paths.91

2.1 Interactive semantic decoder92

To leverage the semantic correlation between individual objects and map elements, we introduce93

the Interactive Semantic Decoder. In contrast to the unidirectional interaction in DualAD [6], our94

approach enables a bidirectional exchange of information.95

We initialize a set of object queries Qobj ∈ RNobj×d and a set of map queries Qmap ∈ RNmap×d. The96

number of queries could be different, while the dimensions d must be the same. Each decoding layer97

first concatenates both types of queries. Self-attention [10] is then applied, where both tasks exchange98

their semantic information. Subsequently, the two types of queries are divided, each performing99

self-attention and cross-attention on the sensor embeddings, respectively, as shown in Fig. 3.100
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Figure 3: Interactive semantic decoding. Object and map queries are concatenated and interact
through a self-attention module before being separated to independently attend to the sensor embed-
dings. This process is repeated across N stacked layers.

After interactive semantic decoding, each object query is classified into a category c and regressed101

into a vector [∆x,∆y,∆z, w, h, l, θ]
T. The object query is associated with a reference point102

[xref, yref, zref]
T. Rather than directly learning the absolute coordinates of the object, it learns the103

offsets relative to its corresponding reference points. Thus, the bounding boxes can be represented as104

[xref +∆x, yref +∆y, zref +∆z, w, h, l, θ]
T. Notably, velocities are not regressed, as they pertain to105

motion information. We design the object queries to focus solely on semantic information, i.e., the106

object’s category, center point, size, and orientation.107

2.2 Neural-Bayes motion decoder108

We introduce a novel motion decoder operating in parallel with the semantic decoder, aimed at fully109

decoupling motion and semantic learning to reduce the negative transfer in semantic tasks. Given the110

correlation between motion and semantics, we design a recursive process to facilitate the exchange of111

human-readable information between the two decoders as illustrated in Fig. 4, which comprises the112

processes of prediction, measurement, and updating, similar to the Bayes filter [12]. Appendix C113

provides a brief introduction to the Bayes filter. We proceed with the elaboration of the proposed114

motion decoder.115

Initialization. We initialize a set of motion queries Qmt ∈ RNmt×d in the same way we initialize116

object queries. The motion queries correspond one-to-one with the object queries, i.e., Nmt = Nobj.117

However, since they do not directly interact in the latent space, their dimensionalities d can differ.118

Each motion query represents the motion state of an object, although the model does not initially119

know whether the object exists. Additionally, motion queries and object queries share a common set120

of reference points.121

Measurement. The detection, already introduced in Sec. 2.1, is treated as the measurement in122

Bayes filter. After each semantic decoding layer, the object queries are regressed, yielding the123

coordinate vectors ref = [x, y, z]
T of the tentative object, which then serves as reference points for124

the next layer:125

ref l+1 = freg(f
l
Semantic-Dec(Q

l
obj, Z, ref

l)), (1)

where the superscript denotes the layer and Z is the sensor embeddings.126

Updating. With the reference points ref l from the semantic decoding (the inter-layer reference127

points update in Fig. 2), the motion queries also attend to the sensor embeddings via cross-attention:128

Ql+1
mt = f l

Motion-Dec(Q
l
mt, Z, ref

l), (2)

where the motion queries are updated conditioned on the measured reference points.129

Prediction. We employ MLPs to extract trajectories from the motion queries. We note that motion130

extraction occurs in two stages: first through the unimodal trajectory construction, followed by the131

multimodal prediction.132

The first stage computes the unimodal velocity and future reference points, guiding the motion query133

to learn aggregated motion states from the past and predict the near future. It produces a single134
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Figure 4: Neural-Bayes motion decoding. After each decoding layer, the semantic decoder updates
the reference points, which are then shared with the motion decoder. At the end of each frame, positive
object query indices are used to select corresponding motion queries and are together propagated
to the subsequent frame, with the motion query predictions serving as reference points for the next
frame. This process is similar to the measurement, updating, and prediction steps in a Bayes filter.
Map queries, ego queries and sensor embeddings are omitted for simplicity.

trajectory that spans from the past timestep tpast to the future timestep tfut-1. The velocity is calculated135

using the finite difference method on waypoints around the current timestep. We use the first future136

waypoint as the initial reference point for the object query in the next frame, i.e., inter-frame reference137

points update in Fig. 2, for object tracking.138

The second stage performs multimodal intention modeling and generates multiple future trajectories139

within the future tfut-2 timesteps, along with their corresponding confidence scores.140

Tracking. Multi-object tracking is performed using the query propagation mechanism [13, 14].141

Each object query is associated with an unique instance ID. A positive query propagates across142

consecutive frames, ensuring that corresponding detections are assigned the same ID. During training,143

object queries associated with ground truth are referred to as positive queries; during inference,144

positivity is determined by whether the confidence score exceeds a specified threshold. The propaga-145

tion of motion queries follows that of object queries, as they are related. This mechanism enables146

continuous measuring, updating, and predicting, similar to the Bayes filter.147

3 Experiments148

We conduct experiments on the nuScenes [11] dataset to validate the effectiveness of our method. We149

present results in three parts. The first part focuses on perception (detection, tracking, and mapping).150

In the second part, we evaluate motion prediction and planning. Lastly, we provide an extensive151

ablation study and SHAP values [7] visualization.152

3.1 Training configuration153

We reproduce UniAD [2] and SparseDrive [5] as baselines. Both utilize the query propagation154

mechanism; however, UniAD extracts dense bird’s-eye view (BEV) features from image inputs,155

while SparseDrive employs sparse scene representations. Beside the aforementioned tasks, UniAD156

additionally performs occupancy prediction. We also retain the occupancy module in comparisons157

with UniAD for task consistency. As occupancy prediction serves merely as another representation158

of upstream tasks, we describe it in Appendix D. We adhere as closely as possible to default159
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Table 1: Perception results. The performance changes in stage 2 are expressed as percentages, with
red indicating a decline and blue representing improvement.

(a) Object detection results.

Method NDS↑ mAP↑ mAVE↓

VAD [3] 0.460 0.330 0.405
GenAD [4] 0.280 0.213 0.669
PARA-Drive [8] 0.480 0.370 -

UniAD - stage 1 0.497 0.382 0.411
UniAD - stage 2 0.491 (-1.2%) 0.377 (-1.3%) 0.412 (+0.2%)

DMAD - stage 1 0.504 0.395 0.406
DMAD - stage 2 0.506 (+0.4%) 0.396 (+0.3%) 0.395 (-2.7%)

SparseDrive - stage 1 0.531 0.419 0.257
SparseDrive - stage 2 0.523 (-1.5%) 0.417 (-0.5%) 0.269 (+4.7%)

SparseDMAD - stage 1 0.536 0.424 0.260
SparseDMAD - stage 2 0.534 (-0.4%) 0.427 (+0.7%) 0.253 (-2.7%)

(b) Multi-object tracking results.

Method AMOTA↑ AMOTP↓ IDS↓

ViP3D [16] 0.217 1.63 -
MUTR3D [17] 0.294 1.50 3822
PARA-Drive [8] 0.350 - -

UniAD - stage 1 0.374 1.31 816
UniAD - stage 2 0.354 (-5.3%) 1.34 (+2.3%) 1381 (+69%)

DMAD - stage 1 0.394 1.32 781
DMAD - stage 2 0.393 (-0.3%) 1.30 (-1.5%) 767 (-1.8%)

SparseDrive - stage 1 0.395 1.25 602
SparseDrive - stage 2 0.376 (-4.8%) 1.26 (+0.8%) 559 (-7.1%)

SparseDMAD - stage 1 0.396 1.23 608
SparseDMAD - stage 2 0.395 (-0.3%) 1.23 (0%) 571 (-6.1%)

configurations of the baseline; however, to ensure a rigorous comparisons, some adjustments are160

made. Following paragraphs outline the adjustments and the rationale behind them.161

Two-stage training. We follow the two-stage training scheme of our baseline. In the first stage,162

we train object detection, tracking, and mapping. In the second stage, we train all modules together.163

Notably, because our tracking relies on reference points provided by unimodal prediction, we164

incorporate unimodal prediction training in the first stage. Multimodal prediction is trained only in165

the second stage, which is consistent with the baseline.166

Queue length. Since AD is a time-dependent task, the model typically processes a sequence of167

consecutive frames as a training sample. The number of input frames, i.e., the queue length q, defines168

the temporal horizon the model can capture, impacting the performance of related tasks. UniAD169

employs different queue lengths across its two training stages: 5 in the first stage and 3 in the second.170

The reduced queue length in the second stage degrades perception performance due to reduced171

temporal aggregation, shown in Appendix E. This degrading hinders the identification of negative172

transfer effects caused by the sequential structure. To mitigate this interference, we standardize the173

queue length to 3 across both training stages in comparisons with UniAD. Unless otherwise specified,174

the performance of UniAD in all result tables is reproduced with a queue length of 3 using the official175

codebase [15]. SparseDrive does not have this issue, and we use the default setting of 4.176

Ego query represents the features directly used for motion planning, which is intended to capture177

the motion information of the ego vehicle. SparseDrive generates the ego query from the front camera178

image and the estimated previous ego status, which blends semantics and motion, thus contradicting179

our dividing design. To align with our proposal, we eliminate the use of the front image for the ego180

query when applying DMAD to SparseDrive. For UniAD, we retain the planning module unchanged,181

as it initializes the ego query randomly.182

3.2 Perception183

Metrics. For object detection and tracking, we use the metrics defined in the nuScenes benchmark.184

The primary metrics for detection are nuScenes Detection Score (NDS) and mean average precision185

(mAP). For multiple object tracking, we report the average multi-object tracking accuracy (AMOTA)186

and the average multi-object tracking precision (AMOTP). For map segmentation, we use the187

intersection over union (IoU) metric of drivable areas, lanes, and dividers. Vectorized mapping adopts188

mAP of lane divider, pedestrian crossing and road boundary.189

Object detection. Table 1a presents the detection performance across two training stages. In the190

first stage, thanks to the interactive semantic decoding, our approach slightly outperforms the baseline.191

After the second stage of training, baseline’s performance shows a decline. In contrast, our method192

preserves the perceptual performance of the first stage, benefiting from separated motion learning193

that mitigates negative transfer. Our method finally surpasses UniAD and SparseDrive by 3.1% and194

2.1% in NDS, respectively.195
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Table 2: Map perception results.

(a) Map segmentation results.

Method Lanes↑ Drivable↑ Dividers↑

BEVFormer [18] 0.239 0.775 -
PARA-Drive [8] 0.330 0.710 -

UniAD - stage 1 0.293 0.650 0.248
UniAD - stage 2 0.312 (+6.5%) 0.678 (+4.3%) 0.267 (+7.7%)

DMAD - stage 1 0.292 0.655 0.242
DMAD - stage 2 0.321 (+9.9%) 0.691 (+5.5%) 0.271 (+12%)

(b) Vectorized mapping results.

Method APped↑ APdivider↑ APboundary↑ mAP↑

MapTR [19] 0.562 0.598 0.601 0.587
VAD [3] 0.406 0.515 0.506 0.476

SparseDrive - stage 1 0.533 0.579 0.575 0.562
SparseDrive - stage 2 0.494 (-7.3%) 0.569 (-1.7%) 0.583 (+1.4%) 0.549 (-2.3%)

SparseDMAD - stage 1 0.553 0.599 0.606 0.586
SparseDMAD - stage 2 0.554 (+0.2%) 0.601 (+0.3%) 0.606 (0%) 0.587 (+0.2%)

Table 3: Trajectory prediction results. C and P stand for cars and pedestrians respectively.
EPA↑ minADE↓

Method C P C P

ViP3D [16] 0.226 - 2.05 -
GenAD [4] 0.588 0.352 0.84 0.84

UniAD 0.495 0.361 0.69 0.79
DMAD 0.535 0.416 0.72 0.77

SparseDrive 0.487 0.406 0.63 0.73
SparseDMAD 0.500 0.410 0.63 0.71

Multi-object tracking. Due to using a single feature vector to represent semantics and motion,196

UniAD and SparseDrive exhibit negative transfer of 5.3% and 4.8% in AMOTA, as shown in Tab. 1b.197

Our dividing design enables object queries to learn about appearance more effectively. At the same198

time, unimodal predictions offer enhanced tracking reference points. Consequently, our method199

achieves a gain of 11.0% and 5.1% in AMOTA, respectively.200

Map perception. UniAD does not encounter negative transfer in map segmentation. Leveraging the201

advantages of interactive semantic decoding, our method marginally surpasses UniAD. Our method202

mitigates the negative transfer in vectorized online mapping, significantly surpassing SparseDrive by203

7.0% in mAP, (see Tab. 2).204

3.3 Prediction and planning205

Metrics. For motion prediction, we utilize E2E perception accuracy (EPA) proposed in ViP3D [16]206

as the main metric. We also report the minimum average displacement error (minADE). However,207

since minADE is a true positive metric, it does not fully capture the predictive capabilities of the E2E208

system, whereas EPA accounts for the number of false positives. For open-loop planning, we use209

L2 distances and collision rates. Moreover, we evaluate driving safety in a closed-loop environment210

using NeuroNCAP [20]. This framework reconstructs scenes from the nuScenes dataset and inserts211

safety-critical objects. The resulting scores are derived from collision rates and impact speeds.212

Trajectory prediction. We report car and pedestrian prediction metrics in Tab. 3. Our method213

surpasses both baselines in EPA, especially achieving improvements of 0.040 for cars and 0.055 for214

pedestrians over UniAD. However, our method does not improve the minADE of cars. One possible215

reason is that once detection performance exceeds a certain threshold, further detection improvements216

often come from reducing false negatives of challenging objects that are either distant or occluded.217

These hard-to-detect objects typically have limited historical motion data and larger coordinate errors,218

making them more difficult to predict. A similar issue is observed in UniAD [2]: in the supplementary219

materials, UniAD-Large substantially surpasses UniAD-Base in EPA (thanks to better detection and220

tracking performance), yet it falls short of UniAD-Base in minADE.221

Planning. For open-loop evaluation, we adopt the evaluation method of VAD [3], which accom-222

modates the widest range of models to our knowledge. We report our results in Tab. 4. Notably,223

jointly optimizing L2 distances and collision rates proves challenging. While PARA-Drive achieves224

the lowest L2 distances, it also exhibits the highest collision rates. In the closed-loop evaluation, our225

structure benefits both baselines in all three cases with stationary, frontal, and side critical objects.226
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Table 4: Open-loop planning. Ego-MLP and AD-MLP are faded since both learn only the ego
motion. *Results from the checkpoint in the official repository [15], trained with a queue length of 5
in stage 1. †Ego-MLP employs a different strategy in the evaluation of collision rates, therefore the
results are not comparable. We reproduce SparseDrive using the official code, but the results differ
from its paper because some errors have been fixed after publication.

Perception Ego states L2 distances (m) ↓ Collision rates (%) ↓
Method tasks in planner 1s 2s 3s Avg. 1s 2s 3s Avg.

Ego-MLP [21] ✗ ✓ 0.17 0.34 0.60 0.370 0† 0.27† 0.85† 0.373†

AD-MLP [22] ✗ ✓ 0.14 0.10 0.41 0.217 0.10 0.10 0.17 0.123

VAD [3] ✓ ✗ 0.41 0.70 1.05 0.720 0.07 0.17 0.41 0.217
DualVAD [6] ✓ ✗ 0.30 0.53 0.82 0.550 0.11 0.19 0.36 0.220
GenAD [4] ✓ ✗ 0.28 0.49 0.78 0.517 0.08 0.14 0.34 0.187
UniAD* [2] ✓ ✗ 0.42 0.63 0.91 0.656 0.07 0.10 0.22 0.130
PARA-Drive [8] ✓ ✗ 0.25 0.46 0.74 0.483 0.14 0.23 0.39 0.253

UniAD ✓ ✗ 0.48 0.76 1.12 0.784 0.07 0.11 0.27 0.150
DMAD ✓ ✗ 0.38 0.60 0.89 0.625 0.07 0.12 0.19 0.127

SparseDrive ✓ ✗ 0.32 0.61 1.00 0.643 0.01 0.06 0.22 0.097
SparseDMAD ✓ ✗ 0.30 0.61 1.01 0.643 0 0.07 0.21 0.093

Table 5: Closed-loop planning. We use the official implementation of NeuroNCAP, but our results
differ from those in the original paper because the codebase has been updated since its publication.

NeuroNCAP Scores ↑ Collision rates (%) ↓
Method Stat. Frontal Side Avg. Stat. Frontal Side Avg.

UniAD 3.50 1.17 1.67 2.11 32.4 77.6 71.2 60.4
DMAD 4.40 1.47 2.07 2.65 14.8 74.0 61.6 50.1
SparseDrive 4.42 2.96 2.30 3.23 22.4 62.8 60.4 48.5
SparseDMAD 4.57 3.14 2.42 3.37 18.4 60.0 59.1 45.8

We validate that the improvements in perception can be propagated to planning, achieving SOTA227

collision rates and NeuroNCAP Scores.228

3.4 Ablation study229

We ablate our proposed decoders, as shown in Tab. 6, decomposing the motion decoder into three230

components: motion query, inter-layer, and inter-frame reference point updating.231

Model profile. In methods with multi-view camera images as inputs, the primary computational232

cost is concentrated in the image backbone [18]. In contrast, our approach focuses on the decod-233

ing component, resulting in minimal impact on model size and inference speed. Compared to234

UniAD [2], our decoders add 13.1M parameters and increase inference latency by 0.02 seconds on235

an NVIDIA RTX 6000 Ada.236

Effect of dividing and merging. Experiments ID 1, 2, 3, 7 demonstrate the effectiveness of237

both proposed decoders. The standalone application of the interactive semantic decoder (ID 2)238

significantly enhances the performance of object detection, tracking, and map segmentation. The239

standalone application of the Neural-Bayes motion decoder (ID 3) markedly improves prediction and240

planning. Notably, ID 3 also significantly enhances detection and tracking, attributed to freeing object241

queries from learning velocities and the higher-quality reference points provided by the unimodal242

prediction. Experiments ID 4, 5, 6, 7 show the importance of inter-layer and inter-frame updating in243

the Neural-Bayes motion decoder.244

3.5 Visualizations245

We use SHAP values [7]—which quantify the contribution of each feature to the change in a model’s246

output—to inspect the negative transfer in detection and tracking. We visualize the SHAP values247

of the object query with respect to the object classification output. Changes in SHAP values across248
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Table 6: Ablation of DMAD.

Method
ID

Interactive
semantic dec.

Motion
queries

Inter-layer
ref. update

Inter-frame
ref. update

#Params
(M)

Inference
time (s) NDS↑ AMOTA↑ Lanes↑ EPA↑ Avg. L2↓ Avg. Col.↓

1 (UniAD) ✗ ✗ ✗ ✗ 127.3 0.47 0.491 0.354 0.312 0.495 0.784 0.150
2 ✓ ✗ ✗ ✗ 128.0 0.48 0.503 0.382 0.320 0.524 0.683 0.150
3 ✗ ✓ ✓ ✓ 139.3 0.49 0.502 0.387 0.313 0.535 0.661 0.143
4 ✓ ✓ ✗ ✗ 140.4 0.49 0.481 0.339 0.322 0.485 0.655 0.163
5 ✓ ✓ ✓ ✗ 140.4 0.49 0.489 0.352 0.323 0.498 0.648 0.160
6 ✓ ✓ ✗ ✓ 140.4 0.49 0.495 0.364 0.319 0.512 0.631 0.137
7 (DMAD) ✓ ✓ ✓ ✓ 140.4 0.49 0.506 0.393 0.321 0.535 0.625 0.127
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(b) SHAP values of DMAD

Figure 5: SHAP values of stage 1 (left), stage 2 (middle), and the difference (right). Each bar
represents the SHAP values of a single feature with respect to different classes. The object query
consists of 256 features, forming 256 bars in each chart. The difference is computed as stage 1 minus
stage 2, aggregating all classes, where red indicates a negative value and blue signifies a positive
value.

the two training stages reveal the negative transfer in UniAD and highlight the effectiveness of our249

method.250

Figure 5a compares the SHAP values between stage 1 and stage 2 of UniAD, sorted in descending251

order. The left half of the difference bar chart predominantly shows negative values, whereas the right252

half shows positive values. This indicates that SHAP values in stage 1 are more uniformly distributed,253

while those in stage 2 are more concentrated. Compared with a flat distribution, this concentration254

indicates that fewer features are contributing to the classification task, reducing detection and tracking255

performance. This observation aligns with our argument that during the second stage, object queries256

are expected to learn motion information, which does not benefit the perception task. Specifically,257

while the velocity learned in stage 1 is sufficient for tracking (predicting the next timestep), it is258

inadequate for the long-term prediction over 12 timesteps (6 seconds). Therefore, the object query259

is forced to learn more motion states that offer limited utility for identifying objects, interfering260

with the space for semantic information. In contrast, the SHAP values in DMAD maintain a similar261

distribution across both stages, as shown in Fig. 5b.262

Beyond SHAP values, we provide qualitative comparisons between DMAD and UniAD in Ap-263

pendix G.264

4 Conclusion265

In this work, we show that by decoupling semantic and motion learning, we eliminate the negative266

transfer that E2E training typically imposes on object and map perception. Besides, we leverage the267

correlation between semantic tasks to promote positive transfer during E2E training. We validate that268

our improvements in perception and prediction directly enhance planning performance, achieving269

SOTA collision rates. However, our approach cannot be applied to E2E methods that are without270

query propagation mechanism, e.g., VAD [3]. Addressing this limitation can be our future work.271
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A Extended related work383

Semantic learning. Semantic learning includes object detection and map segmentation. Multi-view384

cameras have become popular due to their cost-effectiveness and strong capability in capturing seman-385

tic information. Current SOTA object detection and mapping approaches are built on the DETR [23]386

architecture, utilizing a set of queries to extract semantic information from environment features387

through cross-attention [10] mechanisms. Sparse methods [24, 25] learn semantic information by388

projecting queries onto the corresponding image features, focusing on the relevant regions. The389

PETR series [26–28] embed 3D positional encoding directly into 2D image features, eliminating the390

need for query projection. Another line of work aggregates all image features into a BEV feature391

[29, 18, 30, 31, 19, 32]. Propagating the object queries over time enables multi-object tracking392

[13, 33]. This same technique is also used in map perception [34]. Although tracking is also a393

motion-related task, we classify it as a semantic task, as query-based trackers learn only velocities as394

the motion information, which we elaborate in Appendix B.395

Motion learning. By motion, we refer to trajectory prediction and planning. Trajectory prediction396

studies typically use the ground truth of objects’ historical trajectories along with high-definition397

maps as inputs. Early approaches [35–37] rasterize maps and trajectories into a BEV image, using398

CNNs to extract scene features. Vectorized methods [38, 39] represent elements using polygons and399

polylines, using GNNs or Transformers to encode the scene [40–44].400

For planning, imitation learning is a straightforward approach to E2E planning, where a neural401

network is trained to plan future trajectories or control signals directly from sensor data, minimizing402

the distance between the planned path and the expert driving policy [45–47]. Many approaches403

incorporate semantic tasks as auxiliary components to support E2E planning, using the nuScenes [11]404

dataset and open-loop evaluation. These methods go beyond pure motion learning and are presented405

in the next paragraph. AD-MLP [21] and Ego-MLP [22] utilize only the ego vehicle’s past motion406

states and surpass methods that rely on sensor inputs in open-loop evaluation. It aligns with our407

argument that semantics and motion are heterogeneous: AD-MLP and Ego-MLP can concentrate on408

learning from expert motion data without interference by irrelevant semantic information, thereby409

achieving superior open-loop planning performance.410

Joint semantic and motion learning. E2E perception and prediction approaches learn semantics411

and motion jointly. The pioneering work FaF [48] uses a prediction head, in addition to the detection412

head, to decode the object features into future trajectories. Some works [49–51] enhance it with413

intention-based prediction and refinement. PnPNet [52] and PTP [53] involve tracking, i.e., jointly414

optimizing detection, association, and prediction tasks. While PTP performs tracking and prediction415

in parallel, it cannot predict newly emerging objects due to the lack of concurrent detection—a416

limitation our method successfully overcomes. ViP3D [16] first extends the query-based detection417

and tracking framework [13] to prediction. Each query represents an object and propagates across418

frames. In each frame, queries are decoded into bounding boxes and trajectories using high-definition419

maps as additional context.420

To include planning, NMP [9] extends IntentNet [49] with a sampling-based planning module, where421

prediction is leveraged to minimize collisions during the planning process. Other works [54–56]422

incorporate map perception as an auxiliary task. With the growing popularity of query-based object423

detectors [23, 18] and trackers [13, 33], recent modular E2E AD approaches represent objects as424

queries, similar to ViP3D [16]. UniAD [2] and its variants [6, 8] retain the query propagation425

mechanism for tracking, aiming to explicitly model objects’ historical motion. In contrast, VAD [3]426

and GenAD [4] do not perform tracking, predicting trajectories based on the temporal information427

embedded within the BEV feature. The main issue with these methods is that they attempt to use a428

single feature (query) to represent an object’s appearance and motion. Compared to pure semantic429

learning, motion occupies a portion of the feature channels but fails to contribute to perception,430

resulting a negative transfer in the perception module. Our work effectively addresses this issue.431

B Tracking as a semantic task432

We justify the similarity of detection and tracking on nuScenes [11] by analyzing the information433

learned by the object query. E2E detection and tracking models decode each query into category,434
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Table 7: Effect of queue length on UniAD.

Queue length
stage 1

Queue length
stage 2 NDS↑ mAP↑ AMOTA↑ AMOTP↓ IDS↓ Lanes↑ Drivable↑ EPA↑ minADE↓ Avg. L2↓ Avg. Col.↓

3 3 0.491 0.377 0.354 1.34 1381 0.312 0.678 0.495 0.692 0.784 0.150
5 3 0.499 0.381 0.362 1.34 956 0.313 0.692 0.492 0.655 0.656 0.130
5 5 0.501 0.384 0.370 1.32 885 0.314 0.690 0.495 0.714 0.615 0.123

location, size, orientation, and velocity. The category is clearly a semantic attribute, while location,435

size, and orientation serve as spatial complements to the category, all being time-invariant. In contrast,436

velocity is derived from time, making it a motion attribute. However, measuring velocities is not a437

common practice in detection, but required by the nuScenes benchmark. Therefore, detection models438

trained on nuScenes are able to perform tracking without any additional learning effort assuming439

constant velocity motion [17, 2, 14, 16]. Given that current modular E2E models are all trained440

on nuScenes, we regard the tracking in these methods closely resembles detection, where learning441

semantics is dominating.442

C Bayes filter443

Bayes filter [12] estimates an unknown distribution based on the process model and noisy measure-444

ments as follows:445

p(xt | z1:t) = p(zt | xt) p(xt | z1:t−1), (3)

where x denotes the state, z represents the measurement, and the subscript indicates timesteps. The446

task is to estimate the state xt at timestep t given all the measurements z1:t in the past from timestep447

1 to t, which is the product of the likelihood p(zt | xt) and the prediction p(xt | z1:t−1).448

Some special cases of Bayes filter, e.g., Kalman filter, are widely used in traditional object tracking.449

The tracking process can be carried out in three steps: first, predicting the current position based on the450

object’s historical states x1:t−1; second, identifying the detection most likely to match the prediction451

as the measurement; finally, updating the current state xt according to the latest measurement zt−1.452

This process is recursively executed over successive timesteps. We find semantics and motion are453

similar to the measurement and state in Bayes filter, respectively. Therefore, we introduce the454

architecture of Bayes filter to transformer decoders, resulting in Neural-Bayes motion decoder.455

D Occupancy prediction456

We retain the occupancy prediction module from UniAD to ensure task consistency, where the BEV457

feature serves as the query and learns from motion prediction features (output queries) through458

cross-attention. Consequently, we regard occupancy prediction in UniAD as a secondary task to459

perception and motion prediction, as it merely offers an alternative representation of upstream tasks.460

DMAD achieves similar performance (IoUnear: 62.7%, IoUfar: 39.8%) to UniAD (IoUnear: 62.9%,461

IoUfar: 39.6%). The advances of DMAD in upstream tasks do not generalize to occupancy prediction.462

The reason could be that, by dividing semantics and motion, output features of the prediction module463

lack spatial information desired by occupancy prediction, such as size, whereas output features of464

UniAD’s prediction module preserve the spatial information.465

E Queue length466

We adopt a different queue length configuration from that of the original UniAD. As mentioned in467

Sec. 3.1, the rationale behind our decision is that reducing the queue length in stage 2 affects the468

performance, hindering the observation of negative transfer. Table 7 shows an ablation study of queue469

length on UniAD, presenting the performance drops by reduced queue length. As the training time470

scales almost linearly to the queue length, we opt for a queue length of 3 to reduce training time of471

each iteration.472
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Table 8: Effect of unimodal prediction horizon on DMAD.

Unimodal
pred. horizon NDS↑ mAP↑ AMOTA↑ AMOTP↓ IDS↓ Lanes↑ Drivable↑ EPA↑ minADE↓ Avg. L2↓ Avg. Col.↓

2s 0.516 0.404 0.400 1.30 695 0.321 0.691 0.534 0.735 0.679 0.220
4s 0.506 0.396 0.393 1.30 767 0.321 0.691 0.535 0.723 0.625 0.127
6s 0.504 0.396 0.384 1.30 751 0.322 0.700 0.525 0.743 0.629 0.117

F Effect of unimodal prediction horizon473

We conduct experiments on the number of future steps in unimodal prediction, as shown in Tab. 8.474

We observe that the unimodal prediction horizon influences the proportion of motion information475

within the BEV feature, thereby impacting the performance of both semantic and motion tasks. A476

long prediction horizon degrades the performance of semantic tasks, as the BEV feature is forced477

to prioritize motion learning in order to predict distant future outcomes. Experiments show that478

a prediction horizon of 6 seconds minimizes the collision rates, but performs worst in tracking.479

Although this phenomenon can also be referred to as negative transfer, our approach is unable to480

address this specific type, as the BEV feature is shared across all tasks and is expected to encapsulate481

both types of information. To balance motion and semantic information within the BEV feature, we482

set the prediction horizon to 4 seconds.483

G Visualizations of reducing collisions rates484

We provide qualitative comparisons between DMAD and UniAD in Fig. 6, showcasing how the485

improved perception and prediction reduces collision rates.486

H Compute resources487

We use four NVIDIA A100 for our experiments. DMAD - stage 1 requires 44G GPU memory488

and 36 hours of training. DMAD - stage 2 requires 24G GPU memory and 84 hours of training.489

SparseDMAD - stage 1 requires 20G GPU memory and 32 hours of training. SparseDMAD - stage 2490

requires 24G GPU memory and 6 hours of training. The full research work required more compute491

than the experiments reported in the paper.492

I Potential societal impacts493

This work on end-to-end autonomous driving aims to enhance traffic safety and efficiency by reducing494

human error. However, we also recognize significant potential risks, including reliability in edge495

cases, ethical dilemmas, cybersecurity threats, and socioeconomic impacts like job displacement.496
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(a) The collision of UniAD is because of an inaccurate prediction of the lead vehicle.

(b) Both models make inaccurate predictions of the lead vehicle during the night. However, UniAD collides with
the lead vehicle due to its aggressive driving policy.

(c) An inaccurate detection (the detected position is too close to the ego-vehicle) causes yielding, and then
colliding with another vehicle.

(d) UniAD fails to detect the lead vehicle and collides with it.

Figure 6: Qualitative comparison between DMAD and UniAD. Each subfigure demonstrates a
sample where UniAD encounters collision while DMAD does not.
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NeurIPS Paper Checklist497

1. Claims498

Question: Do the main claims made in the abstract and introduction accurately reflect the499

paper’s contributions and scope?500

Answer: [Yes]501

Justification: The main claims and contributions are explicitly stated in the abstract and502

introduction.503

Guidelines:504

• The answer NA means that the abstract and introduction do not include the claims505

made in the paper.506

• The abstract and/or introduction should clearly state the claims made, including the507

contributions made in the paper and important assumptions and limitations. A No or508

NA answer to this question will not be perceived well by the reviewers.509

• The claims made should match theoretical and experimental results, and reflect how510

much the results can be expected to generalize to other settings.511

• It is fine to include aspirational goals as motivation as long as it is clear that these goals512

are not attained by the paper.513

2. Limitations514

Question: Does the paper discuss the limitations of the work performed by the authors?515

Answer: [Yes]516

Justification: See Sec. 4.517

Guidelines:518

• The answer NA means that the paper has no limitation while the answer No means that519

the paper has limitations, but those are not discussed in the paper.520

• The authors are encouraged to create a separate "Limitations" section in their paper.521

• The paper should point out any strong assumptions and how robust the results are to522

violations of these assumptions (e.g., independence assumptions, noiseless settings,523

model well-specification, asymptotic approximations only holding locally). The authors524

should reflect on how these assumptions might be violated in practice and what the525

implications would be.526

• The authors should reflect on the scope of the claims made, e.g., if the approach was527

only tested on a few datasets or with a few runs. In general, empirical results often528

depend on implicit assumptions, which should be articulated.529

• The authors should reflect on the factors that influence the performance of the approach.530

For example, a facial recognition algorithm may perform poorly when image resolution531

is low or images are taken in low lighting. Or a speech-to-text system might not be532

used reliably to provide closed captions for online lectures because it fails to handle533

technical jargon.534

• The authors should discuss the computational efficiency of the proposed algorithms535

and how they scale with dataset size.536

• If applicable, the authors should discuss possible limitations of their approach to537

address problems of privacy and fairness.538

• While the authors might fear that complete honesty about limitations might be used by539

reviewers as grounds for rejection, a worse outcome might be that reviewers discover540

limitations that aren’t acknowledged in the paper. The authors should use their best541

judgment and recognize that individual actions in favor of transparency play an impor-542

tant role in developing norms that preserve the integrity of the community. Reviewers543

will be specifically instructed to not penalize honesty concerning limitations.544

3. Theory assumptions and proofs545

Question: For each theoretical result, does the paper provide the full set of assumptions and546

a complete (and correct) proof?547

Answer: [NA]548
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Justification: This work does not include theoretical results.549

Guidelines:550

• The answer NA means that the paper does not include theoretical results.551

• All the theorems, formulas, and proofs in the paper should be numbered and cross-552

referenced.553

• All assumptions should be clearly stated or referenced in the statement of any theorems.554

• The proofs can either appear in the main paper or the supplemental material, but if555

they appear in the supplemental material, the authors are encouraged to provide a short556

proof sketch to provide intuition.557

• Inversely, any informal proof provided in the core of the paper should be complemented558

by formal proofs provided in appendix or supplemental material.559

• Theorems and Lemmas that the proof relies upon should be properly referenced.560

4. Experimental result reproducibility561

Question: Does the paper fully disclose all the information needed to reproduce the main ex-562

perimental results of the paper to the extent that it affects the main claims and/or conclusions563

of the paper (regardless of whether the code and data are provided or not)?564

Answer: [Yes]565

Justification: The DMAD structure is described in Sec. 2.566

Guidelines:567

• The answer NA means that the paper does not include experiments.568

• If the paper includes experiments, a No answer to this question will not be perceived569

well by the reviewers: Making the paper reproducible is important, regardless of570

whether the code and data are provided or not.571

• If the contribution is a dataset and/or model, the authors should describe the steps taken572

to make their results reproducible or verifiable.573

• Depending on the contribution, reproducibility can be accomplished in various ways.574

For example, if the contribution is a novel architecture, describing the architecture fully575

might suffice, or if the contribution is a specific model and empirical evaluation, it may576

be necessary to either make it possible for others to replicate the model with the same577

dataset, or provide access to the model. In general. releasing code and data is often578

one good way to accomplish this, but reproducibility can also be provided via detailed579

instructions for how to replicate the results, access to a hosted model (e.g., in the case580

of a large language model), releasing of a model checkpoint, or other means that are581

appropriate to the research performed.582

• While NeurIPS does not require releasing code, the conference does require all submis-583

sions to provide some reasonable avenue for reproducibility, which may depend on the584

nature of the contribution. For example585

(a) If the contribution is primarily a new algorithm, the paper should make it clear how586

to reproduce that algorithm.587

(b) If the contribution is primarily a new model architecture, the paper should describe588

the architecture clearly and fully.589

(c) If the contribution is a new model (e.g., a large language model), then there should590

either be a way to access this model for reproducing the results or a way to reproduce591

the model (e.g., with an open-source dataset or instructions for how to construct592

the dataset).593

(d) We recognize that reproducibility may be tricky in some cases, in which case594

authors are welcome to describe the particular way they provide for reproducibility.595

In the case of closed-source models, it may be that access to the model is limited in596

some way (e.g., to registered users), but it should be possible for other researchers597

to have some path to reproducing or verifying the results.598

5. Open access to data and code599

Question: Does the paper provide open access to the data and code, with sufficient instruc-600

tions to faithfully reproduce the main experimental results, as described in supplemental601

material?602
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Answer: [No]603

Justification: We will release the code along with the release of the paper.604

Guidelines:605

• The answer NA means that paper does not include experiments requiring code.606

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/607

public/guides/CodeSubmissionPolicy) for more details.608

• While we encourage the release of code and data, we understand that this might not be609

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not610

including code, unless this is central to the contribution (e.g., for a new open-source611

benchmark).612

• The instructions should contain the exact command and environment needed to run to613

reproduce the results. See the NeurIPS code and data submission guidelines (https:614

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.615

• The authors should provide instructions on data access and preparation, including how616

to access the raw data, preprocessed data, intermediate data, and generated data, etc.617

• The authors should provide scripts to reproduce all experimental results for the new618

proposed method and baselines. If only a subset of experiments are reproducible, they619

should state which ones are omitted from the script and why.620

• At submission time, to preserve anonymity, the authors should release anonymized621

versions (if applicable).622

• Providing as much information as possible in supplemental material (appended to the623

paper) is recommended, but including URLs to data and code is permitted.624

6. Experimental setting/details625

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-626

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the627

results?628

Answer: [Yes]629

Justification: Both UniAD and SparseDrive are open-sourced, therefore we describe only630

differences of our experimental setup compared with the original setups in Section 3.1.631

Guidelines:632

• The answer NA means that the paper does not include experiments.633

• The experimental setting should be presented in the core of the paper to a level of detail634

that is necessary to appreciate the results and make sense of them.635

• The full details can be provided either with the code, in appendix, or as supplemental636

material.637

7. Experiment statistical significance638

Question: Does the paper report error bars suitably and correctly defined or other appropriate639

information about the statistical significance of the experiments?640

Answer: [No]641

Justification: Error bars are not reported because it would be too computationally expensive.642

Guidelines:643

• The answer NA means that the paper does not include experiments.644

• The authors should answer "Yes" if the results are accompanied by error bars, confi-645

dence intervals, or statistical significance tests, at least for the experiments that support646

the main claims of the paper.647

• The factors of variability that the error bars are capturing should be clearly stated (for648

example, train/test split, initialization, random drawing of some parameter, or overall649

run with given experimental conditions).650

• The method for calculating the error bars should be explained (closed form formula,651

call to a library function, bootstrap, etc.)652

• The assumptions made should be given (e.g., Normally distributed errors).653
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• It should be clear whether the error bar is the standard deviation or the standard error654

of the mean.655

• It is OK to report 1-sigma error bars, but one should state it. The authors should656

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis657

of Normality of errors is not verified.658

• For asymmetric distributions, the authors should be careful not to show in tables or659

figures symmetric error bars that would yield results that are out of range (e.g. negative660

error rates).661

• If error bars are reported in tables or plots, The authors should explain in the text how662

they were calculated and reference the corresponding figures or tables in the text.663

8. Experiments compute resources664

Question: For each experiment, does the paper provide sufficient information on the com-665

puter resources (type of compute workers, memory, time of execution) needed to reproduce666

the experiments?667

Answer: [Yes]668

Justification: See Appendix H.669

Guidelines:670

• The answer NA means that the paper does not include experiments.671

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,672

or cloud provider, including relevant memory and storage.673

• The paper should provide the amount of compute required for each of the individual674

experimental runs as well as estimate the total compute.675

• The paper should disclose whether the full research project required more compute676

than the experiments reported in the paper (e.g., preliminary or failed experiments that677

didn’t make it into the paper).678

9. Code of ethics679

Question: Does the research conducted in the paper conform, in every respect, with the680

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?681

Answer: [Yes]682

Justification: The research conducted in the paper conform, in every respect, with the683

NeurIPS Code of Ethics684

Guidelines:685

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.686

• If the authors answer No, they should explain the special circumstances that require a687

deviation from the Code of Ethics.688

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-689

eration due to laws or regulations in their jurisdiction).690

10. Broader impacts691

Question: Does the paper discuss both potential positive societal impacts and negative692

societal impacts of the work performed?693

Answer: [Yes]694

Justification: See Appendix I.695

Guidelines:696

• The answer NA means that there is no societal impact of the work performed.697

• If the authors answer NA or No, they should explain why their work has no societal698

impact or why the paper does not address societal impact.699

• Examples of negative societal impacts include potential malicious or unintended uses700

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations701

(e.g., deployment of technologies that could make decisions that unfairly impact specific702

groups), privacy considerations, and security considerations.703
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• The conference expects that many papers will be foundational research and not tied704

to particular applications, let alone deployments. However, if there is a direct path to705

any negative applications, the authors should point it out. For example, it is legitimate706

to point out that an improvement in the quality of generative models could be used to707

generate deepfakes for disinformation. On the other hand, it is not needed to point out708

that a generic algorithm for optimizing neural networks could enable people to train709

models that generate Deepfakes faster.710

• The authors should consider possible harms that could arise when the technology is711

being used as intended and functioning correctly, harms that could arise when the712

technology is being used as intended but gives incorrect results, and harms following713

from (intentional or unintentional) misuse of the technology.714

• If there are negative societal impacts, the authors could also discuss possible mitigation715

strategies (e.g., gated release of models, providing defenses in addition to attacks,716

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from717

feedback over time, improving the efficiency and accessibility of ML).718

11. Safeguards719

Question: Does the paper describe safeguards that have been put in place for responsible720

release of data or models that have a high risk for misuse (e.g., pretrained language models,721

image generators, or scraped datasets)?722

Answer: [NA]723

Justification: The model that we will be releasing is limited to tasks in nuScenes dataset,724

and therefore does not have a high risk for misuse.725

Guidelines:726

• The answer NA means that the paper poses no such risks.727

• Released models that have a high risk for misuse or dual-use should be released with728

necessary safeguards to allow for controlled use of the model, for example by requiring729

that users adhere to usage guidelines or restrictions to access the model or implementing730

safety filters.731

• Datasets that have been scraped from the Internet could pose safety risks. The authors732

should describe how they avoided releasing unsafe images.733

• We recognize that providing effective safeguards is challenging, and many papers do734

not require this, but we encourage authors to take this into account and make a best735

faith effort.736

12. Licenses for existing assets737

Question: Are the creators or original owners of assets (e.g., code, data, models), used in738

the paper, properly credited and are the license and terms of use explicitly mentioned and739

properly respected?740

Answer: [Yes]741

Justification: The assets are properly cited, and the licenses are properly respected.742

Guidelines:743

• The answer NA means that the paper does not use existing assets.744

• The authors should cite the original paper that produced the code package or dataset.745

• The authors should state which version of the asset is used and, if possible, include a746

URL.747

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.748

• For scraped data from a particular source (e.g., website), the copyright and terms of749

service of that source should be provided.750

• If assets are released, the license, copyright information, and terms of use in the751

package should be provided. For popular datasets, paperswithcode.com/datasets752

has curated licenses for some datasets. Their licensing guide can help determine the753

license of a dataset.754

• For existing datasets that are re-packaged, both the original license and the license of755

the derived asset (if it has changed) should be provided.756
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• If this information is not available online, the authors are encouraged to reach out to757

the asset’s creators.758

13. New assets759

Question: Are new assets introduced in the paper well documented and is the documentation760

provided alongside the assets?761

Answer: [NA]762

Justification: This paper does not include new assets. The code that we will release will763

include documentation.764

Guidelines:765

• The answer NA means that the paper does not release new assets.766

• Researchers should communicate the details of the dataset/code/model as part of their767

submissions via structured templates. This includes details about training, license,768

limitations, etc.769

• The paper should discuss whether and how consent was obtained from people whose770

asset is used.771

• At submission time, remember to anonymize your assets (if applicable). You can either772

create an anonymized URL or include an anonymized zip file.773

14. Crowdsourcing and research with human subjects774

Question: For crowdsourcing experiments and research with human subjects, does the paper775

include the full text of instructions given to participants and screenshots, if applicable, as776

well as details about compensation (if any)?777

Answer: [NA]778

Justification: The paper does not involve crowdsourcing nor research with human subjects.779

Guidelines:780

• The answer NA means that the paper does not involve crowdsourcing nor research with781

human subjects.782

• Including this information in the supplemental material is fine, but if the main contribu-783

tion of the paper involves human subjects, then as much detail as possible should be784

included in the main paper.785

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,786

or other labor should be paid at least the minimum wage in the country of the data787

collector.788

15. Institutional review board (IRB) approvals or equivalent for research with human789

subjects790

Question: Does the paper describe potential risks incurred by study participants, whether791

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)792

approvals (or an equivalent approval/review based on the requirements of your country or793

institution) were obtained?794

Answer: [NA]795

Justification: The paper does not involve crowdsourcing nor research with human subjects796

Guidelines:797

• The answer NA means that the paper does not involve crowdsourcing nor research with798

human subjects.799

• Depending on the country in which research is conducted, IRB approval (or equivalent)800

may be required for any human subjects research. If you obtained IRB approval, you801

should clearly state this in the paper.802

• We recognize that the procedures for this may vary significantly between institutions803

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the804

guidelines for their institution.805

• For initial submissions, do not include any information that would break anonymity (if806

applicable), such as the institution conducting the review.807
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16. Declaration of LLM usage808

Question: Does the paper describe the usage of LLMs if it is an important, original, or809

non-standard component of the core methods in this research? Note that if the LLM is used810

only for writing, editing, or formatting purposes and does not impact the core methodology,811

scientific rigorousness, or originality of the research, declaration is not required.812

Answer: [NA]813

Justification: The core method development in this research does not involve LLMs as any814

important, original, or non-standard components.815

Guidelines:816

• The answer NA means that the core method development in this research does not817

involve LLMs as any important, original, or non-standard components.818

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)819

for what should or should not be described.820

23

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Method
	Interactive semantic decoder
	Neural-Bayes motion decoder

	Experiments
	Training configuration
	Perception
	Prediction and planning
	Ablation study
	Visualizations

	Conclusion
	Extended related work
	Tracking as a semantic task
	Bayes filter
	Occupancy prediction
	Queue length
	Effect of unimodal prediction horizon
	Visualizations of reducing collisions rates
	Compute resources
	Potential societal impacts

