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Abstract

Perceiving the environment and its changes over time corresponds to two funda-
mental yet heterogeneous types of information: semantics and motion. Previous
end-to-end autonomous driving works represent both types of information in a
single feature vector. However, including motion related tasks, such as prediction
and planning, impairs detection and tracking performance, a phenomenon known as
negative transfer in multi-task learning. To address this issue, we propose Neural-
Bayes motion decoding, a novel parallel detection, tracking, and prediction method
that separates semantic and motion learning. Specifically, we employ a set of
learned motion queries that operate in parallel with detection and tracking queries,
sharing a unified set of recursively updated reference points. Moreover, we employ
interactive semantic decoding to enhance information exchange in semantic tasks,
promoting positive transfer. Experiments on the nuScenes dataset with UniAD and
SparseDrive confirm the effectiveness of our divide and merge approach, resulting
in performance improvements across perception, prediction, and planning. The
code will be released.

1 Introduction

Modular end-to-end (E2E) autonomous driving (AD) is gaining attention for combining the strengths
of traditional pipeline methods with strict E2E approaches. In this framework, perception, prediction,
and planning form the core set of tasks, which ideally complement one another to enhance overall
system performance. However, the modular E2E framework also presents a multi-task learning
challenge. A poorly designed multi-task learning structure could not only fail to facilitate mutual
learning but also adversely affect individual tasks, a phenomenon known as negative transfer [1].
The prevalent modular E2E approaches [2–5] typically employ a sequential structure (Fig. 1a). This
structure aligns with how humans perform driving tasks and has demonstrated promising planning
performance. However, these approaches exhibit negative transfer in object detection and tracking. In
other words, the perception performance of jointly trained E2E models is typically inferior to those
trained without the motion prediction and planning tasks.

We analyze the underlying causes of negative transfer by inspecting the types of learned heterogeneous
information: semantic and motion. Semantic information encompasses the categories of surrounding
objects, lanes, crossings, etc., while motion information describes the temporal changes occurring
within the environment. Sequential methods [2–4, 6] execute these two processes in succession. They
first conduct detection and tracking and then use the extracted object features for trajectory prediction.
This sequential design forces the features to contain motion information, compromising the initially
learned semantic and leading to negative transfer in perception. The SHAP values analysis [7]
provides supporting evidence for our argument. Another E2E structure is depicted in Fig. 1b. It
executes most tasks with different heads in parallel, as PARA-Drive [8] and NMP [9]. However, since
detection and prediction remain sequential, the issue of negative transfer persists.
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Figure 1: Comparison of E2E structures. In (a), semantic and motion learning occur sequentially.
In (b), the multi-head structure parallelizes tasks with different heads; however, motion and semantic
learning remain sequential in detection, tracking, and prediction. In (c), semantic and motion learning
are performed in parallel without latent feature sharing or gradient propagation. In contrast, the
exchange of information between the object and map perception modules is enhanced.

In this work, we propose DMAD structure (Fig. 1c), Dividing and Merging motion and semantic
learning for E2E Autonomous Driving. DMAD addresses the issue of negative transfer by separating
semantic and motion learning. Furthermore, it leverages correlations among semantic tasks by
merging them.

For dividing, we propose Neural-Bayes motion decoder. We maintain a set of motion queries
that attend to the sensor embeddings parallel to the object (detection and tracking) queries. The
key difference between motion and object queries is that they are decoded into past and future
trajectories rather than bounding boxes with classes. Motion and object queries share a single set of
reference points, updated recursively by detection and prediction. It allows only limited information
exchange between both types of queries, mediated through the reference points without gradient flow.
Moreover, we calculate the object’s velocity using the predicted trajectory with finite differences,
thereby removing the requirement for object queries to learn the velocity directly. In this manner,
the object query focuses on learning semantic and appearance features, while the motion query is
dedicated to capturing motion features. The two types of heterogeneous information are learned
separately along distinct paths, effectively preventing negative transfer. Notably, the DMAD structure
promotes motion learning to the same level of semantic learning, treating detection, tracking, and
prediction as concurrent tasks for the first time, to the best of our knowledge.

For merging, we propose interactive semantic decoder to enhance the exchange of semantic insights
in detection and map segmentation. Object perception and map perception are inherently related
tasks. Previous methods often overlook this connection, typically executing the two along parallel
paths [2–4]. DualAD [6] leverages this correlation but allows only object perception to learn from
the map. Our method uses layer-wise iterative self-attention [10] to enable mutual learning between
object and map tasks, fostering positive transfer.

Experiments on the nuScenes [11] dataset showcase the effectiveness of DMAD structure in mitigating
negative transfer. Our approach achieves significant performance gains in perception and prediction,
which benefits the planning module and outperforms state-of-the-art (SOTA) E2E AD models.

Our key contributions are summarized as follows:

• We examine the similarity and heterogeneity among tasks in modular E2E AD and argue that
the prevailing design—learning information for conflicting tasks within a single feature—is
the cause of negative transfer in perception. We analyze SHAP values to validate this
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Figure 2: An overview of DMAD. A backbone processes multi-view images into sensor embeddings.
Map and object queries are initialized, then interactively attend to the sensor embeddings for map and
object perception. Motion queries, mapped one-to-one with object queries, share reference points
that are iteratively updated. Finally, motion queries corresponding to detected objects are decoded
into future trajectories. The ego motion query (“e”) is used for planning. Gray dashed lines indicate
operations without gradient flow.
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Figure 3: Interactive semantic decoding. Object and map queries are concatenated and interact
through a self-attention module before being separated to independently attend to the sensor embed-
dings. This process is repeated across N stacked layers.

hypothesis. Conversely, we propose that information exchange between similar tasks can
facilitate positive transfer.

• We propose DMAD, a modular E2E AD paradigm that divides and merges tasks according
to the information they are supposed to learn. This design eliminates negative transfer
between different types of tasks while reinforcing positive transfer among similar tasks.

• We introduce two decoders: the Neural-Bayes motion decoder for concurrent trajectory
prediction with object detection and tracking; the interactive semantic decoder to enhance
information sharing between object and map perception. The proposed decoders improve
existing SOTA methods, leading to better performance across all tasks.

2 Method

Figure 2 shows an overview of DMAD structure. Sensor embeddings are extracted from multi-view
camera images and are shared across all tasks, including detection, tracking, mapping, prediction, and
planning. We initialize three distinct types of queries—object, map, and motion—which attend to the
sensor embeddings to extract the specific information required for each respective task. Based on the
type of information learned, the decoding process is divided into two pathways. On one way, object
and map decoding are jointly performed within the Interactive semantic decoder, where both types
of queries iteratively exchange latent semantic information at each decoding layer. On the other way,
motion queries extract motion information from the sensor embeddings within the Neural-Bayes
motion decoder. Each motion query is paired with an object query, using the object’s coordinates as
a reference point at each decoding layer. After decoding each frame, the motion query’s predicted
future waypoint becomes the object query’s reference point in the next frame, similar to the recursion
of a Bayes filter [12]. The exchange of reference points is always without gradient. At last, the
motion queries are passed on to the planning module. The system is fully E2E trainable, with motion
and semantic gradients propagated in distinct paths.
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2.1 Interactive semantic decoder

To leverage the semantic correlation between individual objects and map elements, we introduce
the Interactive Semantic Decoder. In contrast to the unidirectional interaction in DualAD [6], our
approach enables a bidirectional exchange of information.

We initialize a set of object queries Qobj ∈ RNobj×d and a set of map queries Qmap ∈ RNmap×d. The
number of queries could be different, while the dimensions d must be the same. Each decoding layer
first concatenates both types of queries. Self-attention [10] is then applied, where both tasks exchange
their semantic information. Subsequently, the two types of queries are divided, each performing
self-attention and cross-attention on the sensor embeddings, respectively, as shown in Fig. 3.

After interactive semantic decoding, each object query is classified into a category c and regressed
into a vector [∆x,∆y,∆z, w, h, l, θ]

T. The object query is associated with a reference point
[xref, yref, zref]

T. Rather than directly learning the absolute coordinates of the object, it learns the
offsets relative to its corresponding reference points. Thus, the bounding boxes can be represented as
[xref +∆x, yref +∆y, zref +∆z, w, h, l, θ]

T. Notably, velocities are not regressed, as they pertain to
motion information. We design the object queries to focus solely on semantic information, i.e., the
object’s category, center point, size, and orientation.

2.2 Neural-Bayes motion decoder

We introduce a novel motion decoder operating in parallel with the semantic decoder, aimed at fully
decoupling motion and semantic learning to reduce the negative transfer in semantic tasks. Given the
correlation between motion and semantics, we design a recursive process to facilitate the exchange of
human-readable information between the two decoders as illustrated in Fig. 4, which comprises the
processes of prediction, measurement, and updating, similar to the Bayes filter [12]. Appendix C
provides a brief introduction to the Bayes filter. We proceed with the elaboration of the proposed
motion decoder.

Initialization. We initialize a set of motion queries Qmt ∈ RNmt×d in the same way we initialize
object queries. The motion queries correspond one-to-one with the object queries, i.e., Nmt = Nobj.
However, since they do not directly interact in the latent space, their dimensionalities d can differ.
Each motion query represents the motion state of an object, although the model does not initially
know whether the object exists. Additionally, motion queries and object queries share a common set
of reference points.

Measurement. The detection, already introduced in Sec. 2.1, is treated as the measurement in
Bayes filter. After each semantic decoding layer, the object queries are regressed, yielding the
coordinate vectors ref = [x, y, z]

T of the tentative object, which then serves as reference points for
the next layer:

ref l+1 = freg(f
l
Semantic-Dec(Q

l
obj, Z, ref

l)), (1)

where the superscript denotes the layer and Z is the sensor embeddings.

Updating. With the reference points ref l from the semantic decoding (the inter-layer reference
points update in Fig. 2), the motion queries also attend to the sensor embeddings via cross-attention:

Ql+1
mt = f l

Motion-Dec(Q
l
mt, Z, ref

l), (2)

where the motion queries are updated conditioned on the measured reference points.

Prediction. We employ MLPs to extract trajectories from the motion queries. We note that motion
extraction occurs in two stages: first through the unimodal trajectory construction, followed by the
multimodal prediction.

The first stage computes the unimodal velocity and future reference points, guiding the motion query
to learn aggregated motion states from the past and predict the near future. It produces a single
trajectory that spans from the past timestep tpast to the future timestep tfut-1. The velocity is calculated
using the finite difference method on waypoints around the current timestep. We use the first future
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Figure 4: Neural-Bayes motion decoding. After each decoding layer, the semantic decoder updates
the reference points, which are then shared with the motion decoder. At the end of each frame, positive
object query indices are used to select corresponding motion queries and are together propagated
to the subsequent frame, with the motion query predictions serving as reference points for the next
frame. This process is similar to the measurement, updating, and prediction steps in a Bayes filter.
Map queries, ego queries and sensor embeddings are omitted for simplicity.

waypoint as the initial reference point for the object query in the next frame, i.e., inter-frame reference
points update in Fig. 2, for object tracking.

The second stage performs multimodal intention modeling and generates multiple future trajectories
within the future tfut-2 timesteps, along with their corresponding confidence scores.

Tracking. Multi-object tracking is performed using the query propagation mechanism [13, 14].
Each object query is associated with an unique instance ID. A positive query propagates across
consecutive frames, ensuring that corresponding detections are assigned the same ID. During training,
object queries associated with ground truth are referred to as positive queries; during inference,
positivity is determined by whether the confidence score exceeds a specified threshold. The propaga-
tion of motion queries follows that of object queries, as they are related. This mechanism enables
continuous measuring, updating, and predicting, similar to the Bayes filter.

3 Experiments

We conduct experiments on the nuScenes [11] dataset to validate the effectiveness of our method. We
present results in three parts. The first part focuses on perception (detection, tracking, and mapping).
In the second part, we evaluate motion prediction and planning. Lastly, we provide an extensive
ablation study and SHAP values [7] visualization.

3.1 Training configuration

We reproduce UniAD [2] and SparseDrive [5] as baselines. Both utilize the query propagation
mechanism; however, UniAD extracts dense bird’s-eye view (BEV) features from image inputs,
while SparseDrive employs sparse scene representations. Beside the aforementioned tasks, UniAD
additionally performs occupancy prediction. We also retain the occupancy module in comparisons
with UniAD for task consistency. As occupancy prediction serves merely as another representation
of upstream tasks, we describe it in Appendix D. We adhere as closely as possible to default
configurations of the baseline; however, to ensure a rigorous comparisons, some adjustments are
made. Following paragraphs outline the adjustments and the rationale behind them.
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Table 1: Perception results. The performance changes in stage 2 are expressed as percentages, with
red indicating a decline and blue representing improvement.

(a) Object detection results.

Method NDS↑ mAP↑ mAVE↓

VAD [3] 0.460 0.330 0.405
GenAD [4] 0.280 0.213 0.669
PARA-Drive [8] 0.480 0.370 -

UniAD - stage 1 0.497 0.382 0.411
UniAD - stage 2 0.491 (-1.2%) 0.377 (-1.3%) 0.412 (+0.2%)

DMAD - stage 1 0.504 0.395 0.406
DMAD - stage 2 0.506 (+0.4%) 0.396 (+0.3%) 0.395 (-2.7%)

SparseDrive - stage 1 0.531 0.419 0.257
SparseDrive - stage 2 0.523 (-1.5%) 0.417 (-0.5%) 0.269 (+4.7%)

SparseDMAD - stage 1 0.536 0.424 0.260
SparseDMAD - stage 2 0.534 (-0.4%) 0.427 (+0.7%) 0.253 (-2.7%)

(b) Multi-object tracking results.

Method AMOTA↑ AMOTP↓ IDS↓

ViP3D [16] 0.217 1.63 -
MUTR3D [17] 0.294 1.50 3822
PARA-Drive [8] 0.350 - -

UniAD - stage 1 0.374 1.31 816
UniAD - stage 2 0.354 (-5.3%) 1.34 (+2.3%) 1381 (+69%)

DMAD - stage 1 0.394 1.32 781
DMAD - stage 2 0.393 (-0.3%) 1.30 (-1.5%) 767 (-1.8%)

SparseDrive - stage 1 0.395 1.25 602
SparseDrive - stage 2 0.376 (-4.8%) 1.26 (+0.8%) 559 (-7.1%)

SparseDMAD - stage 1 0.396 1.23 608
SparseDMAD - stage 2 0.395 (-0.3%) 1.23 (0%) 571 (-6.1%)

Two-stage training. We follow the two-stage training scheme of our baseline. In the first stage,
we train object detection, tracking, and mapping. In the second stage, we train all modules together.
Notably, because our tracking relies on reference points provided by unimodal prediction, we
incorporate unimodal prediction training in the first stage. Multimodal prediction is trained only in
the second stage, which is consistent with the baseline.

Queue length. Since AD is a time-dependent task, the model typically processes a sequence of
consecutive frames as a training sample. The number of input frames, i.e., the queue length q, defines
the temporal horizon the model can capture, impacting the performance of related tasks. UniAD
employs different queue lengths across its two training stages: 5 in the first stage and 3 in the second.
The reduced queue length in the second stage degrades perception performance due to reduced
temporal aggregation, shown in Appendix E. This degrading hinders the identification of negative
transfer effects caused by the sequential structure. To mitigate this interference, we standardize the
queue length to 3 across both training stages in comparisons with UniAD. Unless otherwise specified,
the performance of UniAD in all result tables is reproduced with a queue length of 3 using the official
codebase [15]. SparseDrive does not have this issue, and we use the default setting of 4.

Ego query represents the features directly used for motion planning, which is intended to capture
the motion information of the ego vehicle. SparseDrive generates the ego query from the front camera
image and the estimated previous ego status, which blends semantics and motion, thus contradicting
our dividing design. To align with our proposal, we eliminate the use of the front image for the ego
query when applying DMAD to SparseDrive. For UniAD, we retain the planning module unchanged,
as it initializes the ego query randomly.

3.2 Perception

Metrics. For object detection and tracking, we use the metrics defined in the nuScenes benchmark.
The primary metrics for detection are nuScenes Detection Score (NDS) and mean average precision
(mAP). For multiple object tracking, we report the average multi-object tracking accuracy (AMOTA)
and the average multi-object tracking precision (AMOTP). For map segmentation, we use the
intersection over union (IoU) metric of drivable areas, lanes, and dividers. Vectorized mapping adopts
mAP of lane divider, pedestrian crossing and road boundary.

Object detection. Table 1a presents the detection performance across two training stages. In the
first stage, thanks to the interactive semantic decoding, our approach slightly outperforms the baseline.
After the second stage of training, baseline’s performance shows a decline. In contrast, our method
preserves the perceptual performance of the first stage, benefiting from separated motion learning
that mitigates negative transfer. Our method finally surpasses UniAD and SparseDrive by 3.1% and
2.1% in NDS, respectively.

Multi-object tracking. Due to using a single feature vector to represent semantics and motion,
UniAD and SparseDrive exhibit negative transfer of 5.3% and 4.8% in AMOTA, as shown in Tab. 1b.
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Table 2: Map perception results.

(a) Map segmentation results.

Method Lanes↑ Drivable↑ Dividers↑

BEVFormer [18] 0.239 0.775 -
PARA-Drive [8] 0.330 0.710 -

UniAD - stage 1 0.293 0.650 0.248
UniAD - stage 2 0.312 (+6.5%) 0.678 (+4.3%) 0.267 (+7.7%)

DMAD - stage 1 0.292 0.655 0.242
DMAD - stage 2 0.321 (+9.9%) 0.691 (+5.5%) 0.271 (+12%)

(b) Vectorized mapping results.

Method APped↑ APdivider↑ APboundary↑ mAP↑

MapTR [19] 0.562 0.598 0.601 0.587
VAD [3] 0.406 0.515 0.506 0.476

SparseDrive - stage 1 0.533 0.579 0.575 0.562
SparseDrive - stage 2 0.494 (-7.3%) 0.569 (-1.7%) 0.583 (+1.4%) 0.549 (-2.3%)

SparseDMAD - stage 1 0.553 0.599 0.606 0.586
SparseDMAD - stage 2 0.554 (+0.2%) 0.601 (+0.3%) 0.606 (0%) 0.587 (+0.2%)

Table 3: Trajectory prediction results. C and P stand for cars and pedestrians respectively.
EPA↑ minADE↓

Method C P C P

ViP3D [16] 0.226 - 2.05 -
GenAD [4] 0.588 0.352 0.84 0.84

UniAD 0.495 0.361 0.69 0.79
DMAD 0.535 0.416 0.72 0.77

SparseDrive 0.487 0.406 0.63 0.73
SparseDMAD 0.500 0.410 0.63 0.71

Our dividing design enables object queries to learn about appearance more effectively. At the same
time, unimodal predictions offer enhanced tracking reference points. Consequently, our method
achieves a gain of 11.0% and 5.1% in AMOTA, respectively.

Map perception. UniAD does not encounter negative transfer in map segmentation. Leveraging the
advantages of interactive semantic decoding, our method marginally surpasses UniAD. Our method
mitigates the negative transfer in vectorized online mapping, significantly surpassing SparseDrive by
7.0% in mAP, (see Tab. 2).

3.3 Prediction and planning

Metrics. For motion prediction, we utilize E2E perception accuracy (EPA) proposed in ViP3D [16]
as the main metric. We also report the minimum average displacement error (minADE). However,
since minADE is a true positive metric, it does not fully capture the predictive capabilities of the E2E
system, whereas EPA accounts for the number of false positives. For open-loop planning, we use
L2 distances and collision rates. Moreover, we evaluate driving safety in a closed-loop environment
using NeuroNCAP [20]. This framework reconstructs scenes from the nuScenes dataset and inserts
safety-critical objects. The resulting scores are derived from collision rates and impact speeds.

Trajectory prediction. We report car and pedestrian prediction metrics in Tab. 3. Our method
surpasses both baselines in EPA, especially achieving improvements of 0.040 for cars and 0.055 for
pedestrians over UniAD. However, our method does not improve the minADE of cars. One possible
reason is that once detection performance exceeds a certain threshold, further detection improvements
often come from reducing false negatives of challenging objects that are either distant or occluded.
These hard-to-detect objects typically have limited historical motion data and larger coordinate errors,
making them more difficult to predict. A similar issue is observed in UniAD [2]: in the supplementary
materials, UniAD-Large substantially surpasses UniAD-Base in EPA (thanks to better detection and
tracking performance), yet it falls short of UniAD-Base in minADE.

Planning. For open-loop evaluation, we adopt the evaluation method of VAD [3], which accom-
modates the widest range of models to our knowledge. We report our results in Tab. 4. Notably,
jointly optimizing L2 distances and collision rates proves challenging. While PARA-Drive achieves
the lowest L2 distances, it also exhibits the highest collision rates. In the closed-loop evaluation, our
structure benefits both baselines in all three cases with stationary, frontal, and side critical objects.
We validate that the improvements in perception can be propagated to planning, achieving SOTA
collision rates and NeuroNCAP Scores.
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Table 4: Open-loop planning. Ego-MLP and AD-MLP are faded since both learn only the ego
motion. *Results from the checkpoint in the official repository [15], trained with a queue length of 5
in stage 1. †Ego-MLP employs a different strategy in the evaluation of collision rates, therefore the
results are not comparable. We reproduce SparseDrive using the official code, but the results differ
from its paper because some errors have been fixed after publication.

Perception Ego states L2 distances (m) ↓ Collision rates (%) ↓
Method tasks in planner 1s 2s 3s Avg. 1s 2s 3s Avg.

Ego-MLP [21] ✗ ✓ 0.17 0.34 0.60 0.370 0† 0.27† 0.85† 0.373†

AD-MLP [22] ✗ ✓ 0.14 0.10 0.41 0.217 0.10 0.10 0.17 0.123

VAD [3] ✓ ✗ 0.41 0.70 1.05 0.720 0.07 0.17 0.41 0.217
DualVAD [6] ✓ ✗ 0.30 0.53 0.82 0.550 0.11 0.19 0.36 0.220
GenAD [4] ✓ ✗ 0.28 0.49 0.78 0.517 0.08 0.14 0.34 0.187
UniAD* [2] ✓ ✗ 0.42 0.63 0.91 0.656 0.07 0.10 0.22 0.130
PARA-Drive [8] ✓ ✗ 0.25 0.46 0.74 0.483 0.14 0.23 0.39 0.253

UniAD ✓ ✗ 0.48 0.76 1.12 0.784 0.07 0.11 0.27 0.150
DMAD ✓ ✗ 0.38 0.60 0.89 0.625 0.07 0.12 0.19 0.127

SparseDrive ✓ ✗ 0.32 0.61 1.00 0.643 0.01 0.06 0.22 0.097
SparseDMAD ✓ ✗ 0.30 0.61 1.01 0.643 0 0.07 0.21 0.093

Table 5: Closed-loop planning. We use the official implementation of NeuroNCAP, but our results
differ from those in the original paper because the codebase has been updated since its publication.

NeuroNCAP Scores ↑ Collision rates (%) ↓
Method Stat. Frontal Side Avg. Stat. Frontal Side Avg.

UniAD 3.50 1.17 1.67 2.11 32.4 77.6 71.2 60.4
DMAD 4.40 1.47 2.07 2.65 14.8 74.0 61.6 50.1
SparseDrive 4.42 2.96 2.30 3.23 22.4 62.8 60.4 48.5
SparseDMAD 4.57 3.14 2.42 3.37 18.4 60.0 59.1 45.8

3.4 Ablation study

We ablate our proposed decoders, as shown in Tab. 6, decomposing the motion decoder into three
components: motion query, inter-layer, and inter-frame reference point updating.

Model profile. In methods with multi-view camera images as inputs, the primary computational
cost is concentrated in the image backbone [18]. In contrast, our approach focuses on the decod-
ing component, resulting in minimal impact on model size and inference speed. Compared to
UniAD [2], our decoders add 13.1M parameters and increase inference latency by 0.02 seconds on
an NVIDIA RTX 6000 Ada.

Effect of dividing and merging. Experiments ID 1, 2, 3, 7 demonstrate the effectiveness of
both proposed decoders. The standalone application of the interactive semantic decoder (ID 2)
significantly enhances the performance of object detection, tracking, and map segmentation. The
standalone application of the Neural-Bayes motion decoder (ID 3) markedly improves prediction and
planning. Notably, ID 3 also significantly enhances detection and tracking, attributed to freeing object
queries from learning velocities and the higher-quality reference points provided by the unimodal
prediction. Experiments ID 4, 5, 6, 7 show the importance of inter-layer and inter-frame updating in
the Neural-Bayes motion decoder.

3.5 Visualizations

We use SHAP values [7]—which quantify the contribution of each feature to the change in a model’s
output—to inspect the negative transfer in detection and tracking. We visualize the SHAP values
of the object query with respect to the object classification output. Changes in SHAP values across
the two training stages reveal the negative transfer in UniAD and highlight the effectiveness of our
method.
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Table 6: Ablation of DMAD.

Method
ID

Interactive
semantic dec.

Motion
queries

Inter-layer
ref. update

Inter-frame
ref. update

#Params
(M)

Inference
time (s) NDS↑ AMOTA↑ Lanes↑ EPA↑ Avg. L2↓ Avg. Col.↓

1 (UniAD) ✗ ✗ ✗ ✗ 127.3 0.47 0.491 0.354 0.312 0.495 0.784 0.150
2 ✓ ✗ ✗ ✗ 128.0 0.48 0.503 0.382 0.320 0.524 0.683 0.150
3 ✗ ✓ ✓ ✓ 139.3 0.49 0.502 0.387 0.313 0.535 0.661 0.143
4 ✓ ✓ ✗ ✗ 140.4 0.49 0.481 0.339 0.322 0.485 0.655 0.163
5 ✓ ✓ ✓ ✗ 140.4 0.49 0.489 0.352 0.323 0.498 0.648 0.160
6 ✓ ✓ ✗ ✓ 140.4 0.49 0.495 0.364 0.319 0.512 0.631 0.137
7 (DMAD) ✓ ✓ ✓ ✓ 140.4 0.49 0.506 0.393 0.321 0.535 0.625 0.127
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(b) SHAP values of DMAD

Figure 5: SHAP values of stage 1 (left), stage 2 (middle), and the difference (right). Each bar
represents the SHAP values of a single feature with respect to different classes. The object query
consists of 256 features, forming 256 bars in each chart. The difference is computed as stage 1 minus
stage 2, aggregating all classes, where red indicates a negative value and blue signifies a positive
value.

Figure 5a compares the SHAP values between stage 1 and stage 2 of UniAD, sorted in descending
order. The left half of the difference bar chart predominantly shows negative values, whereas the right
half shows positive values. This indicates that SHAP values in stage 1 are more uniformly distributed,
while those in stage 2 are more concentrated. Compared with a flat distribution, this concentration
indicates that fewer features are contributing to the classification task, reducing detection and tracking
performance. This observation aligns with our argument that during the second stage, object queries
are expected to learn motion information, which does not benefit the perception task. Specifically,
while the velocity learned in stage 1 is sufficient for tracking (predicting the next timestep), it is
inadequate for the long-term prediction over 12 timesteps (6 seconds). Therefore, the object query
is forced to learn more motion states that offer limited utility for identifying objects, interfering
with the space for semantic information. In contrast, the SHAP values in DMAD maintain a similar
distribution across both stages, as shown in Fig. 5b.

Beyond SHAP values, we provide qualitative comparisons between DMAD and UniAD in Ap-
pendix G.

4 Conclusion

In this work, we show that by decoupling semantic and motion learning, we eliminate the negative
transfer that E2E training typically imposes on object and map perception. Besides, we leverage the
correlation between semantic tasks to promote positive transfer during E2E training. We validate that
our improvements in perception and prediction directly enhance planning performance, achieving
SOTA collision rates. However, our approach cannot be applied to E2E methods that are without
query propagation mechanism, e.g., VAD [3]. Addressing this limitation can be our future work.
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A Extended related work

Semantic learning. Semantic learning includes object detection and map segmentation. Multi-view
cameras have become popular due to their cost-effectiveness and strong capability in capturing seman-
tic information. Current SOTA object detection and mapping approaches are built on the DETR [23]
architecture, utilizing a set of queries to extract semantic information from environment features
through cross-attention [10] mechanisms. Sparse methods [24, 25] learn semantic information by
projecting queries onto the corresponding image features, focusing on the relevant regions. The
PETR series [26–28] embed 3D positional encoding directly into 2D image features, eliminating the
need for query projection. Another line of work aggregates all image features into a BEV feature
[29, 18, 30, 31, 19, 32]. Propagating the object queries over time enables multi-object tracking
[13, 33]. This same technique is also used in map perception [34]. Although tracking is also a
motion-related task, we classify it as a semantic task, as query-based trackers learn only velocities as
the motion information, which we elaborate in Appendix B.

Motion learning. By motion, we refer to trajectory prediction and planning. Trajectory prediction
studies typically use the ground truth of objects’ historical trajectories along with high-definition
maps as inputs. Early approaches [35–37] rasterize maps and trajectories into a BEV image, using
CNNs to extract scene features. Vectorized methods [38, 39] represent elements using polygons and
polylines, using GNNs or Transformers to encode the scene [40–44].

For planning, imitation learning is a straightforward approach to E2E planning, where a neural
network is trained to plan future trajectories or control signals directly from sensor data, minimizing
the distance between the planned path and the expert driving policy [45–47]. Many approaches
incorporate semantic tasks as auxiliary components to support E2E planning, using the nuScenes [11]
dataset and open-loop evaluation. These methods go beyond pure motion learning and are presented
in the next paragraph. AD-MLP [21] and Ego-MLP [22] utilize only the ego vehicle’s past motion
states and surpass methods that rely on sensor inputs in open-loop evaluation. It aligns with our
argument that semantics and motion are heterogeneous: AD-MLP and Ego-MLP can concentrate on
learning from expert motion data without interference by irrelevant semantic information, thereby
achieving superior open-loop planning performance.

Joint semantic and motion learning. E2E perception and prediction approaches learn semantics
and motion jointly. The pioneering work FaF [48] uses a prediction head, in addition to the detection
head, to decode the object features into future trajectories. Some works [49–51] enhance it with
intention-based prediction and refinement. PnPNet [52] and PTP [53] involve tracking, i.e., jointly
optimizing detection, association, and prediction tasks. While PTP performs tracking and prediction
in parallel, it cannot predict newly emerging objects due to the lack of concurrent detection—a
limitation our method successfully overcomes. ViP3D [16] first extends the query-based detection
and tracking framework [13] to prediction. Each query represents an object and propagates across
frames. In each frame, queries are decoded into bounding boxes and trajectories using high-definition
maps as additional context.

To include planning, NMP [9] extends IntentNet [49] with a sampling-based planning module, where
prediction is leveraged to minimize collisions during the planning process. Other works [54–56]
incorporate map perception as an auxiliary task. With the growing popularity of query-based object
detectors [23, 18] and trackers [13, 33], recent modular E2E AD approaches represent objects as
queries, similar to ViP3D [16]. UniAD [2] and its variants [6, 8] retain the query propagation
mechanism for tracking, aiming to explicitly model objects’ historical motion. In contrast, VAD [3]
and GenAD [4] do not perform tracking, predicting trajectories based on the temporal information
embedded within the BEV feature. The main issue with these methods is that they attempt to use a
single feature (query) to represent an object’s appearance and motion. Compared to pure semantic
learning, motion occupies a portion of the feature channels but fails to contribute to perception,
resulting a negative transfer in the perception module. Our work effectively addresses this issue.

B Tracking as a semantic task

We justify the similarity of detection and tracking on nuScenes [11] by analyzing the information
learned by the object query. E2E detection and tracking models decode each query into category,
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Table 7: Effect of queue length on UniAD.

Queue length
stage 1

Queue length
stage 2 NDS↑ mAP↑ AMOTA↑ AMOTP↓ IDS↓ Lanes↑ Drivable↑ EPA↑ minADE↓ Avg. L2↓ Avg. Col.↓

3 3 0.491 0.377 0.354 1.34 1381 0.312 0.678 0.495 0.692 0.784 0.150
5 3 0.499 0.381 0.362 1.34 956 0.313 0.692 0.492 0.655 0.656 0.130
5 5 0.501 0.384 0.370 1.32 885 0.314 0.690 0.495 0.714 0.615 0.123

location, size, orientation, and velocity. The category is clearly a semantic attribute, while location,
size, and orientation serve as spatial complements to the category, all being time-invariant. In contrast,
velocity is derived from time, making it a motion attribute. However, measuring velocities is not a
common practice in detection, but required by the nuScenes benchmark. Therefore, detection models
trained on nuScenes are able to perform tracking without any additional learning effort assuming
constant velocity motion [17, 2, 14, 16]. Given that current modular E2E models are all trained
on nuScenes, we regard the tracking in these methods closely resembles detection, where learning
semantics is dominating.

C Bayes filter

Bayes filter [12] estimates an unknown distribution based on the process model and noisy measure-
ments as follows:

p(xt | z1:t) = p(zt | xt) p(xt | z1:t−1), (3)

where x denotes the state, z represents the measurement, and the subscript indicates timesteps. The
task is to estimate the state xt at timestep t given all the measurements z1:t in the past from timestep
1 to t, which is the product of the likelihood p(zt | xt) and the prediction p(xt | z1:t−1).

Some special cases of Bayes filter, e.g., Kalman filter, are widely used in traditional object tracking.
The tracking process can be carried out in three steps: first, predicting the current position based on the
object’s historical states x1:t−1; second, identifying the detection most likely to match the prediction
as the measurement; finally, updating the current state xt according to the latest measurement zt−1.
This process is recursively executed over successive timesteps. We find semantics and motion are
similar to the measurement and state in Bayes filter, respectively. Therefore, we introduce the
architecture of Bayes filter to transformer decoders, resulting in Neural-Bayes motion decoder.

D Occupancy prediction

We retain the occupancy prediction module from UniAD to ensure task consistency, where the BEV
feature serves as the query and learns from motion prediction features (output queries) through
cross-attention. Consequently, we regard occupancy prediction in UniAD as a secondary task to
perception and motion prediction, as it merely offers an alternative representation of upstream tasks.

DMAD achieves similar performance (IoUnear: 62.7%, IoUfar: 39.8%) to UniAD (IoUnear: 62.9%,
IoUfar: 39.6%). The advances of DMAD in upstream tasks do not generalize to occupancy prediction.
The reason could be that, by dividing semantics and motion, output features of the prediction module
lack spatial information desired by occupancy prediction, such as size, whereas output features of
UniAD’s prediction module preserve the spatial information.

E Queue length

We adopt a different queue length configuration from that of the original UniAD. As mentioned in
Sec. 3.1, the rationale behind our decision is that reducing the queue length in stage 2 affects the
performance, hindering the observation of negative transfer. Table 7 shows an ablation study of queue
length on UniAD, presenting the performance drops by reduced queue length. As the training time
scales almost linearly to the queue length, we opt for a queue length of 3 to reduce training time of
each iteration.
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Table 8: Effect of unimodal prediction horizon on DMAD.

Unimodal
pred. horizon NDS↑ mAP↑ AMOTA↑ AMOTP↓ IDS↓ Lanes↑ Drivable↑ EPA↑ minADE↓ Avg. L2↓ Avg. Col.↓

2s 0.516 0.404 0.400 1.30 695 0.321 0.691 0.534 0.735 0.679 0.220
4s 0.506 0.396 0.393 1.30 767 0.321 0.691 0.535 0.723 0.625 0.127
6s 0.504 0.396 0.384 1.30 751 0.322 0.700 0.525 0.743 0.629 0.117

F Effect of unimodal prediction horizon

We conduct experiments on the number of future steps in unimodal prediction, as shown in Tab. 8.
We observe that the unimodal prediction horizon influences the proportion of motion information
within the BEV feature, thereby impacting the performance of both semantic and motion tasks. A
long prediction horizon degrades the performance of semantic tasks, as the BEV feature is forced
to prioritize motion learning in order to predict distant future outcomes. Experiments show that
a prediction horizon of 6 seconds minimizes the collision rates, but performs worst in tracking.
Although this phenomenon can also be referred to as negative transfer, our approach is unable to
address this specific type, as the BEV feature is shared across all tasks and is expected to encapsulate
both types of information. To balance motion and semantic information within the BEV feature, we
set the prediction horizon to 4 seconds.

G Visualizations of reducing collisions rates

We provide qualitative comparisons between DMAD and UniAD in Fig. 6, showcasing how the
improved perception and prediction reduces collision rates.

H Compute resources

We use four NVIDIA A100 for our experiments. DMAD - stage 1 requires 44G GPU memory
and 36 hours of training. DMAD - stage 2 requires 24G GPU memory and 84 hours of training.
SparseDMAD - stage 1 requires 20G GPU memory and 32 hours of training. SparseDMAD - stage 2
requires 24G GPU memory and 6 hours of training. The full research work required more compute
than the experiments reported in the paper.

I Potential societal impacts

This work on end-to-end autonomous driving aims to enhance traffic safety and efficiency by reducing
human error. However, we also recognize significant potential risks, including reliability in edge
cases, ethical dilemmas, cybersecurity threats, and socioeconomic impacts like job displacement.
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(a) The collision of UniAD is because of an inaccurate prediction of the lead vehicle.

(b) Both models make inaccurate predictions of the lead vehicle during the night. However, UniAD collides with
the lead vehicle due to its aggressive driving policy.

(c) An inaccurate detection (the detected position is too close to the ego-vehicle) causes yielding, and then
colliding with another vehicle.

(d) UniAD fails to detect the lead vehicle and collides with it.

Figure 6: Qualitative comparison between DMAD and UniAD. Each subfigure demonstrates a
sample where UniAD encounters collision while DMAD does not.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims and contributions are explicitly stated in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec. 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The DMAD structure is described in Sec. 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We will release the code along with the release of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Both UniAD and SparseDrive are open-sourced, therefore we describe only
differences of our experimental setup compared with the original setups in Section 3.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The model that we will be releasing is limited to tasks in nuScenes dataset,
and therefore does not have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets are properly cited, and the licenses are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not include new assets. The code that we will release will
include documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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