
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REFP2C: REFLECTIVE PAPER-TO-CODE DEVELOP-
MENT ENABLED BY FINE-GRAINED VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reproducing machine learning papers is essential for scientific progress but re-
mains challenging for both humans and automated agents. Analyses from prior
studies reveal that the most prevalent issues arise during the code develop-
ment phase, which is the foundational first step towards successful reproduction.
Specifically, within this phase, agents often struggle to fully and accurately repli-
cate implementation details such as mathematical formulas and algorithmic logic.
Previous studies further show that reflection with explicit feedback improves agent
performance. However, current paper reproduction methods fail to effectively
adopt this strategy. This gap mainly arises from the diverse paper patterns, com-
plex method modules, and varied configurations encountered in research papers.
Motivated by how humans use systematic checklists to efficiently review complex
code, we propose RefP2C, a Reflective Paper-to-Code Development framework
that automatically extracts a paper’s fingerprint-a comprehensive set of accurate
and atomic criteria serving as high-quality supervisory signals. The framework
first generates code based on the extracted information, and then leverages the fin-
gerprint within iterative verification and refinement loop. This approach system-
atically detects discrepancies and produces targeted revisions to align generated
code with the paper’s specifications. Extensive experiments on the PaperBench
Code-Dev benchmark have been conducted, RefP2C achieves 13.0% performance
gap over baselines, and it correctly revises complex logical and mathematical cri-
teria in reflecting, on which the effectiveness is obvious.

1 INTRODUCTION

Machine learning (ML) paper reproduction is the task of reproducing results of a paper without
use of code from the paper’s author (Semmelrock et al., 2025; Albertoni et al., 2023; Raff, 2019),
which requires the reproducer or agent to develop and validate an implementation based on the pa-
per’s description1. With the rapid developments in Artificial Intelligence (AI), this task has become
increasingly critical for accelerating scientific process and has already attracted attention from the
community (Raff et al., 2025; Pineau et al., 2021).

Systematically evaluating this complicated task is hard due to the absence of unit tests, inherent
code complexity and lack of reference code (Seo et al., 2025). Recent benchmarks like Paper-
Bench (Starace et al., 2025) and ReproduceBench (Zhao et al., 2025) often adopt LLM-based pro-
gressive evaluation strategies. Their evaluation metrics primarily focus on three facets: code devel-
opment, execution, and result match. However, evaluation results from PaperBench indicate that the
performance of existing LLMs still lags significantly behind that of human experts, not to mention
their limited performance on execution and result match (Starace et al., 2025). Although several
methods (Seo et al., 2025; Zhao et al., 2025) have been proposed with the aim of achieving these
goals, analyses of reproduction failures (Kon et al., 2025; Tang et al., 2025; Ni et al., 2025; Huang
et al., 2024; Tang et al., 2024) reveal that the most prevalent issues emerge during the implementa-
tion phase (i.e., code development), such as missing essential implementation components. Since
correct code is a prerequisite for any meaningful subsequent validation (Yan et al., 2025), ensur-
ing its fidelity to the original paper is the most logical and essential first step towards successful
automated paper reproduction, which is also the main focus of our work.

1Throughout our work, the term “paper reproduction” will refer specifically to this definition.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

paper

Verification

self.sigma_min = 0.01 if dim_theta <= 2 else 0.05

Code
developer

paper For 2-dimensional experiments,
the parameter is set to σmin =
0.01.

 For other experiments, the
parameter is set to σmin = 0.05.
…

Planner

Code

Refinement

Revision
planning

Final code

Fine-grained supervisory signals

human

self.sigma_min =
params.get("sigma_min",
0.05))

Hard to locate error
and fix it directly
from paper

expert

 Check if the
parameter σmin is 0.01
for 2-dimensional
experiments.

Easy to check
and fix

checklist

Agent systemHuman

Existing methods

Figure 1: A comparison between human and agent system approaches to paper-to-code develop-
ment. The left shows that manually reviewing code against a paper is labor-intensive, while a pro-
fessional checklist can always offer a systematic way to assist. Our work (right) mimics the process
by designing fine-grained supervisory signals, acting as a tailored checklist. This guides the agent
through a reflective loop of verification and refinement to ensure the fidelity.

While PaperCoder (Seo et al., 2025) and AutoReproduce (Zhao et al., 2025) demonstrate that de-
composition of code development is beneficial, they do not fully or accurately capture the exhaus-
tive details specified in the paper, as empirically evaluated in PaperBench. This challenge primarily
stems from the complexity of descriptions in papers, which also results in ambiguous supervisory
signals for effective agent reflection (Seo et al., 2025; Wang et al., 2024a). High-quality supervisory
signals can take the form of unambiguous scalars, such as unit test pass/fail results or compiler out-
puts (Jiang et al., 2025; Shinn et al., 2023; Hong et al., 2023). Motivated by these observations and
the human practice of using systematic checklists to efficiently review code (see Figure 1) (Zhong
et al., 2024; Amershi et al., 2019), a promising approach is to adopt similar supervisory signals to
guide subsequent reflection (Shinn et al., 2023; Hong et al., 2023; Gu et al., 2024). However, how
to obtain high-quality supervisory signals remains challenging due to the complexity of the papers.
In this paper, we address this challenge by introducing a novel Reflective Paper-to-Code Develop-
ment framework, RefP2C. As shown in Figure 2, our approach first tackles the supervisory signal
issue via automatic extraction of a paper’s unique fingerprint—a comprehensive set of verifiable
binary criteria encapsulating core implementation details. This fingerprint is generated by an au-
tomated agent workflow. During code development, we first construct a high-level framework and
then fill in detailed implementations following the guides. In the refinement stage, a verifier reviews
the code and provides pass/fail feedback, while a planner agent generates a revision plan as experi-
ence, executed by an editor agent through targeted minimal modifications. This framework enables
reflective paper-to-code development guided by the fingerprints.

Extensive experiments on the PaperBench Code-Dev benchmark are conducted, and RefP2C
achieves state-of-the-art performance, outperforming strong baselines by a significant margin of
13.0%. Its improvements come from correcting complex logical and mathematical errors when
refining code. Our main contributions can be summarized as follows:

• Motivated by the checklist used by humans during code review, we design high-quality supervi-
sory signals that can guide subsequent effective agent reflection.

• We propose RefP2C, a complete and reflective multi-agent framework that effectively integrates
supervisory signals for paper’s code implementation, evaluation, and revision.

• We show through extensive experiments that our paper-to-code development framework achieves
state-of-the-art performance, and validate the effectiveness of our designed paper fingerprint.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 AUTOMATED PAPER REPRODUCTION BY LLM

To accelerate machine learning progress, existing methods attempted to automate paper reproduc-
tion with LLMs (Starace et al., 2025; Seo et al., 2025; Zhao et al., 2025; Gandhi et al., 2025; Hua
et al., 2025; Qian et al., 2024). To fully leverage the autonomous capabilities of LLM-based agent,
PaperBench (Starace et al., 2025) proposes the BasicAgent built upon a ReAct framework, equipped
with tools like a bash shell, Python executor to independently generate, run and submit code. Iter-
ativeAgent extends this by enabling iterative, step-by-step reproduction within a fixed time. Other
recent methods design careful workflows involving paper analyzing, planning and coding. Paper-
Coder (Seo et al., 2025) follows a single-pass workflow without evaluation with stages for planning
implementation-level abstractions, analyzing modules, and generating code files while managing
context for consistency. AutoReproduce (Zhao et al., 2025) employs collaborative research and
code agents that gather external knowledge, generate data preprocessing scripts and iteratively re-
fine implementations, primarily to ensure code executability.

Despite recent progress, existing methods still struggle to fully replicate the extensive detailed spec-
ifications in ML papers, which is the foundational step of paper reproduction. Many fail to capture
subtle details or lack effective verification, resulting in incomplete development and limiting relia-
bility. In contrast, our work directly confronts this problem by focusing on a systematic reflection
process that ensures the fidelity of the first step.

2.2 REFLECTION AND VERIFICATION IN AGENTS

Reflection has emerged as the critical catalyst that turns static LLMs into reliable, self-improving
agents across virtually every application domain (Renze & Guven, 2024; Shinn et al., 2023; Yao
et al., 2023; Madaan et al., 2023; Ji et al., 2023; Jiang et al., 2024; Bo et al., 2024; Du et al., 2024b).
These methods exhibit two key design questions: (i) what signal is used for critique, and (ii) how that
signal is obtained. Firstly, evaluating code could use unambiguous scalar as a revision signal, derived
from deterministic verifies like compiler diagnostics or unit-test pass-fail assessment (Shinn et al.,
2023; Jiang et al., 2025; Hong et al., 2023; Huang et al., 2023). These signals provide objective
binary or scalar indicators, but may not available for tasks which required human judge (Starace
et al., 2025; Huang et al., 2023). Then, LLMs are widely adopted as a judge to provide detailed
token-level critiques revision signal or high-level revision suggestions for code (Gu et al., 2024;
Du et al., 2024a), which could be obtained relying on the reasoning ability of LLMs or combined
with external tools like historical failure in memory or external knowledge base. Motivated by the
unambiguous pass-fail unit-test signals, we extract atomic evaluation criteria to be developed, such
that pass-or-fail binary assessment can be treated as the revision signal to guide the subsequent agent
reflection.

3 METHOD

Existing methods fail to utilize effective supervisory signals for reflection. The inability to automati-
cally generate clear and unambiguous pass-or-fail evaluation criteria significantly hinders reflection,
leaving gaps in code alignment with the original paper. Motivated by how humans review code in
software engineering, where tools like unit tests and checklists are used to ensure systematic and
accurate verification, we propose RefP2C. When faced with difficulties in directly accomplishing
paper-to-code development, RefP2C would typically prepare a checklist and apply effective agent
reflection, simulating the reflective verification process in code review.

Specifically, it contains two stages:

• Supervisory Signal Design: As shown in Figure 2(a), the former is responsible for preparing
effective supervisory signals. It is accomplished via an agent system involving multi-level paper
guide extraction and grounding, standardization, and filtering, on which we obtain the compre-
hensive, accurate, and atomic evaluation criteria on details to be developed, which also are called
fingerprint in this paper.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Reflective Code Development: In the Stage 2, as shown in Figure 2(b), RefP2C leverages the
extracted fingerprint to drive a complete code implementation and reflection workflow. It begins
with an initial code implementation phase, which produces a base code, and then proceeds into an
iterative multi-agent verification and refinement loop that systematically evaluates and revises the
code to ensure alignment with the paper’s specifications.

3.1 SUPERVISORY SIGNAL DESIGN

paper

Supervisory Signal Design

Guide Extraction
and Grounding

Standardization into
Atomic Criteria Filtering

guides

Reflective Code Development

criteria supervisory signals
(“fingerprint”)

Final code

Initial Implementation Verification Revision Planning Refinement

（a）

（b）

Figure 2: An overview of our proposed framework. The Su-
pervisory Signal Design stage extracts fine-grained supervi-
sory signals, which we call “fingerprint” for each paper. The
fingerprint is then used in the Reflective Code Development
stage to guide iterative verification and refinement.

In practice, checklists are essential
tools in ensuring that complex tasks,
such as code review, are thoroughly
and systematically performed. These
checklists are designed to be both
comprehensive and accurate, cover-
ing all relevant aspects of the task and
ensuring that each item on the list is
factually correct. Additionally, each
item on the checklist typically rep-
resents an atomic unit. Drawing in-
spiration from this human approach,
we establish two core principles for
designing the paper fingerprint: i)
Comprehensive & Accurate: the
fingerprint must collectively cover all
relevant details, while each individual
criterion should be factually precise
to prevent deviations from the origi-
nal paper; ii) Atomic: each criterion
should represent a single, verifiable unit that supports clear pass-or-fail binary evaluation. Guided
by these principles, our agent system for extraction is as follows.

Paper Guide Extraction and Grounding To achieve comprehensive and accurate evaluation cri-
teria in the fingerprint, we first formulate three hierarchical guides to collect replication units at
different levels, and then attach the corresponding paper sentence to each unit. This approach al-
lows all potential evaluation points to be listed in the guides, with their source sentences prepared to
facilitate evaluation by LLMs or human experts.

The process begins with the paper’s Markdown content as raw input. The hierarchical extraction
moves from coarse framework-level components, through detailed configuration units, to exhaustive
paragraph-level scanning, progressively refining evaluation criteria from broad structures to detailed
specifics to ensure comprehensiveness. Specifically, at the framework level, we aim to develop key
components across all machine learning aspects—data, model, training, and evaluation. The agent
system introduces each component unit by listing key sentences or paragraphs. At the configuration
level, the agent system captures subtle implementation details and specific configurations in the
paper, and preserves the configuration names alongside corresponding phrases or short sentences.
Finally, to ensure fingerprint comprehensiveness, the agent system conducts an exhaustive scan for
additional configuration units by extracting paragraph-by-paragraph, leveraging contextual memory
to enhance understanding and capture any remaining sentences or equations.

To ensure the extraction is factually correct, the agent system links each unit in the guides to its
corresponding paper sentences via an embedding retrieval strategy. Firstly, the paper is split into
paragraphs and encoded with a sentence embedding model. For each extracted unit, the top-3 rele-
vant paragraphs are retrieved. These paragraphs are then segmented into sentences, from which the
agent will select the indices of multiple sentences that best correspond to the target unit. This action
yields precise source references that facilitate reliable evaluation by LLMs and human experts.

Standardization into Atomic Criteria As mentioned in Section 2.2, clear and verifiable criteria
require atomicity, ensuring that each criterion can be evaluated with a simple pass-or-fail judgment.
The agent extracts atomic evaluation criteria by decomposing and reformulating each unit into its

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

➢ Guide 1:
We set 𝜎min = 0.01 for the 2-
dimensional experiments.
Original sentence from paper:

“We set 𝜎𝑚𝑖𝑛 = 0.01 for the 2-

dimensional experiments, SIR and

Two Moons, and 𝜎𝑚𝑖𝑛 = 0.05 for all

other experiments.”

➢ Guide 2:
We set 𝜎min = 0.05 for other
experiments.
Original sentence from paper:

“We set 𝜎𝑚𝑖𝑛 = 0.01 for the 2-

dimensional experiments, SIR and

Two Moons, and 𝜎𝑚𝑖𝑛 = 0.05 for all

other experiments.”

 Criterion 1:
The parameter is set to <fact>
𝜎min = 0.01 </fact> <scope>for
2D experiments, SIR and Two
Moons</scope>.

 Criterion 2:
The parameter is set to <fact>
𝜎min = 0.05 </fact> <scope>for
other experiments</scope>.

…

…
class Model:

""" Model class for … """

def __init__(self, …):
""" Initializes the Model … """
Step 1: Initialize the encoder

with… .
Step 2: Initialize the

sde_parameters.
pass

…

…
class Model:

""" Model class for … """

def __init__(self, …):
""" Initializes the Model … """
self.encoder = Encoder(…)
self.sigma_min = 0.1 # default

…

Generate initial implementation

Code skeleton

Code

Complete the code

- Score: 0

- A correct code should apply a

𝜎min 0.01 for 2D experiments.

- The submission actually does not

set 𝜎min to 0.01. It defaults 𝜎min 0.1

for all exps in Model class. So it fails.

- Score: 0

- A correct code should apply a

𝜎min 0.05 for other exps.

- The submission actually does not set

𝜎min to 0.05. It defaults 𝜎min 0.1 for

all exps in Model class. So it fails.

Code: main.py

1. In the Model class (__init__ method):
- Replace σ min with 0.01 for 2D
experiments
- Replace σ min with 0.05 for other
experiments. …

…
class Model:

def __init__(self, …):
…
self.sigma_min = 0.05 …

Start the
iteration Verification

Revision
Planning

Refinement

- Score: 0

- A correct code should apply a

𝜎min 0.01 for 2D experiments.

- The submission actually does not

set 𝜎min to 0.01. It fixes 𝜎min 0.05

for all exps in Model class. So it fails.

- Score: 1

- A correct code should apply a

𝜎min 0.05 for other exps.

- Although it fixes 𝜎min 0.05 for all

exps in Model class, the submission

actually meets this requirement.

Code: main.py

1. In the Model class (__init__ method):

- Replace σ min with 0.01 for 2D

experiments

- Ensure that for other experiments, it

remains 0.05. …

…
class Model:

def __init__(self, …):
…
self.sigma_min = 0.01 if

dim_theta <= 2 else 0.05 …

Verification

Revision
Planning

Refinement

Iteration 1 Iteration 2 Iteration N… … …

Final code

Revision Plan

Refined code

Revision Plan

Refined code

All feedback All feedback

Supervisory Signal
Design

Guides

Fingerprint

Figure 3: Details of our reflective code development. The dashed box highlights the “guides” and
“fingerprint” generated in the first stage. In the second stage, a code agent uses these guides to
create an initial implementation. This code is then iteratively verified against each criterion in the
fingerprint. For any failed criteria, the agent analyzes the cause of failure, plans a correction, and
revises the code accordingly. This iterative process concludes when the code passes all verifications
or a maximum number of attempts is reached, yielding the final code.

atomic components, and then formulating them into fact-scope pattern. The “fact” could be hyper-
parameters or implementation details, and the“scope” could be the dataset or task to which they ap-
ply. The agent then split each unit into multiple fact-scope pairs as independent criteria (see Figure 3
or Figure 10 for a detailed example). This structured evaluation criteria not only enables unambigu-
ous verification but also greatly facilitates de-duplication by allowing direct semantic comparison of
the <fact> components.

Filtering To ensure comprehensiveness, the numerous extracted criteria may contain repetitive
and irrelevant items for paper-to-code development as shown in Appendix A.1. Therefore, the agent
introduces a filtering stage to obtain the final paper fingerprint, which consists of clustering-based
de-duplication and relevance-driven semantic filtering steps. For de-duplication, it first clusters the
criteria based on <fact> embeddings, and then removes fact-scope pairs in each cluster that are
identical in both fact and scope. Finally, it filters out the semantic-irrelevant or redundant criteria.

Finally, the comprehensive and accurate paper fingerprint is obtained, containing hundreds of atomic
evaluation criteria. The detailed extraction steps and results are proposed in Appendix A.1. The
fingerprint can be treated as a high-quality supervisory signal to guide simple pass-or-fail evaluation.

3.2 REFLECTIVE CODE DEVELOPMENT

To generate high-quality code aligned with the original paper, our framework develops code gener-
ation and refinement as a unified, reflective process. By integrating generation with iterative veri-
fication and refinement, this process equips the code agent system with self-reflective capabilities,
enabling it to autonomously detect and correct errors, thus progressively improving fidelity of code
development.

Initial Implementation During the stage, our code agent system leverages the raw, first two lev-
els of multi-level guides extracted to produce the initial implementation, which serves as the base
for subsequent reflection. These guides provide a more concrete and structured blueprint than the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

detailed criteria, enabling the agent to generate code more logically without being constrained by
fragmented details. The agent system first uses the high-level framework guides to construct a code
skeleton, including essential classes and functions annotated with comments that outline the imple-
mentation steps. Subsequently, the agent populates this structured skeleton by systematically filling
in methods and functions based on the extracted configuration guides. By doing this, the system ob-
tains a code that mainly aligns with papers on framework and main functions. While the initial code
captures core logic and modules, the code agent are not able to include all detailed implementations
due to its ability.

Verification To refine the initial code, a verifier first performs verification using the comprehen-
sive fingerprint criteria (Section 3.1) as supervisory signals. Specifically, given a single criterion and
generated code as input, the verifier first identifies the relevant portion of the code, then analyzes
the expected and actual implementations. After comparison, it provides a pass/fail score and de-
tailed textual feedback highlighting the expected criteria and observed discrepancies, as illustrated
in Figure 3. The verifier transforms the trajectory (short-term memory) into internal comprehensive
feedback to enable further self-reflection.

Revision Planning Given the potentially large volume of feedback from assessing hundreds of
criteria, immediate code refinement is impractical. Therefore, we introduce a revision planner that
reflects all feedback collectively to develop a holistic understanding of the code’s deficiencies. The
planner then localizes issues within the code and synthesizes a comprehensive, step-by-step revision
plan for each code file, serving as an experience (long-term memory).

Refinement An editor is designed to refine the code based on the revision plan. Leveraging the
plan, the full code, and the original paper as context, the editor performs targeted, minimal modifi-
cations in the order specified by the plan, refining the code file by file to ensure alignment with the
planner. The refined code is then fed back into the verifier for subsequent iterations of evaluation and
improvement, repeating this process until all criteria are satisfied or a predefined maximum number
of iterations is reached. During this process, the results of each modification are stored as short-term
memory, while the experience of each revision plan is recorded as long-term memory, both of which
are fed back to the editor in subsequent iterations. Notably, the fingerprint serves as a form of static
long-term memory, guiding the refinement to prevent deviation from the intended improvements.

In summary, leveraging the supervisory signals encoded in the fingerprint, the verifier generates
detailed and actionable feedback on the code. The feedback is then integrated through a planner-
guided revision process and executed by an editor, enabling systematic and targeted refinement. As
a result, the generated code progressively aligns more closely with the original paper. More details
are provided in Appendix A.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

4.1.1 DATASET

We conduct experiments on the PaperBench Code-Dev benchmark (Starace et al., 2025) to eval-
uate our method. PaperBench assesses an agent’s ability to fully and accurately reproduce a re-
search paper and includes 20 Spotlight and Oral papers from ICML 2024. Each paper comes with
a rubric manually co-developed with the original authors to ensure reliable assessment. The rubric
is structured as a requirement tree, with leaf nodes specifying clear pass/fail criteria and parent
nodes assigning weight scores. PaperBench’s requirements are categorized into three types: code
development, execution, and result match. Since our primary focus is on the first step of paper repro-
duction, we use a lightweight version of PaperBench ($66 per paper), PaperBench Code-Dev ($10
per paper), which only includes the code development requirements. We choose PaperBench over
ReproduceBench (Zhao et al., 2025) because its human-verified rubrics and LLM-as-judge evalua-
tion provide a more objective assessment, whereas ReproduceBench relies on Align-Score provided
directly by an LLM.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1.2 EVALUATION METRIC

In the rubric, by grading all leaf nodes, i.e., assigning score 1 if pass and 0 otherwise, the parent
node score is equal to the weighted average of their children’s scores. The root-level score is the final
replication score, which is denoted as root-level pass ratio PRroot in our work. To directly measure
the replication of each single criterion, we also report the leaf-level pass ratio PRleaf =

passed leaves
of leaves .

4.1.3 BASELINES

To make a fair comparison, we adopt four different agents designed fot this task. (a): BasicA-
gent (Starace et al., 2025) is designed based on ReAct framework, and IterativeAgent (Starace
et al., 2025) further extends with prompt engineering. We reuse the results reported. (b): Paper-
Coder (Seo et al., 2025) completes the task through a forward-pass process of planning, analysis,
and coding. We re-execute the official repository and report the results. (c): AutoReproduce (Zhao
et al., 2025) reviews related papers and then retrieves knowledge and code to to inform its code
generation process. We reuse the results reported. Moreover, we provide implementation details,
including the specific LLMs, hyperparameters, and retriever models used in Appendix B.1.

4.2 PERFORMANCE COMPARISONS

Here, we compare the performance on PaperBench Code-Dev. For the leaf-level pass ratio PRleaf,
we only provide results for baselines where detailed scoring per paper is available. As shown in
Table 1, it can be clearly observed that our method achieves the highest performance. The sig-
nificant performance gap 13.0% and 17.5% compared with AutoReproduce and PaperCoder could
demonstrate the effectiveness of our method, which owns to the reflective code development with
fine-grained verifier.

Table 1: Performance comparison of different methods on the PaperBench Code-Dev benchmark.
Bold numbers indicate the best performance in each metric.

Method LLM PRroot (%) PRleaf (%)

BasicAgent o3-mini-high 6.4 —
IterativeAgent o3-mini-high 17.3 —
PaperCoder o3-mini-high 45.1 41.2
AutoReproduce o3-mini-high 49.6 —

RefP2C o3-mini-high 62.6 61.0

Furthermore, looking deeper into the leaf-level criteria, our method achieves an 19.8% higher PRleaf
compared to the baseline PaperCoder. On average, our framework replicates 30 more requirements
per paper than PaperCoder. Moreover, as shown by the paper-level performance gains in Figure 4,
our method passes more evaluation criteria in 15 out of 20 papers, especially on tasks requiring
high mathematical fidelity (e.g., mechanistic-understanding, +52.8%) and complex algo-
rithmic logic (e.g., pinn, +65.1%). This demonstrates that our framework excels at capturing and
faithfully developing the critical implementation details of a paper. For the 4 papers with decreased
performance, the observed performance drop is mainly attributable to the discordance between se-
mantics and syntax within the generated code (Gao et al., 2023; Wang et al., 2025; 2024b). For
example, in paper lca-on-the-line, the generated code model.feature extractor()
is semantically correct and aligned with the evaluation criteria “load frozen pretrained features”.
However, it fails the LLM-as-judge, which indicates that the correct implementation should be
model.fc(). Such semantic–syntactic mismatches partly account for the performance drop on
PaperBench Code-Dev and would need to be addressed at the execution level. A detailed analysis is
provided in Appendix B.2.

4.3 CASE STUDY

To further clarify our framework’s effectiveness, we then conduct a case study. We select the
mechanistic-understanding paper for this analysis as it not only represents the significant
performance gain of our method over PaperCoder (+52.8% PRleaf) but also has a concise rubric (36

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Leaf-Level Pass Ratio, PRleaf (%)

adaptive-pruning

all-in-one

bam

bbox

bridging-data-gaps

fre

ftrl

lbcs

lca-on-the-line

mechanistic-understanding

pinn

rice

robust-clip

sample-specific-masks

sapg
sequential-neural-score-

estimation
stay-on-topic-with-classifier-

free-guidance
stochastic-interpolants

test-time-model-adaptation

what-will-my-model-forget

-1.2%(N=86)

+1.1%(N=92)

+36.1% (N=255)

+15.2% (N=145)

+41.8% (N=55)

+24.2% (N=306)

-5.8% (N=120)

+23.1% (N=485)

-8.7% (N=403)

+52.8% (N=36)

+65.1% (N=126)

+27.5% (N=178)

+10.0% (N=70)

+19.5% (N=87)

+37.7% (N=77)

+0.0%(N=67)

-1.4%(N=70)

+24.1% (N=58)

+25.6% (N=86)

+9.2% (N=872)

Comparison of Leaf-Level Pass Ratio

PaperCoder
Improvement (RePro)
Regression (RePro)

Figure 4: Per-paper comparison of leaf-level pass ratio (%). The blue bars show the baseline perfor-
mance of PaperCoder. The green (improvement) or red (regression) hatched bars show the change
brought by our RefP2C framework. The total number of rubric requirements for each paper’s code
development is noted on the right.

evaluation criteria), allowing for a focused analysis. On this paper, our method successfully passed
30 criteria (83.3%), while PaperCoder passed only 11 (30.5%), achieving 19 more correctly imple-
mented requirements with no regressions. As highlighted in Table 2, the improvements achieved by
our framework are primarily concentrated in two categories: mathematical fidelity and algorithmic
logic. The first category, mathematical fidelity, pertains to the accurate implementation of detailed
mathematical operations, such as matrix decompositions and vector transformations. The second
category, algorithmic logic, involves the faithful development of intricate procedural steps such as
selection, ranking, and thresholding mechanisms. The substantial gains achieved by our method in
these areas demonstrate its superior capability to precisely interpret and implement complex mathe-
matical constructs and algorithmic procedures. More details can be found in Appendix B.3.

Table 2: Categorization of implementation improvements in our code development compared to
PaperCoder, with examples from rubric in PaperBench.

Category (Proportion) Rubric Requirement

Math Fidelity (57.9%) The code for doing SVD decomposition on MLP.vToxic has been implemented.

Algorithmic Logic
(42.1%)

The code for generating negative toxic examples for each prompt from GPT-
2 has been generated. For each prompt, a negative example (toxic) has been
obtained by using PPLM and the toxic vector W as the attribute classifier.

4.4 EXPERIMENTS ON SUPERVISORY SIGNAL DESIGN

Over 20 papers in PaperBench, we extract an average of 237 evaluation units from the three-level
guides and 895 atomic facts. After filtering, the final paper fingerprint contains an average of 164
criteria. When comparing to rubrics in PaperBench annotated by human experts, we observe that
79% of the leaf nodes are successfully recalled in our fingerprints, with a precision of 60%. The
rubric requirements missed by our fingerprints (21%) mainly come from figure-based or externally

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on the principles of fin-
gerprint design. Performance is averaged over all
20 papers.

Method PRroot (%) PRleaf (%)
1) w/o Compre-
hensiveness

55.9 53.5

2) w/o Atomicity 58.2 57.0

RefP2C 62.6 61.0

Table 4: Ablation study on the effect of iteration
numbers. “∆” column shows the change in per-
centage points (pp) from the previous iteration.

Iteration PRroot (%) ∆ (pp) PRleaf (%) ∆ (pp)
0 52.8 — 50.4 —
1 55.8 +3.0 53.9 +3.5
2 58.8 +3.0 58.0 +4.1
3 60.2 +1.4 59.7 +1.7
4 62.6 +2.4 61.0 +1.3
5 61.4 -1.2 60.8 -0.2

provided information not present in the main textual content. The lower precision mainly stems from
our thorough extraction of detailed criteria, including foundational definitions and mathematical
formulas, which are ignored by PaperBench. Despite these differences, the high recall demonstrates
a strong alignment with the expert-curated rubric, validating our extraction method’s effectiveness.
More details are provided in Appendix B.4.

To further evaluate the necessity of the proposed fingerprint design principles, we conduct ablation
studies as follows: 1) Without comprehensiveness. We only use the framework- and configuration-
level guides to extract atomic evaluation criteria, in which other configurations scattered throughout
this paper are ignored. 2) Without atomicity. We bypass the standardization step, treating units in
three-level guides as the evaluation criteria, each of which may contain multiple facts. The results in
Table 3 clearly show a significant performance drop in both variants, demonstrating the critical role
of our design principles. Notably, omitting the comprehensiveness principle results in a performance
decrease of up to 6.7% in PRroot (%) and 7.5% PRleaf (%), highlighting that although the paragraph-
by-paragraph scanning process is complex, it remains indispensable and effective.

4.5 EXPERIMENTS ON REFLECTIVE CODE DEVELOPMENT

Based on the extracted paper fingerprints, we iteratively revise the generated code through verifi-
cation, planning, and refinement over multiple loops. To further evaluate the effectiveness of our
fingerprint design and reflective code development, we conduct ablation studies on numbers of re-
vision iterations: 1) Without revision (0 iteration): directly using the initial implementation. 2)
Revision with varying numbers of iterations.

As shown in Table 4, both the root-level pass ratio (PRroot) and leaf-level pass ratio (PRleaf) gener-
ally improve over the first four iterations, with the most substantial gains occurring between itera-
tions 0 and 2. At iteration 4, the performance reaches its peak, achieving 62.6% PRroot and 61.0%
PRleaf. However, the fifth iteration results in a slight decline, indicating diminishing returns and
possible overthinking (Xiang et al., 2025) or noise accumulation, which is consistent with observa-
tions in (Wan et al., 2024). These results suggest that four iterations offer the best trade-off between
performance improvement, and we adopt this as the default setting for our main experiments. Paper-
level evaluation results are provided in Appendix B.5.

5 CONCLUSION

Focusing on the foundational step of paper reproduction, we introduce RefP2C, a novel reflective
framework for paper-to-code development, achieved by designing paper fingerprints and integrating
them into a reflective development strategy. RefP2C uses the fingerprints as supervisory signals
to drive multiple iterative verification and refinement loops, systematically aligning the code with
the paper’s implementation details. We conduct extensive experiments on the PaperBench Code-
Dev benchmark, and RefP2C achieves state-of-the-art performance, correctly replicating complex
implementation details and demonstrating the effectiveness of this reflective framework. In future
work, we plan to extend RefP2C to later stages of paper reproduction, including execution and result
matching, to further broaden its applicability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The source code for our proposed RefP2C framework is available in the supplementary materials.
Our experiments use the publicly available PaperBench benchmark. Implementation and hyperpa-
rameter details are listed in Appendix B.1.

REFERENCES

Riccardo Albertoni, Sara Colantonio, Piotr Skrzypczyński, and Jerzy Stefanowski. Reproducibility
of Machine Learning: Terminology, Recommendations and Open Issues, February 2023.

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar, Nachi-
appan Nagappan, Besmira Nushi, and Thomas Zimmermann. Software engineering for ma-
chine learning: A case study. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 291–300, 2019. doi:
10.1109/ICSE-SEIP.2019.00042.

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective multi-agent collaboration based on large language models. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neu-
ral Information Processing Systems, volume 37, pp. 138595–138631. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/fa54b0edce5eef0bb07654e8ee800cb4-Paper-Conference.pdf.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level code
generation. In Proceedings of the IEEE/ACM 46th International Conference on Software Engi-
neering, pp. 1–13, 2024a.

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for large-
scale api calls, 2024b. URL https://arxiv.org/abs/2402.04253.

Shubham Gandhi, Dhruv Shah, Manasi Patwardhan, Lovekesh Vig, and Gautam Shroff. Research-
codeagent: An llm multi-agent system for automated codification of research methodologies,
2025. URL https://arxiv.org/abs/2504.20117.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2023.

Tianyu Hua, Harper Hua, Violet Xiang, Benjamin Klieger, Sang T. Truong, Weixin Liang, Fan-Yun
Sun, and Nick Haber. Researchcodebench: Benchmarking llms on implementing novel machine
learning research code, 2025. URL https://arxiv.org/abs/2506.02314.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agent-
coder: Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: evaluating language agents
on machine learning experimentation. In Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2024.

10

https://proceedings.neurips.cc/paper_files/paper/2024/file/fa54b0edce5eef0bb07654e8ee800cb4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/fa54b0edce5eef0bb07654e8ee800cb4-Paper-Conference.pdf
https://arxiv.org/abs/2402.04253
https://arxiv.org/abs/2504.20117
https://arxiv.org/abs/2506.02314

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
LLM hallucination via self reflection. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 1827–1843, Sin-
gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.123. URL https://aclanthology.org/2023.findings-emnlp.
123/.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Patrick Tser Jern Kon, Jiachen Liu, Xinyi Zhu, Qiuyi Ding, Jingjia Peng, Jiarong Xing, Yibo Huang,
Yiming Qiu, Jayanth Srinivasa, Myungjin Lee, Mosharaf Chowdhury, Matei Zaharia, and Ang
Chen. Exp-bench: Can ai conduct ai research experiments?, 2025. URL https://arxiv.
org/abs/2505.24785.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 46534–46594. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.

Ziyi Ni, Huacan Wang, Shuo Zhang, Shuo Lu, Ziyang He, Wang You, Zhenheng Tang, Yuntao Du,
Bill Sun, Hongzhang Liu, Sen Hu, Ronghao Chen, Bo Li, Xin Li, Chen Hu, Binxing Jiao, Daxin
Jiang, and Pin Lyu. Gittaskbench: A benchmark for code agents solving real-world tasks through
code repository leveraging, 2025. URL https://arxiv.org/abs/2508.18993.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer,
Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. Improving reproducibility in machine
learning research (a report from the neurips 2019 reproducibility program). J. Mach. Learn. Res.,
22(1), January 2021. ISSN 1532-4435.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-
Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 15174–15186, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL
https://aclanthology.org/2024.acl-long.810/.

Edward Raff. A step toward quantifying independently reproducible machine learning research.
Advances in Neural Information Processing Systems, 32, 2019.

Edward Raff, Michel Benaroch, Sagar Samtani, and Andrew L. Farris. What do machine learn-
ing researchers mean by ”reproducible”? In Proceedings of the Thirty-Ninth AAAI Con-
ference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications
of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial In-
telligence, AAAI’25/IAAI’25/EAAI’25. AAAI Press, 2025. ISBN 978-1-57735-897-8. doi:
10.1609/aaai.v39i27.35093. URL https://doi.org/10.1609/aaai.v39i27.35093.

Matthew Renze and Erhan Guven. Self-reflection in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024.

Harald Semmelrock, Tony Ross-Hellauer, Simone Kopeinik, Dieter Theiler, Armin Haberl, Stefan
Thalmann, and Dominik Kowald. Reproducibility in machine-learning-based research: Overview,
barriers, and drivers. AI Magazine, 46(2), June 2025. ISSN 0738-4602, 2371-9621. doi: 10.1002/
aaai.70002.

11

https://aclanthology.org/2023.findings-emnlp.123/
https://aclanthology.org/2023.findings-emnlp.123/
https://arxiv.org/abs/2505.24785
https://arxiv.org/abs/2505.24785
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://arxiv.org/abs/2508.18993
https://aclanthology.org/2024.acl-long.810/
https://doi.org/10.1609/aaai.v39i27.35093

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code
generation from scientific papers in machine learning. arXiv preprint arXiv:2504.17192, 2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Jiabin Tang, Lianghao Xia, Zhonghang Li, and Chao Huang. Ai-researcher: Autonomous scientific
innovation, 2025. URL https://arxiv.org/abs/2505.18705.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang,
Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao,
Arman Cohan, and Mark Gerstein. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code, 2024. URL https://arxiv.org/abs/
2311.09835.

David Wan, Koustuv Sinha, Srini Iyer, Asli Celikyilmaz, Mohit Bansal, and Ramakanth Pasunuru.
Acueval: Fine-grained hallucination evaluation and correction for abstractive summarization. In
Findings of the Association for Computational Linguistics ACL 2024, pp. 10036–10056, 2024.

Chaozheng Wang, Zezhou Yang, Shuzheng Gao, Cuiyun Gao, Ting Peng, Hailiang Huang, Yuetang
Deng, and Michael Lyu. Rag or fine-tuning? a comparative study on lcms-based code completion
in industry. In Proceedings of the 33rd ACM International Conference on the Foundations of
Software Engineering, pp. 93–104, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024a.

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu, Frank F Xu, Yiqing Xie, Graham Neubig,
and Daniel Fried. Coderag-bench: Can retrieval augment code generation? arXiv preprint
arXiv:2406.14497, 2024b.

Yanzheng Xiang, Hanqi Yan, Shuyin Ouyang, Lin Gui, and Yulan He. Scireplicate-bench: Bench-
marking llms in agent-driven algorithmic reproduction from research papers, 2025. URL https:
//arxiv.org/abs/2504.00255.

Shuo Yan, Ruochen Li, Ziming Luo, Zimu Wang, Daoyang Li, Liqiang Jing, Kaiyu He, Peilin Wu,
George Michalopoulos, Yue Zhang, Ziyang Zhang, Mian Zhang, Zhiyu Chen, and Xinya Du.
Lmr-bench: Evaluating llm agent’s ability on reproducing language modeling research, 2025.
URL https://arxiv.org/abs/2506.17335.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Xuanle Zhao, Zilin Sang, Yuxuan Li, Qi Shi, Weilun Zhao, Shuo Wang, Duzhen Zhang, Xu Han,
Zhiyuan Liu, and Maosong Sun. Autoreproduce: Automatic ai experiment reproduction with
paper lineage. arXiv preprint arXiv:2505.20662, 2025.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model debug-
ger via verifying runtime execution step-by-step, 2024. URL https://arxiv.org/abs/
2402.16906.

12

https://arxiv.org/abs/2505.18705
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2504.00255
https://arxiv.org/abs/2504.00255
https://arxiv.org/abs/2506.17335
https://arxiv.org/abs/2402.16906
https://arxiv.org/abs/2402.16906

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A METHODS

A.1 ADDITIONAL DETAILS FOR THE SUPERVISORY SIGNAL DESIGN STAGE

This section provides additional details regarding the Supervisory Signal Design stage. The specifics
of each component are illustrated in Figure 5, 6, 7, 8, 9. Furthermore, Figure 10 presents a sample
of the results extracted after this process.

Prompt for Guide Extraction

You are a meticulous Software Test Engineer with expertise in machine learning. You will be
analyzing a research paper to create a checklist of verifiable facts that can be used to test a code
implementation for correctness.

Background and Core Mission
Our ultimate goal is to verify that a given codebase is a faithful and accurate reproduction of the
research paper. To do this, we need to extract all key code-level guidance details.

Your mission is to identify and select all sentences containing these details. These are the specific,
actionable claims that must be true in the code. Because these will be used for validation, it is crucial
that you only select sentences that are substantive and informative.

Informative sentences typically describe:
• Data & Task: The exact datasets, benchmarks, or tasks (e.g., “The task is node classification on the
Cora dataset.”).
• Data Processing: Specific data splits, normalization, or augmentation methods.
• Hyperparameters: Concrete values for settings like learning rate, batch size, or optimizer.
• Model Architecture: The model’s structure, layers, or components (e.g., “The model uses GCN
layers.”).
• Algorithmic Steps: Specific computational steps, formulas, or logical flows.
• Loss Function: The specific loss function used, including any custom components or equations.
• Evaluation Metrics: The exact metrics used for assessment.

What to IGNORE
Do NOT select sentences that contain only high-level claims, qualitative discussions, future work,
citations, or general background information.

Output Format
Your response MUST be ONLY a single, valid JSON array of integers. Each integer in the array
corresponds to the index number of a sentence you have selected. If no sentences in the paragraph are
relevant, return an empty array [].

Example Turn
User provides paragraph: [1]: For the Cora node classification task, our GCN-based model was trained
for 200 epochs. [2]: This approach is highly effective. [3]: We used the AdamW optimizer with a
learning rate of 0.01. [4]: Performance was measured using the Accuracy metric. [5]: Future work
could explore other datasets.
Your required output: [1,3,4]

Figure 5: Prompt for Guide Extraction in Supervisory Signal Design stage.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Prompt for Standardization into Atomic Criteria. Part 1 of 2

You are an expert technical writer and software engineer with a knack for clear and natural language.
You are tasked with creating precise, verifiable implementation requirements from research papers
that are easy for humans to read and understand.

Instructions:
1. Decompose: Analyze the “Summary Fact” to identify and isolate every distinct, verifiable claim.
A claim is verifiable if a reviewer can confirm its implementation by directly inspecting the code,
configuration files without needing to re-run the entire experiment to observe its effect.

A. First, identify and preserve indivisible units. Your highest priority is to keep self-contained
concepts like equations and algorithms as a single, indivisible unit. Do not break them into multiple
atomic facts.

• Example (Correct Handling of Equations):
• Input Fact: “The loss function is L = λLCE + (1− λ)Lreg .”
• Result: This must become one single criterion. The entire formula is the fact.
• You must not create separate criteria for L, LCE , and Lreg .

B. Then, decompose all other claims into atomic facts. For any information that is not a self-
contained formula or algorithm, break it down into the smallest meaningful units. A single sentence
often contains multiple atomic facts.

You can break it down into atomic facts such as:
• Data and Task Specification: Identify the specific datasets used and the task being

performed. (e.g., “The Cora dataset is used,” “The task is node classification.”)
• Data Handling and Preprocessing: The specific methods for splitting, normalizing, or

augmenting data. (e.g., “Data is split 80/10/10,” “Inputs are normalized with a specific mean/std.”)
• Configuration and Hyperparameters: Extract specific key-value settings. This is a very

common type of fact. (e.g., learning rate: 0.01, optimizer: ’AdamW’, dropout: 0.5, epochs: 200).
• Model Architecture and Components: Pinpoint claims about the model’s structure or its

parts. (e.g., “The model uses GCN layers,” “An attention mechanism is included,” “Node features are
represented by a learnable embedding vector.”).

• Algorithmic Process & Calculations: Isolate specific computational steps or references to
formulas. Note: If the fact describes a complete, self-contained equation or algorithm (like a specific
loss function), treat it as a single, indivisible unit and write it as a single criterion.

• Evaluation: Identify the specific metrics used to assess performance. (e.g., “Model
performance is measured by Accuracy,” “The F1-score is reported.”).

• Package Requirements: Note any specified libraries, packages, or hardware. (e.g., “The
implementation requires PyTorch”).

2. Formulate a Verifiable Criterion: Your ultimate goal is to generate a verifiable criterion for
each decomposed fact. Think of each criterion as a self-contained test case description that a code
reviewer will use. It must clearly state what needs to be verified and where/when it applies.

To do this, formulate a clear and precise “criterion” string by naturally weaving together these two
essential components:

• The Atomic Fact: The specific, code-level claim to be checked. This is atomic fact you
identified in Step 1.

• The Scope: The complete context in which the fact is true. This is the “where” or “when”.
(e.g., “for the text classification task,” “during the main experiments,” “in the ablation study”).

For maximum readability and impact, structure your sentence to present the core Fact as the main
subject, with the Scope providing the necessary context. Feel free to use one or two fluent sentences
to ensure the criterion is both complete and easy for a human to understand.

For clarity with complex topics, feel free to use one or two fluent sentences.

Figure 6: Prompt for Standardization into Atomic Criteria. Part 1 of 2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Prompt for Standardization into Atomic Criteria. Part 2 of 2

3. Output Format: Your response must be a valid JSON list of objects, each with a “criterion”
key. Inside this string, you must embed distinct XML-style tags: use <fact> and </fact> for the
Verifiable Fact, and use <scope> and </scope> for the Scope (the context where the fact is true).

Here are two dummy examples of inputs and expected outputs.
Example 1: Handling Entities and Hyperparameters
Input
Summary Fact: “In our experiments, we use the AdamW optimizer with a learning rate of 1e-4 and
a weight decay of 0.01 on dataset Cora. we use the Adam with a learning rate of 2e-4 on dataset
Citeseer.”
Reference Sentence: “We tuned hyperparameters separately for each dataset. For experiments on Cora,
we used the AdamW optimizer with a learning rate of 1e-4 and weight decay of 0.01. For the Citeseer
dataset, we found the standard Adam optimizer with a learning rate of 2e-4 yielded better results.”

Your Output:
[

{
“criterion”: “The <fact>AdamW optimizer</fact> is used to train the

model <scope>for the dataset Cora</scope>.”
},
{

“criterion”: “A <fact>learning rate of 0.0001</fact> is applied
<scope>when using the AdamW optimizer on the Cora dataset</scope>.”

},
{

“criterion”: “A <fact>weight decay of 0.01</fact> is used
<scope>when using the AdamW optimizer on the Cora dataset</scope>.”

},
{

“criterion”: “The <fact>Adam optimizer</fact> is used to train the
model <scope>for the dataset Citeseer</scope>.”

},
{

“criterion”: “A <fact>learning rate of 0.0002</fact> is applied
<scope>when using the Adam optimizer on the Citeseer dataset</scope>.”

}
]

Example 2: Handling Methods, Architecture, and Processes
Input
Summary Fact: “The actor loss for on-policy updates is the PPO clipped objective, defined as
LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)].”
Reference Sentence: “For all on-policy updates, we compute the actor loss using the PPO clipped sur-
rogate objective (Schulman et al., 2017): LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1+ ϵ)Ât)],
where rt(θ) is the probability ratio.”

Your Output:
[

{
“criterion”: “The <fact>actor loss is calculated using the PPO clipped

objective:
LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]</fact>

<scope>for all on-policy updates</scope>.”
}

]

Please respond with ONLY the list.

Figure 7: Prompt for Standardization into Atomic Criteria. Part 2 of 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt for Filtering. Part 1 of 2

You are an expert software engineer and QA lead, specializing in creating actionable engineering
checklists from academic research. Your primary goal is to select criteria that are directly and unam-
biguously verifiable by inspecting a project’s source code and configuration files. You must prioritize
concrete specifications over abstract concepts.

You will be given a numbered list of checklist criteria that have been grouped because they share the
same core <fact>.

Your Task:
Your goal is to select the minimum number of criteria necessary to represent all distinct and verifiable
implementation details from the list.

Follow this exact algorithm:

1. Step 1: Group Synonymous Criteria
First, mentally group together any criteria that are semantically identical in both their fact and

scope. This is the most critical step. You must be very strict. For example, the criterion <fact>entropy
coefficient is set to 0</fact> <scope>for the Shadow Hand task</scope> is considered identical to
<fact>entropy coefficient is set to 0</fact><scope>in the training hyperparameters for the Shadow
Hand tasks</scope>, and they must be treated as one single group.

2. Step 2: Identify Unique, Verifiable Groups
After grouping, you will be left with a set of unique semantic meanings.

3. Step 3: Select the Best Representative from Each Unique Group
From each unique semantic group, select the single best-phrased criterion that represents it. The

“best” criterion is the one that is most valuable to a code reviewer, following these priorities:
1. Directly Verifiable (Most Important): The claim can be confirmed by looking at the code or a

config file (e.g., a specific parameter value ‘learning rate: 0.01‘, a function call, a class name).
2. Precise and Unambiguous: It contains specific values and clear actions, leaving no room for

interpretation.
3. Complete and Well-Written: It includes both the core fact and its necessary scope in a profes-

sional manner.

4. Step 4: Final Selection Principle
Your final list of selected indices must be as short as possible. Only select multiple representatives

if they describe truly distinct, non-overlapping, and verifiable requirements. DO NOT select multiple
same representatives. In any case, you must select less than six.

Your response MUST be a single, valid JSON object with the following two keys:

• “selected indices”: A list of 1-based integer indices of the final items you selected.

• “reason”: A brief explanation of your selection logic, justifying your choice based on the
principles above.

Examples:

Example 1: Prioritizing Verifiable Detail
Input:
1. The <fact>model architecture</fact> is <scope>inspired by Transformers</scope>.
2. The <fact>model uses 12 layers of Transformer encoders</fact> <scope>in its main
architecture</scope>.
3. The <fact>model’s design</fact> considers <scope>long-range dependencies</scope>.

Your Expected Output:
{

“selected indices”: [2],
“reason”: “Selected only item 2 because it is the most concrete and directly

verifiable requirement (12 layers). Items 1 and 3 are abstract concepts, not specific
implementation details.”
}

Figure 8: Prompt for Filtering in Supervisory Signal Design stage. Part 1 of 2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt for Filtering. Part 2 of 2

Example 2: Multiple Distinct and Verifiable Scopes
Input:
1. A <fact>dropout of 0.5</fact> is applied <scope>during pre-training</scope>.
2. A <fact>dropout of 0.6</fact> is applied <scope>during fine-tuning</scope>.

Your Expected Output:
{

“selected indices”: [1, 2],
“reason”: “Selected two representatives as they describe distinct, veri-

fiable dropout
values for different training phases (pre-training vs. fine-

tuning).”
}

Figure 9: Prompt for Filtering in Supervisory Signal Design stage. Part 2 of 2.

Example: Extracted Guide, Original Sentence and Criteria

Guide:
We use a recurrent policy for the AllegroKuka tasks..

Original Sentence from Paper:
”We use a recurrent policy for the AllegroKuka tasks and an MLP policy for the Shadow Hand and Allegro
Hand tasks and use PPO to train them.”

Extracted Atomic Criteria:
1. A <fact>recurrent policy</fact> is used <scope>for the AllegroKuka tasks</scope>.
2. An <fact>MLP policy</fact> is used <scope>for the Shadow Hand and Allegro Hand
tasks</scope>.
3. The <fact>PPO algorithm</fact> is used to train the policies <scope>for all tasks</scope>.

Figure 10: An example result of our Supervisory Signal Design process, showing the guide, the
original sentence from the paper, and the extracted atomic criteria.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 ADDITIONAL DETAILS FOR THE REFLECTIVE CODE DEVELOPMENT STAGE

This section provides additional details regarding the Reflective Code Development stage. Fig-
ures 11 and 12 illustrate the initial implementation of our framework. Figure 13 details the verifica-
tion process, while Figures 14 and 15 depict the revision planning and refinement steps, respectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt for Initial Implementation in Reflective Code Development stage. Part 1 of 2

You are a professional machine learning engineer. You will be provided with an overall workflow
summary of a research paper, four detailed sections from the research paper covering Data, Model,
Training, and Evaluation and supplementary information for code reproduction.
Your task is to generate a code framework for implementing the methods described in the summary.
The code framework should be a Python script containing only the basic structure including function
definitions, class definitions and their corresponding docstrings but no actual implementation code in
the function or class.
You should meet these requirements when writing the code framework:
1. Define four classes including Data, Model, Trainer and Evaluator to organize the code framework.
For each class, provide a formal class-level docstring that clearly describes the classes’s input argu-
ments, all its methods and their purposes.
2. Import necessary packages at the beginning of the script. If the script imports multiple libraries
with overlapping or distinct roles (e.g. dgl and torch geometric), add a brief comment on the same line
after each import to clarify its specific usage scenario.
3. Define a main() function to organize the top-level workflow.
4. If you include an if name == " main ": block, it must contain a valid function call such
as main().
5. DO NOT implement any actual code inside the functions or classes. The output should solely
consist of the basic structure: class definitions, function definitions, and their respective docstrings.

Here is the required example format for a class and a function in the code framework:

class Data(BaseClass):
"""
A detailed description of what this class represents or does.

Attributes:
attr1 (type): Description of attr1.
attr2 (type): Description of attr2.
"""

def __init__(self, arg1, arg2, ...):
"""
A detailed description of what this function does.

Args (optional):
arg1 (type): Explanation of arg1.
arg2 (type): Explanation of arg2.
"""
pass

def method_name(self, arg1, arg2, ...):
"""
A detailed description of what this function does.

Args (optional):
arg1 (type): Explanation of arg1.
arg2 (type): Explanation of arg2.

Returns (optional):
result1 (type): Description of the returned result1.
result2 (type): Description of the returned result2.
"""
pass

Remember do NOT implement any actual code inside the functions or classes. Please respond with
only the Python code. No explanations or extra text. The Python code should begin with ‘‘‘python
and end with ‘‘‘.

Figure 11: Prompt for Initial Implementation in Reflective Code Development stage. Part 1 of 2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt for Initial Implementation in Reflective Code Development stage. Part 2 of 2

You are a professional machine learning engineer, specializing in code reproduction.

You will be provided with a research paper, supplementary information for code reproduction, the
extracted YAML configuration for the experiment, and the code framework. The code framework
contains function and class definitions, docstrings, and step comments, but no implementation code.
Some steps will include an implementation supplement from the paper, marked with “(paper)”, but
not all steps will have this.

Additionally, in a multi-turn dialogue, you will receive only one target part of the code framework
and need to generate its implementation. Your task is to write a fully complete and human-modifiable
class or funtion that faithfully implements every aspect of the described methods and tasks based on
the provided code framework and detailed extracted information.

NOTES:

• At each dialogue turn, you will be provided with a list of already imported modules. You MUST
NOT modify or remove any of these existing imports. Your response should only include any NEW
imports that are required for the current code implementation and are not present in the provided list.
If new imports are needed, place them at the very top of your generated code block.

• Strictly follow the structure and function names in the provided code framework. Do not add or
remove any functions already present in the code framework.

• Ensure the code is properly formatted. DO NOT include any placeholders, ‘TODO‘ comments,
‘dummy implementation‘ markers, or similar indications of incomplete code. Every part of the code
must be fully implemented to reproduce the paper.

Here is an example for output:

import numpy
import torch
from torch import nn

class Data(BaseClass):
"""
A detailed description of what this class represents or does.

Attributes:
attr1 (type): Description of attr1.
attr2 (type): Description of attr2.
...
"""

def __init__(self, arg1, arg2, ...):
"""
A detailed description of what this function does.

Args (optional):
arg1 (type): Explanation of arg1.
arg2 (type): Explanation of arg2.
... (type): Additional arguments as needed.
"""
<your implementation>

Please respond with only the Python code. No explanations or extra text. The Python code should
begin with ‘‘‘python and end with ‘‘‘.

Figure 12: Prompt for Initial Implementation in Reflective Code Development stage. Part 2 of 2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Prompt for Verification in Reflective Code Development stage

You are judging a candidate’s attempt to reproduce a research paper. You will first be given the research
paper, which you should read carefully and refer to as the ground truth for what constitutes a correct
implementation and reproduction.

Following that, you will be presented with the candidate’s submission: a set of files that attempts
to reproduce the paper. To judge the submission, we have prepared full fingperprint describing fine-
grained criteria for different aspects of the paper.

Your task is to check the submission for ONE specific criterion from this fingerprint. Please present
your answer in 3 parts as follows. Be brief and specific in each part.

Expected Implementation
Summarize your expectations in 2-3 sentences. Describe what a correct implementation should con-
tain.

Actual Findings
Briefly comment on the relevant code parts in 2-3 sentences. Compare the submission to your expec-
tations.

Verification Result
Give a score of 0 or 1. Explain your reasoning in 2-3 concise sentences.

Other notes:
• You must always provide a score. If you have any uncertainties, make them clear in your discus-

sion.
• All the files and logs from the submission attempt have been provided to you. If anything appears

to be missing, assume that the attempt failed to produce it (treat it as a failure).
• Be strict and thorough in grading your resolution criteria, but do not check for things that are

outside of your scope.

Figure 13: Prompt for Verification in Reflective Code Development stage.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt for Revision Planning in Reflective Code Development stage

You are an expert software architect and project lead. Your task is to analyze a code evaluation report
and the corresponding code, then create a clear, step-by-step action plan for a developer to follow.

Context: evaluation feedback
The following code was evaluated and failed. Here is the detailed report:

{feedback}

Context: current code project
Here is the full code for the project that the feedback refers to:

{code}

Your task:
Based on the feedback and the current code, create a concise, actionable plan to fix all issues. You
MUST structure your plan into two distinct sections: one for the configuration file (‘config.yaml‘) and
one for the Python source code files.

Important output format:
• First, provide the plan for the configuration file under the heading ‘### CONFIG PLAN‘. List

the changes for ‘config.yaml‘. If no changes are needed, write “No changes needed for config.yaml”.

• Second, provide the plan for all Python files under the heading ‘### CODE PLAN‘. Group
changes by filename, each with its own ‘## Code: [filename]‘ sub-heading.

• Do not write the code itself, only the plan.

Example output:
CONFIG PLAN

1. In the “training” section, decrease the ‘learning rate‘ to 1e-5.
2. Under ‘pde.convection‘, set ‘beta‘ to 40.

CODE PLAN

Code: model.py
1. In the ‘APTAdapter‘ class, change the default ‘scaling factor‘ in the constructor
from 2.0 to 4.0.

Code: main.py
1. Add a ‘try...except‘ block around the ‘trainer.train()‘ call.

Figure 14: Prompt for Revision Planning in Reflective Code Development stage.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt for Refinement in Reflective Code Development stage

You are an expert-level software engineer with a deep understanding of experimental design and
reproducibility in scientific research. Your task is to execute a clear, step-by-step plan to fix a multi-file
Python project.

Code quality requirements:
• The code you write must be elegant, modular, and maintainable, adhering to Google-style

guidelines.

• It must strictly align with the paper’s methodology, experimental setup, and evaluation metrics.

• COMPLETE CODE: Your code will be part of the entire project, so please implement complete,
reliable, reusable code snippets.

• For any settings, ALWAYS SET A DEFAULT VALUE, USE STRONG TYPING, AND
EXPLICIT VARIABLES. AVOID circular imports.

• You MUST FOLLOW the “Data structures and interfaces” from the original design. DO NOT
CHANGE ANY DESIGN or use non-existent public methods.

• Before using an external variable or module, make sure you import it first.

• Write out EVERY CODE DETAIL. DO NOT LEAVE TODO comments.

• You must use configuration values from ‘config.yaml’ where applicable and NOT FABRICATE
any new ones.

Important editing style:
• Your primary goal is to make the minimum necessary changes to the code to address the plan.

• Preserve the existing code structure, comments, and logic that are not related to the plan.

• Think of your task as applying a precise “patch” or “diff” to the code, not as a complete rewrite.

Your task:
You will be given the current version of all files in a project and a revision plan. Based on the plan,
you must rewrite the necessary files.

Instructions for your output:
• You MUST return the complete, revised code for ALL files in the project, even for files that are

not changed.

• Each file’s content must be inside its own block, starting with ‘## Code: [filename]’ on a new
line, followed by a ‘‘‘python ... ‘‘‘ block.

Figure 15: Prompt for Refinement in Reflective Code Development stage.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

We adopt Deepseek-V3 (as a trade-off between performance and cost) for both the supervisory
signal design stage and the evaluation phase of the reflective code development stage, while using
o3-mini-high during the initial implementation, revision planning and refinement stages due to
its strong reasoning and coding capabilities. When evaluating on PaperBench Code-Dev, we adopt
o3-mini-high as recommended. Additionally, we employ all-MiniLM-L6-v2 sentence-
transformers to encode and retrieve paper paragraphs and sentences. The verification-planning-
refinement stage is conducted for up to 4 iterations except section 4.5, with early termination if all
evaluation criteria are satisfied.

B.2 DETAILED ANALYSIS ON PERFORMANCE COMPARISON

We select lca-on-the-line for this case study because it shows the largest drop in PRleaf on
PaperBench Code-Dev. Compared with PaperCoder, there are 53 evaluation criteria that Paper-
Coder implements incorrectly while RefP2C implements them correctly, and 88 criteria for which
RefP2C fails but PaperCoder succeeds. For these 88 criteria that RefP2C misses, the failures do not
stem from missing mathematical formulas or complex algorithms, but rather reflect a fundamental
limitation of LLM-as-judge. In our deep analysis, we observe that using a single rubric to judge
implementations leads the agent to misclassify semantically equivalent but syntactically different
code. For example, our model’s modular accessor model.feature extractor() is func-
tionally correct but is marked as incorrect because the rubric expects direct access to model.fc.
Likewise, although the code correctly loads all five OOD datasets, the validation script is hardcoded
to test only one split, causing every related rubric check to fail. These mismatches occur separately
across six datasets (five OOD plus one in-distribution) and cascade into repeated failures, accounting
for the vast majority of the 88 regressions.

B.3 CASE STUDY

To show the correctly revised evaluation criteria by RefP2C, we conduct a case study on the
mechanistic-understanding paper and grouped the 19 corrections into two simple cate-
gories: mathematical fidelity and core algorithmic logic.

Mathematical Fidelity. Over half of the correctly revised criteria (12 out of 19, or 57.9%) were
about getting math right. For example, PaperCoder skipped the needed matrix transpose before
SVD (id: 1a8266f6) and left out functions for cosine similarity (id: 9bbf6a62) or norm
difference (id: cac04bcb) between parameters. Using clear and atomic criteria pulled straight
from the paper’s formulas, our framework revised these to match exactly what the authors wrote.

Core Algorithmic Logic. The other 8 criteria (42.1%) were about implementing multi-step proce-
dures correctly. PaperCoder, for instance, turned the toxic-vector step into a simple threshold test
instead of ranking and picking the top k (id: bbdb4b01), didn’t generate toxic examples with
PPLM (id: 3c36d4c4), and missed the logic to find prompts that lead to a given next token
(id: 52557c05). By checking each step against our paper fingerprint, we were able to fill in
the full logic and make the code follow the paper’s exact specifications.

B.4 DETAILED ANALYSIS ON SUPERVISORY SIGNAL DESIGN

To provide insight into the designed fingerprints, we present a quantitative analysis of the number of
criteria at each stage. Table 5 shows the statistics of guides and criteria generated per paper across
the 20 documents in our dataset.

The results in Table 5 illustrate the “funnel” effect of our pipeline. The initial guide extraction
yields a substantial number of raw information units. The standardization step significantly increases
this number as complex sentences are decomposed into multiple atomic criteria. Subsequently, the
filtering stages effectively reduce this large set, removing redundancy and irrelevant information,
respectively. This process results in final supervisory signals (fingerprint) that is both comprehensive
in its coverage and manageable in its size.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: Average number of criteria per paper at each stage of the supervisory signal design.

Stage Avg. Criteria
1. Guide Extraction 237.6

- Level 1 (Framework) 41.4
- Level 2 (Configuration) 18.9
- Level 3 (Exhaustive-level) 177.3

2. After Standardization 895.8
- Level 1 137.4
- Level 2 61.8
- Level 3 696.5

3. After Filtering 164.6

To validate our automatically generated fingerprint, we compared it against the manually created
rubrics in PaperBench using an LLM-based analysis. For each fingerprint criterion, we asked the
model whether it matched any requirement in the official rubric. Based on the above results, We
designed two evaluation metric: recall and precision. Specifically, Recall = #covered rubric requirements

#rubric requirements

and Precision = #matching fingerprint criteria
#fingerprint criteria .

The results show an average recall of 79%, indicating that our extraction process recovers most of
the rubric’s requirements, while the average precision of 60% means our fingerprint also picks up
many extra details that the hand-crafted rubrics leave out. Our detailed review finds that the 21%
of rubric items not recalled by our method mostly come from information not in the main paper
text. For example, some rubric points rely on author-provided supplements or details shown only
in figures, which our text-based approach cannot extract. On the other hand, the 40% precision gap
is largely due to a mismatch in granularity: our atomic criteria break down facts more finely than
the broader, human-written rubric entries. For instance, in the mechanistic-understanding
paper the expert rubric has a single requirement saying: “The code for fine-tuning GPT2 using DPO
has been implemented. The training uses the following hyper-parameters: a learning rate of 1e-6,
batch-size of 4. . . ” By contrast, our fingerprint splits this into separate checks like “The learning rate
is set to 1e-6 for DPO training.” and “A batch size of 4 is used during DPO training.”. The LLM-
based matcher may not link these multiple criteria back to the one rubric entry, so it underestimates
precision even though all checks may be correct.

B.5 DETAILED ANALYSIS ON REFLECTIVE CODE DEVELOPMENT

The iterative revision process produces clear, sustained improvement in both root level and leaf level
PR scores across all 20 test papers (see Tables 6 and 7). In the earliest stages, from iteration 0 (the
initial code draft) through iteration 2, we observe the fastest performance gains because our reflec-
tive agent quickly finds and corrects the most obvious discrepancies between the generated code and
the paper’s specifications. From iteration 2 to iteration 4, scores continue to rise but at a more grad-
ual pace as the agent resolves increasingly subtle implementation details. Most papers reach their
highest PR values by the fourth iteration, after which further revisions produce smaller improve-
ments in many cases. The iteration count at which peak performance is achieved varies by paper:
simpler methods with well structured algorithms often converge by the third iteration, while more
complex architectures or protocols in the experiments sometimes benefit from an additional pass.
These findings highlight the efficiency of early corrections and underscore the need to balance the
total number of iterations against computational cost when applying our framework in practice. In
our experiments, based on the average performance across all papers, we set the maximum number
of iterations to four.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: PRroot (%) of RefP2C for each paper across iteration 0-5.

Paper Name Iter 0 Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
adaptive-pruning 25.4 28.3 32.6 41.2 35.5 42.8
all-in-one 64.1 64.6 64.8 64.2 59.1 58.1
bam 68.9 70.8 74.5 77.4 77.2 77.6
bbox 35.7 42.0 43.1 44.8 45.7 50.0
bridging-data-gaps 57.0 57.9 67.3 72.0 76.2 62.6
fre 47.4 46.1 44.6 45.9 47.9 57.2
ftrl 26.3 23.6 24.6 26.8 29.0 27.3
lbcs 63.5 64.0 65.5 66.0 68.5 65.1
lca-on-the-line 30.6 33.6 37.9 40.3 39.0 36.1
mechanistic-understanding 76.1 86.3 91.9 93.7 91.9 91.9
pinn 49.4 55.9 54.4 41.8 62.3 47.5
rice 50.0 45.8 47.7 49.2 63.7 58.6
robust-clip 30.2 38.5 41.3 41.2 42.3 43.0
sample-specific-masks 64.5 69.1 73.8 72.9 74.3 75.2
sapg 64.3 70.0 74.9 75.0 74.2 74.6
sequential-neural-score-estimation 62.3 63.9 68.5 74.6 78.9 78.9
stay-on-topic-with-classifier-free-guidance 54.0 62.9 64.5 61.0 66.8 68.7
stochastic-interpolants 74.7 71.5 72.9 80.7 88.2 87.2
test-time-model-adaptation 61.8 67.3 76.0 76.3 76.9 77.2
what-will-my-model-forget 49.7 53.7 55.8 58.0 53.7 49.3

Average 52.8 55.8 58.8 60.2 62.6 61.4

Table 7: PRleaf (%) of RefP2C for each paper across iteration 0-5.

Paper Name Iter 0 Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
adaptive-pruning 34.9 44.2 48.8 58.1 52.3 59.3
all-in-one 44.6 46.7 44.6 45.7 52.2 47.8
bam 56.1 56.5 56.9 58.8 57.6 57.6
bbox 37.9 38.6 41.4 44.1 38.6 41.4
bridging-data-gaps 54.5 56.4 70.9 72.7 80.0 61.8
fre 48.4 51.3 56.2 60.5 59.8 51.5
ftrl 36.7 35.8 36.7 39.2 37.5 37.5
lbcs 37.1 41.5 46.3 49.5 50.3 51.6
lca-on-the-line 19.6 21.7 22.9 24.3 21.1 24.9
mechanistic-understanding 69.4 80.6 83.3 86.1 83.3 83.3
pinn 89.7 92.1 89.7 80.2 92.1 91.3
rice 60.1 53.9 51.7 57.9 66.9 68.0
robust-clip 38.6 44.3 48.6 48.6 45.7 47.1
sample-specific-masks 67.8 69.0 77.0 75.9 75.9 79.3
sapg 50.6 70.1 75.3 76.6 77.9 76.6
sequential-neural-score-estimation 56.7 55.2 65.7 67.2 70.1 71.6
stay-on-topic-with-classifier-free-guidance 48.6 51.4 54.3 52.9 57.1 61.4
stochastic-interpolants 63.8 62.1 67.2 67.2 75.9 75.9
test-time-model-adaptation 51.2 60.5 75.6 76.7 75.6 75.6
what-will-my-model-forget 41.4 45.7 47.6 51.9 50.1 51.4

Average 50.4 53.9 58.0 59.7 61.0 60.8

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

B.6 COST ANALYSIS

We further report the financial costs associated with fingerprint design and reflective code develop-
ment. As shown in Figure 16, the majority of the cost comes from fingerprint design ($ 3.95) and a
single code refinement loop ($ 1.85). When implementing the initial code without any verification
or refinement, the framework only includes extraction at the framework and configuration levels and
the initial implementation stage. In this scenario, compared with PaperCoder (Seo et al., 2025),
RefP2C achieves both a lower cost ($ 0.63 vs. $ 0.69) and higher performance (52.8% vs. 45.1%,
Table 4), further demonstrating its effectiveness.

Fingerprint
design:
$ 3.95

Initial
implementation:
$ 0.58

Single
refinement
loop: $ 1.85

Exhaustive guide extraction: $ 0.58

Framework-level standardization: $ 0.23

Configuration-level standardization: $ 0.13

Exhaustive level standardization : $ 1.30

Filtering: $ 1.67

Single planning and revision:
$0.26

Single verification on
the whole fingerprint:
$1.59

Framework level guide extraction: $ 0.03

Configuration-level guide extraction: $ 0.02

Figure 16: The cost breakdown for an average run of the framework per paper.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Throughout the preparation of this manuscript, we utilized large language models (LLMs) primarily
to polish the writing. Their use was limited to improving clarity, conciseness, and correcting gram-
matical errors. The core research ideas, methodology, and scientific conclusions were conceived and
articulated entirely by the authors.

27

	Introduction
	Related Work
	Automated Paper Reproduction by LLM
	Reflection and Verification in Agents

	Method
	Supervisory Signal Design
	Reflective Code Development

	Experiments
	Experimental setting
	Dataset
	Evaluation Metric
	Baselines

	Performance Comparisons
	Case Study
	Experiments on Supervisory Signal Design
	Experiments on Reflective Code Development

	Conclusion
	Methods
	Additional Details for the Supervisory Signal Design Stage
	Additional Details for the Reflective Code Development Stage

	Experiments
	Implementation Details
	Detailed Analysis on Performance Comparison
	Case Study
	Detailed Analysis on Supervisory Signal Design
	Detailed Analysis on Reflective Code Development
	Cost Analysis

